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Abstract. This work concerns the numerical modeling of the vibrations of geometrically nonlin-
ear structures coupled with a fluid flow. Firstly, a reduced-order model (ROM) for the geometri-
cally nonlinear structure is proposed. Then, the aforementioned ROM is used to replace a Finite
Element solver (FE) in the frame of a fluid-structure partitioned coupling on a two-dimensional
example involving vortex induced vibrations.

1 Introduction

The design of future aircraft engines with fans or propellers of large dimensions leads to
flexible structures. The geometric nonlinearities due to the large amplitudes of displacements
significantly alter the level of vibrations and a nonlinear model of the structure is therefore
necessary to characterize aeroelastic phenomena such as flutter and forced response. A common
approach to carry out aeroelastic simulations is to couple two separate solvers for the fluid and
for the structure. The associated difficulties are the excessive computational time for industrial
applications and the cumbersomeness of the coupling in terms of transfer of information from
one solver to the other one. An efficient approach to overcome those problems is to couple a
nonlinear fluid solver with a reduced-order model (ROM) for the structural solver, the latter
being independent from the full order Finite Element Model. In our case we consider only geo-
metric nonlinearities due to large displacements and small strain hypotheses. The ROM is built
by projection on a reduced basis and the internal geometric nonlinear forces are approximated
as a third order polynomial of the generalized coordinates whose coefficients are identified using
the Implicit Condensation and Expansion (ICE) [1]. Nevertheless, for cantilever structures, this
method has limited efficiency to capture the dynamics of the membrane stretching since the
membrane displacement is treated as an auxiliary variable which may be post-processed with
the ICE, and does not contribute to the dynamics. Our idea is to identify a relevant set of dual
modes [5] during the construction of the model and to introduce it in the reduction basis in
order to compute the membrane displacement instead of rebuilding it in postprocessing like the
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Expansion step of the ICE method does. Such a ROM is coupled with the fluid solver elsA [3]
to compute the dynamical response of a nonlinear Euler-Bernoulli beam model, placed in the
wake of a fixed cylinder and subject to the unsteady forcing of a von Kármán vortex street.

2 Projection based structural reduced-order model

The structural dynamics behavior is modeled by a classical Finite Element approach, whose
degrees of freedom in displacement, written u, verify the dynamics equation:

Mü+Cu̇+ fint(u) = fa(u, u̇)

where M and C are respectively the mass matrix and the damping matrices, while fint cor-
responds to the internal forces and fa are the aerodynamic follower forces associated to the
aeroelastic problem.

One way to build a reduced order model is to project the equations of the dynamics on a
well-chosen basis of reduced dimension V. The displacements are approximated by u ≈ Vq
where q are called the generalized coordinates. In the nonlinear framework, the internal forces
fint(u) can be decomposed as the sum of a linear component Ku and a geometric nonlinear
component fnl(u), leading, after projection, to the following equation:

VTMVq̈+VTCVq̇+VTKVq+VTfnl(Vq) = VTfa (1)

The model is reduced because the matrix V contains only a few vectors and the projected
matrices have small dimensions compared to the initial problem. In the case of a coupled aeroe-
lastic problem, the aerodynamic forces fa are evaluated with the fluid solver using a partitioned
approach. In section 3 tests are carried out with a local arbitrary load not depending on the
velocity, while aerodynamic forces are used in section 4.

2.1 Choice of the reduction basis

The linear modes of the structure Φ = {Φ1, · · · ,Φn} are solution of the eigenvalue equation:(
K− ω2

