
HAL Id: hal-03759010
https://hal.science/hal-03759010v1

Submitted on 23 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A feature-based survey of Fog modeling languages
Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux

To cite this version:
Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux. A feature-based survey of Fog modeling lan-
guages. Future Generation Computer Systems, 2023, 138, pp.104-119. �10.1016/j.future.2022.08.010�.
�hal-03759010�

https://hal.science/hal-03759010v1
https://hal.archives-ouvertes.fr

A Feature-based Survey of Fog Modeling Languages

Abdelghani Alidraa,b,∗, Hugo Brunelierea, Thomas Ledouxb

aNaoMod Team - IMT Atlantique, LS2N (UMR CNRS 6004) - Nantes, France
bSTACK Team - IMT Atlantique, Inria, LS2N (UMR CNRS 6004) - Nantes, France

Abstract

Fog Computing is a new paradigm aiming at decentralizing the Cloud by geographically distributing away computation,
storage and network resources as well as related services. In order to design, develop, deploy, maintain and evolve Fog
systems, languages are required for properly modeling both their entities (e.g., infrastructures, topologies, resources
configurations) and their specific features such as the locality concept, QoS constraints applied on resources (e.g.,
energy, data privacy, latency) and their dependencies, the dynamicity of considered workloads, the heterogeneity of both
applications and devices, etc. This paper provides a detailed overview of the current state-of-the-art in terms of Fog
modeling languages. We relied on our long-term experience in Cloud Computing and Cloud Modeling to contribute a
feature model describing what we believe to be the most important characteristics of Fog modeling languages. We also
performed a systematic scientific literature search and selection process to obtain a list of already existing Fog modeling
languages. Then, we evaluated and compared these Fog modeling languages according to the characteristics expressed
in our feature model. As a result, we discuss in this paper the main capabilities of these Fog modeling languages and
propose a corresponding set of open research challenges in this area. We expect the presented work to be helpful to both
current and future researchers or engineers working on/with Fog systems, as well as to anybody genuinely interested in
Fog Computing or more generally in distributed systems.

Keywords: Fog Computing, Cloud Computing, Internet of Things, Modeling Language, Survey

1. Introduction

Fog Computing [1, 2, 3] is a new paradigm aiming
at decentralizing the Cloud by geographically distributing
away computation, storage and network resources as well
as related services. Instead of considering a huge central-
ized Cloud system, data centers of various sizes in a core
Cloud network can be combined with smaller data-centers
located at the Edge of the network and with related IoT
devices. All these resources can be collaboratively used to-
gether to form a single large-scale geo-distributed system.
Thanks to resource locality, such a Fog system [4] allows
for better performance in terms of service latency, power
consumption, network traffic or content distribution. The
main gains are twofold: i) avoid network bottlenecks and
single points of failure; ii) keep the data as close as pos-
sible to their sources (e.g., IoT devices) and to their final
usage (i.e., end-users). This new type of system, integrat-
ing resources coming from a central Cloud to the edge
of the network, is expected to facilitate many aspects of
our daily lives by improving decision-making processes in
various fields such as industry, transportation, health, ed-
ucation, cities, etc.

∗Corresponding author
Email addresses: abdelghani.alidra@imt-atlantique.fr

(Abdelghani Alidra), hugo.bruneliere@imt-atlantique.fr (Hugo
Bruneliere), thomas.ledoux@imt-atlantique.fr (Thomas Ledoux)

However, managing resources in such heterogeneous
and dynamic large systems is highly challenging and re-
quires fully decentralized solutions for scalability and re-
liability reasons. In order to support this, we need simul-
taneously new abstractions, languages, distributed algo-
rithms and system mechanisms capable of operating and
exposing a large number of diverse resources in a unified,
efficient and sustainable way. One of the first challenge is
notably to be able to properly model such large and com-
plex Fog systems. To this end, appropriate modeling lan-
guages are required to be used by operators, DevOps and
architects when designing, developing, deploying, main-
taining or evolving their Fog systems. In other words, Fog
modeling languages should help to better manage the Fog
system’s life cycle, including the digital infrastructure as
well as the hosted applications.

The main objective of this paper is to provide orienta-
tion to the researchers or engineers genuinely interested in
Fog Computing and Fog systems modeling. To this end,
we propose a detailed study of the current state-of-the-
art in terms of already existing Fog Modeling Languages,
i.e., languages allowing to model Fog systems possibly hav-
ing different types of architectures and different applica-
tion domains. In practice, we first worked on a feature
model to describe what we believe to be the main general
characteristics of Fog modeling languages (i.e., indepen-
dently of any specific language). In parallel, we set up

Preprint submitted to Elsevier Accepted: 12 August 2022

and performed a systematic paper selection process from
the scientific literature in order to obtain a list of exist-
ing approaches proposing Fog modeling languages. Then,
we evaluated the selected Fog modeling languages accord-
ing to the characteristics expressed in our feature model.
Finally, we analyzed and discussed further the obtained
results.

As a summary, we contribute to the community i) the
description of what we believe to be the main general char-
acteristics (expressed as a feature model) of Fog modeling
languages ; ii) a presentation of how these characteristics
are currently covered or not by already existing Fog model-
ing languages from the scientific literature; iii) the identifi-
cation of present and future research challenges concerning
such Fog modeling languages.

The remainder of the paper is organized as follows. In
Section 2, we first introduce the general terminology that
we illustrate via one concrete example of a Fog system.
In Section 3, we describe the methodology we used for
searching, identifying and selecting approaches providing
relevant Fog modeling languages. In Section 4, we present
our feature model summarizing the main characteristics of
Fog modeling languages. Then, in Section 5, we evaluate
and compare the selected Fog modeling languages thanks
to the previously proposed terminology and feature model.
In Section 6, we both discuss our analysis of the obtained
results and identify open research problems or challenges
related to Fog modeling languages. We close the paper
with further discussion on the related work in Section 7
and a general conclusion in Section 8.

2. Background

2.1. General Definitions
We start by proposing general definitions of the main

big concepts behind Fog modeling languages, as they will
be used along the paper.

A system is a unit consisting of multiple interdepen-
dent components designed and implemented by different
engineers. These components can be software or hardware
ones, as well as any other artefacts created during the sys-
tem development and running process.

A Cloud system is a particular type of system offering
various kinds of computer system resources on-demand.
These resources can be infrastructure, platform or software
ones and are commonly centralized over data centers.

An Internet of Things (IoT) system is a particu-
lar type of system providing a network of physical compo-
nents. These components (i.e., ”things”) can be devices,
sensors, software or any technical component to connect
and share data over networks.

A Fog system is a particular type of Cloud and IoT
system where computation and storage can be distributed
between different locations at the edge of the Network (i.e.,
closer to IoT devices providing data) rather than system-
atically centralized in data centers.

A model provides a representation of a given system.
It specify the model elements describing this system ac-
cording to the element’s and relationship’s types and con-
straints provided by a metamodel (i.e., a model conforms
to a metamodel).

A modeling language has three main components: 1)
An abstract syntax defining the concepts of the language
(quite often expressed as a metamodel), 2) one or several
concrete syntaxes (graphical and/or textual) for users to
be able to specify corresponding models with the language
and 3) semantics providing meaning to the language.

A Fog modeling language is a particular kind of
modeling language dedicated to the creation of models of
Fog systems and their specific characteristics.

2.2. Illustrative Example: a Fog system in the context of
University Education

To concretely illustrate these general definitions and
further motivate the need for Fog modeling languages, we
describe in this section one example of a Fog system in
the context of a hypothetical college campus consisting of
a main department and a dormitory.

For the sake of campus modernization, the campus
management board decided to deploy two distributed ap-
plications: one for smart surveillance and another for smart
bell notification. A particular Fog system has been de-
signed in order to maximize local resources utilisation, op-
timize latency and response time, and minimize the mon-
etary costs relative to Cloud resources exploitation. while
enforcing some privacy and data protection guaranties.

Firstly, the campus administrators designed the phys-
ical infrastructure (i.e., the blue elements in Figure 1) in-
tended to host the virtual infrastructure. This physical
infrastructure is spread across three layers. The IoT layer
is made of small IoT devices (in our example WiFi cam-
eras, alarms and users’ personal devices) acting mostly
as sensors and/or actuators communicating with the en-
vironment and users. They can be static or mobile, their
network connection is often scarce and volatile. As the
use of some of these devices (e.g., cameras) may imply
privacy issues, their locations have been carefully chosen
to respect users privacy, related information panels have
also been placed wherever required. The Fog layer con-
sists of physical equipment offering computation and/or
storage capabilities, distributed across the network. In
our example, there are a network gateway, two small data
centers (one located in the main department and the other
in the dormitory) and a cluster of several Raspberry Pis.
The Cloud layer contains, in our example, a public Cloud
provider with a very large amount of available resources
(depending on budget and latency constraints) that can
be exploited in an Infrastructure as a Service (IaaS) or a
Platform as a Service (PaaS) way.

Secondly, on top of this physical infrastructure, the
system administrators described the virtual platform and
its characteristics in terms of Virtual CPU (VCPU), RAM

2

Figure 1: One example of a Fog system in the context of hypothetical college campus

(VRAM) and storage (VDisk). The corresponding set of
Virtual Machines (VMs) and lightweight containers (i.e.,
the orange elements in Figure 1) aims at hosting the target
services/applications.

Thirdly, the software architects model the two applica-
tions architecture (i.e., the green elements in Figure 1) as a
set of loosely coupled micro-services that can be mutually
shared between the two applications. This also includes
their requirements/constraints (e.g., computation power,
storage capacity, location) and application-specific objec-
tives (e.g., latency, response time, cost, bandwidth usage).
For the sake of privacy, hard constraints have been im-
posed on services placement. As a result, the raw data is
only stored in local nodes and systematically anonymized
(and eventually randomized) when required to be pro-
cessed outside of the campus.

The smart surveillance application is composed of five
micro-services. The low-level ones are (S1) Feature ex-
traction micro-service to extract human faces in video or
captured images, (S2) Audio analysis micro-service that
identifies specific keywords in record audios and (S3) Li-
cence plate recognition micro-service to identify and track
cars. The high-level services include (S4) Gesture and
facial recognition micro-service that recognizes and links
specific persons or subjects to extracted faces and (S5) Be-
havior analysis micro-service to infer and detect suspicious
behavior and malicious intent.

The smart bell application [5] is composed of four micro-
services. The low-level ones are (S1) Feature extraction
micro-service and (S6) Bell ringing decision micro-service
making reaction decision for each received visitor. The
high-level services are (S4) Gesture and facial recogni-
tion micro-service and (S7) Visitor habits analysis micro-
service identifying different visitors habits by analyzing
past recorded visits and visitation patterns.

