
HAL Id: hal-03758964
https://hal.science/hal-03758964

Submitted on 23 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Bounded-Memory Runtime Enforcement
Saumya Shankar, Antoine Rollet, Srinivas Pinisetty, Yliès Falcone

To cite this version:
Saumya Shankar, Antoine Rollet, Srinivas Pinisetty, Yliès Falcone. Bounded-Memory Runtime En-
forcement. SPIN 2022 - 28th International Symposium on Model Checking of Software, May 2022,
Chicago, United States. pp.114-133, �10.1007/978-3-031-15077-7_7�. �hal-03758964�

https://hal.science/hal-03758964
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Bounded-Memory Runtime Enforcement∗

Saumya Shankar1, Antoine Rollet2, Srinivas Pinisetty3, and Yliès Falcone4

1 Indian Institute of Technology Bhubaneswar India ss117@iitbbs.ac.in
2 Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence,

France antoine.rollet@labri.fr
3 Indian Institute of Technology Bhubaneswar India spinisetty@iitbbs.ac.in

4 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
ylies.falcone@univ-grenoble-alpes.fr

Abstract. Runtime Enforcement (RE) is a monitoring technique to en-
sure that a system obeys a set of formal requirements (properties). RE
employs an enforcer (a safety wrapper for the system) which modifies
the (untrustworthy) output by performing actions such as delaying (by
storing/buffering) and suppressing events, when needed. In this paper,
to handle practical applications with memory constraints, we propose a
new RE paradigm where the memory of the enforcer is bounded/finite.
Besides the property to be enforced, the user specifies a bound on the
enforcer memory. Bounding the memory poses various challenges such
as how to handle the situation when the memory is full, how to opti-
mally discard events from the buffer to accommodate new events and
let the enforcer continue operating. We define the bounded-memory RE
problem and develop a framework for any regular property. The proposed
framework is implemented and its performance evaluated via some exam-
ples from application scenarios indicates that the enforcer has reasonable
execution time overhead.

Keywords: Formal methods · Runtime enforcement · Automata.

1 Introduction

Runtime Enforcement (RE) [9,12,3,4,6,20,8] is a monitoring technique to ensure
that a system complies with a set of formal requirements (properties) at runtime.
An enforcer can be considered as a safety wrapper for the system, which modifies
an (untrustworthy) input (in the form of a sequence of events) into an output
sequence that complies with the specified property. RE usually aims at ensuring
the so-called soundness (the output must satisfy the property) and transparency
(a correct input should remain unchanged).

We focus on the online enforcement of regular properties meaning that en-
forcement of property ϕ is done on the fly. The general schema is depicted in Fig.
1, where an enforcer is placed between an event emitter and an event receiver

∗This work has been partially supported by IIT Bhubaneswar Seed Grant (SP093).
Y. Falcone acknowledges the support from the H2020-ECSEL-2018-IA call –Grant
Agreement number 826276 (CPS4EU), from the French ANR project ANR-20- CE39-
0009 (SEVERITAS), the Auvergne-Rhône-Alpes research project MOAP, and LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investisse-
ment d’avenir.

ii S. Shankar et al.

Fig. 1: Enforcement mechanism

that executes asynchronously. The enforcer takes a sequence of events σ as input
and transforms it into a sequence of events o that is correct with respect to ϕ.
The enforcer is equipped with an internal memory (buffer) to store some events
that are received as input which would be released as output only when the
satisfaction of the property is ensured. We will use the word buffer for referring
to the internal memory of the enforcer throughout the paper.

In usual RE mechanisms such as [9,12], the buffer of the enforcer is considered
to be infinite. But this assumption is obviously not realistic in the case of a real
implementation of the enforcer: an internal buffer is necessarily bounded [10,22].
Then an important question arises: what should be done when the bound of the
buffer is reached? To illustrate the problem, consider for instance an enforce-
ment mechanism protecting a critical system by filtering dangerous requests in a
network, i.e., inputs that are ill-formatted or suspicious. The situation where the
buffer of this protecting mechanism is full is also a critical situation which has
to be considered carefully. Naive reactions may lead to dangerous inputs being
transmitted to the system and then make the enforcement mechanism useless.

In this work, we study RE with a bounded buffer, i.e., we will see how our
enforcer tackles the situation when the buffer is finite. We allow an enforcer to
continue operating even when its buffer is full. To handle the situation where
the buffer of the enforcer is full, a simple possibility would be to discard the
received event, or to remove the oldest one. However, these approaches do not
guarantee compliance with the specified property or minimal deviation from an
“ideal” enforcer (i.e., an enforcer without memory limitation). Thus, cleaning the
buffer when it is full in an optimal way (minimal dropping of events, minimal
deviation) in order to continue enforcement becomes the major challenge of a
bounded-memory enforcement problem.

Formally speaking, given a regular property ϕ, and maximum size of buffer
k, we aim to synthesize an enforcer that takes as input a word σ and outputs a
word o that (i) satisfies ϕ (soundness), and (ii) is a prefix, or subword of input
σ (transparency). In addition, (iii) the output should be as long as possible
(optimality) and equivalent to one produced by an enforcer with unbounded
memory (∞-compatible), as explained in Sect. 4. We refer to this problem as
Bounded-Memory Runtime Enforcement.
Context and Objectives. We tackle the problem of obtaining an enforcer given
a regular property specified as a Deterministic Finite-state Automaton (DFA).
The enforcer intervenes when an execution is about to violate the property be-
ing enforced by catching events. The synthesized enforcers have the following
abilities: storing events in a buffer, releasing them when the property is finally
satisfied, and suppressing events, but only if there is no other way to avoid a
buffer overflow. At the point of filtering them out, the filtered/suppressed events
should be invariant with respect to the property (DFA’s) language. The num-
ber of events suppressed in the buffer must be minimal. As illustrated in the

Bounded-Memory Runtime Enforcement iii

abstract architecture in Fig. 1, we consider that the emitter and receiver run
in an asynchronous manner, thus delaying an event from the emitter does not
have any impact on its successive events. These are reasonable assumptions for
many practical applications such as networks and components in systems like
autonomous vehicles.
Contributions. We introduce the first formal framework for bounded-memory
runtime enforcement. The notions of soundness and monotonicity are similar
to the ones used in the standard RE frameworks [11]. However, transparency
is modified to take into account the possibility of suppressing/dropping events
when needed. In addition, we propose a new notion of optimality. At an ab-
stract level, we model enforcers as functions that transform words. We define
the constraints that an enforcement function (for some ϕ) should satisfy. We
present algorithms describing how the proposed enforcement functions can be
implemented. All our results are formalized. The proposed algorithms are im-
plemented in Python and are evaluated using some example properties, and
also using properties based on application scenarios related to concurrency and
autonomous vehicles. The overhead of enforcers is observed to be reasonable.

2 Preliminaries and Notations
Languages: A (finite) word w over a finite alphabet Σ is a finite sequence of
elements of Σ. The length of w, denoted as |w|, is the number of elements in w.
The empty word over Σ is denoted by ε. The sets of all words and all non-empty
words are denoted by Σ∗ and Σ+ respectively. A language or a property over Σ
is any subset of Σ∗ and is denoted by ϕ.

