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Abstract

We present ways of counting configurations of uni-trivalent Feynman graphs in 3-
manifolds in order to produce invariants of these 3-manifolds and of their links, following
Gauss, Witten, Bar-Natan, Kontsevich and others. We first review the construction of
the simplest invariants that can be obtained in our setting. These invariants are the
linking number and the Casson invariant of integer homology 3-spheres. Next we see
how the involved ingredients, which may be explicitly described using gradient flows of
Morse functions, allow us to define a functor on the category of framed tangles in rational
homology cylinders. Finally, we describe some properties of our functor, which generalizes
both a universal Vassiliev invariant for links in the ambient space and a universal finite
type invariant of rational homology 3-spheres.
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0.1 Introduction

These notes are the notes of a series of lectures given in Pisa in February 2020 for Winter
Braids. They contain all what has been said during the lectures, and more.

They present ways of counting configurations of uni-trivalent Feynman graphs in 3-manifolds
in order to produce invariants of these 3-manifolds and of their links, following Gauss, Witten,
Bar-Natan, Kontsevich and others. We first review the construction of the simplest invariants
that can be obtained in our setting, in Section 1. These invariants are the linking number and
the Casson invariant of integer homology 3-spheres. Next we see how the involved ingredients,
which may be explicitly described using gradient flows of Morse functions, allow us to define an
invariant Z of framed tangles in rational homology cylinders in Section 2. Finally, in Section 3,
we describe some properties of our functorial invariant Z, which generalizes both a universal
Vassiliev invariant for links in the ambient space and a universal finite type invariant of rational
homology 3-spheres.

For more details about the presented material, we refer the reader to the book [Les20],
where the above functor Z has been constructed, and where all its mentioned properties are
carefully proved. These notes may also be used as an introduction or as a reading guide to
[Les20].

I warmly thank the organisers of the great session 2020 of Winter Braids, and the referee
for her/his careful reading and her/his helpful comments.

1 On the linking number and the Theta invariant

The modern powerful invariants of links and 3–manifolds that are studied in these series of
lectures can be thought of as generalizations of the linking number. In this section, we warm up
by defining this classical basic invariant in several ways. This allows us to introduce conventions
and methods that will be useful throughout these notes.

1.1 The linking number as a degree

Let S1 denote the unit circle of the complex plane C.

S1 = {z; z ∈ C, |z| = 1}.

Consider a C∞ embedding
J tK:S1 t S1 ↪→ R3

of the disjoint union S1 t S1 of two circles into the ambient space R3 as the one pictured
in Figure 1. Such an embedding represents a 2–component link. Each of the embeddings
J :S1 ↪→ R3 and K:S1 ↪→ R3 represents a knot.
The link embedding J tK induces the Gauss map

pJK : S1 × S1 → S2

(w, z) 7→ 1
‖K(z)−J(w)‖(K(z)− J(w))
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J

K

Figure 1: A 2–component link in R3
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pJK−−−→
1

2

Definition 1.1 The Gauss linking number lkG(J,K) of the disjoint knots J(S1) and K(S1),
which are simply denoted by J and K, is the degree of the Gauss map pJK .

There are several (fortunately equivalent) definitions of the degree for a continuous map
between two closed (i.e. connected, compact, without boundary) oriented manifolds of the
same dimension. Let us quickly recall our favorite one for these lectures, where we work with
smooth manifolds.

Definition 1.2 A point y is a regular value of a smooth map p:M → N between two smooth
manifolds M and N , if y ∈ N and, for any x ∈ p−1(y), the tangent map Txp at x is surjective1,
and, when the boundary ∂M of M is non-empty, and possibly stratified2, the restriction of the
tangent map Txp to the tangent space of ∂M or to the stratum of x is also surjective for any
x ∈ ∂M ∩ p−1(y).

An orientation of a real vector space V of positive dimension is a basis of V up to a change
of basis with positive determinant. When V = {0}, an orientation of V is an element of
{−1, 1}. An orientation of a smooth n–manifold is an orientation of its tangent space at each
point, defined in a continuous way. A local diffeomorphism h of Rn is orientation-preserving
at x if and only if the Jacobian determinant of its derivative Txh is positive. If the transition
maps φj ◦ φ−1

i of an atlas (φi)i∈I of a manifold M are orientation-preserving (at every point)
for {i, j} ⊂ I, then the manifold M is oriented by this atlas. Unless otherwise mentioned, all
manifolds are oriented in these notes.

1According to the Morse-Sard theorem [Hir94, Chapter 3, Theorem 1.3, p. 69], the set of regular values of
such a map is dense. It is even residual, i.e. it contains the intersection of a countable family of dense open
sets. Furthermore it is open if M is compact.

2In these notes, manifolds are smoothly modelled on open subspaces of [0, 1]n, and covered by countably
many such spaces. In particular their boundaries have strata, which correspond to the open faces of [0, 1]n.
They have corners, which correspond to the points of {0, 1}n and ridges, which correspond to the open faces of
[0, 1]n of dimension in {1, . . . , n − 2}. For example, in dimension 3, the ridges correspond to the edges of the
cube.
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When M and N are oriented, M is compact and the dimension of M coincides with the
dimension of N , the differential degree degy(p) of p at a regular value y of N is the (finite) sum
running over the x ∈ p−1(y) of the signs of the determinants of Txp. In this case, this differential
degree can be extended to a continuous function deg(p) from the complement N \ p(∂M) of
the image of the boundary ∂M of M to Z. See [Les20, Lemma 2.3]. In particular, when the
boundary of M is empty and N is connected, the function deg(p) is constant, and its value is
the degree of p. See [Mil97, Chapter 5].

The Gauss linking number lkG(J,K) can be computed from a link diagram as in Figure 1
as follows. It is the differential degree of pJK at the vector Y that points towards us. The set
p−1
JK(Y ) consists of the pairs of points (w, z) where the projections of J(w) and K(z) coincide,

and J(w) is under K(z). They correspond to the crossings
J K

and
JK

of the diagram.
In a diagram, a crossing is positive if we turn counterclockwise from the arrow at the end

of the upper strand towards the arrow of the end of the lower strand like . Otherwise, it

is negative like .

For the positive crossing
J K

, moving J(w) along J following the orientation of J , moves
pJK(w, z) towards the south-east direction TpJKdw, while moving K(z) along K following the
orientation of K, moves pJK(w, z) towards the north-east direction TpJKdz, so that the local
orientation induced by the image of pJK around Y ∈ S2 is

TpJKdw

TpJKdz , which is
1

2 .

Therefore, the contribution of a positive crossing to the degree is 1. It is easy to deduce
that the contribution of a negative crossing is (−1).

We have proved the following formula

degY (pJK) = ]
J K − ] JK

where ] stands for the cardinality –here ]
J K

is the number of occurences of
J K

in the
diagram– so that

lkG(J,K) = ]
J K − ] JK

.

Similarly, deg−Y (pJK) = ]
K J − ] KJ

so that

lkG(J,K) = ]
K J − ] KJ

=
1

2

(
]
J K

+ ]
K J − ] JK − ] KJ

)
,

and thus lkG(J,K) = lkG(K, J).
In the example of Figure 1, lkG(J,K) = 2. Let us give some further examples. For the

positive Hopf link of Figure 2, lkG(J,K) = 1. For the negative Hopf link, lkG(J,K) = −1, and,
for the Whitehead link, lkG(J,K) = 0.
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K
J

The positive Hopf link

K
J

The negative Hopf link

K

J

The Whitehead link

Figure 2: The Hopf links and the Whitehead link

Since the differential degree of the Gauss map pJK is constant on the set of regular values
of pJK , lkG(J,K) =

∫
S1×S1 p

∗
JK(ωS) for any 2-form ωS on S2 such that

∫
S2 ωS = 1.

Denote the standard area form of S2 by 4πωS2 so that ωS2 is the homogeneous volume form
of S2 such that

∫
S2 ωS2 = 1. In 1833, Gauss defined the linking number of J and K, as an

integral [Gau77]. In modern notation, his definition may be expressed as

lkG(J,K) =

∫
S1×S1

p∗JK(ωS2).

1.2 The linking number as an algebraic intersection

The boundary ∂M of an oriented manifoldM is oriented by the outward normal first convention.
If x ∈ ∂M is in a smooth part of ∂M , the outward normal to M at x followed by an oriented
basis of Tx∂M induce the given orientation of M . For example, the standard orientation of
the disk in the plane induces the standard orientation of the circle, counterclockwise, as the
following picture shows.

1

2 1

2

As another example, the sphere S2 is oriented as the boundary of the ball B3, which has the
standard orientation induced by the right hand rule: (Thumb, index finger (2), middle finger
(3)) of the right hand.

2

3

The tangent bundle to an oriented submanifold A in a manifold M at a point x is denoted
by TxA. Two submanifolds A and B in a manifold M are transverse3 if at each intersection
point x, TxM = TxA + TxB. If two transverse submanifolds A and B in a manifold M are of

3As shown in [Hir94, Chapter 3 (Theorem 2.4 in particular)], transversality is a generic condition.
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complementary dimensions (i.e. if the sum of their dimensions is the dimension of M), then the
sign of an intersection point is +1 if TxM = TxA⊕ TxB as oriented vector spaces. Otherwise,
the sign is −1. If A and B are compact and if A and B are of complementary dimensions in
M , their algebraic intersection is the sum of the signs of the intersection points, and is denoted
by 〈A,B〉M .

For us, a rational chain (resp. integral chain) is a linear combination of (oriented) smooth
manifolds with boundary, with coefficients in Q (resp.in Z). Algebraic intersection bilinearly
extends to pairs of transverse chains.

When K is Z or Q, a K–S3 or K–sphere is a compact oriented 3-dimensional manifold4 R
with the same homology with coefficients in K as the standard unit sphere S3 of R4. Q-spheres
(resp. Z-spheres) are also called rational (resp. integer) homology 3-spheres. In these notes,
we omit the 3 since the dimension of our homology spheres is always 3.

According to an easy case of a Thom theorem [Les20, Theorem 11.9], any knot K in a Q–
sphere R bounds5 an oriented rational chain in R. If R is a Z-sphere, K bounds an embedded
surface6, called a Seifert surface of the knot.

The simplest definition of the linking number of two disjoint knot embeddings in such a
manifold is the following one.

Definition 1.3 The linking number lk(J,K) of two disjoint knot embeddings J and K in a
Q-sphere R is the algebraic intersection 〈J,ΣK〉R of J and a rational chain ΣK bounded by K.

We will see that lkG(J,K) = lk(J,K) for 2-component links in R3 ⊂ S3 in Lemma 1.15. See
also [Les20, Proposition 2.9].

In order to generalize the Gauss definition of the linking number to 2–component links in a
rational homology sphere R, let us rephrase it.

As in Subsection 1.1, consider a two-component link J tK : S1tS1 ↪→ R3. This embedding
induces an embedding

J ×K: S1 × S1 ↪→ (R3)2 \ diag
(z1, z2) 7→ (J(z1), K(z2))

into the 2–point configuration space

Č2(S3) = (R3)2 \ diag.

Consider the map
pS2 : Č2(S3) → S2

(x, y) 7→ 1
‖y−x‖(y − x).

The Gauss map pJK of Section 1.1 is equal to pS2 ◦ (J ×K).

4Here, all manifolds are supposed to be smooth. Since any topological 3-manifold has a unique smooth struc-
ture (see [Kui99]), we do not specify “smooth” and we often only describe 3-manifolds up to homeomorphism.

5The Poincaré duality ensures that this property characterizes Q–spheres among closed oriented 3-manifolds.
6This property similarly characterizes Z–spheres among closed oriented 3-manifolds.
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In particular, we can rewrite lkG(J,K) as another algebraic intersection, which will gen-
eralize to 2–component links in a rational homology sphere R. For a regular value a ∈ S2 of
pJK ,

lkG(J,K) = degapJK = 〈(J ×K)(S1 × S1), p−1
S2 (a)〉Č2(S3)

where the preimages are oriented as follows. The normal bundle TxM/TxA to A in M at x
is denoted by NxA. It is oriented so that (a lift of an oriented basis of) NxA followed by
(an oriented basis of) TxA induce the orientation of TxM . The orientation of Nx(A) is a
coorientation of A at x. The regular preimage of a submanifold under a map f is oriented so
that f preserves the coorientations.

For any 2-form ωS on S2 such that
∫
S2 ωS = 1, we can also use the closed 2-form p∗S2(ωS) of

(R3)2 \ diag to write

lkG(J,K) =

∫
S1×S1

p∗JK(ωS) =

∫
(J×K)(S1×S1)

p∗S2(ωS).

The closure of p−1
S2 (a) in a compactification C2(S3) (defined in Section 1.3 below) of Č2(S3)

is our first example of propagating chain or propagator. The closed 2-form p∗S2(ωS) extends to
C2(S3) as an example of propagating form or propagator. Propagators are central ingredients
in the construction of more general invariants of tangles in Q–spheres that is presented in these
notes.

1.3 Propagators

Let us first introduce the compact 2–point configuration spaces where propagators live. Their
constructions use the following differential blow-ups.

Definition 1.4 Recall that the unit normal bundle of a submanifold C in a smooth manifold
A is the fiber bundle over C whose fiber over x ∈ C is SNx(C) = (Nx(C) \ {0})/R+∗, where
R+∗ acts by scalar multiplication. A smooth submanifold transverse to the ridges of a smooth
manifold A is a subset C of A such that for any point x ∈ C there exists a smooth open
embedding φ from Rc ×Re × [0, 1[d into A such that φ(0) = x and the image of φ intersects C
exactly along φ(0 × Re × [0, 1[d). Here c is the codimension of C, d and e are integers, which
depend on x, and [0, 1[ denotes the interval [0, 1] \ {1}.