In addition to modeling these physical resources, vir-
tual platform and application micro-services, Fog modeling
languages are also about describing how resources (physi-
cal or virtual) are affected to application micro-services.

The scheduling or placement of these services is of pri-
mary importance, as it will largely determine how well the
system fulfills the designers’ original goals. It must notably
take into account the application requirements and con-
straints related to the infrastructure capacity or allocated
budget (for instance). Other popular system reconfigura-
tion techniques may also be considered such as network
reconfiguration, auto-scaling or requests offloading [6].

3. Survey Method

3.1. Goal of the Survey and Research Questions
The objective of this paper is to identify, classify, com-

pare and then analyze the core characteristics and related

3

support of already existing Fog modeling languages, in or-
der to identify a number of open and relevant challenges
from a research perspective.

To this end, we propose to answer to the following three
main research questions (RQs):

RQ1 - What is the scope of the current Fog modeling
languages?

RQ2 - How are they defined from a language engineer-
ing perspective?

RQ3 - What features and tooling support do they al-
ready offer?

3.2. Approach Selection Process
The paper selection process was conducted by explor-

ing bibliographic data sources, following the general guide-
lines by Kitchenham and Charters [7] concerning literature
search and selection strategy. At the end of the process,
we performed an additional snowballing step thus double-
checking the references cited in the finally selected pub-
lications. The overall selection process is summarized in
Figure 2 and detailed in the following subsections1.

3.2.1. General Search Strategy and Data Source (Step 0)
We used DBLP2 as our core database to search for

primary studies on Fog modeling languages. We took
this decision because the main journals and conferences
in the targeted scientific domain (i.e., distributed systems,
Fog Computing) have their publications systematically in-
dexed in DBLP. This notably covers papers from the most
common publishers (IEEE, ACM, Springer, Elsevier, etc.).
The quality of DBLP references is also generally acknowl-
edged in the Computer Science community, contrary to
other sources whose indexation process is less transparent.

As Fog Computing is a relatively recent paradigm, we
decided to limit the search to the last decade (2012 corre-
sponds to first appearances of the term Fog Computing).
We decided to focus on approaches already published in
journals, conferences and in serious workshops eventually
(though we gave preference to related journal and con-
ferences publications when possible). Thus, we generally
removed publications of other kinds or coming from other
types of venues. For automating the search process de-
scribed here, we used the DBLP search facilities to select
a first set of publications that we refined as detailed below.
Based on the topic of this survey, we defined the terms of
the search query as follows.

3.2.2. Whitelist-based Keyword Search (Step 1)
We considered the terms “Fog” and “model” and “lan-

guage” as the main constituents of our search query. We
also included the terms “architecture”, ”description” and
“specification” as quite often used as alternatives to the

1Further resources are also available from https://cloud.
imt-atlantique.fr/index.php/s/zeYJHTSwYyYQMkJ.

2http://www.dblp.org/search

term “model”, as well as the terms “profile“ and “do-
main“ as sometimes associated to the modeling activity.
We could have included other search terms, but most of
them are already covered by the general term “model”
(e.g., the related term “modeling”). As we used a very
general search query, we expected a large result set re-
quiring special treatment to select the most appropriate
studies. When executing the search query over the DBLP
dump, we received a complete result set consisting of 785
references. Based on this initial set of references, we de-
termined the set of relevant publication sources by a semi-
automated pruning process detailed in what follows.

3.2.3. Pruning Process (Steps 2 to 4)
In what follows (as proposed by Kitchenham and Char-

ters [7]), we present the pruning steps applied to identify
the final set of relevant papers. The selection of these
primary studies was carried out based on the initial set
of records we obtained from executing the search query
against the DBLP data sources (cf. Section 3.2.2). In each
one of these steps, the number of studies was significantly
reduced compared to the result of the previous step.

Blacklist-based Keyword Search (Step 2). After the whitelist-
based keyword search determining the initial set of stud-
ies, we conducted a blacklist-based keyword search. This
step was needed as we found out that many papers which
were part of the initial selection were actually not from the
distributed systems domain (which is our target scientific
domain). Notably, we automatically excluded all the pa-
pers from the Artificial Intelligence area, i.e., having the
keywords “AI” or “learning”, “neural” (neural networks
are sometimes referred to as neural models, but these are
out of the scope of our study), “stochastic” (stochastic
models are mathematical models that can be used to rep-
resent some network or monitoring control phenomenons,
but they are also out of the scope of our work). This re-
sulted in a set of 421 papers to be investigated during the
next step. Please note that the reduction to a human-
manageable number of studies at this step was important.
Indeed, the two remaining steps are hardly achievable au-
tomatically, and thus, were conducted manually.

Manual Selection Based on Title and Abstract (Step 3).
It is often difficult to determine the relevance of a study
by considering its title only. Thus, we decided to evaluate
both the title and abstract of each study against inclu-
sion and exclusion criteria. Studies relevant for this sur-
vey must clearly and explicitly describe a proposed Fog
modeling language. We decided to not put particular re-
strictions on how such a language is specified and then im-
plemented (all possible technological stacks are allowed).
In other words, in this paper we are not interested in the
Fog-supporting approaches/tools themselves but rather in
the Fog modeling languages that they can provide.

From this overall principle, the inclusion criteria are:
(1) Proposed approaches that report on or contribute re-
lated sets of concepts which are specifically intended to

4

https://cloud.imt-atlantique.fr/index.php/s/zeYJHTSwYyYQMkJ
https://cloud.imt-atlantique.fr/index.php/s/zeYJHTSwYyYQMkJ
http://www.dblp.org/search

Figure 2: Overview of the used selection process.

model Fog systems. (2) Proposed approaches that al-
lows to create models for different kinds of Fog systems,
Fog (technical) environments or application domains (e.g.,
Smart City, Smart Health, Smart Home, etc.). (3) Pro-
posed approaches that provide support to a Fog modeling
language (tooling, documentation, etc.).

The exclusion criteria are: (1) Proposed approaches
that are proposing to simply reuse Cloud modeling lan-
guages “as is” in order to model Fog systems. (2) Proposed
approaches that are purely theoretical or mathematical,
i.e., not providing a language nor corresponding support
(in the Software Language Engineering sense).

Generally, we acted in a conservative manner. In some
cases, more information than the title and abstract is ac-
tually required to determine whether a study is relevant
for this review. This gave us a reduced set of 49 papers to
be investigated further in the final pruning step.

Manual Selection Based on Detailed Content (Step 4). In
the final pruning step, we carefully read the remaining pa-
pers considering both our objective and the defined inclu-
sion/exclusion criteria. As a result, we selected 12 relevant
approaches corresponding to 13 different papers. After this
step, we are confident that this initial set of approaches al-
ready covers a significant portion of published approaches
proposing Fog modeling languages.

3.2.4. Snowballing (Step 5) and Final Result
Following the application of our methodology, we wanted

to double-check that we did not miss any potentially rel-
evant approaches. Indeed, some papers could have been
missed during the search process for different reasons, or
some existing solutions are tools and thus do not necessar-
ily have indexed publications on DBLP.

As a consequence, based on the 13 selected relevant
papers from our literature search, we performed a snow-
balling phase [8] by investigating the references these pa-
pers cite (approaches these paper authors were already
aware of as domain experts). We have been able to identify
a few more approaches after applying the aforementioned
inclusion/exclusion criteria to these additional references.

The final result of the overall process (including this
last snowballing step) is presented in Table 1. This table
provides, in addition to a representative name for each se-
lected approach, the main publication(s) from which the
data has been extracted out for this survey. At the end,

we considered 23 different papers corresponding to 16 ap-
proaches as relevant for this survey.

Table 1: Finally selected approaches.

Approach References
Smada-Fog [9]
Khebbeb et al. [10]
Sahli et al. [11]
FogDirSim [12][13]
AcOP [14]
DITAS [15]
Engelsberger et al. [16][17]
MobileFog [18]
iFogSim [19][20][21][22]
FogNetSim++ [23]
COMPSs [24] [25]
Extended TOSCA [26]
CloudPath [27]
Distributed Node-RED [28] [29]
YAFS [30]
Fogify [31]

3.3. Data Extraction Process
To study the selected approaches, the data extraction

process itself has been divided in different big stages con-
cerning the terminology, feature model and evaluation of
the selected approaches proposing Fog modeling languages.

The survey results have been principally achieved by
having regular face-to-face meetings between the authors.
We believe that frequent brainstorming sessions between
our three different but complementary profiles and exper-
tise (going from distributed and Cloud systems to software
engineering and modeling) already allowed to obtain rel-
evant results. However, as getting external feedback is
also important, we presented both the feature model and
our intermediate evaluation results during a couple of Se-
MaFoR ANR project’s internal meetings. In these occa-
sions, we received interesting remarks from our academic
and industrial partners that ultimately led us to further
discussions and corresponding adjustments of our work.

The main general objectives were (1) to agree on an
overall common terminology to be used all along the work
presented in this paper and (2) to produce a relevant ver-
sion of the feature model to be presented and used in this

5

study. During several months, we also worked in parallel
on applying the survey methodology described in this sec-
tion. Then we deeply studied all the selected approaches,
resulting from our application of the methodology, in order
to individually evaluate them thanks to the characteristics
expressed in our feature model. After having performed
these evaluations, we discussed altogether several times
the obtained results before reaching the current consoli-
dated version we are now confident with.

4. A Feature Model for Characterizing Fog Mod-
eling Languages

Based on our own experiences working on modeling
Cloud systems in the past years, and on a deep study of the
related state-of-the-art (cf. Section 3 for the used method),
we propose in this paper a feature model (see Figure 3) de-
scribing what we consider to be the main characteristics of
a Fog modeling language. This feature model will be used
in Section 5 to better describe and compare the existing
solutions we have identified and selected.

We have defined two main categories of features that
Fog modeling languages are supposed to cover. The first
one concerns the general characteristics of the language,
i.e., its scope and definition. These two features and their
sub-features directly relate to RQ1 and RQ2 (respectively)
as stated in Section 3.1. The second main category of
features concerns the corresponding support that can come
along with a given language. This feature and its sub-
features directly relate to RQ3 as stated in Section 3.1.

4.1. Language
4.1.1. Scope

A Fog modeling language can first be characterized by
its Scope and the following characteristics.

Dimension: A given language can possibly allow rep-
resenting elements describing the structure of a Fog sys-
tem, its behavior or both of them.

Layer: A given language can cover one or several of
the layers typically encountered in Fog system’s standard
representation [4]. These layers are namely Cloud (i.e.,
covering traditional IaaS, PaaS, SaaS elements), Fog (i.e.,
for resources more at the Edge of the system), and IoT
(i.e., for devices, related protocols, etc.).