The concatenation of two words w and w′ is denoted by w · w′. A word w′

is a prefix of word w, denoted w′ 4 w, whenever there exists a word w′′ such
that w = w′ · w′′, and w′ ≺ w if additionally w′ 6= w; conversely w is said
to be an extension of w′. The set pref(w) denotes the set of prefixes of w and

subsequently, pref(L)
def
=
⋃
w∈L pref(w) is the set of prefixes of words in L. A

language L is prefix-closed if pref(L) = L and extension-closed if L ·Σ∗ = L.
A word w′ = a1...an is a subword of w, denoted w′/w, if w′ can be obtained by

deleting letters from w or, equivalently, w = w0a1w1...anwn for some w0, ..., wn ∈
Σ∗. Given a n-tuple of symbols e = (e1, ..., en), for i ∈ [1, n], Πi(e) is the
projection of e on its i-th element (Πi(e) = ei).

For a word w and i ∈ [1, |w|], the i-th letter of w is denoted by w[i]. Given a
word w and integers i, j, s.t. 1 ≤ i ≤ j ≤ |w|, the subword from index i to j is
denoted by w[i···j] and the suffix of word w starting from index i by w[i···].
Deterministic and complete automata: A deterministic and complete automaton
A is a tuple A = (Q, q0, Σ, δ, F,) where, Q is the set of states, q0 ∈ Q is the
initial state, Σ is the finite alphabet, δ : Q × Σ → Q is the (total) transition
function and F ⊆ Q is the set of accepting states. A dead state of an automaton
is a state from where there is no way for the automaton to reach an accepting
state 5. The transition function δ is extended to words by setting δ(q, ε) = q,
and δ(q, a · σ) = δ(δ(q, a), σ), for any q ∈ Q, a ∈ Σ, σ ∈ Σ∗.

5A dead state is represented by a square throughout the paper.

iv S. Shankar et al.

Languages of automata: A word σ is accepted by A starting from state q if
δ(q, σ) ∈ F , and σ is accepted by A if σ is accepted starting from the initial
state q0. The language of A starting from state q is denoted L(A, q) and is the
set of all accepted words from q : L(A, q) = {σ ∈ Σ∗|δ(q, σ) ∈ F}. The language
of A, denoted L(A), is L(A, q0), i.e., the language of A from the initial state q0.
A word w satisfying ϕ is denoted by w |= ϕ, meaning w belongs to the language
accepted by the automaton defining ϕ. The next lemma relates accepted words
and the states reached by their prefixes in an automaton.
Lemma 1. ∀σ, σ′ ∈ Σ∗ : σ · σ′ ∈ L(A)⇐⇒ (σ′ ∈ L(A, δ(q0, σ)))
Lemma 1 states that given any two words σ, σ′ ∈ Σ∗, the word obtained by
concatenating them (σ · σ′) belongs to the language of A if and only if the word
σ′ belongs to the language accepted by A starting from the state reached by
reading σ in A (i.e., from δ(q0, σ)).
Minimal automata: An automaton A is minimal, if there does not exist an au-
tomaton A′ with states Q′ such that L(A) = L(A′) and |Q′| < |Q|.

Any non-deterministic, incomplete and non-minimal automaton can be de-
terminized, completed and minimized. Hence, in this paper we consider only de-
terministic, complete and minimal automata and the term “automaton” refers
to a “deterministic, complete and minimal automaton”.
Equivalence of two words: Two words σ and σ′ are ϕ-equivalent, noted σ ∼ϕ σ′ if
all their continuations evaluate equivalently with respect to ϕ. Formally: σ ∼ϕ σ′
iff ∀σ′′, σ.σ′′ |= ϕ⇔ σ′.σ′′ |= ϕ.
Lemma 2. If ϕ is defined by a deterministic and minimal automaton with tran-
sition function δ and initial state q0: σ ∼ϕ σ′ ⇔ δ(q0, σ) = δ(q0, σ

′).

3 Runtime Enforcement with Unbounded Buffer
We adapt an RE framework based on [15,9] where enforcers are synthesized
from regular properties modeled as automata. The input-output behaviour of
an enforcer is specified by an enforcement function. The enforcement function
Eϕ transforms some input word σ which is possibly incorrect w.r.t. ϕ into a
word satisfying ϕ. Enforcement mechanisms in [15,9] cannot change the order
of events, cannot suppress/insert events and have only the ability of blocking
and delaying events (by storing them internally in a buffer) when a violation is
detected. Thus, when considering the mechanisms in [15,9], the output produced
by the enforcer Eϕ(σ) is a prefix of the input word σ. In this work, in addition
to buffering events, we also consider suppressing events when there is no possible
continuation (future) of the current observation that can lead to the satisfaction
of the desired property ϕ in the future.
Definition 1 (Enforcer). Given property ϕ ⊆ Σ∗, a runtime enforcer for ϕ is
a function, Eϕ : Σ∗ → Σ∗, satisfying the constraints in Tab. 1.

Table 1: Constraints on an enforcer.

Soundness (Snd) ∀σ ∈ Σ∗ : Eϕ(σ) 6= ε =⇒ Eϕ(σ) ∈ ϕ

Monotonicity (Mo) ∀σ, σ′ ∈ Σ∗ : σ 4 σ′ =⇒ Eϕ(σ) 4 Eϕ(σ′)

Transparency
(Tr1) ∀σ ∈ Σ∗ \ pref(ϕ) : Eϕ(σ) / σ
(Tr2) ∀σ ∈ pref(ϕ) : Eϕ(σ) 4 σ

Optimal (Opt) ∀σ ∈ Σ∗, ∀a ∈ Σ : σ ∈ pref(ϕ) ∧ σ · a 6∈ pref(ϕ)
Suppression =⇒ ∀σcon ∈ Σ∗ : Eϕ(σ · a · σcon) = Eϕ(σ · σcon)

Bounded-Memory Runtime Enforcement v

Soundness means that for any input word σ, if the output Eϕ(σ) is not empty
(6= ε), then it must satisfy ϕ. Monotonicity expresses that the output of the
enforcer for an extended input word σ′ of an input word σ, extends the output
produced by the enforcer for σ, i.e., Eϕ is a growing function over relation 4.
Transparency is expressed as a conjunction of constraints (Tr1) and (Tr2).
(Tr1) expresses that for an input word σ, if there is no possible continuation of
σ that can lead to the satisfaction of ϕ in the future (i.e., σ is not a prefix of a
word that belongs to ϕ), the output produced by the enforcer is a subword of σ
(i.e., obtained by discarding/suppressing some events from σ). (Tr2) expresses
that for an input word σ, if there is any possible continuation of σ that can lead
to the satisfaction of ϕ in the future (i.e., σ is a prefix of a word that belongs
to ϕ), the output produced by the enforcer is a prefix of σ (i.e., no event from
σ can be suppressed/discarded). Optimal suppression (Opt) expresses that for
any word σ which is a prefix of a word that belongs to ϕ, when extended with an
event a ∈ Σ such that σ · a does not have any extension that satisfies ϕ, event a
should be suppressed by the enforcer. Let us see the definition of an enforcement
function that incrementally builds the output.

Definition 2 (Enforcement Function). Given a property ϕ ⊆ Σ∗, the en-
forcement function is Eϕ : Σ∗ → Σ∗, and is defined as Eϕ(σ) = Π1(storeϕ(σ)),
where storeϕ : Σ∗ → Σ∗ ×Σ∗ is defined as:

storeϕ(ε) = (ε, ε)

storeϕ(σ · a) =

 (σs · σc · a, ε) if σs · σc · a ∈ ϕ,
(σs, σc · a) if σs · σc · a 6∈ ϕ ∧ σs · σc · a ∈ pref(ϕ),
(σs, σc) otherwise,

with (σs, σc) = storeϕ(σ).