iM
)
Φi = 0

In the frame of linear problems, the choice of the reduction basis with the first linear modes,
whose respective frequencies are included in the studied interval, is efficient to represent the
dynamical behavior. On the contrary, in nonlinear cases, a coupling between some low frequency
modes and high frequency modes may appear. Therefore, the choice for the reduction basis of
the first linear modes is no longer efficient and the reduction basis has to be enriched in order
to take into account the coupling between the modes. If the shape of the external forces to
which the structure is subjected is known, static modes (nonlinear static solutions) can be
interesting. The addition of static modes to the reduction basis brings information on the
nonlinear behavior of the structure. Similarly, if high-fidelity nonlinear dynamic calculations
have already been carried out, POD modes (Proper Orthogonal Decomposition), obtained by
SVD (Singular Value Decomposition) from samples of the high-fidelity computation can be
added to the reduction basis. However static modes and POD modes are very dependent on the
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loading case and are therefore not adapted to cases of various loads such as those encountered in
aerodynamics. Additionally, POD modes require a database of high fidelity nonlinear solutions,
whose obtainment may require significant resources to perform expensive calculations. To obtain
an independent nonlinear reduced-order model it is more interesting to add to the reduction basis
modes containing information on the coupling between several linear modes independently from
the external loading. One idea is to add modal derivatives in the reduction basis, that can be
computed in several ways, with or without taking the inertia into account [8]. Their drawback
is their plurality. Indeed, the number of modal derivatives drastically increases with the number
of linear modes in the basis, and the more relevant modal derivatives are not known a priori.
Another way to enrich the reduction basis is to use dual modes [5], computed from nonlinear
static solutions obtained by imposing external loads with the shape of the first linear modes.
The information contained in those nonlinear solutions, but not contained in the reduction basis
(made of the first linear modes), is extracted. Then, a singular value decomposition is performed
on the missing information. Finally, among the SVD solutions, the modes associated to high
singular values and the modes leading to a maximal linearized strain energy are the dual modes
added to the reduction basis.

2.2 Approximation of the projected nonlinear forces

During a partitioned fluid-structure coupling, a significant advantage of a non-intrusive ROM
is that there is no need to interact with an external Finite Element (FE) solver to compute the
displacement of the structure at every sub-iteration of coupling. However the ROM resulting
from Eq (1) is intrusive since the evaluation of the projected nonlinear forces VTfnl(Vq) re-
quires back and forth exchanges between the ROM and the FEM variables. Indeed, the pysical
displacements u ≈ Vq has first to be rebuilt before the nonlinear forces fnl(Vq) could be eval-
uated by the FEM solver, and finally projected to come back to the reduced space. An explicit
expression of the projected nonlinear forces f̃nl(q) as a function of the generalized coordinates
q is necessary to get a non-intrusive ROM that solves directly the structural problem in the
reduced space:

M̃q̈+ C̃q̇+ K̃q+ f̃nl(q) = VTfa

with M̃ = VTMV, C̃ = VTCV and K̃ = VTKV the mass, damping and stiffness matrices
projected in the reduced space.

In the frame of finite displacements (small strains, large displacements and large rotations),
considering a Saint-Venant Kirchhoff material, the nonlinear forces resulting from geometric
nonlinearities are a third order polynomial function of the generalized coordinates. Writing
f̃ k
nl (q) the kth coordinate of the projected nonlinear force, it can be shown that:

f̃ k
nl (q) =

nm∑
i=1

nm∑
j=i

βk
ijqiqj +

nm∑
i=1

nm∑
j=i

nm∑
m=j

γ k
ijmqiqjqm (2)

with nm the number of modes in the reduction basis, while βk
ij and γkijm are respectively the

quadratic and cubic coefficients of the polynomial of the generalized coordinates. To determine
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those coefficients, two methods are found in the literature. The first one is the determination of
the coefficients thanks to imposed displacements, called STEP [7] and its necessary corrections
[2], [9]. The idea is to impose well-chosen displacements to the structure with the shape of linear
combinations of the linear modes, then to compute the associated nonlinear forces with a FE
solver and to identify the coefficients. The second method is a determination of the coefficients
with imposed loads, called Implicit Condensation [6], and its Expansion [1]. In this case, loading
cases are imposed to the structure, with load shapes following those of the linear modes. The
nonlinear static solutions are computed as well as the nonlinear internal forces. From the non-
linear static solutions the generalized coordinates on the reduction basis are extracted using a
least-squares method and the coefficients βk

ij and γkijm are obtained by identification between the
formula (2) and the nonlinear forces computed with the FE solver. The previously mentioned IC
method provides an explicit expression of the projected nonlinear forces as a third order poly-
nomial of the generalized coordinates. Moreover, the reduction basis used for the IC method
only contains the first bending modes of the structure. This represents an advantage for more
complex structures than a simple beam since for such structures the traction-compression and
bending modes are not independent but coupled and therefore obtaining a relevant reduction
basis becomes tedious.

3 Application to a nonlinear FE Bernoulli beam with von Kármán hypothesis per
element

The following test case is a nonlinear Bernoulli beam model discretized in 50 elements in which
the nonlinear von Kármán hypothesis is used, the dimensions and properties are presented in
Table 1.