ArchitectureType: A given language can target var-
ious kinds of Fog systems architectures based on distinct
layers, on the existence of various Fog areas or on several
complementary views over the modeled Fog system.

Control Type: A given language can be oriented to-
wards two main kinds of control management for Fog sys-
tems: centralized (such as in more traditional Cloud sys-
tems) or decentralized.

Resources: A given language can allow representing
various kinds of Fog system resources. It can provide lan-
guage concepts to model physical resources (e.g., physi-
cal machines, devices, network infrastructures), software

resources (e.g., virtual resources, application or service
resources, but also data, files, protocols) and/or work-
flow resources (e.g., processes, actors, activities).

Properties: A given language can provide language
concepts targeting in particular one or several important
properties of Fog systems. We have currently identified
key ones such as privacy / security, health (in terms
of availability, stability, consistency, etc.), performance
(related to CPU / memory, latency, bandwidth or other),
or energy. Any other property can also be considered if
it appeared to be relevant.

Genericity: A given language can be either domain-
specific (i.e., target particular application domains such
as Smart City, Smart Home or Smart Health) or domain-
independent (i.e., completely generic in this sense).

4.1.2. Definition
A Fog modeling language can also be primarily char-

acterized by its Definition. According to the principles
and best practices of Software Language Engineering [32],
a given (modeling) language is normally defined by the
three following elements:

Abstract Syntax: A given language is based on a
structured set of concepts related together. They can
be standard-based (e.g., coming from a standard meta-
model), or defined in a custom way (from scratch).

Concrete Syntax: A given language provides to users
one or several ways of expressing corresponding models.
The offered interfaces or notations can be graphical, tex-
tual or a combination of both.

Semantics: A given language comes with a particular
meaning attached to its concepts and their associated syn-
tactical elements. This can be expressed in a way that is
formal (i.e., mathematical) or semi-formal (e.g., speci-
fications in natural language).

Moreover, such a language can also come with an Ex-
tension mechanism. A given language can be natively
defined in a way that it can be refined and/or extended
when needed, e.g., in order to address different kinds of
Fog systems or corresponding ranges of problems.

4.2. Support
Finally, a Fog modeling language can be characterized

by its associated Support.
Implementation: The implementation of a given lan-

guage can be proprietary or the corresponding source
code can be made available publicly in open source.

Capabilities: The tooling supporting a given lan-
guage can provide different kinds of capabilities tradition-
ally associated to modeling languages. We can notably
consider editing capabilities (i.e., for creating or modify-
ing models), model transformation or code genera-
tion features (e.g., targeting various modeling standards
or programming languages, respectively), the support for
verification and validation (V&V), simulation or ex-
ecution of the defined models. An important Fog-related

6

Figure 3: A feature model for characterizing Fog modeling languages.

7

capability concerns the support for Fog system’s adap-
tation in terms of self-reconfiguration, self-optimization,
self-healing (fault tolerance), etc. This can be realized via
techniques such as service scheduling, scaling (verti-
cal or horizontal), network reconfiguration or requests
offloading [6] (please also refer to Subsection 2.2 for fur-
ther explanations).

Interoperability: A given language can possibly be
interoperable with either well-known standard languages
in the domain (notably modeling ones, but also data shar-
ing formats such as XML or JSON) or existing tools
providing relevant capabilities.

Exploitation: A given language and its tooling sup-
port can be mostly exploited at design time, i.e., when
designing the modeled Fog system, and/or at runtime,
i.e., when running the modeled Fog system.

Validation: A given language may have been vali-
dated/evaluated by various kinds of experiments (e.g.,
coverage or performance benchmarks) or via its concrete
application in the context of different use cases (which
are not necessarily industrial ones but could also be con-
ceptual examples of usage).

Documentation: A given language can come with
corresponding documentation support taking several forms.
A dedicated project repository (e.g., on GitHub) may
be provided featuring tutorial, examples, etc. A related
user community may also have been developed and pro-
vide practical support via forums, blogs, etc. Moreover, an
ecosystem of companies may sell a related language/tool-
specific commercial support.

5. Description of Selected Fog Modeling Languages

We now describe each one of the selected approaches by
focusing on the main characteristics of the Fog modeling
languages they provide (cf. Section 3). To realize this, we
notably rely on the previously introduced terminology and
feature model. Table 2 summarizes the overall results of
our study. The more detailed cross analysis of this table
is presented later in Section 6.

Smada-Fog. This solution proposes a semantic model-based
approach intended to support Fog systems deployment and
autonomic adaptation [9].

To support this approach, two complementary languages
are introduced in the paper. The deployment model is cen-
tered on the notions of devices and tasks (or services). De-
vices can be consumer devices, network devices or servers
while tasks represent the application modules as well as
network functions. The adaptation model allows the rep-
resentation of the various adaptation strategies. An adap-
tation strategy consists of a number of Event-Condition-
Action rules. The currently supported reconfiguration ac-
tions are services duplication, re-scheduling, network rules
configuration and horizontal scaling.

In terms of related support, the authors reported on
a Node-RED-based implementation. This implementation

is based on a semantic model consisting of an ontology en-
coded as an RDF Schema. The authors provide a model
transformation to generate (part of) this ontology from
the users models. The implementation also supports code
generation for two target platforms, namely Docker com-
mands and SDN (Software-Defined Networking) rules. In
addition, the authors provide a web-based simulator. Part
of the described support is available in open source3.

Khebbeb et al. The main objective of this solution is to
provide a formal framework to reason about the correct-
ness of Fog system management policies [10].

The Maude language [33] has been chosen as the basis
for the proposed solution. The Fog system’s structure is
modeled as a Maude configuration and roughly consists
in a Fog and a Cloud layer. The adaptation scenarios
are modeled via Maude rewriting rules, as a rich and ex-
pressive mechanism provided by Maude to express system
dynamic behavior. The described adaptation scenarios are
mainly related to latency and resource usage optimization.
However, no explicit mention is made of mobility, secu-
rity/privacy, self healing or optimization related to fluc-
tuating network capabilities (for example). Finally, the
supported adaptation capabilities cover services/VMs cre-
ation and/or deletion, service/VM relocation, VMs scaling
and requests load-balancing (offloading).

Regarding the related support, the language is based on
the open source Maude execution engine which offers tex-
tual editing, simulation and model-checking capabilities.
The authors did not provide a code repository nor ad-
vanced documentation. However, some source code snip-
pets are provided in appendix of their paper.

Sahli et al. This solution promotes the use of Bigraphs [34]
in order to formally model and verify Fog system’s adap-
tative behavior [11].

The authors introduce a formal language based on the
Bigraphical Reactive Systems (BRS for short). BRSs are
a formal and compositional process algebra that provides
both a textual and graphical representation of systems
structure and behavior [34]. In particular, the proposed
formalism provides the necessary building blocks to de-
scribe a Fog system consisting of Cloud and Fog layers.
Moreover, reaction rules are used to model the Fog sys-
tem behaviour as Event-Condition-Action rules. Finally,
the formalism also allows the expression of adaptation sce-
narios related to performance (CPU, memory, energy, la-
tency) and self-healing. The proposed adaptation actions
essentially cover service rescheduling or VMs/Containers
scaling, workers (VMs/Containers) switching On/Off and
network reconfiguration.

The authors did not report on any existing tooling sup-
port for their language. They rather described the theoret-
ical process of reasoning on and checking the correctness
of online reconfiguration of modeled Fog systems.

3https://github.com/penenadpi/smada-fog

8

https://github.com/penenadpi/smada-fog

S
m

ad
a-

F
og

K
h

eb
b

eb
et

al
.

S
ah

li
et

al
.

F
og

D
ir

S
im

A
cO

P

D
IT

A
S

E
n

ge
ls

b
er

ge
r

et
al

.

M
ob

il
eF

og

iF
og

S
im

F
og

N
et

S
im

+
+

C
O

M
P

S
s

E
x

te
n

d
ed

T
O

S
C

A

C
lo

u
d

P
at

h

D
is

tr
ib

u
te

d
N

o
d

e-
R

E
D

Y
A

F
S

F
og

if
y

Language
Scope

Dimension Structure ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Behavior ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Layer IoT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fog ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Cloud ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✓ ✓ ✓ ✓ ✓

Architecture Type Areas ✓ ✓ ✓ ∼
Layers ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Views ∼

Control Type Centralized ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Decentralized ∼ ∼

Resources Physical Res. ✓ ✓ ✓ ✓ ✓ ∼ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Software Res. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✓
Workflow Res. ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Properties Privacy/Security ∼ ∼ ∼
Health ✓ ✓ ✓ ✓ ✓
Performance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✓ ✓ ∼ ✓ ✓ ✓
Energy ✓ ✓ ✓ ✓ ✓
Other properties ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Genericity Domain-specific ✓ ✓ ✓ ✓ ✓
Domain-independent ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Definition
Abstract Syntax Standard-based ✓ ✓ ✓

Custom ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Concrete Syntax Graphical ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Textual ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Semantics Formal ✓ ✓ ✓ ✓

Semi-formal ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Extension Mechanism ✓ ✓ ✓ ✓ ∼ ✓ ✓ ✓

Support
Implementation Open Source ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Proprietary
Capabilities Editing ✓ ✓ ✓ ✓ ✓ ✓ ✓

Model Transformation ✓ ∼
Code Generation ✓
V&V ✓ ✓
Simulation ✓ ✓ ✓ ✓ ✓ ✓ ✓
Execution ✓ ✓ ✓ ✓ ✓ ✓
Adaptation Scheduling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Offloading ✓ ✓ ✓
Reconfiguration ✓ ✓ ✓ ✓
Scaling ✓ ✓ ✓ ✓ ✓ ✓ ✓
Other adaptation ✓ ✓ ✓ ✓ ✓ ✓

Interoperability Standard Languages ✓ ✓ ✓ ✓ ✓ ✓ ✓
Existing Tools ✓ ✓ ✓ ✓ ✓ ✓

Exploitation Design Time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Runtime ✓ ✓ ✓ ✓ ✓ ✓ ✓ ∼ ✓ ✓

Validation Experiments ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Use Cases ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Documentation Repository ∼ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Community ✓ ✓
Commercial Support

Table 2: A comparison of existing Fog modeling languages (✓=feature supported, ∼=feature partially supported).

FogDirSim. This solution proposes a simulator of the CISCO
control panel, called FogDirector, that aims at deploying,
monitoring, managing and troubleshooting Fog systems re-
alized on CISCO devices [13, 12].