Function storeϕ takes a word over Σ as input and returns a pair of words over Σ.
The first element of the output of function storeϕ corresponds to the output of
the enforcement function; it is a prefix of (a subword of) the input that satisfies
ϕ; and the second element is a suffix of (a subword of) the input that the enforcer
cannot output yet. It corresponds to the buffer of the enforcer. Function storeϕ

is defined inductively: initially, for an empty input, both elements are empty; if
σ is read, storeϕ(σ) = (σs, σc), and another new event a ∈ Σ is observed, there
are three possible cases depending on whether σs · σc · a satisfies ϕ or not or is
a prefix of a word that satisfies ϕ or not.

• If σs · σc · a satisfies ϕ, then the concatenation of the buffer content (σc)
and event a is released as output (i.e., appended to σs), and the buffer σc is
emptied (i.e., σc is set to ε);

• If σs · σc · a does not satisfy ϕ, but is a prefix of a word that satisfies ϕ (i.e.,
σs · σc · a ∈ pref(ϕ)), then the output remains unchanged and the new event
a is appended to the buffer σc;

• Otherwise (σs ·σc ·a does not satisfy ϕ and also is not a prefix of a word that
satisfies ϕ, i.e., σs · σc · a 6∈ pref(ϕ)), then both the output and the buffer
remain unchanged (i.e., the new event a is suppressed).

Proposition 1 (Soundness, Monotonicity, Transparency and Optimal-
ity). Given property ϕ ⊆ Σ∗, the enforcement function Eϕ as per Def. 2 is an
enforcer as per Def. 1.

vi S. Shankar et al.

Example 1 (Enforcement Function). Let us consider property ϕ defined by au-
tomaton Aϕ in Fig. 2. State q0 is the initial and accepting state. Let the input
word be acbabbcacab. Tab. 2 illustrates the behaviour of the enforcer when the
considered input word is processed incrementally event-by-event.

q0

start

q1

q2

q3

q4

a, b

c

a

b

c

a, c

b

a, b

c

a, b, c

Fig. 2: Property ϕ of Example 1

Input(σ) Buffer(σc) Output(σs)
1 a ε a
2 ac c a
3 acb cb a
4 acba cba a
5 acbab cbab a
6 acbabb cbabb a
7 acbabbc cbabb a
8 acbabbca cbabba a
9 acbabbcac cbabbac a
10 acbabbcaca cbabbaca a
11 acbabbcacab ε acbabbacab

Table 2: Incremental computation by
the enforcement function of Example 1

When the enforcer receives the first event a (where σc and σs are initially
both ε), ϕ is satisfied (σs · σc · a ∈ ϕ), i.e., the state reached (i.e., q0), by the
enforcer upon event a is an accepting state of Aϕ, so the event a is emitted, as
can be seen from the 1st row of Tab. 2. Upon receiving the second event c, the
ϕ is not satisfied (i.e., σs · σc · c 6∈ ϕ), but σs · σc · c is a prefix of a word that
satisfies ϕ (i.e., σs · σc · c ∈ pref(ϕ)), thus, the event c is added into the (empty)
buffer σc. The events in rows 3-6 of Tab. 2 are also appended to the contents of
σc, as σs · σc followed by the new input event does not satisfy ϕ, but is a prefix
of a word that satisfies ϕ. When event c is received (row 7), neither ϕ is satisfied
(i.e., σs · σc · c 6∈ ϕ) nor σs · σc · c is a prefix of a word that satisfies ϕ (i.e.,
σs · σc · c 6∈ pref(ϕ)) since, state reached (i.e., q4) upon event c is a dead state
of Aϕ, thus, event c is suppressed. The events in rows 8-10 of Tab. 2 are also
appended to the content of σc, as σs · σc followed by the new event consumed in
each of those steps does not satisfy ϕ, but is a prefix of a word that satisfies ϕ.
Then, ϕ is satisfied again (i.e., in row 11, σs · σc · b ∈ ϕ) meaning that the state
reached (i.e., q0) upon event b is an accepting state. Hence, the events in σc (i.e.,
cbabbaca) and the received event (i.e., b) are emitted by the enforcer (added to
σs), and buffer σc is emptied.

4 Bounded-Memory Runtime Enforcement
In this section, we present the bounded-memory enforcement framework for some
property ϕ ⊆ Σ∗ and buffer size k ∈ N. Recall that, the enforcer defined in Sect.
3 is equipped with an unbounded buffer to store some events. We now lift the
enforcement mechanism defined in Sect. 3 to the bounded-memory case; the
buffer capacity is specified as an additional parameter to the enforcer.

4.1 Preliminaries for Bounded-Memory Enforcement

A bounded-memory enforcer is denoted by Eϕ,k. Enforcer Eϕ,k for a given prop-
erty ϕ is equipped with a buffer of size k and is able to transform an input
word σ which is possibly incorrect w.r.t. ϕ into an output word that is cor-
rect w.r.t. ϕ. In addition, a bounded-memory enforcer also outputs status in-
formation indicating whether any event was discarded or not. Thus, enforcer

Bounded-Memory Runtime Enforcement vii

Eϕ,k : Σ∗ → Σ∗ × {>,⊥}, outputs a tuple consisting of output word (element
of Σ∗) and mode information (which is an element of {>,⊥}) permitting to
warn the user. For any input word σ ∈ Σ∗, we refer to the output word of the
enforcer from the tuple using Eϕ,kout (σ), and the information of the current mode

of the enforcer using Eϕ,kmode(σ). For any enforcer Eϕ,k, buff(Eϕ,k(σ)) is its buffer
content after reading σ.

Mode of the enforcer: The mode of the enforcer, Eϕ,kmode can be {>,⊥}, where >
represents nominal mode (none of the elements from the buffer were suppressed;
the output of the enforcer is a prefix of the input word), and ⊥ represents
degraded mode (some of the elements from the buffer were suppressed; the output
of the enforcer is a subword of the input word) respectively.

Remark 1. When the buffer is full and cannot accommodate new events, it has
to be cleaned (by discarding some events present in it) in order to store new
events. When any event from the buffer is discarded, the mode of the enforcer
changes from > to ⊥, and the enforcer remains in ⊥ mode from then onwards.

4.2 Bounded-Memory Runtime Enforcement: Problem Definition

We formalize the bounded-memory RE mechanism. Several constraints are re-
quired on how an enforcer transforms words. We consider that in order to correct
an input sequence, the enforcer has abilities similar to the one defined in Sect.
3 such as buffering and suppressing an event when there is no possible con-
tinuation that will allow satisfying ϕ. Thus, constraints such as soundness and
monotonicity are adapted from the unbounded setting.

In the bounded setting, since the internal buffer of the enforcer is finite,
compared to the unbounded setting we need to handle the additional situation
on how the enforcer can continue operating when its buffer is full. We introduce
an additional optimality constraint that defines how to optimally (minimally)
drop events present in the buffer to accommodate new events and to continue
operating. The notion of transparency also slightly changes; it takes into account
the mode of the enforcer indicating whether the buffer was full sometime and if
any events were dropped or not.