For us, blowing up such a compact submanifold C in A replaces C with its unit normal
bundle in order to produce the smooth manifold B̀ (A,C) (with possible ridges) so that a chart
φ:Rc × Re × [0, 1[d↪→ A as above induces a chart φ: ([0,∞[×Sc−1) × Re × [0, 1[d↪→ B̀ (A,C).
(The origin 0 of Rc is replaced with the sphere {0} × Sc−1 of directions around it.)

Unlike blow-ups in algebraic geometry, this differential geometric blow-up creates boundaries.
More precisely, we have the following proposition.

Proposition 1.5 Under the assumptions of the above definition, we have the following prop-
erties.
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� B̀ (A,C) is diffeomorphic to the complement of an open tubular neighborhood of C (thought
of as infinitely small).

� There is a canonical projection pb: B̀ (A,C) → A, which restricts to a diffeomorphism
from the preimage of A \ C to A \ C.

� If A is compact, B̀ (A,C) is a compactification of A \ C.

� If the boundary ∂A of A is empty, then the boundary of B̀ (A,C) is the unit normal bundle
of C in A, and the interior B̀ (A,C) \ ∂B̀ (A,C) of B̀ (A,C) is A \ C.

Examples 1.6 Local models are given by the following elementary blow-ups B̀ (Rc, 0) ∼=
[0,∞[×Sc−1, and B̀ (Rc × A, 0× A) ∼= [0,∞[×Sc−1 × A.

In Figure 3, we see the result of first blowing up (0, 0) in R2, and next blowing up the
closures in B̀ (R2, (0, 0)) of {0} × R∗, R∗ × {0} and the diagonal of (R∗)2.

R× 0

0× R diag

Blow up (0, 0)

unit normal bundle to (0, 0)

Blow up the lines

Figure 3: Iterated blow-ups of R2

We regard S3 as R3∪{∞} or as two copies of R3 identified along R3\{0} by the (exceptionally
orientation-reversing) diffeomorphism x 7→ x/ ‖ x ‖2. The blow-up B̀ (S3,∞) is diffeomorphic
to the compact unit ball of R3. As a set, B̀ (S3,∞) = R3 ∪S2

∞ where (−S2
∞) denotes7 the unit

normal bundle to ∞ in S3 and ∂B̀ (S3,∞) = S2
∞. There is a canonical orientation-preserving

diffeomorphism p∞:S2
∞ → S2, such that x ∈ S2

∞ is the limit in B̀ (S3,∞) of a sequence of
points of R3 approaching ∞ along a line directed by p∞(x) ∈ S2.

Let R be a Q–S3 equipped with a point ∞ ∈ R. Identify a neighborhood of ∞ in R with a
neighborhood of ∞ in S3. Let Ř = R \ {∞}. Define the configuration space C2(R) to be the
compact 6–manifold with boundary and ridges obtained from R2 by first blowing up (∞,∞)
in R2, and, by next blowing up the closures of {∞} × Ř, Ř × {∞} and the diagonal of Ř2 in
B̀ (R2, (∞,∞)).

In particular, ∂C2(R) contains the unit normal bundle ( TŘ2

diag(TŘ2)
\{0})/R+∗ to the diagonal

of Ř2. This bundle is canonically isomorphic to the unit tangent bundle UŘ to Ř via the map
([(x, y)] 7→ [y − x]). We have

∂C2(R) = p−1
b (∞,∞) ∪ (S2

∞ × Ř) ∪ (−Ř× S2
∞) ∪ UŘ

7The minus sign in (−S2
∞) reflects an orientation reversal.
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and (
Č2(R)

def
= C2(R) \ ∂C2(R)

)
= Ř2 \ diag

(
Ř2
)
.

The following proposition is [Les20, Lemma 3.5].

Proposition 1.7 Let ιS2 denote the antipodal map of S2. The S2–valued map pS2 : (x, y) 7→
1

‖y−x‖(y − x) extends smoothly from Č2(R3) to C2(S3), and its extension pS2 satisfies:

pS2 =


ιS2 ◦ p∞ ◦ p1 on S2

∞ × R3

p∞ ◦ p2 on R3 × S2
∞

p2 on UR3=R3 × S2

where p1 and p2 respectively denote the projections on the first and second factor, with respect
to the above expressions.

Also note the following lemma8.

Lemma 1.8 C2(S3) is homotopy equivalent to S2.

Proof: C2(S3) is homotopy equivalent to its interior ((R3)2 \ diag), which is homeomorphic
to R3×]0,∞[×S2 via the map

(x, y) 7→ (x, ‖ y − x ‖, pS2(x, y)).

�

We regard R3 as C × R, where C is thought of as horizontal. Let C0 = D2 × [0, 1] be the
standard cylinder of R3, where D2 is the unit disk of C. Let Cc0 (resp. Čc0) denote the closure of
the complement of C0 in S3 (resp. in R3). Here, a rational homology cylinder (or Q–cylinder)
is a compact oriented 3-manifold whose boundary neighborhood is identified with a boundary
neighborhood N(∂C0) of C0, and that has the same rational homology as a point. Any Q–sphere
R (may and) will be viewed as the union R(C) of Cc0 and of a rational homology cylinder C glued
along ∂C0. It suffices to choose a point ∞ and a diffeomorphism that identifies a neighborhood
of this point in R with Cc0 to obtain such a decomposition.

Definition 1.9 Let τs denote the standard parallelization of R3. We say that a parallelization

τ : Ř× R3 → TŘ

of Ř that coincides with τs on Čc0 is asymptotically standard. According to [Les20, Proposition
5.5], asymptotically standard parallelizations exist for any R. Such a parallelization identifies
UŘ with Ř× S2.

8More information about the homotopy groups and the homology of spaces of injective configurations of
points in Rd or in Sd can be found in the book [FH01] by Fadell and Husseini.
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An asymptotic rational homology R3 is a pair (Ř, τ) where Ř is a punctured rational homology
sphere with a decomposition Ř = C∪∂C0 Čc0 as above, equipped with an asymptotically standard
parallelization τ .

In what follows, we fix such an asymptotic rational homology R3 (Ř = Ř(C) = C ∪∂C0 Čc0, τ)
with its decomposition.

Lemma 1.10 The parallelization τ of Ř induces the continuous map pτ : ∂C2(R) → S2 such
that

pτ =


ιS2 ◦ p∞ ◦ p1 on S2

∞ × Ř
p∞ ◦ p2 on Ř× S2

∞
p2 on UŘ

τ
= Ř× S2

pS2 on p−1
b (∞,∞)

where p1 and p2 denote the projections on the first and second factor, respectively, with respect
to the above expressions.

Proof: This is a corollary of Proposition 1.7. �

Lemma 1.11 H∗(C2(R);Q) ∼= H∗(S
2;Q) and H2(C2(R);Q) is generated by the class [S] of a

fiber UxŘ of the bundle UŘ, oriented as the boundary of a ball of TxŘ.

Proof: The space C2(R) is homotopy equivalent to its interior ((Ř)2 \ diag), where Ř has the
rational homology of a point. The rational homology of ((Ř)2 \ diag) can be computed like the
rational homology of ((R3)2 \ diag), which is isomorphic to the rational homology of S2 thanks
to Lemma 1.8. �

Definition 1.12 A volume-one form of S2 is a 2-form ωS of S2 such that
∫
S2 ωS = 1. (See

[Les20, Appendix B] for a short survey of differential forms and de Rham cohomology.) Let
(Ř, τ) be an asymptotic rational homology R3. Recall the map pτ : ∂C2(R)→ S2 of Lemma 1.10.
A propagating form of (C2(R), τ) is a closed 2-form ω on C2(R) whose restriction to ∂C2(R) is
equal to p∗τ (ωS) for some volume-one form ωS of S2. A propagating chain of C2(R) is a rational
4–chain P of C2(R) such that ∂P ⊂ ∂C2(R) and ∂P ∩

(
∂C2(R) \ UŘ

)
= p−1

τ |∂C2(R)\UŘ(a) for

some a ∈ S2. This definition does not depend on τ . A propagating chain of (C2(R), τ) is a
propagating chain of C2(R) such that ∂P = p−1

τ (a) for some a ∈ S2. Propagating chains and
propagating forms are simply called propagators when their nature is clear from the context.

Example 1.13 Recall the map pS2 :C2(S3) → S2 of Proposition 1.7. As already announced,
for any a ∈ S2, p−1

S2 (a) is a propagating chain of (C2(S3), τs), and for any 2-form ωS of S2 such
that

∫
S2 ωS = 1, p∗S2(ωS) is a propagating form of (C2(S3), τs).
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For our general Q–sphere R, propagating chains exist because the 3-cycle p−1
τ (a) of ∂C2(R)

bounds in C2(R) since H3(C2(R);Q) = 0, according to Lemma 1.11. Dually, propagating forms
exist because the restriction induces a surjective map H2(C2(R);R) → H2(∂C2(R);R) since
H3(C2(R), ∂C2(R);R) = 0.

When R is a Z-sphere, there exist propagating chains that are smooth 4-manifolds properly
embedded in C2(R). See [Les20, Corollary 11.10]. Explicit propagating chains associated with
Heegaard splittings, which were constructed with Greg Kuperberg in [Les15a], are described
in Section 1.5 below. They are integral chains multiplied by 1

|H1(R;Z)| , where |H1(R;Z)| is the

cardinality of H1(R;Z).

Lemma 1.14 Let (Ř, τ) be an asymptotic rational homology R3. Let C be a two-cycle9 of
C2(R). For any propagating chain P of C2(R) transverse to C and for any propagating form
ω of (C2(R), τ),

[C] =

∫
C

ω[S] = 〈C,P 〉C2(R)[S]

in H2(C2(R);Q) = Q[S].

Proof: Fix a propagating chain P . The algebraic intersection 〈C,P 〉C2(R) depends only on
the homology class [C] of C in C2(R). Similarly, since ω is closed,

∫
C
ω only depends on [C].

(Indeed, if C and C ′ cobound a chain D transverse to P , C ∩P and C ′∩P cobound ±(D∩P ),
and

∫
∂D=C′−C ω =

∫
D
dω according to Stokes’ theorem.) Furthermore, the dependence on [C]

is linear. Therefore it suffices to check the lemma for a chain that represents the canonical
generator [S] of H2(C2(R);Q). Any fiber of UŘ is such a chain. �

A meridian of a knot embedding K is the (oriented) boundary of a disk that intersects K
once with a positive sign, as in Figure 4.

mK

K

Figure 4: A meridian mK of a knot K

Lemma 1.15 Let J tK be a two-component link embedding of Ř. The torus J ×K = (J ×
K)(S1 × S1) is homologous to lk(J,K)[S] in H2(C2(R);Q). For any propagating chain P of
C2(R) transverse to J ×K and for any propagating form ω of (C2(R), τ),

lk(J,K) =

∫
J×K

ω = 〈J ×K,P 〉C2(R).

9A d–cycle is a chain of dimension d whose algebraic boundary is equal to zero. In other words, it is a
d–chain such that the integral of any form of degree d− 1 along its boundary is zero.
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If Ř = R3, then the linking number lk(J,K) of Definition 1.3 is the degree lkG(J,K) of the
Gauss map pJK.

Proof: When Ř = R3,

lkG(J,K) = dega(pJK) = 〈J ×K, p−1
S2 (a)〉C2(S3)

so that J ×K is homologous to lkG(J,K)[S] in H2(C2(S3);Q) according to Lemma 1.14, with
the propagator p−1

S2 (a) of Example 1.13. For an arbitrary Ř, define lkG(J,K) so that J × K
is homologous to lkG(J,K)[S] in H2(C2(R);Q). Recall from Definition 1.3 that lk(J,K) is
the algebraic intersection 〈J,ΣK〉R of J and a rational chain ΣK bounded by K. Lemma 1.14
reduces the proof of Lemma 1.15 to the proof that lk(J,K) and lkG(J,K) coincide for any
two-component link J t K of Ř. Note that the definitions of lk(J,K) and lkG(J,K) make
sense when J and K are disjoint links. If J has several components Ji, for i = 1, . . . , n, then
lkG(tni=1Ji, K) =

∑n
i=1 lkG(Ji, K) and lk(tni=1Ji, K) =

∑n
i=1 lk(Ji, K). There is no loss of

generality in assuming that J is a knot for the proof, which we do. The chain ΣK provides
a rational cobordism C in Ř \ J between K and a combination of meridians of J , which is
homologous to lk(J,K)[mJ ]. The product rational cobordism J × C in Ř2 \ diag

(
Ř2
)

allows

us to see that [J × K] = lk(J,K)[J × mJ ] in H2(Ř2 \ diag
(
Ř2
)

;Q). Similarly, a chain ΣJ

bounded by J provides a rational cobordism between J and a meridian mmJ of mJ so that
[J×mJ ] = [mmJ ×mJ ] in H2(Ř2 \diag

(
Ř2
)

;Q), and lkG(J,K) = lk(J,K)lkG(mmJ ,mJ). Thus
it suffices to prove that lkG(mmJ ,mJ) = 1 for a positive Hopf link (mmJ ,mJ) in a standard ball
embedded in Ř. Now, there is no loss of generality in assuming that our link is a Hopf link in
R3. So the equality follows from that for the positive Hopf link in R3. �

Lemma 1.15 shows in what sense propagators represent the linking number. In what follows,
we will use these propagators to define invariants of Q–spheres.