To this end, the authors propose a modeling language
with operational semantics based on (a feature-complete
subset of) the FogDirector API [13]. Then, they extend
this language with simulation primitives, allowing to model
erroneous situations (for example). The language notably
includes API-provided features for adding, removing and
tagging CISCO devices, or deploying applications (as VMs,
Docker or Linux containers, etc.) on these devices. Addi-
tionally, configuration files allow to describe the applica-
tion requirements (in terms of resource usage for instance)
as well as devices capabilities and network configuration.
The proposed language also covers monitoring and alert-
ing calls to retrieve infrastructure and application data, as
well as to compute Key Performance Indicators (KPIs) ac-
cordingly. The approach is strongly bound to the CISCO
ecosystem and deployment is only supported on Fog nodes.
Thus, the language does not support layered Fog systems.

Regarding the related support, the authors provide an
open source implementation of the language with a Web-
based simulator (and the associated documentation) 4.

AcOP. This solution proposes a new paradigm to write
and execute coordinated, proactively and pervasively ini-
tiated multi-device applications in Fog environments [14].

The provided modeling language has it roots in coor-
dination languages [35, 36] and in the join actions the-
ory [37]. The central concepts are the notions of actions
and collective executions (which can be assimilated to ap-
plications). An action is triggered by a sensation (an
event) and consists in a guard (preconditions), a role (a
set of devices with necessary capabilities and status) and
a body (the execution logic of the action). The proposed
language is textual, imperative and focuses only on the
software-related aspects of Fog systems. Contrary to most
of the solutions identified in our study, AcOP does not rely

4https://github.com/di-unipi-socc/FogDirSim

9

https://github.com/di-unipi-socc/FogDirSim

on micro-services and adaptation is supported through ser-
vices (tasks) scheduling and offloading.

Regarding the related support, the authors propose a
Web-based infrastructure and dedicated IDE (with lan-
guage editor) partially available under the MIT licence,
along with the source code of a simple use case5.

Ditas. This solution comes from the DITAS H2020 project
and calls for the development of Data as a Service (DaaS)
platforms in the Cloud/Fog continuum [15].

To model data movement scenarios, the authors pro-
pose to extend a goal-based modeling language, the Busi-
ness Intelligent Model (BIM), with annotations related to
data movement actions and their impact on some system
goals (e.g., response time or data consistency). BIM is
a graphical and hierarchical representation of the goals
of a system under study. The authors first identify the
main categories of data movement (edge2cloud, edge2edge,
cloud2edge and cloud2cloud), the associated transforma-
tions (aggregation, pseudonymization, encryption) and cor-
responding metrics (execution time, cost, etc.). Then, con-
tribution links are introduced to map the data movement
actions to (sub)goals in the BIM. When a goal violation is
detected by the monitoring infrastructure, the annotated
BIM together with the contribution links are used to deter-
mine the data movements that will recover it. Regarding
the supported adaptation mechanisms, the formalism is re-
stricted to Data movement actions (moving/duplication)
of data between Fog/Cloud nodes.

Finally, the paper does not mention any support re-
lated to the (goal-based) modeling language.

Engelsberger et al. This solution proposes a set of mod-
els and an execution framework specifically targeting Fog-
based Cyber Physical Production Systems (CPPS) [16] [17].

The authors introduce three formal complementary lan-
guages to represent three main aspects of a CPPS: (1)
The Production-Step Model for the production steps, their
temporal interdependencies as well as links to their sup-
porting IT services; (2) The Service-Dependency Model
for the service instances and their mutual dependencies
together with requirements on the underlying computing
nodes; (3) The Node-Link Model for the Fog/Cloud com-
puting nodes, their logical links and respective proper-
ties. Defined models can be assimilated to different views
on the system. They are formal and can have graphical
representations based on finite state machines and undi-
rected graphs. They can be annotated with information
that links them together, as well as with the requirements
and criteria that need to be optimized. They also have
an equivalent textual algebraic representation that allows
automatic reasoning. The proposed languages and the ac-
companying algorithms offer the necessary building blocks
to express the CPPS behavior as a multi-objectives op-
timization problem including in the presence of failures

5https://github.com/ProgrammingModel/AcOP

or faulty behaviors. Regarding adaptation mechanisms,
the approach supports service embedding (selection of the
most appropriate service instance) and service placement
or (re)scheduling.

The authors describe a case study to illustrate the feasi-
bility and effectiveness of the proposal. However, no men-
tion is made of any tool support for the languages.

MobileFog. This solution is one of the first attempts to
provide a modeling language supporting the development
of applications for the Fog computing paradigm [18].

The proposed language is based on a programming
language-agnostic API intended to be used directly within
the application business code. It allows application de-
velopers to model and query information about the ap-
plication and Fog/Cloud environment (location, topology,
available resources, etc.) to realize higher level objectives
such as resource optimization (CPU, memory, bandwidth
or latency) and response time optimization (proximity).
The offered mechanisms mainly cover dynamic scaling and
application re-scheduling. It targets tree-based Fog sys-
tems where the root node is the Cloud, leafs are (mobile)
IoT devices and intermediate nodes are Fog devices.

Although the paper describes a deployment, adapta-
tion and code execution platform, such a platform is not
implemented in practice. Still, the language has been eval-
uated on a network simulator with realistic traffic patterns.

iFogSim. This solution is among the first and most pop-
ular simulation tools for Fog/Cloud/IoT applications. It
provides a dedicated language to model simulation scenar-
ios thanks to a Java API. A graphical syntax and interface
is also available to model Fog system’s topologies (and then
export the models in JSON format). The iFogSim mod-
eling language mainly focuses on resources management
related aspects: optimization of CPU, memory, storage,
latency, energy consumption, network congestion and op-
erational costs. In terms of attached mechanisms, it is
mainly coming with module placement (service schedul-
ing) through the provisioning of placement algorithms.
The language does not come with specific extension mech-
anisms to address additional objectives and/or implement
additional adaptation mechanisms. However, it is possible
to extend it because of its openness, documentation and
modular design. Thus, different extensions have already
been proposed to address various concerns. For instance,
MobFogSim in an extension targeting devices mobility [20]
while MyiFogSim is another one for VM migration [21].
Naas et al. present an extension to model and evaluate
Data placement strategies [22].

iFogSim (and its various extensions) is an open source
project published under the Apache Version 2.0 license6.

FogNetSim++. This solution is a simulator for Fog envi-
ronments with a special focus on networking aspects [23].

6https://github.com/Cloudslab/iFogSim

10

https://github.com/ProgrammingModel/AcOP
https://github.com/Cloudslab/iFogSim

This simulator notably provides a graphical language
to model fine-grained network configurations and comes
with a predefined set of supported protocol, mobility, en-
ergy, pricing and data transmission models. It also imple-
ments predefined management policies. The Broker Node
that centralizes the management of the system under test
is at the heart of the used Fog system’s models. FogNet-
Sim++ comes with a predefined offloading and scheduling
algorithms that can be overwritten in order to consider
nodes characteristics in term of processing load, energy
consumption, cost, distance from request source (for la-
tency optimization), bandwidth, etc.

FogNetSim++ is available under the GPL-3.0 License7.
The authors reported a detailed use case of a Fog-based
traffic management system, along with extensive scalabil-
ity experiments and network performance benchmarks.

COMPSs. This solution provides a framework for the de-
velopment and execution of parallel applications that run
on distributed infrastructures [24] [25].

The proposed modeling language has its roots in the
distributed computing programming models family which
aims at discharging application developers from distribu-
tion concerns. It extends the functional Java, C++ or
Python code with annotations to model candidate meth-
ods and services to parallelization, as well as the infor-
mation to build their dependency graph and (optionally)
their required hardware and software resources. COMPSs
is exclusively focused on the capability of scheduling ser-
vices and methods to distribute computing nodes in the
Fog/Cloud. It does not seem to offer much primitives for
model placement preferences, except through required re-
sources. Interestingly, the paper describes a partially de-
centralized control mechanism coming with the language.
COMPSs is available under the Apache 2 licence8.

Extended TOSCA. This solution proposes to provide sup-
port for optimizing TOSCA deployment templates in a
Fog/Multi Cloud environment [26].

The authors propose an extension of the TOSCA mod-
eling language [38] focusing on deployment and runtime
optimization. This extension relies on a two-level TOSCA
specification process. The ”type-level” model is partial
and produced at design-time to reflect Fog system require-
ments, while the ”instance-level” runtime model is opti-
mized, complete and thus actually deployable. Moreover,
two kinds of nodes are explicitly distinguished. Processing
nodes represent the Cloud VMs or Fog PMs that will host
the application tasks or services (called Fragments). They
are modeled as a set of constraints on CPU cores, available
memory, storage, operating system and available sensing
capabilities (e.g., a camera or a microphone on the host-
ing node). Fragment nodes represent containerized tasks
and their respective characteristics (number of replicas,

7https://github.com/rtqayyum/fognetsimpp
8https://github.com/bsc-wdc/compss

Docker image and repository, etc.), as well as a link to
the Processing node candidate for hosting the task. The
proposed language focuses on the self optimization capa-
bility of TOSCA deployment regarding cost, distance form
the centroid of edge devices (reflecting latency) and prefer-
ences towards Cloud providers. The supported adaptation
capabilities are essentially service/tasks (re)scheduling and
(horizontal and vertical) scaling through the generation of
new instance type specifications whenever a change is de-
tected in runtime condition.

Regarding the related support, the authors describe a
partially tool-supported process for generating optimized
”instance-level” TOSCA deployment models from ”type-
level” models. The proposed language and related tooling
are available under the Apache-2.0 License9.

CloudPath. This solution is a framework following the Path
Computing paradigm, i.e, a multi-layer architecture sup-
porting processing and storage on a set data centers span
over a Cloud/Fog infrastructure [27].

The central notion of the modeling language associ-
ated to this framework is the one of function. The lan-
guage syntax is associated to applications written as Java
servlets. It uses the web.xml file to describe, as a tree-
based Fog system’s model, how and where each function
will be placed whether explicitly (Edge, Fog or Cloud) or
implicitly by a constraint on the tolerated latency of the
function. Concerning supported Fog capabilities, the pa-
per describes a deployment infrastructure that schedules
functions according to developer preferences and to pre-
viously fixed internal parameters. The authors also men-
tion network reconfiguration, rescheduling or the horizon-
tal scaling of functions at runtime. However, the proposed
language does not provide any mean to model preferences
or to customize such mechanisms.

Regarding the related support, the authors did not
mention any source code repository or documentation.

Distributed Node-RED. This solution is a realization of
the Distributed Data Flow paradigm that supports the de-
velopment of IoT applications to be run over a Fog/Cloud
architecture [28, 29].

The proposed modeling language is an extension of
Data Flow, a coordination language for developing WSNs
(Wireless Sensor Networks) and IoT applications [39]. A
Data Flow (DF) model is a directed graph of nodes where
each node represents an independent processing unit con-
suming inputs and producing outputs. The proposed lan-
guage extends DF by integrating various Fog Computing-
specific elements related to heterogeneous nodes’ capabil-
ities, location, etc. In the current version of the solution,
this language and resulting models are mostly intended to
be exploited at design time.