Definition 3 (Bounded Enforcer). A bounded enforcer for ϕ is a function,
Eϕ,k : Σ∗ → Σ∗ × {>,⊥}, satisfying the following constraints:

Soundness: ∀σ ∈ Σ∗ : Eϕ,kout (σ) 6= ε =⇒ Eϕ,kout (σ) ∈ ϕ (SndB)

Monotonicity: ∀σ, σ′ ∈ Σ∗ : σ 4 σ′ =⇒ Eϕ,kout (σ) 4 Eϕ,kout (σ′) (MoB)

Transparency:

∀σ ∈ Σ∗ : Eϕ,kmode(σ) = ⊥ ∨ σ 6∈ pref(ϕ) =⇒ Eϕ,kout (σ) / σ (Tr1B)

∀σ ∈ Σ∗ : Eϕ,kmode(σ) = > ∧ σ ∈ pref(ϕ) =⇒ Eϕ,kout (σ) 4 σ (Tr2B)

Optimal Suppression:

∀σ ∈ Σ∗,∀a ∈ Σ : Eϕ,kmode(σ) = > ∧ σ ∈ pref(ϕ) ∧ σ · a 6∈ pref(ϕ)

=⇒ ∀σcon ∈ Σ∗ : Eϕ,kout (σ · a · σcon) = Eϕ,kout (σ · σcon)
(OptsB)

viii S. Shankar et al.

Optimal Mode Change:

Eϕ,kmode(ε) = > ∧ ∀σ ∈ Σ∗,∀a ∈ Σ :

{Eϕ,kmode(σ) = > ∧ (|σ[|Eϕ,k
out (σ)|+1···]| < k) =⇒ Eϕ,kmode(σ · a) = >}

∧
{Eϕ,kmode(σ) = ⊥ ∨

(
(|σ[|Eϕ,k

out (σ)|+1···]| > k) ∨ (σ · a 6∈ pref(ϕ))
)

=⇒
Eϕ,kmode(σ · a) = ⊥}
∧
{Eϕ,kmode(σ) = > ∧ (|σ[|Eϕ,k

out (σ)|+1···]| = k) ∧ (σ · a ∈ ϕ) =⇒ Eϕ,kmode(σ · a) = >}
∧
{Eϕ,kmode(σ) = > ∧ (|σ[|Eϕ,k

out (σ)|+1···]| = k) ∧ (σ · a 6∈ ϕ) =⇒ Eϕ,kmode(σ · a) = ⊥}
(OptmB)

Soundness SndB and Monotonicity MoB constraints are the same as in the
unbounded case. Transparency is expressed as a conjunction of Tr1B and Tr2B.
Tr1B expresses that for an input word σ, if the mode is degraded (⊥), or if there
is no possible continuation of σ that can lead to the satisfaction of ϕ in the future
(i.e., σ is not a prefix of a word that belongs to ϕ), the output produced is a
subword of σ (i.e., obtained by suppressing some events from σ). Tr2B expresses
that for an input word σ, if the mode is nominal (>) and if there is at least one
possible continuation of σ that can lead to the satisfaction of the ϕ in the future
(i.e., σ is a prefix of a word that belongs to ϕ), the output produced is a prefix of σ
(i.e., no event from σ can be suppressed). Optimal suppression OptsB expresses
that for any word σ, if the mode is (>), and σ is a prefix of a word that belongs
to ϕ, when σ is extended with an event a ∈ Σ such that σ · a does not have
any extension that will satisfy ϕ, then event a should be suppressed. Optimal
mode change OptmB is to ensure that the mode should change to ⊥ only when
necessary, and when the mode changes to ⊥, it cannot revert back to >. For any
input σ if the mode is >, it indicates that none of the input events from σ have
been discarded (so the output is a prefix of the input and the remaining events
from σ are stored in the buffer). If the mode is ⊥, it indicates that some of the
events from the input have been suppressed. It is defined inductively considering
the mode reached when reading some given word σ and how the mode should
change when a new event a is received, checking the conditions such as whether
the input word belongs to ϕ (or the set of prefixes of words belonging to ϕ) or
not, and if the number of elements in the suffix of the input word that is not
released is less than (equal to/greater than) k.

4.3 Functional Definition

We define a bounded-memory enforcer as a function that incrementally builds
the output. This definition provides an abstract view of the transformation of
an input word performed by a bounded-memory enforcer for some property.

Definition 4 (Bounded Enforcement Function). A bounded enforcement
function is Eϕ,k : Σ∗ → Σ∗ × {>,⊥}, and is defined as:
Eϕ,k(σ) = (Π1(storeϕ,k(σ)), Π3(storeϕ,k(σ))), where:

storeϕ,k : Σ∗ → Σ∗ ×Σ∗ × {>,⊥} is defined as:

Bounded-Memory Runtime Enforcement ix

- storeϕ,k(ε) = (ε, ε,>)
- storeϕ,k(σ · a) =

(σs · σc · a, ε,mode) if σs · σc · a ∈ ϕ,
(σs, σc · a,mode) if σs · σc · a 6∈ ϕ ∧ σs · σc · a ∈ pref(ϕ) ∧ |σc · a| ≤ k,
(σs, cleanϕ,k(σs, σc · a),⊥) if σs · σc · a 6∈ ϕ ∧ σs · σc · a ∈ pref(ϕ) ∧ |σc · a| > k,
(σs, σc,⊥) otherwise
with:

• (σs, σc,mode) = storeϕ,k(σ)

• Eϕ,kout (σ) = Π1(Eϕ,k(σ)), and Eϕ,kmode = Π3(Eϕ,k(σ))

• cleanϕ,k : Σ∗ ×Σ+ → Σ+

cleanϕ,k(σs, σca) = σ′c ∈ maxC(candidatesϕ,k(σs, σca)) s.t.

∀σ′′c ∈ maxC(candidatesϕ,k(σs, σca)),
∃i ∈ [1, |σca|] : σca[i] 6= σ′′c[i]

=⇒ ∃j ∈ [1, |σca|] : σca[j] 6= σ′c[j] ∧ j < i.

• maxC : 2Σ
+ → 2Σ

+

maxC(W)= {y ∈W | ∀z ∈W : |z| ≤ |y|}
• candidatesϕ,k : Σ∗ ×Σ+ → 2Σ

+

candidatesϕ,k(σ1, σ2) = {σ2[1...i−1]
· σ2[j+1...k]

| 1 ≤ i ≤ j < k
∧σ1 · σ2 ∼ϕ σ1 · σ2[1...i−1]

· σ2[j+1...k]
}

The bounded enforcement function Eϕ,k takes a word over Σ as input, and
produces a word over Σ and mode (an element from the set {>,⊥}) as output.
Function storeϕ,k takes a word over Σ as input and computes a pair of words
over Σ and mode as output. The first element of the output of function storeϕ,k

corresponds to the output of the enforcement function; it is a prefix of (a subword
of) the input that satisfies ϕ; and the second element is a suffix of (a subword
of) the input that the enforcer cannot output yet. It corresponds to the buffer
of the enforcer. The third element indicates the mode of the enforcer.

Function storeϕ,k is defined inductively: initially for ε, the output and buffer
content are both ε and mode is initially>; if σ is read, storeϕ,k(σ) = (σs, σc,mode),
and another new event a ∈ Σ is observed, then there are four possible cases based
on whether σs · σc · a satisfies ϕ or not, etc.