1.4 On the Theta invariant

More on algebraic intersections The intersection of two transverse submanifolds A and
B in a manifold M is a manifold, which is oriented so that the normal bundle to A ∩ B
is (N(A) ⊕ N(B)), fiberwise. In order to give a meaning to the sum (Nx(A) ⊕ Nx(B)) at
x ∈ A ∩ B, pick a Riemannian metric on M , which canonically identifies Nx(A) with Tx(A)⊥,
Nx(B) with Tx(B)⊥ and Nx(A ∩ B) with Tx(A ∩ B)⊥ = Tx(A)⊥ ⊕ Tx(B)⊥. Since the space
of Riemannian metrics on M is convex, and therefore connected, the induced orientation of
Tx(A ∩B) does not depend on the choice of Riemannian metric.

Let A, B, C be three pairwise transverse submanifolds in a manifold M such that A ∩ B
is transverse to C. The oriented intersection (A ∩ B) ∩ C is a well-defined oriented manifold.
Our assumptions imply that at any x ∈ A ∩ B ∩ C, the sum (TxA)⊥ + (TxB)⊥ + (TxC)⊥ is
a direct sum (TxA)⊥ ⊕ (TxB)⊥ ⊕ (TxC)⊥ for any Riemannian metric on M , so that A is also
transverse to B ∩ C, and (A ∩ B) ∩ C = A ∩ (B ∩ C). Thus, the intersection of transverse,
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oriented submanifolds is a well defined associative operation, where transverse submanifolds
are manifolds such that the elementary pairwise intermediate possible intersections are well
defined as above. This oriented intersection is also commutative when the codimensions of the
submanifolds are even.

If A1, . . . , Ak of M are transverse compact submanifolds whose codimension sum is the di-
mension of M , their algebraic intersection is defined to be 〈A1, . . . , Ak〉M = 〈∩k−1

i=1Ai, Ak〉M .
If M is a connected manifold, which contains a point x, the class of a 0-cycle in H0(M ;Q) =
Q[x] = Q is a well-defined number, and 〈A1, . . . , Ak〉M can equivalently be defined as the homol-
ogy class of the (oriented) intersection ∩ki=1Ai. This algebraic intersection extends multilinearly
to rational chains.

Theorem 1.16 Let (Ř, τ) be an asymptotic rational homology R3. Let Pa, Pb and Pc be three
transverse propagating chains of (C2(R), τ) with respective boundaries p−1

τ (a), p−1
τ (b) and p−1

τ (c)
for three distinct points a, b and c of S2. Then

Θ(R, τ) = 〈Pa, Pb, Pc〉C2(R)

does not depend on the chosen propagators Pa, Pb and Pc. It is a topological invariant of (R, τ).

Proof: Since H4(C2(R);Q) = 0, if the propagator Pa is replaced by a propagator P ′a with the
same boundary, (P ′a−Pa) bounds a 5-dimensional rational chain W transverse to Pb ∩Pc. The
1-dimensional chain W ∩ Pb ∩ Pc does not meet ∂C2(R) since Pb ∩ Pc does not meet ∂C2(R).
Therefore, up to a well-determined sign, the boundary of W ∩Pb∩Pc is P ′a∩Pb∩Pc−Pa∩Pb∩Pc.
This shows that 〈Pa, Pb, Pc〉C2(R) is independent of Pa when a is fixed. Similarly, it is independent
of Pb and Pc when b and c are fixed. Thus, 〈Pa, Pb, Pc〉C2(R) is a rational function of the connected
set of triples (a, b, c) of distinct point of S2. It is easy to see that this function is continuous,
and so, it is constant. �

Lemma 1.17 Let ωa and ω′a be two propagating forms of (C2(R), τ), whose restrictions to
∂C2(R) are p∗τ (ωA) and p∗τ (ω

′
A), respectively, for two volume-one forms ωA and ω′A of S2. There

exists a one-form ηA on S2 such that ω′A = ωA + dηA. For any such ηA, there exists a one-form
η on C2(R) such that ω′a − ωa = dη, and the restriction of η to ∂C2(R) is p∗τ (ηA).

Proof: Since ωa and ω′a are cohomologous, there exists a one-form η on C2(R) such that
ω′a = ωa + dη. Similarly, since

∫
S2 ω

′
A =

∫
S2 ωA, there exists a one-form ηA on S2 such that

ω′A = ωA + dηA. On ∂C2(R), d(η − p∗τ (ηA)) = 0. Thanks to the exact sequence with real
coefficients

0 = H1(C2(R)) −→ H1(∂C2(R)) −→ H2(C2(R), ∂C2(R)) ∼= H4(C2(R)) = 0,

we obtain H1(∂C2(R);R) = 0. Therefore, there exists a function f from ∂C2(R) to R such that

df = η − p∗τ (ηA)

on ∂C2(R). To obtain the result, we extend f to a C∞ map on C2(R) and replace η by (η−df).
�
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Theorem 1.18 Let (Ř, τ) be an asymptotic rational homology R3. For any three propagating
forms ωa, ωb and ωc of (C2(R), τ),

Θ(R, τ) =

∫
C2(R)

ωa ∧ ωb ∧ ωc.

Proof: Let us first prove that
∫
C2(R)

ωa ∧ ωb ∧ ωc is independent of the propagating forms ωa,

ωb and ωc. Using Lemma 1.17 and its notation∫
C2(R)

ω′a ∧ ωb ∧ ωc −
∫
C2(R)

ωa ∧ ωb ∧ ωc =
∫
C2(R)

d(η ∧ ωb ∧ ωc)
=
∫
∂C2(R)

η ∧ ωb ∧ ωc
=
∫
∂C2(R)

p∗τ (ηA ∧ ωB ∧ ωC) = 0

since any 5-form on S2 vanishes. Thus,
∫
C2(R)

ωa ∧ ωb ∧ ωc is independent of the propagating

forms ωa, ωb and ωc. Now, we can choose the propagating forms ωa, ωb and ωc supported in
very small neighborhoods of Pa, Pb and Pc and Poincaré dual to Pa, Pb and Pc, respectively, so
that the intersection of the three supports is a very small neighborhood of Pa ∩ Pb ∩ Pc, from
which it can easily be seen that

∫
C2(R)

ωa ∧ωb ∧ωc = 〈Pa, Pb, Pc〉C2(R). See [Les20, Section 11.4,

Section B.2 and Lemma B.4 in particular] for more details. �

In particular, Θ(R, τ) is equal to
∫
C2(R)

ω3 for any propagating form ω of (C2(R), τ). Since

such a propagating form represents the linking number, Θ(R, τ) can be thought of as the cube of
the linking number with respect to τ . When τ varies continuously, Θ(R, τ) varies continuously
in Q so that Θ(R, τ) is an invariant of the homotopy class of τ .

Example 1.19 Using (disjoint!) propagators p−1
S2 (a), p−1

S2 (b), p−1
S2 (c) associated to three distinct

points a, b and c of R3, as in Example 1.13, it is clear that

Θ(S3, τs) = 〈p−1
S2 (a), p−1

S2 (b), p−1
S2 (c)〉C2(S3) = 0.

Parallelizations of 3-manifolds and Pontrjagin classes

Definition 1.20 Let SO(3) be the group of orientation-preserving linear isometries of R3. In
this paragraph, we regard S3 as B3/∂B3 where B3 is the standard unit ball of R3 viewed
as ([0, 1] × S2)/(0 ∼ {0} × S2). Let χπ: [0, 1] → [0, 2π] be an increasing smooth bijection
whose derivatives vanish at 0 and 1 such that χπ(1 − θ) = 2π − χπ(θ) for any θ ∈ [0, 1]. Let
ρ:B3 → SO(3) be the map that sends (θ ∈ [0, 1], v ∈ S2) to the rotation ρ(χπ(θ); v) with axis
directed by v and with angle χπ(θ).

This map10 induces the double covering ρ̃:S3 → SO(3), which identifies SO(3) with the real
projective space RP 3, and which orients SO(3).

10This double covering map allows one to deduce the first three homotopy groups of SO(3) from those of S3.
The first three homotopy groups of SO(3) are π1(SO(3)) = Z/2Z, π2(SO(3)) = 0 and π3(SO(3)) = Z[ρ̃]. For
v ∈ S2, π1(SO(3)) is generated by the class of the loop that maps exp(iθ) ∈ S1 to the rotation ρ(θ; v). See
[Les20, Section A.2 and Theorem A.14, in particular].



16

For any map g from Ř to SO(3) that sends Čc0 to the identity element 1SO(3) of the group
SO(3), define

ψR(g) : Ř× R3 −→ Ř× R3

(x, y) 7→ (x, g(x)(y)).

Since GL+(R3) deformation retracts onto SO(3), any asymptotically standard parallelization
of Ř is homotopic to τ ◦ ψR(g) for some g as above.

The following classical theorem is proved in [Les20, Chapter 5]. See Theorem 4.6 and
Proposition 5.22 in particular.

Theorem 1.21 Let (Ř, τ) be an asymptotic rational homology R3. There exists a canonical
map p1 from the set of homotopy classes of asymptotically standard parallelizations of Ř to Z
such that p1(τs) = 0, and, for any map g from R to SO(3) that sends Cc0 to the identity element
1SO(3) of SO(3), we have

p1(τ ◦ ψR(g|Ř))− p1(τ) = 2deg(g).

The definition of the map p1 is given in [Les20, Section 5.5] and involves relative Pontrjagin
classes. See [Les20, Definition 5.13]. It is similar to the map h studied by Hirzebruch in [Hir73,
§3.1], and by Kirby and Melvin in [KM99] under the name of Hirzebruch defect.

The following proposition is proved in [Les20, Section 4.3]. See Proposition 4.8.

Proposition 1.22 Let (Ř, τ) be an asymptotic rational homology R3. For any map g from R
to SO(3) that sends Cc0 to 1SO(3),

Θ(R, τ ◦ ψR(g|Ř))−Θ(R, τ) =
1

2
deg(g).

Theorem 1.21 allows us to derive the following corollary from Proposition 1.22.

Corollary 1.23 Θ(R) = Θ(R, τ)− 1
4
p1(τ) is an invariant of Q-spheres.

The invariant Θ coincides with 6λCW where λCW denotes the Casson-Walker invariant. The
Walker invariant generalizes the Casson invariant of Z-spheres, which counts the conjugacy
classes of irreducible representations of their fundamental groups using Heegaard splittings.
See [AM90, GM92, Mar88]. It is normalized as in [AM90, GM92, Mar88] for integer homology
3-spheres, and as 1

2
λW for rational homology 3-spheres where λW is the Walker normalisation

in [Wal92]. The equality Θ = 6λCW was proved by Kuperberg and Thurston in [KT99] for
Z–spheres, and it was generalized to Q-spheres in [Les04, Section 6]. See [Les04, Theorem 2.6]
or [Les20, Theorem 18.30].

The main part of the proof consists in comparing second derivatives or (variations of vari-
ations) of Θ and λCW under the following Lagrangian-preserving surgeries.
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a1 a2 ag

Figure 5: The standard handlebody Hg

Lagrangian-preserving surgeries

Definition 1.24 An integer (resp. rational) homology handlebody of genus g is a compact
oriented 3-manifold A that has the same integral (resp. rational) homology as the usual solid
handlebody Hg of Figure 5.

Exercise 1.25 Show that if A is a rational homology handlebody of genus g, then ∂A is a
genus g surface.

The Lagrangian LA of a compact 3-manifold A is the kernel of the map induced by the
inclusion from H1(∂A;Q) to H1(A;Q).

In Figure 5, the Lagrangian of Hg is freely generated by the classes of the curves ai.

Definition 1.26 An integral (resp. rational) Lagrangian-Preserving –or LP– surgery (A′/A)
is the replacement of an integral (resp. rational) homology handlebody A embedded in the
interior of a 3-manifold M with another such A′ whose boundary is identified with ∂A by an
orientation-preserving diffeomorphism that sends LA to LA′ . The manifold M(A′/A) obtained
by such an LP-surgery is given11 by

M(A′/A) = (M \ Int(A)) ∪∂A A′.

Lemma 1.27 If (A′/A) is an integral (resp. rational) LP-surgery in a 3-manifold M , then the
homology of M(A′/A) with Z-coefficients (resp. with Q-coefficients) is canonically isomorphic
to H∗(M ;Z) (resp. to H∗(M ;Q)). If M is a Q-sphere, if (A′/A) is a rational LP-surgery, and
if (J,K) is a two-component link of M \A, then the linking number of J and K in M and the
linking number of J and K in M(A′/A) coincide.

Proof: Exercise. �

In [Les04], I computed

Θ (R (A′/A,B′/B))−Θ (R (A′/A))−Θ (R (B′/B)) + Θ(R)

11This description defines only the topological structure of M(A′/A), but we equip M(A′/A) with its unique
smooth structure.
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and proved that it coincides with

6λCW (R (A′/A,B′/B))− 6λCW (R (A′/A))− 6λCW (R (B′/B)) + 6λCW (R)

for any two rational LP-surgeries (A′/A) and (B′/B) in a Q–sphere R such that A and B
are disjoint rational homology handlebodies in Ř. Together with the property that Θ(−R) =
−Θ(R), this implies that Θ = 6λCW . See [Les20, Theorem 18.28]. In order to perform the
computation of the above discrete “second derivative”

(Θ (R (A′/A,B′/B))−Θ (R (B′/B)))− (Θ (R (A′/A))−Θ(R))

of Θ, I built propagators for the four involved Q–spheres, which coincide in the identical parts
of the configuration spaces, like (M \ (A tB))2 \ diag, for example.

1.5 A propagator associated to a Heegaard diagram

In this section, we give an example of a propagating chain associated to a Heegaard diagram
or to a self-indexed Morse function of an asymptotic rational homology R3. I constructed such
a Morse propagator with Greg Kuperberg in [Les15a]. Similar propagators associated to more
general Morse functions have been constructed independently by Watanabe in [Wat18].