Beam dimensions

L (length) 4m
h (thickness) 7.10−2m
b (width) 3h

Material properties

E 100GPa
ρ 4400kg.m−3

ν 0.3

Table 1: Dimensions and material properties of the flexible beam

Figure 1 represents the static linear and nonlinear displacements of the structure under a
vertical load at the tip of 30000N. The geometric nonlinearity alters the vertical amplitude of
the displacement but mostly introduces axial shortening due to the coupling between the axial
and vertical displacements, as shown in the figure on the right. On the contrary, the linear
computation does not lead to axial shortening, since, in the linear formulation, bending and
traction-compression and not coupled. The Implicit Condensation method (IC) is tested on the
previous test case (in orange in Figure 2) and its Expansion (ICE) is computed in postprocessing
(in green). The reduction basis used contains the first 3 linear modes. The vertical displacement
of the beam is well captured by the IC method, however the axial displacement is not captured
since the reduction basis contains only bending modes, therefore there is no equation solving
the axial displacement in the reduced system. The Expansion step (ICE ) enables to perfectly
rebuild the axial displacement in postprocessing.
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Figure 1: Nonlinear static displacement of the clamped-free Bernoulli/von Kármán beam, loaded
vertically at the tip with a static load of 30000N. Comparison between the linear and the
nonlinear solutions.

Figure 2: Static displacement (left) and axial displacement (right) of the clamped-free
Bernoulli/von Kármán beam, loaded vertically at the tip with a static load of 30000N. Compar-
ison between the nonlinear, the IC and the ICE solutions.

For the static case, the ICE method enabled to compute the nonlinear static solution with
only 3 linear modes. Nevertheless, the solution is computed with the IC method and rebuilt
in postprocessing with the Expansion step. Although good results are obtained for static cases,
problems may arise for dynamic applications since the dynamics in traction-compression will not
be computed with the IC method, leading to a significant loss of information that the bending
modes will fail to capture, and that the Expansion step cannot rebuilt since it is based only
on the generalized coordinates of the bending modes. The reduction basis should thus contain
information on the nonlinear coupling between the bending and the traction-compression in
order to capture the dynamics of the structure. In order to address this problem, the basis
including only the first bending modes in the Implicit Condensation could be completed with
dual modes in the reduction basis to include additional content relevant for the dynamics.
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3.1 Dual modes

As previously mentioned, the reduction basis containing the first linear modes needs to be
enriched in order to capture the geometric nonlinearity. The main idea of the dual modes is to
add this information into the reduction basis. First a set of external forces are applied to the
structure as a combination of the first linear modes (Φ̂)i∈[1,N ] of the structure:

∀ℓ ∈ [1, NL] fext
(ℓ) = K

( NL∑
i=1

α
(ℓ)
i Φ̂i

)
with NL is the number of load cases and (α

(ℓ)
i ) weighting coefficients for the amplitude.

The associated nonlinear static solution u
(ℓ)
s are computed and the corresponding generalized

coordinates q(ℓ) on the modes of the reduction basis are extracted by least-squares approximation

since u
(ℓ)
s ≈ Φ̂q(ℓ), and the residual of the approximation is written r(ℓ). For each nonlinear

static solution we have u
(ℓ)
s = Φ̂q(ℓ) + r(ℓ) and all the residuals r(ℓ) arre collected in a matrix

which is then approximated by a SVD. The basis
(
di

)
i∈[1,np]

(with np the rank of the matrix

of the residuals) is the orthonormal basis that minimizes in average the distance between the
residuals r(ℓ) and their orthogonal projection on the basis vectors

(
di

)
i∈[1,np]

. The additional

dual modes selected to add to supplement the reduction basis are the vectors
(
di

)
i∈[1,np]

with

the largest singular values σi and those contributing the most to the linearized strain energy Ek

defined as:

Ek =

NL∑
ℓ=1

β2
kℓd

T
kKdk with βkℓ =

dT
k r

ℓ

dT
k dk

The reduction basis of the previous test case
contains the first 3 linear modes and we want
to enrich this reduction basis with dual modes.
Figure 3 plots the singular values and the lin-
earized strain energies of the dual modes can-
didates. The vectors d{1,2,3,6,7} are the dual
modes kept since they are associated to a high
singular value and their linearized strain en-
ergy is significant. The new reduction basis is
the concatenation of the first 3 linear modes
and the 5 dual modes determined with the
aforementioned criteria V = [Φ̂,d{1,2,3,6,7}].
The coefficients of the projected nonlinear
forces are then identified with the Implicit
Condensation method by imposing a larger
number of load cases still based on the first
linear modes (not the dual modes).