• If σs ·σc ·a satisfies ϕ then the concatenation of the buffer (σc) and the event
a is released as output (i.e, appended to σs), and the buffer σc is emptied
(i.e., σc is set to ε);

• If σs · σc · a does not satisfy ϕ, but is a prefix of a word that satisfies ϕ (i.e.,
σs ·σc ·a ∈ pref(ϕ)), and the buffer has capacity to accommodate the received
event a (i.e., |σc · a| ≤ k) then the output remains unchanged and the new
event a is appended to buffer σc;

• If σs · σc · a does not satisfy ϕ, but is a prefix of a word that satisfies ϕ
(i.e., σs · σc · a ∈ pref(ϕ)), and the buffer is full (i.e., |σc · a| > k) then the
output remains unchanged and function cleanϕ,k is called to clean the buffer
(received event is also considered for cleaning) in order to accommodate the
event. The mode changes to ⊥;

x S. Shankar et al.

• If σs · σc · a does not satisfy ϕ nor is a prefix of a word that satisfies ϕ (i.e.,
σs · σc · a 6∈ pref(ϕ)), then both the output and the buffer remain unchanged
(i.e., the new event a is suppressed). The mode changes to ⊥.

Function cleanϕ,k takes two words over Σ as input; one that corresponds
to word released as output (σs) and another σca which is the current buffer
content (σc) followed by the received event (a). It produces a word σ′c as output
which should be a subword of σc · a (obtained by minimally removing events
from σca such that equivalence of σs · σ′c is preserved w.r.t σs · σca). The output
word σ′c should be of maximal length among all the subwords of σc · a that
preserve equivalence and the events discarded from σc · a are the most obsolete
(earliest received events are considered for deletion in this approach; this is an
implementation choice but one could choose another strategy) ones.

For this purpose, first function candidatesϕ,k provides the (non-empty) set
of all possible candidate subwords of σc · a preserving equivalence, then function
maxC selects all the longest subwords (so that least number of events are dis-
carded from σc ·a and the output is as close as possible to the input). Then, one
subword is selected uniquely (the subword discarding the most obsolete event
from σc · a). This is done by comparing the indexes of σc · a with the indexes
of received subwords from function maxC. The contents of the buffer is then
substituted by the output of function cleanϕ,k.

Example 2. To illustrate the enforcement function in Def. 4, let us consider the
same property ϕ and the input sequence acbabbcacab considered in Example 1 .
Suppose the max size of the buffer is 7.

Input(σ) Buffer(σc) Output(σs)
1 a ε a
2 ac c a
3 acb cb a
4 acba cba a
5 acbab cbab a
6 acbabb cbabb a
7 acbabbc cbabb a
8 acbabbca cbabba a
9 acbabbcac cbabbac a
10 acbabbcaca cbabba�Aca a
11 acbabbcacab ε acbabbaab

Table 3: Incremental computa-
tion by the bounded enforcement
function (for ϕ in Fig. 2).

The behaviour of the enforcement func-
tion in Def. 4 is the same as the enforcement
function in Def. 2 in rows 1-9 of Tab. 3 as
the buffer is not full. But, in the 10th row,
when event a is received, ϕ is not satisfied
(i.e., σs · σc · a 6∈ ϕ), but σs · σc · a is a prefix
of a word that satisfies ϕ (i.e., σs · σc · a ∈
pref(ϕ)); however, the buffer is already full
(i.e., |σc · a| > k). So, function cleanϕ,k is
invoked to accommodate the received event.
The possible candidate subwords provided by
function candidatesϕ,k and the set of longest
subwords picked by function maxC are:

candidatesϕ,7 (a, cbabbac · a) = {cbbaca, cbaaca, cbabbac, cbabbaa, caca, cbabba}
maxC{cbbaca, cbaaca, cbabbac, cbabbaa, caca, cbabba}={cbabbac, cbabbaa}

Function cleanϕ,k chooses cbabbaa which is formed after removing event c
from σc · a, since event c is the event engaged in minimal cycle (the longest
subword of σc · a) and is the most obsolete (cycle) event of σc · a. Thus, the
content of σc is replaced by cbabbaa in the 10th row.
Remark 2. If n ∈ N is the number of states in Aϕ, and the buffer size k ≥ n,

then it is ensured that the set computed by the function candidatesϕ,k in Def. 4
will be non-empty. This is because the length of a path without cycles between
2 states cannot be greater than the number of states.

Bounded-Memory Runtime Enforcement xi

Proposition 2 (SndB, MoB, Tr1B, Tr2B, OptsB and OptmB.). Let n ∈
N be the number of states in Aϕ. If k ≥ n, Eϕ,k as per Def. 4 is a bounded
enforcer for ϕ as per Def. 3.

The following proposition states that when k is considered to be∞, for any word
σ, the output produced by the bounded enforcer for σ is equal to the output
produced by the ideal enforcer (as per Def. 2).

Proposition 3 (Case of an infinite/unbounded buffer).
∀σ ∈ Σ∗ : Eϕ,∞(σ) = Eϕ(σ).

Definition 5 (∞-compatible). Enforcer Eϕ,k is compatible with Eϕ,∞, noted

∞-compatible(Eϕ,k), if ∀σ ∈ Σ∗ : Eϕ,∞(σ)·buff(Eϕ,∞(σ)) ∼ϕ Eϕ,kout (σ)·buff(Eϕ,k(σ)).

A bounded enforcer Eϕ,k is compatible with an ideal unbounded enforcer Eϕ,∞

for ϕ, if for any input word σ, the concatenation of the output and the buffer
content of the unbounded enforcer Eϕ,∞ is ϕ-equivalent to the concatenation of
the output and the buffer content of the bounded enforcer Eϕ,k.

Proposition 4 (Optimality of enforcement functions). Consider any bounded
enforcer Fϕ,k (Def. 3). We have: ∀σ ∈ Σ∗,∀a ∈ Σ :

(Eϕ,kout (σ) · buff(Eϕ,k(σ)) = Fϕ,kout (σ) · buff(Fϕ,k(σ)))∧
(|Eϕ,kout (σ · a) · buff(Eϕ,k(σ · a))| < |Fϕ,kout (σ · a) · buff(Fϕ,k(σ · a))|)

=⇒ ¬(∞-compatible(Fϕ,k))

Proposition 4 expresses that an enforcer Eϕ,k as per Def. 4 is optimal; if for
any other enforcer Fϕ,k, the length of the concatenation of its output and the
buffer content is greater than the length of the concatenation of output and
the buffer content of Eϕ,k for some input, then the output produced by Fϕ,k

is not ∞-compatible. Proposition 4 means that there does not exist an enforcer
that can clean the buffer in a better way (by discarding less events and being
∞-compatible with the ideal enforcer).

4.4 Enforcement Algorithm

In Sect. 4.3, we provided an abstract view of our bounded-memory enforcement
monitoring mechanism, defining it as a function that transforms words. In this
section, we provide the overall enforcement algorithm.

Let automaton Aϕ = (Qϕ, q0, Σ, δϕ, Fϕ) define ϕ. We recall that ϕ models
the property that we want to enforce. We devise an online algorithm, which takes
Aϕ, and the buffer size k ∈ N as input parameters.

Enforcement algorithm: In the Algorithm 1, sequence σc is the same as in Def. 4.
State q holds the state of Aϕ reached by taking events that have been emitted by
the enforcer, which correspond to events in σs in Def. 4. Function await event

is used to wait for a new input event. Function release takes a sequence of
events and releases it as output of the enforcer. Function suppress removes an
event. Function clean deletes events from the buffer in case the buffer is full for
an incoming event.

xii S. Shankar et al.