9https://gitlab.com/prestocloud-project/
application-fragmentation-deployment-recommender

11

https://github.com/rtqayyum/fognetsimpp
https://github.com/bsc-wdc/compss
https://gitlab.com/prestocloud-project/application-fragmentation-deployment-recommender
https://gitlab.com/prestocloud-project/application-fragmentation-deployment-recommender

Regarding the related support, the implementation of
Distributed Node-RED (D-NR) provides a deployment plat-
form based on Node-RED as well as an editing graphical
interface allowing application developers to model Dataflow
nodes and corresponding placement constraints. For de-
ployment purposes, D-NR can be connected to Web of
Things Toolkit (WoTKit)[40]. The project source code is
available on GitHub under the Apache-2.0 License10.

YAFS. This solution (Yet Another Fog Simulator) is a
discrete event simulator for Fog systems [30].

YAFS provides a JSON-based modeling language that
insures compatibility with third party tools and/or can be
used by non-expert users quite easily. For advanced sce-
narios and policies, an extended Python-based API com-
plements the language. The language allows modeling
highly flexible scenarios, including user movement by mod-
ifying workload sources. Health status modeling is also
supported as well as resource optimization regarding per-
formance parameters: CPU, memory, bandwidth and link
propagation. Additionally, users can model their own pa-
rameters and objective functions. The offered mechanisms
are service scheduling and network configuration.

The YAFS source code is available in open source under
the MIT licence11.

Fogify. This solution provides a Fog Computing system
emulator offering modeling, deployment, measurement and
evaluation facilities [31].

The Fogify modeling language is Python-based, REST-
ful and extends the Docker Compose language. It allows to
model the physical/virtual infrastructure of a Fog system
(i.e., Fog nodes), the (micro-)services that will be deployed
on top of it, and the supporting networks. Even though
”what-if” scenarios such as devices mobility or failure can
be modeled by using the proposed language, no primitives
are provided to model the dynamic behavior of the Fog
system in order to adapt to changing execution conditions.
Moreover, the underlying infrastructure does not provide
any support for runtime adaptation. Instead, the adapta-
tion logic must be manually implemented and handled at
the application’s source code level.

Fogify is open source and available under the Apache
2.0 licence12. The repository also includes some documen-
tation and illustrative examples.

6. Discussion

6.1. Analysis of the Collected Results
Interesting findings can be made by analyzing the ag-

gregated Table 2 resulting from our evaluation of different
Fog modeling languages and associated approaches (as de-
scribed in Section 5). In the context of our survey, these

10https://github.com/namgk/dnr-editor
11https://yafs.readthedocs.io/en/latest/
12https://ucy-linc-lab.github.io/fogify/

findings notably allow proposing answers to the three re-
search questions stated in Section 3.1.

6.1.1. General Observations
Overall, we can observe that almost all the features ap-

pears to be supported (even if partially) by at least one
solution. This highlights an already quite important cover-
age offered by existing languages and the support coming
with them. There are only two notable exceptions: Doc-
umentation - Commercial Support and Implementation -
Proprietary.

Even if the overall coverage is globally significant, indi-
vidually most of the identified solutions tend to focus on a
given set of features (according to their specific objectives).
For example, on average, a selected language addresses
47.50% of the identified core properties for Fog systems
(i.e., privacy/security, health, performance, energy or oth-
ers). Similarly, still on average, a selected language pro-
vides support for 42.50% of the identified adaptation tech-
niques (i.e., scheduling, offloading, reconfiguration, scaling
or others). In both cases, the covered features are often
very different from one solution to another. This gives an
impression of relative heterogeneity.

6.1.2. Language Characteristics
As an answer to RQ1 (cf. Section 3.1), we can observe

immediate similarities related to the scope of the selected
languages. For example, most of the approaches allow a
certain level of modeling at the structural level (for 93.75%
of them) and behavioral level (for 81.25% of them) of Fog
systems. Moreover, they generally allow to model the IoT,
Edge and Cloud usual constituent layers of Fog Systems
(for 75%, 93.75% and 81.25% of them respectively).

Quite surprisingly, only one language (6.25% of the se-
lected languages) provides some kind of support for the
Architecture - Views feature. Moreover, 87.50% of the se-
lected languages assume a centralized control type for the
modeled Fog systems while only 12.50% allows (partially)
for a decentralized control type. Related to the possibly
modeled resources, there is a general consensus to system-
atically address software resources (whatever their type)
as well as also physical and workflow resources to a lower
extent (for 81.25% and 62.50% of the selected languages
respectively).

However, when it comes to the modeled properties,
there are much more differences between the proposed lan-
guages. Indeed, while performance appears to be a key
property to be modeled (for 93.75% of the selected lan-
guages), the coverage for the other properties is rather het-
erogeneous and somehow limited. For instance, important
expected characteristics of Fog systems such as the health
status or energy-related issues are only addressed by one
third (31.25%) of the identified languages. Even more sur-
prisingly, only three languages explicitly offer some kind
of partial support for modeling privacy / security aspects
of Fog systems. Such aspects being fundamental for the

12

https://github.com/namgk/dnr-editor
https://yafs.readthedocs.io/en/latest/
https://ucy-linc-lab.github.io/fogify/

current and future development of Fog systems in the in-
dustry, and even more in our society (e.g., health, cities),
there is a clear gap to be filled in this domain when it
comes to modeling languages.

As an answer to RQ2 (cf. Section 3.1), i.e., concerning
the language definitions themselves, the available solutions
are also quite heterogeneous. 81.25% of the identified lan-
guages are based on custom abstract syntaxes (i.e., few
of them are relying on existing standards) and 81.25% of
them propose textual concrete syntaxes. However, half
of the identified languages (50% exactly) also propose al-
ternative graphical syntaxes, e.g., to allow for an easier
information visualization (read-only mode). Interestingly,
only 25% of the identified languages have formalized se-
mantics while 75% of them come with semi-formal se-
mantics. Moreover, only half of the identified languages
(exactly 50%) come with an explicit extension mechanism
that would allow to customize them in the context of par-
ticular ranges of problems or for specific application do-
mains. We consider this as another clear gap to be filled
for allowing a wider use and dissemination of a Fog mod-
eling language.

6.1.3. Related Language Support
As an answer to RQ3 (cf. Section 3.1), the situation

in terms of the support associated to the identified lan-
guages is globally very heterogeneous. A notable exception
is the common use of the modeling languages at design
time (for 87.50% of them) which is rather natural, though
we could have also expected a more widespread use of such
models at runtime as well (currently for 62.50% of them
only). Another exception is the significant validation of
these languages via research experiments (for 68.75% of
them) and even more via concrete use cases (for 93.75% of
them), as a commonly accepted practice in the language
engineering community. It appears that providing sup-
port for scheduling algorithms to be used for model/system
(re)configuration is also rather common (in 87.50% of the
selected languages).

For the other features, the actual support seems to be
rather limited and sparse. 62.50% of the identified lan-
guages are available as open source while the remaining
37.50% are not made publicly available (or we were not
able to find the information from the corresponding pa-
pers). In terms of modeling capabilities, less than half of
them (43.75% exactly) provide an extended editing and
simulation support. While this level of simulation sup-
port was predictable, as simulation is a relatively common
practice in the distributed systems community, not having
a more generalized dedicated support for editing is rather
surprising. To a lower extent, model execution capabilities
are also quite frequently encountered with the identified
languages (for 37.50% of them). However, few languages
natively come with transformation (12.50%), verification
& validation (12.50%) or even code generation (6.25%) ca-
pabilities. This is surprising since transformation and code
generation are normally among the key features bringing

a significant added value or return on investment (ROI) to
modeling approaches. This shows that there are still sig-
nificant progresses to be made in these directions in order
to provide an extended language support in the context of
Fog modeling languages.

Concerning the adaptation capabilities, apart from the
previously mentioned case of scheduling, the support for
different kinds of mechanisms or algorithms is rather lim-
ited at the time of writing. Indeed, this ranges from 43.75%
for scaling features down to 25% for reconfiguration or
even 18.75% for offloading. This is also surprising as these
are expected to be important capabilities related to Fog
systems. Again, it appears that there is still an impor-
tant gap to be filled in this area. In terms of language
interoperability, the current support is also limited: only
a subset of the identified languages can actually interop-
erate with common standards (43.75%) or tools (37.50%)
in the domain. In this area as well, there is a large room
for improvements as interoperability is usually crucial for
facilitating the adoption of modeling approaches.

Finally, the documentation and related practical sup-
port associated to the identified languages can be consid-
ered as globally insufficient. While 56.25% of the solutions
do provide access to a dedicated repository where users can
find documents, manuals, tutorials or other resources, only
a couple of them (i.e., 12.50% of the total) already offer
an actual user community, active forums, blogs, etc. More
effort should be made in the future in terms of user sup-
port in order to foster the use and dissemination of such
Fog modeling languages.

6.2. Identified Open Challenges
As a follow-up of the survey results analysis, we now

highlight some research challenges we believe to be worth
investigating in the coming years. Some of them are di-
rectly connected to well-known problems in the Fog Com-
puting area. Some others are more specifically related to
our modeling language context and have been identified by
studying deeper the different selected solutions (cf. Sec-
tion 5) and our comparison (cf. Table 2).

Multi-domain Context. One notable information
appearing in our descriptions of the selected solutions is
that current Fog modeling languages are heavily influenced
by different existing sub-domains of Fog Computing. In-
deed, the proposed languages borrow various characteris-
tics and features coming from modeling approaches in the
Cloud, DevOps, IoT and Autonomic Computing (AC) do-
mains notably. These domains already come with their
own modeling practices, constraints or standards (eventu-
ally) and may overlap in other contexts (e.g., Cloud and
Autonomic Computing). For instance, Infrastructure As
Code [41] or textual-based declarative description of re-
quirements are often preferred by engineers with a Cloud
and DevOps background while graphical ”component and
connector” based ADLs are generally adopted by engineers
with an IoT background. Moreover, while TOSCA [38]
is generally perceived as a current reference standard in

13

Cloud Computing, Node-RED and its underlying model
are more widespread in the IoT community [42]. Simi-
larly, Autonomic Computing comes with its own standards
centered around the MAPE-K control loop [43]. As a con-
sequence, at the Fog Computing level, there is still an im-
portant homogenization and integration effort to be made
between these different domains, both conceptually and
technically (e.g., by relying on federation techniques such
as model views [44]). This paper and survey can be con-
sidered as part of a first step towards filling this gap.