First note that the propagator p−1
S2 ( ~N) of C2(S3) associated to the upward vertical vector

~N intersects Č2(S3) as {(x, x + t ~N) | x ∈ R3, t ∈]0,+∞]}. The explicit propagator that we
are about to construct for an asymptotic rational homology Ř is built from the closure Pφ in
C2(R) of {(x, φt(x)) | x ∈ Ř, t ∈]0,+∞]}, where (φt) is the flow associated to a Morse function
without minima and maxima of Ř, and to a metric g on Ř.

Start with R3 equipped with its standard height function f0 and replace the cube [−1
2
, 1

2
]2×

[0, 1] with a rational homology cube CR (which has the rational homology of a point) equipped
with a Morse function f , which coincides with f0 on ∂

(
[−1

2
, 1

2
]2 × [0, 1]

)
, and which has 2g

critical points: g points a1, . . . , ag of index 1, mapped to 1/3 by f , and g points b1, . . . , bg
of index 2, mapped to 2/3 by f (so that 3f is self-indexed). Let Ř be the associated open
manifold, and let R be its one-point compactification. Equip Ř with a Riemannian metric g
that coincides with the standard one outside [−1

2
, 1

2
]2 × [0, 1].

The preimage Ha of ]−∞, 1
2
] under f in CR has the standard representation of the bottom

part of Figure 6. Our standard representation of the preimage Hb of [1
2
,+∞[ under f in CR

is shown in the upper part of Figure 6. These two pieces are equipped with standard Morse
functions and metrics, a few corresponding flow lines are drawn in Figure 7. They are glued to
each other by a diffeomorphism from ∂Ha to (−∂Hb).

The closure of the two-dimensional ascending manifold of ai is denoted byAi. Its intersection
with Ha is denoted by D(αi). The disk D(αi) and Ai are consistently oriented so that the
boundary of the disk D(αi) is the curve αi of Figures 6 and 7. The descending manifold of
ai consists of two half-lines L+(ai) and L−(ai) starting as vertical lines and ending at ai. The
half-line with the orientation of the positive normal to Ai is called L+(ai). Thus L(ai) =
L+(ai) ∪ (−L−(ai)) is the descending manifold of ai.
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Hbβ1 . . . βg

Ha

. . .

α1 αg

Figure 6: Ha and Hb

Symmetrically, the closure of the two-dimensional descending manifold of bj is denoted by
Bj. The Bj are assumed to be transverse to the Ai outside the critical points. The intersection
Hb ∩ Bj is denoted by D(βj). The disk D(βj) and Bj are consistently oriented so that the
boundary of the disk D(βj) is the curve βj of Figures 6 and 7. The ascending manifold of bj
consists of two half-lines L+(bj) and L−(bj) starting at bj and ending as vertical lines, the first
L+(bj) being that whose orientation matches the orientation of the positive normal to Bj. Thus
L(bj) = L+(bj)− L−(bj) is the ascending manifold of bj. See Figure 7. Let

[Jji](j,i)∈{1,...,g}2 = [〈αi, βj〉∂Ha ]−1

be the inverse matrix of the matrix of the algebraic intersection numbers 〈αi, βj〉∂Ha .
Let φ be the flow associated to the gradient of f and to g. Let Pφ be the closure in C2(R)

of the image of (
Ř \ {ai, bi; i ∈ {1, . . . , g}}

)
×]0,+∞[ → C2(R)

(x, t) 7→ (x, φt(x)),

let ((Bj ×Ai) ∩ C2(R)) denote the closure of
(
(Bj ×Ai) ∩ (Ř2 \ diag)

)
in C2(R), set

PI =
∑

(i,j)∈{1,...,g}2
Jji ((Bj ×Ai) ∩ C2(R)) and P (f, g) = Pφ + PI

The following proposition is proved in [Les15a]. See Theorem 4.2.
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L+(ai) L−(ai)

ai

D(αi)

αi L+(bj)

bj

L−(bj)

D(βj)

βj

Figure 7: L+(ai), L−(ai), L+(bj), L−(bj)

Proposition 1.28 (Kuperberg–Lescop) The chain P (f, g) is a propagating chain of C2(R).

In particular, P (f, g) can be used to compute linking numbers as in Lemma 1.15. It suffices12

to correct the boundary of P (f, g) near the boundary of C2(R) to transform P (f, g) into a
propagator of (C2(R), τ) as in Definition 1.12.

Define a combing of Ř to be a section of UŘ which is constant on Čc0. For such a combing
X, a propagating chain of (C2(R), X) is a propagating chain P of C2(R) such that P ∩ UŘ =
X(Ř). Define Θ̃(R,X) to be the algebraic intersection of a propagating chain of (C2(R), X),
a propagating chain of (C2(R),−X) and any other propagating chain. It is easy to see that
Θ̃(R, .) is a homotopy invariant of combings (see [Les15a, Theorem 2.1]) and that Θ(R, τ) =
Θ̃(R, τ(., v)), for any unit vector v of R3. Further properties of the invariant Θ̃(R, .) of combings
are studied in [Les15b]. An explicit formula for the invariant Θ̃(R, .) from a Heegaard diagram of
R was discovered by the author in [Les15a]. See [Les15a, Theorem 3.8]. It was computed directly
using the above definition of Θ̃(R, .) together with the above Morse propagators, corrected near
the boundary as in [Les15a, Section 5].

12This requires some work performed in [Les15a, Section 5].
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2 Configuration space integrals

2.1 Jacobi diagrams and associated configuration space integrals

Definition 2.1 A uni-trivalent graph Γ is a 6-tuple

(H(Γ), E(Γ), U(Γ), T (Γ), pE, pV )

where H(Γ), E(Γ), U(Γ) and T (Γ) are finite sets, which are called the set of half-edges of Γ,
the set of edges of Γ, the set of univalent vertices of Γ and the set of trivalent vertices of Γ,
respectively, pE:H(Γ)→ E(Γ) is a two-to-one map (every element of E(Γ) has two preimages
under pE) and pV :H(Γ) → U(Γ) t T (Γ) is a map such that every element of U(Γ) has one
preimage under pV and every element of T (Γ) has three preimages under pV , up to isomorphism.
In other words, Γ is a set H(Γ) equipped with two partitions, a partition into pairs (induced
by pE), and a partition into singletons and triples (induced by pV ), up to the bijections that
preserve the partitions. These bijections are the automorphisms of the uni-trivalent graph Γ.

Such a uni-trivalent graph is pictured as and identified with the topological quotient of the
disjoint union th∈H(Γ)ψh([0, 1]) of copies ψh([0, 1]) of [0, 1] by the relations

ψh(1) = ψk(1) if pE(h) = pE(k), and, ψh(0) = ψk(0) if pV (h) = pV (k),

up to homeomorphism.

Definition 2.2 Let L be a one-manifold, oriented or not. A Jacobi diagram Γ with support
L, also called Jacobi diagram on L, is a finite uni-trivalent graph Γ equipped with an isotopy
class [iΓ] of injections iΓ from the set U(Γ) of univalent vertices of Γ into the interior of L. For
such a Γ, a Γ-compatible injection is an injection in the class [iΓ].

A Jacobi diagram Γ is represented by a planar immersion of Γ ∪ L = Γ ∪U(Γ) L where
the univalent vertices of U(Γ) are located at their images under a Γ-compatible injection iΓ,
the one-manifold L is represented by dashed lines, whereas the edges of the diagram Γ are
represented by plain segments. (The one-manifold L may be oriented in order to fix the isotopy
class [iΓ].)

Figure 8 shows an example of a picture of a Jacobi diagram.
Let (Ř, τ) be an asymptotic rational homology R3. Let L be a one-manifold and let

L:L −→ Ř

denote a C∞ embedding from L to Ř. Let Γ be a Jacobi diagram with support L as in
Definition 2.2. Let U = U(Γ) denote the set of univalent vertices of Γ, and let T = T (Γ) denote
the set of trivalent vertices of Γ. A configuration of Γ is an injection

c:U ∪ T ↪→ Ř
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S1
1S1

2

Figure 8: A Jacobi diagram Γ on the disjoint union L = S1
1 t S1

2 of two (oriented) circles

whose restriction c|U to U may be written as L ◦ j for some Γ-compatible injection

j:U ↪→ L.

Denote the set of these configurations by Č(R,L; Γ) (or Č(L; Γ), when R is known or is part
of the data).

Č(R,L; Γ) =
{
c:U ∪ T ↪→ Ř | ∃j ∈ [iΓ], c|U = L ◦ j

}
.

In Č(R,L; Γ), the univalent vertices move along L(L), while the trivalent vertices move in the
ambient space Ř, and Č(R,L; Γ) is naturally an open submanifold of LU × ŘT . When the
ambient asymptotic rational homology R3 is R3, we write Č(L; Γ) = Č(S3, L; Γ).

Examples 2.3 For a two-component link J tK:S1 t S1 → Ř,

Č (R, J tK; S1
KS1

J ) = J ×K.

Č (R, ∅; ) = Ř2 \ diag
(
Ř2
)

= Č2(R).

Recall that R is seen as the union R(C) of Cc0 and of a rational homology cylinder C glued
along ∂C0 as before Definition 1.9.

Definition 2.4 A long tangle representative in Ř = Ř(C) is an embedding L:L ↪→ Ř of a
one-manifold L, as in Figure 9, such that

�

L(L) ∩ Čc0 = (c−(B−)×]−∞, 0]) ∪ (c+(B+)× [1,∞[)

for two finite sets B− and B+ and two injective maps c−:B− ↪→ Int(D2) c+:B+ ↪→
Int(D2), which are called the bottom configuration and the top configuration of L, respec-
tively, and

� L(L) ∩ C is a compact one-manifold whose unoriented boundary is (c−(B−) × {0}) ∪
(c+(B+)× {1}).

Figure 10 shows an example of a Jacobi diagram Γ on its source L together with a configu-
ration of Č(R,L; Γ) (where the edges are drawn just to identify the vertices, the configuration
is determined by the images of the vertices).
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L = L(L) =

c−(B−)×]−∞, 0]

c+(B+)× [1,∞[

C0 = D2 × [0, 1]

Figure 9: A long tangle representative (LTR) in R3

Definition 2.5 An orientation of a trivalent vertex of Γ is a cyclic order on the set of the three
half-edges that meet at this vertex. An orientation of a univalent vertex u of Γ is an orientation
of the connected component L(u) of iΓ(u) in L, for a choice of Γ-compatible iΓ, associated to
u. This orientation is also called (and thought13 of as) a local orientation of L at u.

A vertex-orientation of a Jacobi diagram Γ is an orientation of every vertex of Γ. A Jacobi
diagram is oriented if it is equipped with a vertex-orientation14.

In the figures, the orientation of a trivalent vertex is represented by the counterclockwise
order of the three half-edges that meet at the vertex. The orientation of a univalent vertex u
of a Jacobi diagram on a (non-oriented) one-manifold L is represented by the counterclockwise
cyclic order of the three half-edges that meet at u in a planar immersion of Γ∪U(Γ)L, where the
half-edge of u in Γ is attached to the left-hand side of L, with respect to the local orientation
of L at u, as in the following pictures.

↔ and ↔

An orientation of a set X of cardinality at least 2 is a total order of the elements of X up
to an even permutation.

Cut each edge of Γ into two half-edges. When an edge is oriented, define its first half-edge
and its second one, so that following the orientation of the edge, the first half-edge is met first.
Recall that H(Γ) denotes the set of half-edges of Γ. When the edges of Γ are oriented, the
orientations of the edges of Γ induce the following orientation of the set H(Γ) of half-edges of

13A local orientation of L is simply an orientation of L(u), but since different vertices are allowed to induce
different orientations, we think of these orientations as being local, i.e. defined in a neighborhood of iΓ(u) for a
choice of Γ-compatible iΓ.

14When L is oriented, it suffices to specify the orientations of the trivalent vertices since the univalent vertices
are oriented by L.
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Γ = c(V (Γ)) =

c−(B−)×]−∞, 0]

c+(B+)× [1,∞[

C0 = D2 × [0, 1]

Figure 10: A (black) Jacobi diagram Γ on the source of an LTR L, and a configuration c of
Č(L; Γ)

Γ: order E(Γ) arbitrarily, and order the half-edges as (first half-edge of the first edge, second
half-edge of the first edge, . . . , second half-edge of the last edge). The induced orientation of
H(Γ) is called the edge-orientation of H(Γ). Note that it does not depend on the order of E(Γ).

Lemma 2.6 When Γ is equipped with a vertex-orientation, orientations of the manifold Č(L; Γ)
are in canonical one-to-one correspondence with orientations of the set H(Γ).

Proof: Since Č(L; Γ) is naturally an open submanifold of LU × ŘT , it inherits R]U+3]T -valued
charts from R-valued charts of L and R3-valued orientation-preserving charts of Ř. The R-
valued charts of L respect the local orientations of L induced by the corresponding oriented
univalent vertices. In order to define the orientation of R]U+3]T , it suffices to identify its factors
and order them (up to even permutation). Each of the factors may be labeled by an element of
H(Γ): the R-valued local coordinate of an element of L corresponding to the image under j of
an element u of U sits in the factor labeled by the half-edge that contains u; the three ordered
R-valued coordinates of the image under a configuration c of an element t of T , with respect
to an arbitrary oriented local chart, belong to the factors labeled by the three half-edges that
contain t, which are cyclically ordered by the vertex-orientation of Γ, so that the cyclic orders
match. �

We use Lemma 2.6 to orient Č(R,L; Γ) as summarized in the following immediate corollary.