Figure 3: Singular values and linearized strain
energies of the matrix of the residuals for the
dual modes selection.
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Since the expression of the nonlinear forces fnl is known analytically for our beam problem,
we can identify the quadratic and cubic coefficients separately with 2 different systems. Both
systems are better conditioned and better determined because the same nonlinear static solutions
can be used to solve both systems. The idea of including dual modes in the reduction basis before
computing the coefficients of the nonlinear forces is to avoid the Expansion step of the ICE
method, by computing (instead of rebuilding in postprocessing) the coupled dynamics between
the bending and the traction-compression. For the rest of the paper we will name ICdual
the Implicit Condensation method with dual modes in the reduction basis, to differentiate the
method from the classical IC method with only bending modes and from the ICE variant. Figure
4 represents the solution of the static test case of the previous section, this time using dual modes.
The nonlinear static solution is perfectly captured with the ROM as a result of the computation,
while with the ICE method, the same result was obtained after the Expansion step. This result
validates the approach of enriching the reduction basis with dual modes in preprocess since the
same result is obtained both with the ICE method and with the ICdual method. Nevertheless,
the fact of solving the coupled dynamics of the system in bending and traction-compression
(with the ICdual method) instead of restricting the dynamics to the bending and rebuilding the
coupling afterwards (with the ICE method) will be of paramount importance for dynamic cases
as illustrated in the following paragraph.

Figure 4: Static displacement (left) and axial displacement (right) of the clamped-free
Bernoulli/von Kármán beam, loaded vertically at the tip with a static load of 30000N. Compar-
ison between the nonlinear and the IC solution with dual modes.

3.2 Dynamic application with dual modes and comparison with ICE

In this section, the performance of the ICdual reduced-order model is analyzed in the dynamic
case. The beam is still loaded vertically at the tip but with a periodic loading of amplitude
2500N and of frequency f0 = 3.368Hz. Figure 5 shows the axial displacement of the tip of the
beam in permanent regime. Since the vertical displacement is close between the linear and the
nonlinear solutions, the main difference between the reduction methods is observed with the axial
displacement. The reduced-order model using the dual modes perfectly captures the dynamics
of the system, whereas the ICE method has a significant error. Indeed, as explained previously
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on the static case, with the ICE method, the traction-compression dynamics of the system is
not computed and therefore rebuilt with missing information. It is worth mentioning that the
Expansion step of the ICE depends only on the generalized coordinates of the bending modes,
not on their velocity, meaning that it depends only on the position of the beam, whatever the
dynamics of it: static, quasi-static or strongly dynamic. Besides, if more bending modes are used
for the ICE method, 8 or more, the axial solution will not be improved since the dynamics in
traction-compression will still be missing in the reduced equation of the dynamics (1). However,
the 5 dual modes added to the first 3 linear modes of the structure form a reduction basis
containing information both on the bending and the traction-compression dynamics.

Figure 5: Nonlinear dynamic displacement of the clamped-free Bernoulli/von Kármán beam,
loaded vertically at the tip with a dynamic load of amplitude 2500N and of frequency f0 =
3.368Hz. The time step is 2×10−3s and the structural damping C = 2ξω0M with ξ = 5×10−2.
Comparison between the axial deformation of the nonlinear full problem, the ICE and the ICdual
computations.

4 Fluid-structure interaction with a flexible beam in the wake of the cylinder

The previous application focused only the structural solver and a specific loading at one
point. In this part the efficiency of the reduced-order model is investigated on a fluid-structure
interaction problem. The external forces are aerodynamic forces, distributed on the beam. The
aerodynamic forces result from the vortices shed in the wake of a fixed cylinder as illustrated by
Figure 7 and the interaction between the flexible beam and the vortices will lead to the vibration
of the beam.

The radius of the fixed cylinder is equal to R = 1m and the flexible beam has the same
characteristics as the one of the previous computations of this paper. The Reynolds number of
the fluid flow is Re = 200, the density ρf = 1.17 kg.m−3 and the dynamic viscosity µ = 0.4 Pa.s.
The mass and stiffness matrices (M, K) are assembled with the Bernoulli beam elements with
von Kármán hypothesis per element. No structural damping is introduced in order to obtain
high amplitudes of deformation. The CFD solver used is elsA, a finite volumes solver, and we
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chose the finite volumes fluxes AUSM+ (P) MiLES since it has a low dissipation and is par-
ticularly adapted to low-Mach boundary layer flows. The time step is dt = 4.11 × 10−3s. The
displacements on the walls of the beam are obtained from the displacements and rotations of
the middle line.