Separation of Concerns. As seen in the previous
challenge, Fog Computing is at the crossroad of differ-
ent domains with high complexity and heterogeneity. Un-
like in Cloud Computing, different stakeholders may come
from various domains with different competencies, respon-
sibilities or requirements. For instance, this is especially
true in the IoT domain [28] or in Production Systems as
requiring different views over a same system [17]. Thus,
we envision modeling solutions such as Multi-Paradigm
Modeling (MPM) [45] to be particularly relevant in this
multi-domain Fog Computing context. Moreover, as in
Cloud Computing, Fog system engineers can have different
visions or needs in terms of supporting infrastructure, ser-
vices, applications, networks, etc. For instance, one engi-
neer may work only at the application level without want-
ing to refer to underlying virtual and physical infrastruc-
tures. While the large majority of the reviewed languages
(except for Engelberger et al. [16]) do not provide a Multi-
View Modeling (MVM) [46] support for multi-dimensional
Fog systems, we argue that this is a very important feature
to be taken into account in the future. This will notably
requires collaboration and synchronization mechanisms al-
lowing Fog system engineers to define their own viewpoints
and customize their views accordingly [47] so that they can
be better assisted in they daily work.

Multiple Representations and Abstractions. Re-
lated to the previous challenge, another feature that emerges
from our study is the need for multiple representations and
abstractions to model the same Fog system’s concepts. For
instance, to model the CPU power of a given node in a
Fog system, different engineers might need to characterize
them in terms of number of cores (for instance in Smada-
Fog) or number of micro-instructions per second (like is
the case with iFogSim). This is also true for localization
modeling, where some approaches use GPS to characterize
mobile devices (MobileFog) while others simply use the po-
sition of the device in the network topology (CloudPath).
Another example is the fact that different technological
concepts may refer to the same abstractions in a Fog sys-
tem, such as Containers, VMs or stateless functions. Thus,
we believe that an ideal Fog modeling language should al-
low different representations or abstractions of a same con-
cept to co-exist in the same model, but should also provide
means to relate these representations and abstractions (at
least to a certain extent). To this end, latest advances in
the recently coined area of Blended Modeling [48, 49], as
advocating for a better support for multiple notations over

single models, could be studied in the future.
Extensibility and Refinement. Another important

feature extracted from our study is the need for extensi-
bility and refinement capabilities as far as Fog modeling
languages are concerned: we have observed that less than
half of the selected languages do provide such a support
(at least partially), thus there is still room for significant
improvements in this respect. Indeed, multiple areas and
related concepts need to be modeled in the context of Fog
computing. As a relatively novel paradigm under develop-
ment, new concepts are also constantly emerging. For in-
stance, data-oriented approaches (e.g., DITAS [15]) bring
new needs in term of modeling the data related informa-
tion such as locality, transformation cost or consistency.
Moreover, some concepts to be modeled in Fog systems
can be specific to particular application domains and their
specific requirements. As an example, this can be clearly
noticed in some Fog-based production systems [16]. In or-
der to be able to better adapt to this heterogeneity, we
believe that Fog modeling languages should provide com-
mon concepts that can then be extended and/or refined
with a minimum effort by the Fog engineers. To this end,
the reuse of modeling solutions available in the area of
metamodel extension [50, 51] or more generally language
extension [52] could be envisioned.

Security and Privacy. One of the most noticeable
and probably surprising findings from our survey is that
the modeling of security and privacy aspects is barely ad-
dressed by the studied Fog modeling languages. Such
features are of primary importance in a Fog Computing
context, even more than in Cloud Computing because of
the highly distributed and heterogeneous nature of Fog
nodes (among other reasons). However, none of the stud-
ied languages appears to provide dedicated elements to
properly model Fog system’s capabilities and/or require-
ments related to security and privacy (though other types
of language elements have been derived to this end in some
cases). What we have observed in our study is that these
features are eventually supported at the technical level us-
ing conventional mechanisms such as packets filtering or
authentication, or are only implicitly represented via con-
straints related to services, VMs or data placement. This
partial support is usually based on very general assump-
tions about security/privacy in a Fog context, e.g., Edge
nodes are more respectful of privacy or Cloud is more se-
cure. Thus, there are still limitations when it comes to
precisely model these aspects. We believe that these limi-
tations are also somehow inherent to the nature of security
and privacy. Indeed, contrary to other more easily quan-
tifiable properties, security and privacy are complicated
to explicitly express and measure. Since security and pri-
vacy can depend on various parameters and on multiple
dimensions of the Fog systems, one open question is no-
tably how to derive actual metrics or heuristics from the
modeled information.

Behavior Modeling. By nature, Fog Computing calls
for modeling capabilities covering its dynamic aspects: Fog

14

systems are extensively open and are composed of highly
volatile resources forming continuously evolving environ-
ments. We have observed that a significant number of
the selected languages allows for a certain level of mod-
eling concerning the behavioral aspects of Fog systems.
However, when it comes to dynamic adaptation, we have
seen that the situation is much more heterogeneous. De-
spite the abundant literature on this subject, there is still
a lack of standards, widely adopted common strategies,
algorithms or mechanisms. As a result, a majority of
the reviewed languages are provided along with one or
more adaptation capabilities. For example, while some
languages propose the use of Event-Condition-Action rules
(SMADA-Fog, Sahli et al., Khebab et al., MobileFog), oth-
ers prefer to model applications requirements and/or con-
straints and to delegate the adaptation process to exter-
nal optimizers or solvers (SMADA-Fog, Engelsberger et
al., CloudPath, Extended TOSCA, Ditas). As an alter-
native, some languages and their supporting frameworks
(FogDirSim, AcOP, iFogSim, FogNetSim++ and YAFS)
provide a low-level API to imperatively describe custom
adaptation policies based on elementary monitoring events
and reconfiguration actions. In addition to these comple-
mentary approaches, we strongly advocate for a better de-
scription and support of these dynamic adaptation aspects
directly at the modeling level. Behavioral modeling has
also been a long-term concern in Software Engineering as
well [53]. Thus, we believe that Fog modeling languages
could benefit from the research effort in related areas such
as Models@Runtime [54] for example.

Decentralized Control. As stated before, Fog sys-
tems are intended to be composed of very heterogeneous
resources going from public clouds, private clouds, au-
tonomous data centers, varied network equipment to mul-
tiple user devices. These systems are also massively dis-
tributed and are meant to be subject to important con-
straints on latency and privacy. As a consequence, within
these systems, it can be reasonably expected that different
self-managed clusters collaborate in the best and the most
efficient manner. Thus, from a modeling perspective, it is
important to provide the right abstractions to represent
and then enable such capabilities. However, what we have
observed in the results of our survey is that, contrary to
centralized control architectures, modeling concepts tar-
geting decentralized control are almost nonexistent at the
time of writing. We believe this raises a double challenge:
1) Relevant abstractions need to be identified and 2) Ad-
equate representations must be proposed accordingly. For
instance, this notion of cluster or more generally of Fog
Area should be explicitly represented in Fog modeling lan-
guages. The same is also true for suitable functions that
aim at ”building” Fog Areas by aggregating more concrete
modeling concepts such as physical or virtual machines. In
addition, we advocate for the identification and support of
inter-areas collaboration mechanisms directly at the mod-
eling language level (e.g., consensus, negotiation).

Tooling Support. As previously mentioned in Sec-

tion 6.1, all the studied languages do not come with sup-
porting tools and, even if they do, the capabilities they
provide are still relatively limited at the time of writ-
ing. For example, while simulation is supported by less
than half of the selected solutions, Verification and Valida-
tion (V&V) capabilities appear to be under represented.
Specifically, formal verification is supported only by two
approaches (Khebab et al. and Sahli et al.) while no lan-
guage provides any kind of support for model testing. We
have also noted that an actual Integrated Development
Environment (IDE) covering multiples phases of the Fog
system’s life cycle is only offered by one solution (namely
COMPSs). Moreover, no solution explicitly describes the
exploitation of Fog system models in an CI/CD pipeline,
despite their large popularity in the Cloud community. As
a consequence, going further than simple Fog modeling
languages, we believe that a substantial effort should be
dedicated to the design and development of Fog IDEs in-
corporating popular editing and automated deployment
facilities but also monitoring and V&V facilities, CI/CD
support, etc. In addition, an important objective could
be to consider a more systematic reuse of the designed
Fog system models both for simulation and deployment
purposes (as it has been demonstrated in SMADA-Fog,
FogDirSim and Fogify for instance).

7. Related Work

7.1. Fog Computing
With the emergence of Fog Computing during the past

years, several works have been published with the objec-
tive to specify the main principles, concepts and possible
architecture(s) of Fog Computing [55, 56, 4, 57, 58]. This
effort also produces a significant number of survey and re-
views on various Fog Computing related aspects (as this
can be observed in Section 7.3).

In parallel to these numerous attempts to come up with
a common general taxonomy for Fog Computing, there has
also been a few initiative to provide a more formal defi-
nition of Fog systems in the general case [59, 60, 61]. In
addition to these initial conceptual efforts, some technical
solutions have been proposed to deal with the simulation
of Fog/IoT environments [62]. Notably, this includes tools
whose modeling languages have been selected and analyzed
in the present survey. Some more specific solutions, rely-
ing on existing domain-specific standards or protocols, also
exist in particular application domains such as telecommu-
nications [63] (for example).

In this paper, we clearly differ from all these works
as we are not aiming at identifying Fog Computing com-
mon concepts nor providing any (reference) Fog architec-
ture. Our goal is rather to study modeling languages and
their capabilities, in the Software Engineering sense, as
currently available within the Fog Computing community.

15

7.2. Modeling Languages
Modeling languages or Architecture Description Lan-

guages (ADLs), have been widely used in several engineer-
ing disciplines since a long time. This is notably the case in
System and Software Engineering [64] where they have al-
ready proven to be practically needed by the industry [65].
In the last couple of decades, the development of and sup-
port for such languages have been notably supported by
the Model Driven Engineering (MDE) / Model Driven De-
velopment (MDD) community [66].

Quite recently, based on these good practices and fol-
lowing the advent of Cloud Computing, different languages
have been designed and developed in order to model Cloud
systems [67]. Among others, a standard called TOSCA [38]
for modeling portable Cloud applications and supporting
their life-cycle management is getting more attention. For
example, TOSCA can be possibly used for specifying the
basic constructs of IoT systems [68]. From our side, we
already worked in the past on a model-based approach for
heterogeneous Cloud systems [69], notably by proposing a
corresponding Cloud modeling language that can directly
interoperate with TOSCA [70].