Corollary 2.7 If Γ is equipped with a vertex-orientation o(Γ) and if the edges of Γ are oriented,
then the induced edge-orientation of H(Γ) orients Č(L; Γ), via the canonical correspondence
described in Lemma 2.6.

Example 2.8 Equip the diagram with its vertex-orientation induced by the picture. Orient
its three edges so that they start from the same vertex. Then the orientation of Č(R,L; )
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induced by this edge-orientation of matches the orientation of (Ř × Ř) \ diag induced by
the order of the two factors, where the first factor corresponds to the position of the vertex
where the three edges start, as shown in the following picture.

5

1

6

2
3 4 ∼=

3

1

6

5
2 4

For an integer k ∈ N, set k = {1, 2, . . . , k}.

Definition 2.9 The degree of a Jacobi diagram is half the number of all its vertices. A num-
bered degree n Jacobi diagram is a degree n Jacobi diagram Γ whose edges are oriented, equipped
with an injection jE:E(Γ) ↪→ 3n. Such an injection numbers the edges. Note that this injec-
tion is a bijection when U(Γ) is empty. Let Den(L) denote the set of numbered degree n Jacobi
diagrams with support L without looped edges like .

Examples 2.10

De1(∅) =
{ 1

2
3
,

1

2
3
,

1

2
3
,

1

2
3

}
,

De1(S1) = De1(∅) t
{

S11 , S12 , S13

}
,

De1(S1
1 t S1

2) = De1(∅) t (De1(S1
1) \ De1(∅)) t (De1(S1

2) \ De1(∅))

t
{

1
S1

2S1
1 ,

2
S1

2S1
1 ,

3
S1

2S1
1 ,

1
S1

2S1
1 ,

2
S1

2S1
1 ,

3
S1

2S1
1

}
.

Definition 2.11 Let Γ be a numbered degree n Jacobi diagram with support L. An edge e
oriented from a vertex v1 to a vertex v2 of Γ induces the following canonical map

pe: Č(R,L; Γ) → C2(R)
c 7→ (c(v1), c(v2)).

Let o(Γ) be a vertex-orientation of Γ. For any i ∈ 3n, let ω(i) be a propagating form of
(C2(R), τ). Define the configuration space integral

I (R,L,Γ, o(Γ), (ω(i))i∈3n) =

∫
(Č(R,L;Γ),o(Γ))

∧
e∈E(Γ)

p∗e(ω(jE(e)))

where (Č(R,L; Γ), o(Γ)) denotes the manifold Č(R,L; Γ) equipped with the orientation induced
by o(Γ) and by the edge-orientation of Γ, as in Corollary 2.7.

Note that the dimension of the space Č(R,L; Γ) is equal to the degree of the integrated
form

∧
e∈E(Γ) p

∗
e(ω(jE(e))) since both coincide with the number of half-edges of Γ.
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Examples 2.12 For any three propagating forms ω(1), ω(2) and ω(3) of (C2(R), τ),

I(R,Ki tKj:S
1
i t S1

j ↪→ Ř, S1
jS1

i , (ω(i))i∈3) = lk(Ki, Kj)

and
I(R, ∅, , (ω(i))i∈3) = Θ(R, τ)

for any numbering of the (plain) diagrams.

Definition 2.13 The involution (x, y) 7→ (y, x) of Ř2 \ diag
(
Ř2
)

extends to an involution ι of
C2(R). A propagating form ω of (C2(R), τ) is antisymmetric if ι∗(ω) = −ω.

Recall that ιS2 denotes the antipodal map of S2. Since ι∗S2(ωS2) = −ωS2 , the standard prop-
agating form p∗S2(ωS2) of (C2(S3), τs) is antisymmetric. When the ω(i) are antisymmetric,
I (R,L,Γ, o(Γ), (ω(i))i∈3n) is independent of the orientation of the edges of Γ. Indeed, reversing
the orientation of an edge changes the orientation of the configuration space and multiplies
the integrated form by (−1). For any propagating form ω of (C2(R), τ), 1

2
(ω − ι∗(ω)) is an

antisymmetric propagating form ω of (C2(R), τ).
When all the ω(i) coincide with a given propagating form ω, I (R,L,Γ, o(Γ), (ω(i))i∈3n) is

simply denoted by I (R,L,Γ, o(Γ), ω). When Ř = R3, and when ω = p∗S2(ωS2), we simply write
I (L,Γ, o(Γ)) and we also omit o(Γ) when Γ is oriented by a picture.

The study of these configuration space integrals was initiated by the articles of Witten
[Wit89], Guadagnini, Martellini and Mintchev [GMM90], Bar-Natan [BN95b] on the pertur-
bative expansion of the Chern-Simons theory,15 in the case of links in R3, with the standard
propagator p∗S2(ωS2) on every edge. Let us compute some examples in this original setting.

2.2 Configuration space integrals associated to one chord

Let K:S1 ↪→ Ř be a smooth embedding of the circle into Ř.
Consider the associated configuration space

Č(K; ) = {(K(z), K(z exp(2iπt))) | z ∈ S1, t ∈]0, 1[},

which is naturally identified with an open annulus S1×]0, 1[, and set Iθ(K) = I (K, ).
When Ř = R3, the direction map

d: Č(K; Γ) → S2

(z, t) 7→ 1
‖K(z exp(2iπt))−K(z)‖(K(z exp(2iπt))−K(z))

allows us to write

Iθ(K) = I (K, ) =

∫
Č(K; )

d∗(ωS2).

15The relation between the perturbative expansion of the Chern-Simons theory of the Witten article and the
configuration space integral viewpoint is explained by Polyak in [Pol05] and by Sawon in [Saw06].
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The annulus Č(K; ) can be compactified to the closed annulus C(K; ) = S1 × [0, 1], to
which d extends smoothly. The extended d, also denoted by d, maps (z, 0) ∈ S1 × {0} (resp.
(z, 1) ∈ S1 × {1}) to the direction of the tangent vector to K at z (resp. to the opposite
direction).

In particular, our integral Iθ(K) converges. It is the algebraic area
∫
d(C(K; ))

ωS2 of

d(C(K; )) in the following sense. The degree of d is a continuous map from S2 \ d(∂C(K; ))
to Z, and the algebraic area of d(C(K; )) is

∫
S2 deg(d)ωS2 , which is the sum over the connected

components C of S2 \ d(∂C(K; )) of the area of C multiplied by the value of the degree at C.
Let us compute it for the following embeddings of the trivial knot.

Let O be an embedding of the circle in the horizontal plane. The image under d of the
whole annulus lies in the horizontal great circle of S2. Its area is zero so that Iθ(O) = 0.

Let K1 and K−1 be embeddings of S1, which project to the horizontal plane as in Figure 11,
which lie in the horizontal plane everywhere except when they cross over, and which lie in the
union of two orthogonal planes.

K−1

O

K1

Figure 11: Diagrams of the trivial knot

The image of the boundary of C(K±1; ) = S1 × [0, 1] in S2 lies in the union of the great
circles of the two planes, or more precisely in the union of the horizontal great circle and two
vertical arcs as in the following figure, where the vertical arcs are the images of the restriction
to the portion of K±1 that crosses over of the direction of the tangent map to K, and of the
opposite direction.

In our example with K1, the degree is constant on each side of our horizontal equator.
Computing it at the North Pole ~N as in Subsection 1.1, we find that the degree of d is 1 on the
Northern Hemisphere. One computes the degree of d on the Southern Hemisphere similarly. It
is also 1.

Therefore, Iθ(K1) = 1. Similarly, Iθ(K−1) = −1.
An isotopy between two knot embeddings K and K1 is smooth map ψ: [0, 1]×S1 → R3 such

that the restriction ψ(t, .) of ψ to {t} × S1 is a knot embedding for any t ∈ [0, 1], ψ(0, .) = K
and ψ(1, .) = K1. When there exists such an isotopy, K and K1 are said to be isotopic or in the
same isotopy class. A knot is an isotopy class of knot embeddings. For example, K1, K−1 and
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O are in the same isotopy class. They represent the same knot. Therefore, Iθ is not invariant
under isotopy.

Definition 2.14 A knot embedding K that lies in the union of the horizontal plane and a
finite union of vertical planes so that the unit tangent vector to K is never vertical is called
almost-horizontal. An almost-horizontal embedding K has a natural parallel K‖ obtained from
K by pushing it down. An embedding from S1 to R3 is of constant (resp. null) Iθ-degree if the
degree of the associated direction map (d: Č(K; )→ S2) can be extended to a constant (resp.
everywhere 0) function on S2.

Lemma 2.15 Almost-horizontal knot embeddings have constant Iθ-degree. Any knot of R3

may be represented by an almost-horizontal knot embedding K. For an almost-horizontal knot
embedding K, Iθ(K) = lk(K,K‖).

Proof: The writhe of an almost-horizontal knot embedding is the number of positive crossings
minus the number of negative crossings of its orthogonal projection onto the horizontal plane.
As in the previous examples, we see that an almost-horizontal knot embedding has a constant
Iθ-degree, which is its writhe. The parallel below K‖ is isotopic in the complement of K to the
parallel K‖,` on the left-hand side of K, and the formulas of Section 1.1 show that lk(K,K‖,`)
is the writhe of K. �

It is easy to construct an embedding of null Iθ-degree in every isotopy class of embeddings
of S1 into R3, by adding kinks such as or to a horizontal projection. Since Iθ varies
continuously under an isotopy of K, for any knot K of R3, Iθ maps the space of embeddings of
S1 into R3 isotopic to K onto R.

For a long component (i.e. a non-compact connected component) K of a long tangle repre-
sentative in R3 = C× R, define

Iθ(K) = 2I
(
K, , p∗S2(ωS2)

)
= 2I

(
K,

)
.

Examples 2.16 Let us compute Iθ(K`,i) = 2I (K`,i, , ω) for the long tangles of Figure 12,
which shows their projections onto the plane R× R ⊂ C× R. Assume that the images of the
embeddings lie in this plane everywhere, except when they cross over, so that the image of each
one-component tangle lies again in the union of two orthogonal planes.

K`,−1

K`,0

K`,1

Figure 12: Long tangle representatives
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The configuration space Č(K = K`,i; ) associated to Γ = and to K:R ↪→ R3 is

Č(K; ) = {(K(t), K(u)) | (t, u) ∈ R2, t < u},

which is naturally identified with the open triangle {(t, u) ∈ R2, t < u}. The direction map

d: Č(K; ) → S2

(K(t), K(u)) 7→ 1
‖K(u)−K(t)‖(K(u)−K(t))

allows us to write

Iθ(K) = 2I
(
K,

)
= 2

∫
Č(K; )

d∗(ωS2).

Again, since K`,0 is contained in R × R, d maps Č(K`,0; ) to the vertical great circle S1
R

that contains the real direction of C and Iθ(K`,0) = 0.
The configuration space Č(K`,1; ) embeds in the closed triangle

C̃(K`,1; ) = {(t, u) ∈ [−∞,∞]2 | t ≤ u} = ,

where d extends. The extended d maps ({−∞} × [−∞,∞])∪ ([−∞,∞]× {∞}) to the vertical

upward vector ~N , and it maps (u, u) to the unit tangent vector to K at u directed by R. So far,
this applies to any long K that goes from bottom to top. For our K`,1, d maps the boundary
of the triangle to the union of S1

R and an arc of an orthogonal great circle. Here, the degree of
d is 1 on the hemisphere behind S1

R and it is zero in front of it so that
∫
Č(K`,1; )

d∗(ωS2) = 1
2

and Iθ(K`,1) = 1.
Let us now compute Iθ(K`,−1) = −1. In this case, Č(K`,−1; ) still embeds in the former

closed triangle, but the map d does not extend continuously at (−∞,∞). It extends to {−∞}×
[−∞,∞[ and it maps {−∞}× [−∞,∞[ to ~N , and it extends to ]−∞,∞]×{∞} and it maps

]−∞,∞]×{∞} to (− ~N), but we need to blow up the triangle at (−∞,∞) so that d extends.

After such a blow-up, which transforms the closed triangle into
≈
C(K`,−1; ), (the extension of)

d maps the boundary of
≈
C(K`,−1; ) to the union of S1

R and an arc of a great circle. Here, the
degree of d is −1 on the hemisphere in front of S1

R and it is zero behind so that Iθ(K`,−1) = −1.

Definition 2.17 A propagating form of (C2(R), τ) is homogeneous if its restriction to ∂C2(R)
is equal to p∗τ (ωS2) for the homogeneous volume-one form ωS2 of S2.

Lemma 2.18 Let K:R ↪→ Ř be a component of a long tangle representative in an asymp-
totic rational homology R3. Let ω be a homogeneous propagating form of (C2(R), τ). Then
I (R,K, , ω) is independent of the chosen homogeneous propagating form ω. (It depends on
the embedding K and on τ .) It is denoted by 1

2
Iθ(K, τ).

See [Les20, Lemma 12.5 and Definition 12.6].
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2.3 More examples of configuration space integrals

Examples 2.19 For any trivalent numbered degree n Jacobi diagram

I(Γ) = I
(
S3, ∅,Γ, o(Γ)

)
= 0.

Indeed, I(Γ) is equal to ∫
(Č(S3,∅;Γ),o(Γ))

 ∏
e∈E(Γ)

pS2 ◦ pe

∗ ∧
e∈E(Γ)

ωS2


where

�
∧
e∈E(Γ) ωS2 is a product volume form of (S2)

E(Γ)
with total volume one.