1 Algorithm Enforcer(Aϕ, k)

1: σc ← ε
2: q ← q0
3: while true do
4: a← await event()
5: if δϕ(q, σc · a) ∈ Fϕ then
6: q ← δϕ(q, σc · a)
7: release(σc · a)
8: σc ← ε
9: else

10: if L(Aϕ, δϕ(q, σc · a))=∅
11: then
12: suppress(a)
13: else
14: if |σc · a| ≤ k then
15: σc ← σc · a
16: else
17: σc ← clean(σc · a,Aϕ, k, q)

Function clean(σca,Aϕ, k, q)
1: function clean(σca,Aϕ, k, q)
2: for i in 1 . . . k+1 do
3: j=1
4: while (i+ j ≤ k + 2) do
5: if j = 1 then
6: if δϕ(q, σca[j...j+i−1]

) = q then
7: return σca[j+i...k+1]

8: else
9: if δϕ(q, σca[1...j−1]

· σca[j...j+i−1]
) =

10: δϕ(q, σca[1...j−1]
) then

11: return σca[1...j−1]
· σca[j+i...k+1]

12: j++

The algorithm proceeds as follows. Buffer σc is initialized to ε, and q is
initialized with the initial state of Aϕ (i.e., q0). It then enters into an infinite
loop waiting for an input event. Upon receiving an event a, if the state reached
from q upon σc ·a is an accepting state (i.e., state in Fϕ), then state q is updated
(q ← δϕ(q, σc ·a)) , all the events of σc ·a are released as output, and σc is emptied
(set to ε). However, if δϕ(q, σc · a) is a dead state (L(Aϕ, δϕ(q, σc · a)) = ∅), then
the received event is suppressed and the enforcer continues with the next event,
otherwise it is buffered into σc (i.e., σc ← σc · a), provided the buffer is not full.
If the buffer is full, then function clean is invoked with σc · a.

Function clean enters a loop where in every iteration i (1 ≤ i ≤ k + 1), it
checks if Aϕ makes a cycle upon substrings of length i at every index j (j =
1, ..) of σca (representing σc · a). If a substring of length i from index j of σca
can be read on a cycle, then the subword formed by removing that substring
from σca is returned by function clean . For instance, in 10th row of Tab.
3, in Example 2, since the state reached (i.e., s2) upon event a is not in Fϕ,
L(Aϕ, δϕ(s1, cbabbaca)) 6= ∅, and the buffer is full, thus, function clean is invoked
with cbabbaca. In iteration i = 1, for every index j (j = 1, ..) of σca, the substrings
of length 1 are computed, which are: {[c], [b], [a], [b], [b], [a], [c], [a]}. Function
clean checks if Aϕ makes a cycle upon these substrings. Since by taking event
c at index j = 7 of σca, Aϕ makes a cycle, thus the substring c is removed from
σca and cbabbaa (subword of σc ·a) is returned to the enforcer by function clean.
Following it, the enforcer continues with the next event.
Remark 3. Note that function clean in Algorithm 1 produces the same output
as function cleanϕ,k in Def. 4. Instead of providing σs (which corresponds to the
output of the enforcement function in Def. 4) as input, we here provide the state q
reached in Aϕ upon the sequence released as output. Also the time complexity of

function cleanϕ,k in Def. 4 isO(k2), however, in the implementation, for efficiency
reasons, function clean in Algorithm 1 directly computes the maximal subword
of σca by discarding the most obsolete elements that correspond to a (minimal)

Bounded-Memory Runtime Enforcement xiii

cycle in Aϕ, which is chosen by function cleanϕ,k in Def. 4 from all the maximal
candidate subwords.

5 Implementation and Evaluation
We implemented algorithms of Sect. 4.4 and work out some examples mainly i)
to measure the performance 6 of the bounded-memory enforcer; how its perfor-
mance varies compared to the ideal enforcer (mainly the additional overhead that
will be induced by clean), by varying the complexity of the properties, input
and buffer size and ii) to see the practicability and usefulness of the bounded-
memory enforcer using example application scenarios. The bounded-memory
enforcer and the ideal enforcer are implemented in 140 and 88 LoC respectively
in Python. The implementation along with a brief description about the appli-
cation scenarios, properties and the performance analysis using them is provided
at https://github.com/saumyashankarsinha/BMRE.git.

5.1 Performance analysis

We take an example property P1 which expresses, “The word should start with
one or more elements from set C={a, b, c} and should end with one or more
elements from set D={1, 2}”. P1 is defined by the automaton AP1 in Fig. 3,
where state q0 is the initial state and q2 is the accepting state. This example has
been chosen because it allows the automaton’s size to be readily scaled up while
maintaining its structure.

For measuring the performance, the size of buffer (k = 4) and number of
states in AP1

(=4) were fixed and the length of input sequence was varied from 10
to 10,000 with an increment of 1000 each time. The input sequences were chosen
in such a way that the P1 is satisfied by the latter events, so that the events are
buffered and function clean is invoked everytime. It permits to calculate the
worst time taken by the bounded-memory enforcer. The time taken by both the
ideal enforcer (EP1) and the bounded-memory enforcer (EP1,4) was measured
(all in seconds) and was averaged over 100 iterations. summarises the result
where, Input indicates the length of the input word, Time(s) indicates the time
taken by EP1 to output the word, No. and T1(s) under clean indicates number
of times function clean is called and the total time taken by it respectively (i.e.,
time taken to check if the buffer if full or not, time taken by function clean to
delete events from the buffer and time taken to update the buffer with the word
returned by function clean), and T2(s) indicates the time taken by EP1,4.
Considering k = 4, for AP1

, we have the following observations from Tab. 4:

• The time taken by both unbounded and bounded enforcers increases linearly
with the trace length (by considering traces such that the number of times
function clean is invoked increases linearly).

• When comparing the time taken by the bounded and unbounded enforcer,
if we subtract the additional time (T1) taken by the bounded enforcer to
clean the buffer from the total time (T2) taken by it, then the resultant
time (T2-T1) is similar to the time taken by the unbounded enforcer. Thus,

6Experiments were conducted on an Intel Core i7-9700K CPU at 3.60GHz × 8,
with 32 GB RAM, and running on Ubuntu 18.04.5 LTS.

https://github.com/saumyashankarsinha/BMRE.git

xiv S. Shankar et al.

q0

start

q1 q2

q3

a, b, c

1, 2

a, b, c

1, 2

1, 2

a, b, c

a, b, c, 1, 2

Fig. 3: AP1

Input
EP1 EP1,4

Time(s)
clean

No. T1(s) T2(s) T2-T1(s)

10 0.00001 4 0.00002 0.00003 0.00001

1000 0.00094 994 0.00492 0.00586 0.00094

2000 0.00185 1994 0.00952 0.01136 0.00184

3000 0.00276 2994 0.01426 0.01701 0.00275

4000 0.00364 3994 0.01877 0.02239 0.00362

5000 0.00457 4994 0.02350 0.02806 0.00456

6000 0.00548 5994 0.02814 0.03360 0.00546

7000 0.00642 6994 0.03314 0.03956 0.00642

8000 0.00736 7994 0.03784 0.04518 0.00734

9000 0.00827 8994 0.04247 0.05068 0.00821

10000 0.00922 9994 0.04754 0.05679 0.00924

Table 4: Effect on time taken by enforcers
by varying the length of input sequences.

when cleaning the buffer is not necessary (e.g, for some input traces/when
the buffer size is large), the performance of the bounded enforcer is similar
to the unbounded enforcer.
• The average time taken for cleaning (per call) is 0.0048 ms is low/reasonable.