On the IoT side, a significant research effort has also
been made when it comes to related languages. For exam-
ple, ThingML [71] is a well-know DSL targeting the mod-
eling of IoT components and their interactions or commu-
nications. There have been other initiatives of the same
kind, extending UML for instance [72]. Moreover, for par-
ticular types of IoT systems, some efforts have been de-
voted to the definition of an IoT Reference Model [73].
The use of (visual) programming languages have also been
studied in an IoT context [74], but we have not found any
general survey on modeling languages for IoT.

Overall, up to our current knowledge, we are not aware
of any work focusing on studying the current state-of-the-
art in terms existing modeling languages particularly in-
tended to the Fog domain. We intended to fill this gap
with the survey presented in this paper.

7.3. Secondary Literature
As already mentioned in Section 7.1, the definition ef-

fort around Fog Computing during the past years resulted
in a significant number of general surveys or (systematic)
literature reviews in the area.

Most of these works were focusing on identifying the
main Fog Computing trends [75], involved concepts [76,
77], supported architectures [78, 75, 79] or correspond-
ing research challenges [78, 80, 75, 77]. In addition to
these works, some initiatives were targeting more the di-
rect relation between Fog Computing and other underlying
paradigms such as the IoT [1] or the Edge [3].

Moreover, we have found several surveys studying the
state-of-the-art of Fog Computing in specific application
domains such as Smart Cities [81] or Health [82] (among
others). We have also identified reviews targeting the
state-of-the-art concerning particularly challenging aspects

of Fog Computing such as security [83] or dependabil-
ity [84] (for example).

Nevertheless, we have not found any work focusing on
the study of existing approaches providing actual Fog mod-
eling languages (and related capabilities) independently
from any specific application domain or concern. Comple-
mentary to all the works mentioned in this section, our goal
is to provide to the Fog Computing community a suitable
overview similarly to what is already available for Cloud
modeling languages [67].

8. Conclusion

In this paper, we presented a collection of research ap-
proaches dealing with the problem of providing Fog mod-
eling languages and related support. Although the domain
under study is still relatively young and not mature yet,
we do believe this research line is becoming more and more
crucial for the Fog Computing community, and also from a
general distributed systems perspective. This is especially
true given the current momentum around Fog Computing
and the development of more and more complex Fog sys-
tems that need to be properly modeled, in areas such as
Smart Cities, Smart Home, Smart Health, etc.

Via the list of identified solutions, we have showed that
modeling Fog systems is and will be important in order to
support more efficiently their design, development, deploy-
ment and running/monitoring. We have described what
are these current solutions and their corresponding mod-
eling languages, as well as how they compare to each other.
To this end, we have classified them according to a feature
model that aims to shed more light on this topic and to be
possibly used as a reference for future research in related
areas. In total, we have reviewed more than 420 academic
papers from which we have identified nearly 50 candidate
solutions to finally select 16 Fog modeling languages (after
snowballing) representing a current spectrum of available
initiatives in this domain.

As future work from our side, we plan to directly tackle
some of the challenges we identified in this paper. To this
end, we expect to actively collaborate with our industrial
partner Alter Way (a Smile group company)13, notably in
the context of the SeMaFoR collaborative research project
(funded by ANR, France)14 which started recently. More
generally, we also hope this paper will stimulate further
discussions within the Fog Computing community. This
could allow both enriching the proposed feature model and
extending the approach comparison in the future. But
more than anything, this could raise the global awareness
on the research challenges associated to Fog system mod-
eling and its practical usages in the industry.

13https://www.alterway.fr/
14https://semafor.gitlab.io/

16

https://www.alterway.fr/
https://semafor.gitlab.io/

Acknowledgments

The authors acknowledge the support of the French
Agence Nationale de la Recherche (ANR), under grant
ANR-20-CE25-0017 (SeMaFoR project).

References

[1] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini,
A. Zanni, A Survey on Fog Computing for the Internet of
Things, PMC 52 (2019) 71–99.

[2] C.-H. Hong, B. Varghese, Resource management in fog/edge
computing: A survey on architectures, infrastructure, and algo-
rithms, ACM CSUR 52 (5).

[3] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali,
A. Niakanlahiji, J. Kong, J. P. Jue, All One Needs to
Know About Fog Computing and Related Edge Computing
Paradigms: A Complete Survey, JSA 98 (2019) 289–330.

[4] M. Iorga, L. Feldman, R. Barton, M. J. Martin, N. S. Goren,
C. Mahmoudi, Fog Computing Conceptual Model, Tech. rep.,
NIST (march 2018).

[5] Y. Xia, X. Etchevers, L. Letondeur, T. Coupaye, F. De-
sprez, Combining Hardware Nodes and Software Components
Ordering-based Heuristics for Optimizing the Placement of Dis-
tributed IoT Applications in the Fog, in: SAC 2018, 2018, pp.
751–760.

[6] W. Z. Khan, E. Ahmed, S. Hakak, I. Yaqoob, A. Ahmed, Edge
computing: A survey, FGCS 97 (2019) 219–235.

[7] B. Kitchenham, S. Charters, Guidelines for performing System-
atic Literature Reviews in Software Engineering, Tech. Rep.
EBSE 2007-001, Keele University and Durham University Joint
Report (2007).

[8] C. Wohlin, Guidelines for snowballing in systematic literature
studies and a replication in software engineering, in: EASE’14,
2014, pp. 1–10.

[9] N. Petrovic, M. Tosic, Smada-fog: Semantic model driven ap-
proach to deployment and adaptivity in fog computing, Simu-
lation Modelling Practice and Theory 101 (2020) 102033.

[10] K. Khebbeb, N. Hameurlain, F. Belala, A maude-based rewrit-
ing approach to model and verify cloud/fog self-adaptation and
orchestration, JSA 110 (2020) 101821.

[11] H. Sahli, T. Ledoux, É. Rutten, Modeling self-adaptive fog sys-
tems using bigraphs, in: SEFM 2019, Springer, 2019, pp. 252–
268.

[12] S. Forti, A. Pagiaro, A. Brogi, Simulating fogdirector applica-
tion management, Simulation Modelling Practice and Theory
101 (2020) 102021.

[13] S. Forti, A. Ibrahim, A. Brogi, Mimicking fogdirector applica-
tion management, SICS 34 (2) (2019) 151–161.

[14] N. Mäkitalo, T. Aaltonen, M. Raatikainen, A. Ometov, S. An-
dreev, Y. Koucheryavy, T. Mikkonen, Action-oriented program-
ming model: Collective executions and interactions in the fog,
JSS 157 (2019) 110391.

[15] P. Plebani, M. Salnitri, M. Vitali, Fog computing and data as
a service: A goal-based modeling approach to enable effective
data movements, in: CAiSE 2018, Springer, 2018, pp. 203–219.

[16] M. Engelsberger, T. Greiner, Dynamic management of cloud-
and fog-based resources for cyber-physical production systems
with a realistic validation architecture and results, in: ICPS
2018, IEEE, 2018, pp. 109–114.

[17] M. Engelsberger, T. Greiner, Dynamic reconfiguration of
service-oriented resources in cyber–physical production systems
by a process-independent approach with multiple criteria and
multiple resource management operations, FGCS 88 (2018)
424–441.

[18] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder,
B. Koldehofe, Mobile fog: A programming model for large-scale
applications on the internet of things, in: SIGCOMM’13 - MCC
2013, 2013, pp. 15–20.

[19] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, R. Buyya, iFogSim:
A toolkit for modeling and simulation of resource management
techniques in the Internet of Things, Edge and Fog computing
environments, SPE 47 (9) (2017) 1275–1296.

[20] C. Puliafito, D. M. Gonçalves, M. M. Lopes, L. L. Martins,
E. Madeira, E. Mingozzi, O. Rana, L. F. Bittencourt, Mob-
fogsim: Simulation of mobility and migration for fog computing,
Simulation Modelling Practice and Theory 101 (2020) 102062.

[21] M. M. Lopes, W. A. Higashino, M. A. Capretz, L. F. Bitten-
court, Myifogsim: A simulator for virtual machine migration in
fog computing, in: UCC 2017, 2017, pp. 47–52.

[22] M. I. Naas, J. Boukhobza, P. R. Parvedy, L. Lemarchand, An
extension to ifogsim to enable the design of data placement
strategies, in: ICFEC 2018, IEEE, 2018, pp. 1–8.

[23] T. Qayyum, A. W. Malik, M. A. K. Khattak, O. Khalid, S. U.
Khan, Fognetsim++: A toolkit for modeling and simulation
of distributed fog environment, IEEE Access 6 (2018) 63570–
63583.

[24] F. Lordan, D. Lezzi, J. Ejarque, R. M. Badia, An architecture
for programming distributed applications on fog to cloud sys-
tems, in: Euro-Par 2017, Springer, 2017, pp. 325–337.

[25] F. Lordan, E. Tejedor, J. Ejarque, R. Rafanell, J. Alvarez,
F. Marozzo, D. Lezzi, R. Sirvent, D. Talia, R. M. Badia, Ser-
vicess: An interoperable programming framework for the cloud,
Journal of grid computing 12 (1) (2014) 67–91.

[26] A. Tsagkaropoulos, Y. Verginadis, M. Compastié, D. Apostolou,
G. Mentzas, Extending tosca for edge and fog deployment sup-
port, Electronics 10 (6) (2021) 737.

[27] S. H. Mortazavi, M. Salehe, C. S. Gomes, C. Phillips,
E. De Lara, Cloudpath: A multi-tier cloud computing frame-
work, in: ACM/IEEE SEC 2017, 2017, pp. 1–13.

[28] N. K. Giang, M. Blackstock, R. Lea, V. C. Leung, Developing
iot applications in the fog: A distributed dataflow approach, in:
IoT 2015, IEEE, 2015, pp. 155–162.

[29] M. Blackstock, R. Lea, Toward a distributed data flow platform
for the web of things (distributed node-red), in: WoT 2014,
2014, pp. 34–39.

[30] I. Lera, C. Guerrero, C. Juiz, Yafs: A simulator for iot scenarios
in fog computing, IEEE Access 7 (2019) 91745–91758.

[31] M. Symeonides, Z. Georgiou, D. Trihinas, G. Pallis, M. D.
Dikaiakos, Fogify: A fog computing emulation framework, in:
IEEE/ACM SEC 2020, IEEE, 2020, pp. 42–54.

[32] A. Kleppe, Software Language Engineering: Creating Domain-
Specific Languages Using Metamodels, Addison-Wesley Profes-
sional, 2008.

[33] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet,
J. Meseguer, C. Talcott, All About Maude-A High-Performance
Logical Framework: How to Specify, Program, and Verify Sys-
tems in Rewriting Logic, Vol. 4350, Springer, 2007.

[34] R. Milner, The space and motion of communicating agents,
Cambridge University Press, 2009.

[35] D. Gelernter, N. Carriero, Coordination languages and their
significance, Communications of the ACM 35 (2) (1992) 96.