� Č(S3, ∅; Γ) is the space Č2n(R3) of injections of 2n into R3,

� the degree of ∧e∈E(Γ)ωS2 is equal to the dimension of Č(S3, ∅; Γ), and

� the map
(∏

e∈E(Γ) pS2 ◦ pe
)

is never a local diffeomorphism since it is invariant under the

action of global translations on Č(S3, ∅; Γ).

Examples 2.20 Let us now compute I
(
O,Γ, o(Γ), p∗S2(ωS2)

)
, where O denotes the represen-

tative of the unknot of S3, that is the image of the embedding of the unit circle S1 of C,

regarded as C×{0}, into R3, regarded as C×R, for the following graphs Γ1 = , Γ2 = ,

Γ3 = , Γ4 = . For i ∈ 4, set I(Γi) = I
(
S3, O,Γi, o(Γi), p

∗
S2(ωS2)

)
. Let us prove that

I(Γ1) = I(Γ2) = I(Γ3) = 0 and that I(Γ4) = 1
8
.

For i ∈ 4, set Γ = Γi, I(Γ) is equal to∫
(Č(S3,O;Γ),o(Γ))

 ∏
e∈E(Γ)

pS2 ◦ pe

∗ ∧
e∈E(Γ)

ωS2

 .

When i ∈ 2, the image of
∏

e∈E(Γ) pS2 ◦ pe lies in the subset of (S2)2 consisting of the pair

of horizontal vectors. Since the interior of this subset is empty, I(Γi) = 0. When i = 3, the
two edges that have the same endpoints must have the same direction so that the image of∏

e∈E(Γ) pS2 ◦pe lies in the subset of (S2)E(Γ) for which two S2-coordinates are identical (namely

those in the S2-factors corresponding to that pair of edges), and I(Γ3) = 0 as before.

Let us finish this series of examples by proving the following lemma.

Lemma 2.21 Let Γ = Γ4. Then

I(Γ4) = I
(

1

2

03

)
= I

(
S3, O,Γ, o(Γ), p∗S2(ωS2)

)
=

1

8
.



31

Proof: Let G+ be the set of direct triples (X10, X20, X30) of (S2)3 where all vectors have
positive heights. Recall that ιS2 is the antipodal map of S2 and let G− = (ιS2)E(G+). Let
D be the codimension-one subspace of (S2)3 of triples of vectors such that at least one of the
vectors is horizontal or the three vectors are coplanar. For any edge e, let de denote pS2 ◦ pe.
It is easy to see that the image of Č(K; Γ) under

(∏
e∈E de

)
is contained in G+ ∪ G− ∪ D

and that the restriction of
(∏

e∈E de
)

to the preimage of G+ is a diffeomorphism h+ onto G+.

Using the orientation-reversing diffeomorphism hc of Č(K; Γ) that maps a configuration to its
composition by (−IdR3), it is also clear that the restriction of

(∏
e∈E de

)
to the preimage of G−

is the diffeomorphism (ιS2)E ◦ h+ ◦ hc onto G−. In particular, the degree of
(∏

e∈E de
)

is well
defined on (S2)E \D, it is ±1 on G+∪G−, with the same sign on G+ and G−, and 0 elsewhere.
The sign is computed in the proof of [Les20, Lemma 7.12], and the degree is 1 on G+. This
shows that IΓ(O) is twice the volume of G+, so that IΓ(O) = 1

8
. �

2.4 More compactifications of configuration spaces

Axelrod, Singer [AS94] and Kontsevich [Kon94] proved that the configuration space integrals
I (R,L,Γ, o(Γ), (ω(i))i∈3n) converge, when L is a disjoint union of circles, using compactifica-
tions C(R,L; Γ) “à la Fulton-MacPherson” of Č(R,L; Γ), where the maps pe: Č(R,L; Γ) →
C2(R) extend smoothly so that

∧
e∈E(Γ) p

∗
e(ω(jE(e))) extends smoothly to C(R,L; Γ), and∫

(Č(R,L;Γ),o(Γ))

∧
e∈E(Γ)

p∗e(ω(jE(e))) =

∫
(C(R,L;Γ),o(Γ))

∧
e∈E(Γ)

p∗e(ω(jE(e))).

These compactifications are constructed as follows in [Les20, Chapter 8]. We first generalize
the constructions of C2(R) and define a compactification CV (R) of the space ČV (R) of injections
of a finite set V into Ř as in [Les20, Theorem 8.4] as follows. For a non-empty A ⊆ V , let ΞA

be the set of maps from V to R that map A to∞ and V \A to Ř injectively, and let diagA(ŘV )
be the set of maps c from V to Ř, which are constant on A and which map V \A to Ř \ {c(A)}
injectively.

Start with RV . Blow up ΞV (which is reduced to the pointm =∞V such thatm−1(∞) = V ).
Then for k = ]V, ]V − 1, . . . , 3, 2, in this decreasing order, successively blow up the closures
of the diagA(ŘV ) such that ]A = k (choosing an arbitrary order among them) and, next, the
closures of the ΞJ such that ]J = k − 1 (again choosing an arbitrary order among them).
Then the compactification C(R,L; Γ) is the closure of Č(R,L; Γ) in CV (Γ)(R) as in [Les20,
Proposition 8.6]. It satisfies the following properties.

Theorem 2.22 If L is a link, then the configuration space C(R,L; Γ) is a compact manifold
with boundary and corners with the following properties.

� The interior of C(R,L; Γ), which is the complement of ∂C(R,L; Γ), is Č(R,L; Γ).
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� For any edge e of Γ, the projection map pe: Č(R,L; Γ) → C2(R) extends smoothly16 to
C(R,L; Γ).

� For every non-empty subset A of T (Γ), there is a codimension-one open face F∞(A,L,Γ)
of C(R,L; Γ) which may be identified with the product of

{c: (V \ A) ↪→ Ř | c|U = L ◦ jΓ(c) for some jΓ(c) ∈ [iΓ]}

by the space Š(R3, A) of injective maps w from A to (R3 \ 0) up to dilation17, so that
an element (c, [w]) of this face is the limit in C(R,L; Γ) when u tends to 0 of a family
of injective configurations (c, 1

u
w)u∈]0,ε[, which is defined for some small ε > 0, for a

representative w of [w].

� For every subset A of cardinality greater than 2 of V (Γ) that intersects U = U(Γ) as a
(possibly empty) set of consecutive vertices on some component of L with respect to [iΓ],
there is a codimension-one open face F (A,L,Γ) which behaves as follows. Let a ∈ A be
such that a ∈ A ∩ U if A ∩ U 6= ∅. Then F (A,L,Γ) fibers over

{c: (V \ A) ∪ {a} ↪→ Ř | c|(U\(U∩(A\{a})) = L ◦ jΓ(c)|(U\(U∩(A\{a})) for some jΓ(c) ∈ [iΓ]}.

– If A ∩ U = ∅, then the fiber is the space ŠA(Tc(a)Ř) made of injective maps wA
from A to Tc(a)Ř up to translation and dilation. When Ř = R3, an element (c, [wA])
of this face is the limit in C(R,L; Γ) when u tends to 0 of a family of injective
configurations (c+ uwA)u∈]0,ε[, which is defined for some small ε > 0, where wA is a
representative of wA which maps a to zero, and c and wA are extended to V so that
c is constant on A and wA maps V \ A to 0.

– If A ∩ U 6= ∅, then the fiber over c is the space of injective maps wA from A to
Tc(a)Ř which map A∩U to the line RTc(a)L through 0 directed by the tangent vector
Tc(a)L to L at c(a), with respect to an order compatible with iΓ, up to dilation and
translation along the line RTc(a)L.

� The complement of the union of the faces described above in the boundary of C(R,L; Γ)
is a finite union of manifolds of codimension at least 2 in C(R,L; Γ).

These faces are described more precisely in [Les20, Section 8.4]. Bott and Taubes analyzed
the variations of the integrals IΓ(K) when a knot K of R3 varies in its isotopy class in [BT94],
using such compactifications together with their codimension-one faces, described above, which
correspond to the loci where one blow-up has been performed.

In [Poi00], Sylvain Poirier used the theory of semi-algebraic sets [BCR98] to prove the
convergence of the integrals for semi-algebraic long tangle representatives in R3. He proved that

16See [Les20, Theorem 8.5].
17Dilations are homotheties with positive ratio.
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the closure C(L; Γ) of Č(L; Γ) in CV (Γ)(S
3) is a semi-algebraic set for semi-algebraic long tangle

representatives L in R3. In [Les20, Chapter 14], I proved the convergence of the integrals for
all long tangle representatives L in Q–spheres [Les20, Theorem 12.2] by studying the structure
of the closure of Č(R,L; Γ) in CV (Γ)(R). This closure is no longer a manifold. See [Les20,
Theorem 14.16].

2.5 The invariant Z

For a one-manifold L, Dn(L) denotes the real vector space generated by the degree n oriented
Jacobi diagrams on L of Definition 2.2. For the circle S1, these generators of D1(S1) are the

diagrams , , , , and the diagrams obtained from them by changing some
vertex orientations. For a non-necessarily oriented one-manifold L, An(L) denotes the quotient
of Dn(L) by the following relations AS, Jacobi and STU:

AS (or antisymmetry): + = 0 and + = 0

Jacobi: + + = 0

STU: = -

Each of these relations relate oriented Jacobi diagrams which are identical outside the pic-
tures (or, more exactly, which can be represented by planar immersions whose images intersect
a disk as in the picture and are identical outside this disk). The quotient An(L) is the largest
quotient of Dn(L) in which these relations hold. It is obtained by quotienting Dn(L) by the

vector space generated by elements of Dn(L) of the form

(
+

)
,

(
+

)
,(

+ +

)
and

(
− +

)
.

Examples 2.23 Note that diagrams with looped edges vanish in An(L).

A1(S1) = R ⊕ R .

A2(S1) = R [ ]⊕ R
[ ]

⊕ R
[ ]

⊕ R
[ ]

⊕ R
[ ]

.

= − =
1

2
and = 2 in A2(S1).

Remark 2.24 When ∂L = ∅, Lie algebras provide nontrivial linear maps, called weight systems
from An(L) to K, see [BN95a], [CDM12, Chapter 6] or [Les05, Section 6]. In the weight system
constructions, the Jacobi relation for the Lie bracket ensures that the maps defined for oriented
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Jacobi diagrams factor through the Jacobi relation. In [Vog11], Pierre Vogel proved that the
maps associated with Lie (super)algebras are sufficient to detect nontrivial elements of An(L)
up to degree 15, and he exhibited a non-trivial element of A16(∅) that cannot be detected by
such maps. The Jacobi relation was originally called IHX by Bar-Natan in [BN95a] because,

up to AS, it can be written as = − . Note that the four entries in this IHX relation
play the same role, up to AS.

Let Dun(L) denote the set of unnumbered, unoriented degree n Jacobi diagrams on L without
looped edges. Note that the product I(R,L,Γ, ω)[Γ] is independent of the orientation of Γ for
an antisymmetric propagating form of (C2(R), τ).

An automorphism of a graph Γ ∈ Du
n(L) is an automorphism of the underlying uni-trivalent

graph, for which the permutation σ of U(Γ) induced by the automorphism is such that iΓ ◦ σ
and iΓ are isotopic for some (and thus any) Γ-compatible injection iΓ. Let Aut(Γ) denote the
set of these automorphisms, and let ]Aut(Γ) denote its cardinality.

Examples 2.25 The cardinality of Aut( ) is 2, ]Aut( ) = 1, ]Aut( ) = 12, ]Aut( ) = 3.

The following theorem is a consequence of [Les20, Theorem 7.20 and Proposition 7.26],
when L is a link and of [Les20, Theorem 12.7, Theorem 12.13 and Lemma 13.7] in general.

Theorem 2.26 Let L be a long tangle representative in Ř. Let LC denote the set of connected
components of L. Let ω be an antisymmetric homogeneous propagating form of (C2(R), τ).
Then

Zn(Ř, L, (Iθ(K, τ))K∈LC , p1(τ)) =
∑

Γ∈Dun(L)

1

]Aut(Γ)
I(R,L,Γ, ω)[Γ] ∈ An(L)

depends only on

� the pair (C, L∩C) up to orientation-preserving diffeomorphisms18 of C which preserve the
bottom disk D2×{0} and the top disk D2×{1}, and which preserve c+(B+) and c−(B−)
up to (global) translation and dilation,

� Iθ(K, τ) for each component K of L,

� p1(τ),

where I(R,L,Γ, ω)[Γ] = I(R,L,Γ, o(Γ), ω)[Γ, o(Γ)] for an arbitrary orientation of Γ.

Note that the above definition of I(R,L,Γ, ω)[Γ] is consistent because the right-hand side
of the above equality does not depend on o(Γ). Also note that when L is an almost-horizontal
knot K of R3 as in Definition 2.14, Zn(R3, K, Iθ(K, τs), p1(τs) = 0) depends only on Iθ(K, τs) =
lk(K,K‖) (see Lemma 2.15) and on the isotopy class of K, so that Zn induces an isotopy
invariant of parallelized knots in R3.

18As often in these notes, we identify an embedding and its image.
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Examples 2.27 For the empty link ∅ of R3, Zn(R3, ∅, 0) = 0 for all n > 0 and Z0(R3, ∅, 0) = [∅].
For the knot O of Example 2.20, Z0(R3, O, 0) = [ ], Z1(R3, O, 0) = 0 and

Z2(R3, O, 0) =
1

24

[ ]
=

1

48

[ ]
.

For any two-component link J tK of R3 such that J and K are almost-horizontal,

Z1(R3, J tK, 0) =
1

2
lk(J, J‖)

[
J K

]
+

1

2
lk(K,K‖)

[
J K

]
+ lk(J,K) [ KJ ] .