Varying the complexity of the property. We also considered properties with simi-
lar structures as P1 but with an increasing number of states, and evaluated them
with input sequences of varying sizes. It was observed that the time taken by
both the enforcers increases linearly with the number of states (as the number
of transitions increase).

Varying the buffer size. On increasing the buffer size, the average time taken
by function clean increases linearly, however the time taken by Eϕ,k decreases
linearly, since the number of times function clean is called decreases.
These are further discussed at varying complexity of property and buffer sizes.

Remark 4. We choose to clean the buffer when it is full. Indeed we consider that
the computing time of the cleaning function is lower than the time between two
received events. One may clean the buffer when it is partially full. This can be
done with a simple modification in the framework by considering another addi-
tional parameter as input indicating when function clean should be triggered
(when the buffer is 80% full, 90% full etc).

Remark 5 (Enforcing multiple properties). Our framework is able to consider
multiple properties. It consists of computing their intersection and then synthe-
size the corresponding enforcer.

6 Potential Application Scenarios

We discuss the usefulness and applicability of the bounded-memory enforcer in
real-world context. We formulate some example properties in different scenarios
to express the desired behaviour in domains like autonomous vehicle, operating
system, databases, etc. The formulated properties are such that it deals with the

https://github.com/saumyashankarsinha/BMRE/tree/main/ExampleScenario/varying_complexity_of_property

Bounded-Memory Runtime Enforcement xv

suppression of the idempotent events when required, making them suitable to
be enforced by a bounded-memory runtime enforcer. We also analyse the per-
formance of the bounded-memory enforcer against these real-world properties.

Scenario 1. Autonomous Vehicle (AV): An AV or a self-driving car is a
vehicle that is capable of sensing its environment and moving safely with little
or no human intervention. They rely on sensors, actuators, complex algorithms,
machine learning systems, and powerful processors to execute software. Let us
consider two example properties in AVs to express some desired behaviour.

(a) Logging in AV: “When the path planning steering commands, like {Move
Left, Move Right, Move Forward, Stop} are logged for better testing and val-
idation solutions, each time it is issued, to a remote location (due to memory
constraints in AV), then logging of these commands should be done, when the
vehicle reaches a Stop state, on the remote logging application.”

(b) Switching to manual driving mode in autonomous vehicle: “Upon pressing
of the manual mode button, the switching of manual driving mode from au-
tonomous driving mode will be done if the following three conditions are
satisfied: checking whether a driver’s hand is holding a steering wheel; check-
ing whether the driver’s foot is placed on a brake pedal; checking whether the
driver’s gaze is facing forward.” It is here assumed that once an event is
received, meaning that the condition respective to that event is satisfied, it
remains satisfied.

Scenario 2. Concurrency: In the context of concurrent systems, each hard-
ware/software component is designed to obey or to meet certain consistency
rules. Concurrent use of shared resources can be a source of indeterminacy lead-
ing to issues such as deadlocks, and resource starvation. Let us consider two
example properties related to concurrency.

(a) Lock: “For database items {A, B}, any transaction accessing both A and B
must access A before accessing B.”

(b) Critical Section Problem: “If a process wishes to enter the critical section, it
must first execute the try section and wait until it acquires access to the crit-
ical section. After the process has executed its critical section and is finished
with the shared resources, it can release them for other processes’ use.”

Remark 6. We modeled all the policies for each of the scenarios as DFA, obtained
the respective bounded-memory enforcers and have measured their performance.
More details, including description about the scenarios, policies and their formu-
lation as DFA, and the performance analysis using them is provided along with
the implementation in our repository at: Potential Application Scenarios.

7 Related Work
RE has been pioneered by Schneider et al. in [21]. In this framework the enforce-
ment mechanism enforces properties described as Büchi automata and synthe-
sizes a security automaton (SA) which is executed in parallel with the system
under scrutiny and terminates whenever the property is going to be violated.
Later, Bloem et al. propose in [3] an approach to synthesize an enforcement mech-
anism (named shield) using a 2-player game approach. A shield is k-stabilizing

https://github.com/saumyashankarsinha/BMRE/tree/main/ExampleScenario

xvi S. Shankar et al.

i.e., whenever a property violation is unavoidable, it allows deviating from the
property for k consecutive steps. A similar approach is proposed by Wu et al. in
[23] adding the ability to handle burst errors and Bielova et al. in [2] who specified
how bad traces are fixed so that the system exhibits a reasonable behaviour. All
these approaches deal only with safety properties and cannot memorize actions.

In [12], Ligatti et al. extend the work of Schneider et al. by noticing that SA
(only) act as a sequence recognizer, thus they propose the model of edit-automata
(EA): this models allows inserting or suppressing events during the RE and to
use a memory in order to store the suffix of an invalid execution until it becomes
valid. EA permits enforcing a larger set of properties, namely the renewal prop-
erties. Later, Falcone et al. generalise in [9] EA with the generalised enforcement
monitors. Their model enforces response properties (from the Safety-Progress
classification [5]), which are similar to infinite renewal properties, but separates
explicitly the specification of the property to enforce from the enforcer. Many
extensions of these approaches exist, e.g. in a timed context [7,14,13,16] or con-
sidering uncontrollable events [18,17,19].

The above models do not consider memory constraints. Few attempts with
memory limitations of the enforcer have been proposed. Fong proposes in [10] the
model of Shallow History Automata (SHA) as SA that do not keep track of the
order of event occurring, and generalizes it as α-SA, a variant of SA endowed
with a morphism abstracting the current input sequence. Then he defines a
complete lattice of security policy classes. Talhi et al. [22] extend SA and EA to
define their bounded-history versions, that is the versions of the mechanism that
can remember up to a certain number of events in the trace. Beauquier et al. [1]
consider finite set of states as a memory limitation on EAs and show that finite
EAs are strictly less expressive than EAs and characterize the conditions of the
enforceability of a property. These approaches, considering a limited memory,
mainly focus on characterizing the set of enforceable properties. To the best of
our knowledge, our framework is the first to define how to synthesize an enforecr
that provides a solution when the memory of the enforcer is full at runtime.

8 Conclusion and Future Work

This paper presents a complete RE framework for regular properties with a
bounded memory. In this approach, the enforecr has the ability to delay (buffer)
or suppress events, and the maximal size of the memory is known. We introduce
the notion of nominal and degraded modes, the last one corresponding to the
situation where the maximal size of the memory has been reached. We redefine
the notion of transparency and propose a way to reduce optimally the content
of the memory in order to maintain a behaviour satisfying the property. We
provide a functional definition of the enforcer and an algorithmic version. We
have implemented the framework in a prototype and evaluated its performance
using multiple example properties.

Future works include enriching the framework in order to consider the possi-
bility to recover a nominal behaviour when the degraded one has been reached,
and to extend the proposed approach in a timed context.

Bounded-Memory Runtime Enforcement xvii

References

1. Beauquier, D., Cohen, J., Lanotte, R.: Security policies enforcement us-
ing finite and pushdown edit automata. Int. J. Inf. Sec. 12(4), 319–
336 (2013). https://doi.org/10.1007/s10207-013-0195-8, http://dx.doi.org/10.