[36] P. Ciancarini, Coordination models and languages as software
integrators, ACM CSUR 28 (2) (1996) 300–302.

[37] R.-J. R. Back, F. Kurki-Suonio, Distributed cooperation with
action systems, ACM TOPLAS 10 (4) (1988) 513–554.

[38] OASIS, Topology and Orchestration Specification for Cloud
Applications (TOSCA) (Nov. 2013).
URL http://docs.oasis-open.org/tosca/TOSCA/v1.0/
TOSCA-v1.0.html

[39] W. M. Johnston, J. P. Hanna, R. J. Millar, Advances in dataflow
programming languages, ACM CSUR 36 (1) (2004) 1–34.

[40] M. Blackstock, R. Lea, IoT Mashups with the WoTKit, in: IoT
2012, IEEE, 2012, pp. 159–166.

[41] K. Morris, Infrastructure as Code: Managing Servers in the
Cloud, O’Reilly Media, Inc., 2016.

[42] M. Lekić, G. Gardašević, IoT Sensor Integration to Node-RED
Platform, in: INFOTEH 2018, IEEE, 2018, pp. 1–5.

[43] P. Arcaini, E. Riccobene, P. Scandurra, Modeling and An-
alyzing MAPE-K Feedback Loops for Self-Adaptation, in:

17

http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/TOSCA-v1.0.html

IEEE/ACM SEAMS 2015, IEEE, 2015, pp. 13–23.
[44] H. Bruneliere, F. M. de Kerchove, G. Daniel, S. Madani,

D. Kolovos, J. Cabot, Scalable Model Views Over Heteroge-
neous Modeling Technologies and Resources, SoSyM 19 (4)
(2020) 827–851.

[45] H. Vangheluwe, J. De Lara, P. J. Mosterman, An Introduction
to Multi-Paradigm Modelling and Simulation, in: AIS’2002,
2002, pp. 9–20.

[46] A. Cicchetti, F. Ciccozzi, A. Pierantonio, Multi-View Ap-
proaches for Software and System Modelling: A Systematic Lit-
erature Review, SoSyM 18 (6) (2019) 3207–3233.

[47] H. Bruneliere, E. Burger, J. Cabot, M. Wimmer, A Feature-
based Survey of Model View Approaches, SoSyM 18 (3) (2019)
1931–1952.

[48] F. Ciccozzi, M. Tichy, H. Vangheluwe, D. Weyns, Blended Mod-
elling - What, Why and How, in: MODELS-C 2019, IEEE,
2019, pp. 425–430.

[49] L. Addazi, F. Ciccozzi, Blended Graphical and Textual Mod-
elling for UML Profiles: A Proof-of-Concept Implementation
and Experiment, JSS 175 (2021) 110912.

[50] H. Bruneliere, J. Garcia, P. Desfray, D. E. Khelladi, R. Hebig,
R. Bendraou, J. Cabot, On Lightweight Metamodel Extension
to Support Modeling Tools Agility, in: ECMFA 2015, Springer,
2015, pp. 62–74.

[51] P. Langer, K. Wieland, M. Wimmer, J. Cabot, et al., EMF
Profiles: A Lightweight Extension Approach for EMF Models,
JoT 11 (1) (2012) 1–29.

[52] M. Völter, E. Visser, Language Extension and Composition
with Language Workbenches, in: OOPSLA-C 2010, 2010, pp.
301–304.

[53] R. France, B. Rumpe, Model-Driven Development of Complex
Software: A Research Roadmap, in: FOSE’07, IEEE, 2007, pp.
37–54.

[54] G. Blair, N. Bencomo, R. B. France, Models@ run. time, IEEE
Computer 42 (10) (2009) 22–27.

[55] A. V. Dastjerdi, H. Gupta, R. N. Calheiros, S. K. Ghosh,
R. Buyya, Fog computing: Principles, architectures, and ap-
plications, in: Internet of Things, Elsevier, 2016, pp. 61–75.

[56] Y. Liu, J. E. Fieldsend, G. Min, A Framework of Fog Comput-
ing: Architecture, Challenges, and Optimization, IEEE Access
5 (2017) 25445–25454.

[57] R. Mahmud, R. Kotagiri, R. Buyya, Fog Computing: A Taxon-
omy, Survey and Future Directions, in: Internet of Everything,
Springer, 2018, pp. 103–130.

[58] M. Aazam, S. Zeadally, K. A. Harras, Fog Computing Architec-
ture, Evaluation, and Future Research Directions, IEEE Com-
munications 56 (5) (2018) 46–52.

[59] S. Sarkar, S. Misra, Theoretical modelling of fog computing:
a green computing paradigm to support IoT applications, Iet
Networks 5 (2) (2016) 23–29.

[60] A. Brogi, S. Forti, QoS-aware deployment of IoT applications
through the fog, IoT-J 4 (5) (2017) 1185–1192.

[61] H. Sahli, T. Ledoux, É. Rutten, Modeling Self-Adaptive Fog
Systems Using Bigraphs, in: FOCLASA 2019, 2019, pp. 1–16.

[62] A. Markus, A. Kertesz, A survey and taxonomy of simulation
environments modelling fog computing, Simulation Modelling
Practice and Theory 101 (2020) 102042.

[63] R. Vilalta, V. Lopez, A. Giorgetti, S. Peng, V. Orsini, L. Ve-
lasco, R. Serral-Gracia, D. Morris, S. De Fina, F. Cugini, et al.,
TelcoFog: A unified flexible fog and cloud computing archi-
tecture for 5G networks, IEEE Communications 55 (8) (2017)
36–43.

[64] N. Medvidovic, R. N. Taylor, A Classification and Comparison
Framework for Software Architecture Description Languages,
IEEE TSE 26 (1) (2000) 70–93.

[65] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, A. Tang, What
Industry Needs from Architectural Languages: A Survey, IEEE
TSE 39 (6) (2012) 869–891.

[66] M. Brambilla, J. Cabot, M. Wimmer, Model-driven Software
Engineering in Practice, Synthesis lectures on software engi-
neering 3 (1) (2017) 1–207.

[67] A. Bergmayr, U. Breitenbücher, N. Ferry, A. Rossini, A. Sol-
berg, M. Wimmer, G. Kappel, F. Leymann, A Systematic Re-
view of Cloud Modeling Languages, ACM CSUR 51 (1) (2018)
22.

[68] F. Li, M. Vögler, M. Claeßens, S. Dustdar, Towards Automated
IoT Application Deployment by a Cloud-Based Approach, in:
SOCA 2013, 2013, pp. 61–68.

[69] Z. Al-Shara, F. Alvares, H. Bruneliere, J. Lejeune,
C. Prud’Homme, T. Ledoux, CoMe4ACloud: An end-to-end
framework for autonomic Cloud systems, FGCS 86 (2018) 339
– 354.

[70] H. Bruneliere, Z. Al-Shara, F. Alvares, J. Lejeune, T. Ledoux,
A Model-based Architecture for Autonomic and Heterogeneous
Cloud Systems, in: CLOSER 2018, SciTePress, 2018, pp. 201–
212.

[71] B. Morin, N. Harrand, F. Fleurey, Model-based Software Engi-
neering to Tame the IoT Jungle, IEEE Software 34 (1) (2017)
30–36.

[72] T. Eterovic, E. Kaljic, D. Donko, A. Salihbegovic, S. Ribic, An
Internet of Things Visual Domain Specific Modeling Language
Based on UML, in: ICAT 2015, IEEE, 2015, pp. 1–5.

[73] F. Ciccozzi, I. Crnkovic, D. Di Ruscio, I. Malavolta, P. Pel-
liccione, R. Spalazzese, Model-driven Engineering for Mission-
Critical IoT Systems, IEEE software 34 (1) (2017) 46–53.

[74] P. P. Ray, A Survey on Visual Programming Languages in In-
ternet of Things, Scientific Programming 2017.

[75] R. K. Naha, S. Garg, D. Georgakopoulos, P. P. Jayaraman,
L. Gao, Y. Xiang, R. Ranjan, Fog Computing: Survey of
Trends, Architectures, Requirements, and Research Directions,
IEEE Access 6 (2018) 47980–48009.

[76] S. Yi, C. Li, Q. Li, A Survey of Fog Computing: Concepts,
Applications and Issues, in: Mobidata 2015, 2015, pp. 37–42.

[77] M. Mukherjee, L. Shu, D. Wang, Survey of Fog Computing:
Fundamental, Network Applications, and Research Challenges,
IEEE COMST 20 (3) (2018) 1826–1857.

[78] P. Hu, S. Dhelim, H. Ning, T. Qiu, Survey on Fog Computing:
Architecture, Key Technologies, Applications and Open Issues,
Journal of network and computer applications 98 (2017) 27–42.

[79] P. Habibi, M. Farhoudi, S. Kazemian, S. Khorsandi, A. Leon-
Garcia, Fog Computing: A Comprehensive Architectural Sur-
vey, IEEE Access 8 (2020) 69105–69133.

[80] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Mor-
row, P. A. Polakos, A comprehensive survey on fog computing:
State-of-the-art and research challenges, IEEE COMST 20 (1)
(2017) 416–464.

[81] C. Perera, Y. Qin, J. C. Estrella, S. Reiff-Marganiec, A. V. Vasi-
lakos, Fog Computing for Sustainable Smart Cities: A Survey,
ACM CSUR 50 (3) (2017) 1–43.

[82] H. J. de Moura Costa, C. A. da Costa, R. da Rosa Righi, R. S.
Antunes, Fog Computing in Health: A Systematic Literature
Review, Health and Technology 10 (2020) 1025–1044.

[83] P. Zhang, M. Zhou, G. Fortino, Security and Trust Issues in Fog
Computing: A Survey, FGCS 88 (2018) 16–27.

[84] Z. Bakhshi, G. Rodriguez-Navas, H. Hansson, Dependable Fog
Computing: A Systematic Literature Review, in: SEAA 2019,
IEEE, 2019, pp. 395–403.

18

	Introduction
	Background
	General Definitions
	Illustrative Example: a Fog system in the context of University Education

	Survey Method
	Goal of the Survey and Research Questions
	Approach Selection Process
	General Search Strategy and Data Source (Step 0)
	Whitelist-based Keyword Search (Step 1)
	Pruning Process (Steps 2 to 4)
	Snowballing (Step 5) and Final Result

	Data Extraction Process

	A Feature Model for Characterizing Fog Modeling Languages
	Language
	Scope
	Definition

	Support

	Description of Selected Fog Modeling Languages
	Discussion
	Analysis of the Collected Results
	General Observations
	Language Characteristics
	Related Language Support

	Identified Open Challenges

	Related Work
	Fog Computing
	Modeling Languages
	Secondary Literature

	Conclusion