If (Ř, τ) is a parallelized asymptotic rational homology R3, then

Z1(Ř, ∅, p1(τ)) =
Θ(R, τ)

12
[ ] .

Remark 2.28 Let ω be an antisymmetric homogeneous propagating form of (C2(R), τ). The
homogeneous definition of Zn(Ř, L, .) above makes clear that Zn(Ř, L, .) is a measure of graph
configurations, where a graph configuration is an embedding of the set of vertices of a uni-
trivalent graph into Ř, which maps univalent vertices to L(L) in a constrained way. The
embedded vertices are connected by a set of abstract plain edges, which represent the measuring
form. The factor 1

]Aut(Γ)
ensures that every such configuration of an unnumbered, unoriented

graph is measured exactly once.

Definition 2.29 A one-cycle c of S2 is algebraically trivial if, for any two points x and y outside
its support, the algebraic intersection of an arc from x to y transverse to c with c is zero, or,
equivalently, if the integral of any one–form of S2 along c is zero. A link embedding L is straight
(with respect to τ) if the image pτ (U

+K) of the direction of the tangent map to any component
K of L is an algebraically trivial cycle of S2. A straight knot embedding K can be parallelized
(or framed) by pushing it in a direction τ(X) for some X ∈ S2 \ (pτ (U

+K) ∪ ιS2(pτ (U
+K))).

As a consequence of [Les20, Lemma 7.35], the isotopy class of the obtained parallel K‖,τ is
independent of such an X, and we have the following lemma.

Lemma 2.30 For any component K of a straight link embedding, Iθ(K, τ) = lk(K,K‖,τ ).

Note that for any link representative L in C̊ ⊂ (Ř = R(C)), and for any asymptotically
standard parallelization τ0 of Ř, there is a parallelization τ homotopic to τ0 among asymptoti-
cally standard parallelizations τ0 of Ř such that pτ (U

+K) = { ~N} for any component K of L,
so that L is straight with respect to τ .

For a degree n Jacobi diagram Γ on L, set

ζΓ =
(3n− ]E(Γ))!

(3n)!2]E(Γ)
.
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Theorem 2.31 Let L:L ↪→ Ř be a straight link embedding with respect to τ in (Ř, τ), which
is our asymptotic rational homology R3. For any i ∈ 3n, let ω(i) be a propagating form of
(C2(R), τ), and let Pi be a propagating chain of (C2(R), τ). With the notation of Definition 2.9
and Theorem 2.26,

Zn(Ř, L, (lk(K,K‖,τ ))K∈LC , p1(τ)) =
∑

Γ∈Den(L) ζΓI(R,L,Γ, (ω(i))i∈3n)[Γ]

=
∑

Γ∈Den(L) ζΓ[
⋂
e∈E(Γ) p

−1
e (PjE(e))][Γ],

whenever all the above intersections are transverse, and they are for generic choices of (Pi)i∈3n.
In particular, the right-hand sides do not depend on our choices and they are rational.

Proof: The first equality is a consequence of [Les20, Theorem 7.39]. The genericity of the
statement is described in [Les20, Chapter 11]. See [Les20, Definition 11.3 and Lemma 11.4], in
particular. The second equality is a consequence of [Les20, Lemma 11.7]. �

In the above statement, [
⋂
e∈E(Γ) p

−1
e (PjE(e))] is the algebraic intersection of the codimension

2 chains p−1
e (PjE(e)) in C(R,L; Γ). Theorem 2.31 may be applied to compute Z with the Morse

propagators of Section 1.5. In this case Z counts graph embeddings where some edges embed in
the flow lines (when the pairs of points are in the part Pφ of P (f, g)) and some edges e = (v, w)
constrain their origin vertex to belong to some descending manifold Bj of an index 2 critical
point and their final vertex to belong to some ascending manifold Ai of an index 1 critical
point, up to some corrections due to the behaviour of P (f, g) near ∂C2(R). A similar way of
counting graphs was proposed by Fukaya in [Fuk96] and further studied by Watanabe [Wat18].

The following consequence of Theorem 2.31 can be deduced from independent results of
Sylvain Poirier [Poi02] and Dylan Thurston [Thu99] in the case of links in R3, with propagating
chains p−1

S2 (Xi). For any edge e, let de denote pS2 ◦ pe.

Theorem 2.32 Let L:L ↪→ R3 be a straight link embedding into R3. The subset A of (S2)3n

consisting of the (Xi)i∈3n such that (XjE(e))e∈E(Γ) is a regular value of
∏

e∈E(Γ) de:C(L; Γ) →
(S2)jE(E(Γ)) for any Γ ∈ Den(L) is open and dense, and, for any (Xi)i∈3n ∈ A,

Zn(R3, L, (lk(K,K‖,τ ))K∈LC , 0) =
∑

Γ∈Den(L) ζΓ[
⋂
e∈E(Γ) d

−1
e (XjE(e))][Γ].

This theorem tells us that Zn(R3, L, (Iθ(K))K∈LC , 0) behaves as an An(L)–valued degree on
(S2)3n and it may be proved along the following lines. Associate the map ΠΓ =

∏
e∈E(Γ) de ×

Id(S2)3n\jE(E(Γ)) from C(L; Γ)×(S2)3n\jE(E(Γ)) to (S2)3n to each Γ ∈ Den(L), equipped with a fixed
arbitrary orientation. By definition, for any such Jacobi diagram Γ equipped with an implicit
vertex-orientation,

I (L,Γ, p∗S2(ωS2)) =

∫
Č(L;Γ)

∧
e∈E(Γ)

d∗e(ωS2)

is the algebraic volume of the image of ΠΓ. The degree dΓ of ΠΓ is a continuous function
on the complement of ΠΓ

(
∂C(L; Γ)× (S2)3n\jE(E(Γ))

)
in (S2)3n. The degree dΓ changes by
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a

b c

d

, c

da

b

v(`, 2)

,

a

b c

d

v(`, 2)

and

a

b c

d

v(`, 2)

Figure 13: Γ/e(`), Γab, Γac and Γad, around the collapsing edge

±1 across each wall, where a wall is a codimension-one image of a codimension-one face of
ΠΓ

(
C(L; Γ)× (S2)3n\jE(E(Γ))

)
. Sylvain Poirier and Dylan Thurston proved independently that

Dn =
∑

Γ∈Den(L) ζΓdΓ[Γ] can be extended to an An(L)-valued constant function on (S2)3n by
gluing the above walls as in the example below.

Let Γ ∈ Den(L). Let e(`) be an edge of Γ with label `, which goes from a vertex v(`, 1) to a
vertex v(`, 2). Assume that no other edge of Γ contains both v(`, 1) and v(`, 2). Let Γ/e(`) be
the labelled edge-oriented graph obtained from Γ by contracting e(`) to a point. The labels of
the edges of Γ/e(`) belong to 3n \ {`}, Γ/e(`) has one four-valent vertex and its other vertices
are univalent or trivalent. Let E = E(Γ; e(`)) be the set of pairs (Γ̃, ẽ(`)) where Γ̃ ∈ Den(L) and
ẽ(`) is an edge of Γ̃ with label ` such that Γ̃/ẽ(`) is equal to Γ/e(`).

Let us show that there are 6 graphs in E . Let a, b, c, d be the four half-edges of Γ/e(`) that
contain its four-valent vertex. In Γ̃, the edge ẽ(`) joins a vertex v(`, 1) to a vertex v(`, 2). The
vertex v(`, 1) is adjacent to the first half-edge of ẽ(`) and to two half-edges of {a, b, c, d}. The
unordered pair of {a, b, c, d} adjacent to v(`, 1) determines Γ̃ as an element of Den(L) and there
are 6 elements in E labelled by the pairs of elements of {a, b, c, d}. They are Γ = Γab, Γac,
Γad, Γbc, Γbd and Γcd, equipped with the edge from v(`, 1) to v(`, 2). Three of them (Γab, Γac
and Γad) are drawn in Figure 13. The other ones are obtained from them by reversing the
orientation of ẽ(`).

The face F ({v(`, 1), v(`, 2)}, L,Γ), where e(`) collapses, is fibered over the configuration
space of Γ/e(`) with fiber S2, which contains the (free) direction of the vector from c(v(`, 1))
to c(v(`, 2)), so that the wall determined by this space is the same for all (Γ̃, ẽ(`)) in E , while
the variation of Dn across the wall associated to (Γ̃, ẽ(`)) is ±ζΓ[Γ̃]. Checking the signs as in
[Les20, Lemma 9.13] shows that the sum over the elements of E of the variations of Dn across
the wall associated to (Γ̃, ẽ(`)) vanishes, thanks to the Jacobi relation.
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3 Some properties of Z

Set A(L) =
∏

n∈NAn(L). We drop the subscript n to denote the collection (or the sum) of the
Zn for n ∈ N. For example,

Z
(
Ř, L, (0), p1(τ)

)
=
(
Zn(Ř, L, (0), p1(τ))

)
n∈N =

∑
n∈N

Zn
(
Ř, L, (0), p1(τ)

)
∈ A(L).

The disjoint union of diagrams induces a commutative product on A(∅) which maps two
classes of diagrams to the class of their disjoint union. Equipped with this product, A(∅)
is a commutative algebra. The disjoint union of diagrams induces similarly an A(∅)-module
structure on A(L) for any one-manifold L.

3.1 On the invariant Z of Q–spheres and the anomaly β

Let Acn(∅) denote the subspace of An(∅) generated by trivalent Jacobi diagrams with one con-
nected component, set Ac(∅) =

∏
n∈NAcn(∅), and let pc:A(∅)→ Ac(∅) be the linear projection

that maps the empty diagram and diagrams with several connected components to 0. Let Dcn
denote the subset of Den(∅) that contains the connected diagrams of Den(∅). For n ∈ N, set

zn(Ř, p1(τ)) = pc
(
Zn(Ř, p1(τ)) = Zn(Ř, ∅, p1(τ))

)
.

zn(Ř, p1(τ)) =
∑

Γ∈Dcn

ζΓI(R,Γ, ω)[Γ] ∈ Acn(∅)

for some propagating form ω of (C2(R), τ). The reader can check that

Z(Ř, p1(τ)) = exp
(
z(Ř, p1(τ))

)
.

The dependence on p1(τ) of z(Ř, p1(τ)) is linear, and the following proposition is a consequence
of [Les20, Corollary 10.9, Proposition 10.7 and Definition 10.5].

Proposition 3.1 (Kuperberg, Thurston [KT99]) There exists an element β ∈ A(∅) such

that
(
z(Ř, p1(τ))− p1(τ)

4
β
)

is independent of τ so that

Z(R) = Z(Ř, p1(τ)) exp

(
−p1(τ)

4
β

)
.

is an invariant of R. If n is even, then the degree n part βn of β = (βn)n∈N is zero.

Note the following proposition.
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Proposition 3.2 Let (Ř, τ) be an asymptotic rational homology R3, then

Z1(Ř, p1(τ)) = z1(Ř, p1(τ)) =
Θ(R, τ)

12
[ ]

in A1(∅) = A1(∅;R) = R[ ].

In particular, β1 = 1
12

[ ]. See [Les20, Section 10.2] for more details about the anomaly β,
which is unknown in odd degrees greater than 1.

In [KT99], Greg Kuperberg and Dylan Thurston proved that the restriction of Z to Z-
spheres is a universal finite type invariant of Z-spheres, with respect to the Ohtsuki theory of
finite type invariants for Z-spheres [Oht96], see also [GGP01]. In [Les04], I generalized their
result by proving that the restriction of Z to Q-spheres is a universal finite type invariant of
Q-spheres with respect to the Moussard theory of finite type invariants of Q-spheres based on
Lagrangian-preserving surgeries [Mou12], see [Les20, Sections 18.1 and 18.5]. This implies that
Z and the LMO invariant of Le, Murakami and Ohtsuki [LMO98] are equivalent in the sense
that they distinguish the same Q–spheres.

3.2 On the invariant Z of framed tangles and the anomaly α

The product exp
(
−p1(τ)

4
β
)
Z(Ř, L, (Iθ(K, τ))K∈LC , p1(τ)) is actually independent of p1(τ), too,

so that we set

Z(Ř, L, (Iθ(K, τ))K∈LC ) = exp

(
−p1(τ)

4
β

)
Z(Ř, L, (Iθ(K, τ))K∈LC , p1(τ)).

Remark 3.3 Let Ǎ(L) be the quotient ofAn(L) by the vector space generated by the diagrams
that have at least one connected component without univalent vertices. Using the corresponding
projection p̌:A(L)→ Ǎ(L) and setting Žn = p̌ ◦ Zn, we can write

Z(Ř, L, (Iθ(K, τ))K∈LC ) = Z(R)Ž(Ř, L, (Iθ(K, τ))K∈LC ).

If a one-manifold L is the union of two one-manifolds L1 and L2, which meet only along
their boundaries, the disjoint union of diagrams again induces products from Aj(L1)⊗Ak(L2)
to Aj+k(L), where the required class of injections iΓ1tΓ2 for a disjoint union of a Jacobi diagram
Γ1 on L1 and a Jacobi diagram Γ2 on L2 is naturally induced by [iΓ1 ] and [iΓ2 ]. View [0, 1] as
the union of [0, 1

2
] and [1

2
, 1], together with orientation-preserving identifications of [0, 1

2
] and

[1
2
, 1] with [0, 1]. Then the above products induce an algebra structure on A([0, 1]). In [BN95a],

Bar-Natan proved that the induced product of A([0, 1]) is actually commutative, and that the
natural map from A([0, 1]) to A(S1) obtained from the identification S1 = [0, 1]/(0 ∼ 1) is an
isomorphism. See [Les20, Proposition 6.22]. In particular, the choice of an oriented connected
component K of L equips A(L) with a well-defined A([0, 1])-module structure ]K , induced by
an orientation-preserving inclusion from [0, 1] into a small part of K outside the vertices.
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A tangle representative is a pair (C, C ∩ L), which is simply denoted by (C, L) for a long
tangle representative as in Definition 2.4, where we again identify the embedding L and its
image. Such a tangle representative is a cobordism in C from the bottom configuration of L
to the top configuration of L. From now on Z is viewed as a map, which maps such a tangle
representative, also denoted by L or by (C, L), to an element Z(C, L) = Z(Ř(C), L, (0)K∈LC ) of
A(L).