A partitioned approach is used to couple the
fluid solver with the structural ROM. For
each time increment, a certain number of sub-
iterations between the fluid solver and the
structural solver are needed in order to ob-
tain a converged solution before moving to the
next time step. Moreover those equilibrium
sub-iterations can be stabilizing the coupling.
The flowchart in Figure 6 summarizes the par-
titioned coupling between the finite volumes
fluid solver elsA [3] and the structural non-
linear ROM. At each new time increment, a
fixed-point algorithm is used between the fluid
solver and the structural ROM. An ALE (Ar-
bitrary Lagrangian Eulerian) method is used
for computing the fluid dynamics in the mov-
ing mesh.

Figure 6: Flowchart of the partitioned cou-
pling between the fluid solver elsA and the
nonlinear reduced structural solver. We use
the notation fag = VTfa.

The structural time integration is carried out using an HHT-α method from the Newmark’s
family (α = 0.5, β = 0.25) including Newton-Raphson iterations during each time steps. It
is worth noting that the advantage of methods from the Newmark’s family is that they are
one step methods. However, the approximation of the acceleration may induce perturbations
destabilizing the coupling and we were confronted to such problems. It is recommended to use
HHT-α or α-generalized methods for keeping the same second-order precision but introducing
a light numerical damping [4], which stabilizes the coupling. In our case we used an HHT-α
integration scheme with αHHT = 0.01. The coupling depicted by Figure 6 was used to study
the nonlinear coupling between a flexible beam in the von Kármán wake of a fixed cylinder, as
shown in Figure 7. It is important to mention that the structural nonlinearity and the resulting
large displacements represent a challenge for the temporal integration and the mesh deformation
operating on a multi-block structured mesh (associated to the ALE formulation).

The integrated forces on the walls of the beam are illustrated in Figure 8 while Figure 9 rep-
resents the temporal vertical and axial displacements of the tip of the beam. Figure 10 presents
respectively the vertical and axial displacements of the tip of the beam in permanent regime
when the fluid-structure interaction reached a limit cycle. Observing the vertical displacement
we notice a significant dephasing between the linear solution and the nonlinear solution that
appeared during the transient regime. Looking at the axial displacement we witness that the
linear solution has no axial displacement compared to the nonlinear solution. Both vertical and
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axial displacements are well captured by the reduced-order model during the transient regime
and the permanent regime. The structural solver is the reduced-order model built in the first
section of this paper with the reduction basis containing the first 3 linear modes and the 5 dual
modes.

t

t+ T/2

t+ T/4

t+ 3T/4

Figure 7: Fluid-structure interaction between the vortices in the wake of the cylinder and the
flexible beam during one period. Visualization of the vorticity magnitude.

Figure 8: Time evolution of the aerodynamic forces applied to the beam. The aerodynamic
forces are integrated in the surface, respectively Fx on the left and Fy on the right.

10



Figure 9: Vertical and axial temporal displacement of the tip of the beam.

Figure 10: Vertical (left) and axial (right) displacements of the tip of the beam during the
coupling in permanent regime. Comparison between the linear, the nonlinear and the reduced
solutions.

5 Conclusion

In the case of geometrically nonlinear structures, reduction methods by projection on a re-
duction basis is not trivial due to the interaction between the linear modes of the structure.
In addition to the first linear modes, dual modes are used in our case to capture the geomet-
ric nonlinearity of the structure and to better characterize the system for static and dynamic
calculations. Besides, the expression of the projected nonlinear forces has to be determined as
a polynomial function of the generalized coordinates in order to build a non-intrusive reduced-
order model that does not need a FEM solver during the computations and therefore facilitating
the coupling with the fluid solver. A partitioned approach for the coupling between the fluid
solver and the structural solver was used here for flexibility reasons ie to be able to change one
solver or the other more conveniently. The reduced-order model for the structural solver was
built by projection on a reduced basis containing the first 3 linear modes and 5 dual modes and
the projected nonlinear forces were determined explicitly as a polynomial function of the gen-
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eralized coordinates whose coefficients were identified using the Implicit Condensation method
by imposing load cases to the structure. Such a ROM showed very good results to capture the
static and dynamic responses of the structure, both under local and distributed loads during
a fluid-structure coupling. The perspectives in this work are the application to 3D rotating
structures representative of fan or propeller blades subject to geometric nonlinearities.
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