1007/s10207-013-0195-8

2. Bielova, N., Massacci, F.: Predictability of enforcement. In: Proceedings of the
Third International Conference on Engineering Secure Software and Systems. p.
73–86. ESSoS’11, Springer-Verlag, Berlin, Heidelberg (2011)

3. Bloem, R., Könighofer, B., Könighofer, R., Wang, C.: Shield synthesis: Runtime
enforcement for reactive systems. In: Baier, C., Tinelli, C. (eds.) Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 533–548. Springer Berlin
Heidelberg, Berlin, Heidelberg (2015)

4. Dolzhenko, E., Ligatti, J., Reddy, S.: Modeling runtime enforcement with
mandatory results automata. Int. J. Inf. Secur. 14(1), 47–60 (Feb 2015).
https://doi.org/10.1007/s10207-014-0239-8, https://doi.org/10.1007/

s10207-014-0239-8

5. Falcone, Y., Fernandez, J.C., Mounier, L.: Runtime verification of safety-progress
properties. In: Runtime Verification. pp. 40–59. Springer (2009)

6. Falcone, Y., Fernandez, J., Mounier, L.: What can you verify and en-
force at runtime? Int. J. Softw. Tools Technol. Transf. 14(3), 349–382
(2012). https://doi.org/10.1007/s10009-011-0196-8, https://doi.org/10.1007/

s10009-011-0196-8

7. Falcone, Y., Jéron, T., Marchand, H., Pinisetty, S.: Runtime enforcement of regular
timed properties by suppressing and delaying events. Systems & Control Letters
123, 2–41 (2016). https://doi.org/10.1016/j.scico.2016.02.008

8. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and
reaction. In: Lectures on Runtime Verification - Introductory and Advanced
Topics, pp. 103–134 (2018). https://doi.org/10.1007/978-3-319-75632-5 4, https:
//doi.org/10.1007/978-3-319-75632-5_4

9. Falcone, Y., Mounier, L., Fernandez, J., Richier, J.: Runtime enforcement mon-
itors: composition, synthesis, and enforcement abilities. Formal Methods Syst.
Des. 38(3), 223–262 (2011). https://doi.org/10.1007/s10703-011-0114-4, https:

//doi.org/10.1007/s10703-011-0114-4

10. Fong, P.W.L.: Access control by tracking shallow execution history. In: IEEE
Symposium on Security and Privacy, 2004. Proceedings. 2004. pp. 43–55 (2004).
https://doi.org/10.1109/SECPRI.2004.1301314

11. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mech-
anisms for run-time security policies. Int. J. Inf. Sec. 4(1-2), 2–16
(2005). https://doi.org/10.1007/s10207-004-0046-8, https://doi.org/10.1007/

s10207-004-0046-8

12. Ligatti, J., Bauer, L., Walker, D.: Run-time enforcement of non-
safety policies. ACM Trans. Inf. Syst. Secur. 12(3) (Jan 2009).
https://doi.org/10.1145/1455526.1455532, https://doi.org/10.1145/1455526.

1455532

13. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo, O.:
Runtime enforcement of timed properties revisited. Formal Methods in System
Design 45(3), 381–422 (2014). https://doi.org/10.1007/s10703-014-0215-y

14. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A., Nguena-Timo,
O.L.: Runtime enforcement of timed properties. In: Qadeer, S., Tasiran, S. (eds.)
Runtime Verification, Third International Conference, RV 2012, Istanbul, Turkey,

https://doi.org/10.1007/s10207-013-0195-8
http://dx.doi.org/10.1007/s10207-013-0195-8
http://dx.doi.org/10.1007/s10207-013-0195-8
https://doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1007/s10009-011-0196-8
https://doi.org/10.1016/j.scico.2016.02.008
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1007/s10703-011-0114-4
https://doi.org/10.1109/SECPRI.2004.1301314
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1007/s10207-004-0046-8
https://doi.org/10.1145/1455526.1455532
https://doi.org/10.1145/1455526.1455532
https://doi.org/10.1145/1455526.1455532
https://doi.org/10.1007/s10703-014-0215-y

xviii S. Shankar et al.

September 25-28, 2012, Revised Selected Papers. Lecture Notes in Computer Sci-
ence, vol. 7687, pp. 229–244. Springer (2012). https://doi.org/10.1007/978-3-642-
35632-2 23

15. Pinisetty, S., Preoteasa, V., Tripakis, S., Jéron, T., Falcone, Y., Marchand,
H.: Predictive runtime enforcement. Formal Methods Syst. Des. 51(1), 154–199
(2017). https://doi.org/10.1007/s10703-017-0271-1, https://doi.org/10.1007/

s10703-017-0271-1

16. Pinisetty, S., Roop, P.S., Smyth, S., Tripakis, S., Hanxleden, R.v.: Runtime enforce-
ment of reactive systems using synchronous enforcers. In: Proceedings of the 24th
ACM SIGSOFT International SPIN Symposium on Model Checking of Software.
pp. 80–89 (2017)

17. Renard, M., Falcone, Y., Rollet, A., Jéron, T., Marchand, H.: Optimal enforce-
ment of (timed) properties with uncontrollable events. Mathematical Structures in
Computer Science pp. 1–46 (2017). https://doi.org/10.1017/S0960129517000123

18. Renard, M., Falcone, Y., Rollet, A., Pinisetty, S., Jéron, T., Marchand, H.: Enforce-
ment of (timed) properties with uncontrollable events. In: Theoretical Aspects of
Computing - ICTAC 2015 - 12th International Colloquium Cali, Colombia, October
29-31, 2015, Proceedings. pp. 542–560 (2015). https://doi.org/10.1007/978-3-319-
25150-9 31

19. Renard, M., Rollet, A., Falcone, Y.: Runtime enforcement of timed properties using
games. Formal Aspects of Computing 32(2), 315–360 (2020)

20. Roc su, G.: On safety properties and their monitoring. Scientific Annals of Com-
puter Science 22(2), 327–365 (2012). https://doi.org/10.7561/SACS.2012.2.327

21. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (Feb 2000). https://doi.org/10.1145/353323.353382

22. Talhi, C., Tawbi, N., Debbabi, M.: Execution monitoring enforcement un-
der memory-limitation constraints. Information and Computation 206(2), 158–
184 (2008). https://doi.org/https://doi.org/10.1016/j.ic.2007.07.009, https://

www.sciencedirect.com/science/article/pii/S0890540107001320, joint Work-
shop on Foundations of Computer Security and Automated Reasoning for Security
Protocol Analysis (FCS-ARSPA ’06)

23. Wu, M., Zeng, H., Wang, C.: Synthesizing runtime enforcer of safety properties
under burst error. In: NASA Formal Methods - 8th International Symposium,
NFM 2016, Minneapolis, MN, USA, June 7-9, 2016, Proceedings. pp. 65–81 (2016).
https://doi.org/10.1007/978-3-319-40648-0 6

https://doi.org/10.1007/978-3-642-35632-2_23
https://doi.org/10.1007/978-3-642-35632-2_23
https://doi.org/10.1007/s10703-017-0271-1
https://doi.org/10.1007/s10703-017-0271-1
https://doi.org/10.1007/s10703-017-0271-1
https://doi.org/10.1017/S0960129517000123
https://doi.org/10.1007/978-3-319-25150-9_31
https://doi.org/10.1007/978-3-319-25150-9_31
https://doi.org/10.7561/SACS.2012.2.327
https://doi.org/10.1145/353323.353382
https://doi.org/https://doi.org/10.1016/j.ic.2007.07.009
https://www.sciencedirect.com/science/article/pii/S0890540107001320
https://www.sciencedirect.com/science/article/pii/S0890540107001320
https://doi.org/10.1007/978-3-319-40648-0_6

	Bounded-Memory Runtime Enforcement