Note that Z maps trivial braids c(B)× [0, 1] of C0 to the class of the empty diagram, since
the vertical translations act on the involved configuration spaces so that the image of

∏
e∈E de

in (S2)jE(E) of the configuration space is the image of the quotient, which is included in a
subspace of codimension at least 1.

It is easy to compute the expansion Z≤1 up to degree 1 of Z for and to show that

Z0

( )
=

[ ]
= 1 and Z1

( )
=

[ ]
so that Z≤1

( )
= 1 +

[ ]
,

where the endpoints of the tangle representative lie on R× {0, 1}. See [Les20, Lemma 12.19].
More precisely, Z maps the above braid (σ1)2 to the exponential of an element obtained

by inserting a combination 2α̌ of Jacobi diagrams with two free univalent vertices, which are
symmetric with respect to exchanging two vertices, on the diagram with one edge between the
two strands. See [Les20, Lemma 13.16]. The degree one part of 2α̌ is an edge between the two
vertices, and it is conjectured that 2α̌ vanishes in degree greater than 1. Inserting 2α̌ on the
edge of gives rise to 2α, where α ∈ A([0, 1]) is the Bott and Taubes anomaly, which controls
the dependence on Iθ(K, τ) as follows.

Theorem 3.4 Let L be a long tangle representative and let LC denote the set of its connected
components. The expression∏

K∈LC

(exp(−Iθ(K, τ)α)]K)Z(Ř = Ř(C), L, (Iθ(K, τ))K∈LC )

is independent of the Iθ(K, τ). It is denoted by Z(C, L).
Here exp(−Iθ(K, τ)α) acts on Z(Ř, L, (Iθ(K, τ))K∈LC ), by insertion on the component of K

in the source L of the long tangle as indicated19 by the subscript K.

Remark 3.5 It is known that α2n = 0 for any n ∈ N, and that α3 = 0 [Poi02, Proposition
1.4]. Sylvain Poirier also showed that α5 = 0 with the help of a Maple program. Furthermore,
according to [Les02, Corollary 1.4], α2n+1 is a combination of diagrams with two univalent
vertices (as mentioned above), and Z(S3, L) is obtained from the Kontsevich integral ZK by
inserting d times the plain part 2α̌ of 2α on some edge of each degree d connected component
of a diagram. See [Les20, Section 10.3] for more about the anomaly α, which is unknown in
odd degrees greater than 6.

19Because of the given symmetry of α, there is no need to orient K to define (exp(−Iθ(K, τ)α)]K).
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The precise natural definitions of parallels K‖ of long tangle components K and of the corre-
sponding linking numbers lk(K,K‖) are given in [Les20, Section 12.2]. With these definitions,
when L = (K)K∈LC is framed by some L‖ = (K‖)K∈LC , we set

Zf (C, (L,L‖)) =
∏
K∈LC

(
exp(lk(K,K‖)α)]K

)
Z(C, L),

as in [Les20, Definition 12.12].
Let us now discuss some properties of this invariant Zf of framed tangles. The first one is

the following functoriality property, which is part of [Les20, Theorem 13.12], and is proved in
[Les20, Section 17.2]

Theorem 3.6 Zf is functorial: For two framed tangles L1 = (C1, L1) and L2 = (C2, L2) such
that the top configuration of L1 coincides with the bottom configuration of L2, then the natu-
rally framed product L1L2 is defined by stacking L2 on top of L1, (and appropriately vertically
rescaling) and

Zf (L1L2) = Zf
 L2

L1

 =
Zf (L2)

Zf (L1)
= Zf (L1)Zf (L2).

When applied to the case where the tangles are empty, this theorem implies that the invari-
ant Z of Q–spheres is multiplicative under connected sum.

3.3 Generalization to q–tangles

Here, framed tangles are framed cobordisms in Q-cylinders between injective configurations of
points in C up to dilations and translations. For K = R or C, and for a finite set B, the space
ŠB(K) of injective maps from B to K up to translation and dilation, may be compactified to a
manifold SB(K) by first embedding ŠB(K) in the compact space SB(K) of non-constant maps
from B to K up to translation and dilation (when ]B ≥ 2), and then successively blowing up
all the diagonals as in the beginning of Section 2.4. See [Les20, Section 8.3] for details.

Example 3.7 For K = R or C, the configuration space Š1(K) = S1(K) is reduced to a point.
The configuration space Š2(C) = S2(C) is a circle, while the configuration space Š2(R) = S2(R)
has two points (0, 1) and (0,−1), where we write elements of Šk(R) as elements (c(1), . . . , c(k))
of Rk such that c(1) = 0 and |c(k)| = 1, for any k ∈ N such that k ≥ 2. In general, Šk(R)
and its compactification Sk(R) have k! components, which correspond to the orders of the c(i)
in R. Denote the connected component of Šk(R) where c(1) < c(2) < . . . < c(k) by Š<,k(R),
and its closure in Sk(R) by S<,k(R). Then Š<,3(R) = {(0, t, 1) | t ∈]0, 1[}, and S<,3(R) is its
natural compactification [0, 1] where t ∈]0, 1[ represents the injective configuration (0, t, 1), 0
represents the limit configuration (( ) ) = limt→0(0, t, 1) and 1 represents the limit configuration
( ( )) = limt→0(0, 1 − t, 1). The configuration space S<,4(R) is diffeomorphic to the following
well-known pentagon.
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((.(..)).) (.((..).))

(.(.(..)))(((..).).)

((..)(..))

In general, for k ≥ 3, the configuration space S<,k(R) is a Stasheff polyhedron of dimension
(k − 2) whose corners are labeled by non-associative words in the letter as in the above
examples. For any integer k ≥ 2, a non-associative word w with k letters represents a limit
configuration w = limt→0w(t), where w(t) = (w1(t) = 0, w2(t), . . . , wk−1(t), wk(t) = 1) is an
injective configuration for t ∈]0, 1

2
[, and, if w is the product uv of a non-associative word u of

length j ≥ 1 and a non-associative word v of length (k − j) ≥ 1, wi(t) = tui(t) when 1 < i ≤ j
and wi(t) = 1− t + tvi−j(t) when k > i > j. For example, ((( ) ) )(t) = (0, t2, t, 1). In a limit
configuration associated to such a non-associative word, points inside matching parentheses are
thought of as infinitely closer to each other than they are to points outside these matching
parentheses.

Definition 3.8 Define a combinatorial q–tangle as a framed tangle representative whose bot-
tom and top configurations are on the real line, up to isotopies of C which globally preserve
the intersection of the bottom disk D2 × {0} with R × {0} and the intersection of the top
disk D2 × {1} with R × {1}, equipped with non-associative words of the appropriate length
associated to the bottom and top configurations. These non-associative words are called the
bottom and top configurations of the combinatorial q–tangle.

Such a combinatorial q–tangle L from a bottom word w− to a top word w+ is thought of
as the limit when t tends to 0 of the framed tangles L(t) in the above isotopy class whose
bottom and top configurations are w−(t) and w+(t), respectively. In [Les20, Theorem 13.8
and Remark 13.11], following Poirier [Poi00], I proved that limt→0Zf (L(t)) exists and that
it defines an isotopy invariant of these (framed) combinatorial q–tangles L. This invariant is
still multiplicative under vertical composition as in Theorem 3.6, and we can now define other
interesting operations.

For two combinatorial q–tangles L1 = (C1, L1) from w−1 to w+
1 and L2 = (C2, L2) from w−2 to

w+
2 , define the product L1 ⊗ L2 from the bottom configuration w−1 w

−
2 to the top configuration

w+
1 w

+
2 by shrinking C1 and C2 to make them respectively replace the products by [0, 1] of the

horizontal disks with radius 1
4

and respective centers −1
2

and 1
2
.

Theorem 3.9 Zf is monoidal: For two combinatorial q–tangles L1 and L2,

Zf (L1 ⊗ L2) = Zf
(

L2L1

)
= Zf (L2)Zf (L1) = Zf (L1)⊗Zf (L2).

Proof: This theorem can be easily deduced from the cabling property and the functoriality
property of [Les20, Theorem 13.12]. �

We can also double a component K according to its parallelization in a combinatorial q–
tangle L. This operation replaces a component with two parallel components, with respect to
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the given framing, and, if this component has boundary points, it replaces the corresponding
letters in the non-associative words with ( ). The combinatorial q–tangle obtained in this way
is denoted by L(2×K).

The corresponding operation for Jacobi diagrams is the following one.

Definition 3.10 Let L be a one-manifold, and let K be a connected component of L. Let

L(2×K) = (L \ K) t
(
K(1) t K(2)

)
be the manifold obtained from L by duplicating K, that is by replacing K with two copies K(1)

and K(2) of K, and let
π(2×K):L(2×K) −→ L

be the associated map, which is the identity on (L \ K), and the trivial 2-fold covering from
K(1) t K(2) to K.

If Γ is (the class of) an oriented Jacobi diagram on L, then π(2 × K)∗(Γ) is the sum
of all diagrams on L(2 × K) obtained from Γ by lifting each univalent vertex to one of its
preimages under π(2 × K). These diagrams have the same vertices and edges as Γ and the
local orientations at univalent vertices are naturally induced by the local orientations of the
corresponding univalent vertices of Γ. This operation induces the natural linear duplication
map:

π(2×K)∗ : A(L) −→ A(L(2×K)).

Example 3.11

π(2× I)∗
( )

= + + +

We can now state the following duplication property for Zf of [Les20, Theorem 13.12],
which is proved in [Les20, Section 17.4].

Theorem 3.12 Let K be a component of a combinatorial q–tangle L, then

Zf (L(2×K)) = π(2×K)∗Zf (L).

More properties of Zf are presented in [Les20, Theorem 13.12].

3.4 Discrete derivatives of Zf

Since

Zf≤1

( )
−Zf≤1

( )
=

[ ]
,

where the endpoints of the tangles lie on R × {0, 1}, the above properties of Zf allow us
to completely compute nth derivatives of Zn, where a simple derivative of Zn is a difference
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Zn( )−Z( ). In particular, they imply that the restriction of Z to links in S3 is a universal
Vassiliev invariant of links as in [Les20, Section 17.6], without using the theorem mentioned in
Remark 3.5.

The following nth derivative with respect to LP-surgeries of Zf is computed in [Les20, The-
orem 18.5]. Let L be a q–tangle representative in a rational homology cylinder C. Let txi=1A

(i)

be a disjoint union of rational homology handlebodies embedded in C \ L. Let (A(i)′/A(i)) be
rational LP surgeries in C as in Definition 1.26. Set X = [C, L; (A(i)′/A(i))i∈x] and

Zn(X) =
∑
I⊂x

(−1)x+]IZn (CI , L) ,

where CI = C
(
(A(i)′/A(i))i∈I

)
is the rational homology cylinder obtained from C by performing

the LP-surgeries that replace A(i) with A(i)′ for i ∈ I. If 2n < x, then Zn(X) vanishes, and, if
2n = x, then the expression of Zn(X) is given in [Les20, Theorem 18.5].

This computation relies on constructions of propagating forms that coincide as much as
possible20 for the involved manifolds. The result of this computation implies that the restriction
of Z to Q-spheres is a universal finite type invariant of Q-spheres with respect to the Moussard
theory of finite type invariants of Q-spheres [Mou12], as announced in Section 3.1.

This computation has also allowed the author to compute Ž2(R,K) for any null-homologous
knot K in a rational homology sphere R in [Les20, Theorem 18.41], and to show that

Ž2(R,K) =

(
1

24
− 1

2
∆′′K(1)

)[ ]
,

where ∆K is the Alexander polynomial of K, normalized so that ∆K(t) = ∆K(t−1) and ∆K(1) =
1. This result was generalized by David Leturcq in [Let20]. See [Les20, Theorem 18.43].

3.5 Some open questions

The determination of the anomalies α and β is still open. The behaviour of Zf under Dehn
surgeries has not yet been investigated. Is the invariant Z of Q-spheres obtained from the
invariant Zf of framed links in the same way as the Le-Murakami-Ohtsuki invariant [LMO98]
is obtained from the Kontsevich integral?

I constructed an invariant Z̃ of null-homologous knots in Q-spheres from equivariant al-
gebraic intersections in equivariant configuration spaces in [Les11, Les13]. This equivariant
Z̃ lives in a more structured space of Jacobi diagrams. It shares many properties with the
Kricker lift of the Kontsevich integral of [Kri00, GK04]. Does Z̃ lift the restriction of Z to
null-homologous knots in Q-spheres as the Kricker invariant lifts the Kontsevich integral?

Heegaard splittings provide propagators as in Section 1.5. How do the invariants Z, Zf and
Z̃ relate to Heegaard-Floer homology?

20The constructed forms ωI satisfy ωI = ωJ on C2

((
Ř(CI) \ ∪i∈I∪J Int(A(i))

)
∪ ∪i∈I∩JA(i)′) for parts I and

J of x, where C2(X) = p−1
b (X2).
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