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Accuracy and convergence of the curvature and normal vector
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Abstract

In this work, three classes of numerical methods are investigated to evaluate the mean cur-

vature, the unit normal vector and the surface tension on a front tracking interface encoun-

tered in the simulation of multiphase flows with separated phases. The Laplace-Beltrami

Operator discretization, the Integral Formulation of the surface tension and the Surface Re-

construction technique are well-known methods used in the literature, but whose accuracy,

robustness and convergence properties are seldom studied. In a first step, different variants

of these methods are presented and compared against each other on a static analytical sur-

face to measure their sensitivity to the size and regularity of the mesh. Then, to assess the

influence of the surface advection scheme and the remeshing procedures, two original and

time dependent analytical surfaces have been developed, leading to a ligament formation or

the birth of a drop/bubble on a flat surface/liquid film. Comparisons to such dynamical

surfaces are especially useful and significant, since they highlight the sensitivity of numeri-

cal methods for the interface property calculation to the errors produced by the Lagrangian

transport of the front-tracking surface. Finally, the accuracy of the different approximations

are correlated to their computation time, so that the user may choose the most appropriate

method according to the desired accuracy and cost.
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1. Introduction

Multiphase flows are very common in industry and natural environment. Amongst the

numerous examples, it can be mentioned the heat and mass transfer for safety issues in nu-

clear power plants or for the control of the chemical composition in alloy manufacturing, or

also the liquid atomization, either of fuel in engines to reduce pollutants generated by com-

bustion (Canu et al., 2018), or of sea water resulting from the breaking wave to understand

the coupling between the ocean and the atmosphere for meteorology purpose. For these

flows, the heat and mass transfers result from the energy and momentum balances in each

phase, but also from the physics at the interface which is governed by the jump conditions

(Delhaye, 1974)

[ρ(u−Vi)] · n = ṁ (1)

[
−ṁu− pn + µn ·

(
∇u + (∇u)t

)]
= σκn + (∇σ) (2)

[λ · ∇T ] · n = ṁLf (3)

where [•] stands for the difference of the quantity • on both sides of the interface, in the

direction of the unit normal vector to the interface n, pointing outward. It is worth noticing

that the forces and fluxes acting at the interface depend on the one hand, to fluid flow

parameters, such as the fluid velocities u, the velocity of the interface Vi, the pressures p,

the temperatures T , the densities ρ, the kinematic viscosities µ, the surface tension σ and

the latent heat Lf , on the other hand to geometrical properties such as twice the mean

curvature κ and the unit normal vector n to the interface.

Since the shape of the interfaces, allowing the calculation of κ and n, is one of the very

important parameters to control the heat and mass transfers, the numerical models must be

able to approximate it accurately. However, such a task can turn out to be very difficult,

especially when a large range of interfacial scales have to be modelled. For example, in the
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atomization process, the cascade of interface scales must be solved, which requires a very

expensive mesh refinement: the initial breakup of the continuous liquid phase gives rise to

individual liquid parcels before producing a dispersed spray. Even though the establishment

of the drop size distribution was successfully described by macro- or meso-scale models with

ELSA or CEDRE solvers (Demoulin et al., 2007; Zuzio et al., 2013), these descriptions are

only valid once the spray is formed. Therefore, the primary atomization is still poorly un-

derstood and needs new modelling strategies. Computing the curvature and more generally

the surface properties also arise in boundary integral methods where volumetric problems

are transformed into surface problems (De-hao Yu, 2002).

The understanding and the control of the heat and mass transfer in multiphase flows

also requires that we distinguish the different interface shapes. Thanks to the databases

stemming from CLS-VOF schemes (Vaudor et al., 2017), Massot and co-workers (Canu et

al., 2018; Essadki et al., 2019) have been able to propose new ways to analyse the interface

dynamics during primary atomization. They have demonstrated that each type of structure

(spheres, ligaments or sheets) is characterized by specific distributions of the interface cur-

vature. Therefore, an accurate numerical evaluation of the interface curvature is essential

to ensure the reliability of the results.

In our contribution, we are interested in the numerical evaluation of the topological

properties of interfaces, namely the mean curvature κ and the unit normal vector n, but

also the surface tension f . Depending on the model bieng used, the capillary effects are

either introduced in the Navier-Stokes equations (Shin and Juric, 2002), or taken into ac-

count through the jump conditions (Eqs. 1-3) by the geometrical components κ and n, or

the surface force f . In the first approach, the surface tension contribution is modelled by

a volume force depending on the volume fraction derivatives expressed over the fluid mesh

(Brackbill, 1992). Another approach relies on the writing of the jump conditions directly

onto the interface approximation. This latter method turns out to be more accurate because

it does not a-priori suffer from a spreading of the capillary force over the fluid mesh: cal-

culations are carried out precisely at the surface location. The ghost fluid method (Fedkiw
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et al., 1999) and the front-tracking approach (Du et al., 2006) belong to these techniques.

However, when the interface does not fit to the nodes where the conservation equations

for velocity, temperature and pressure are solved, the local capillary information must be

distributed on the surrounding fluid nodes, which produces a smoothing effect of the surface

tension, again (Fedkiw et al., 1999; Shin and Juric, 2002).

The present work is focused on the numerical evaluation of the mean curvature κ, the

unit normal vector n and the surface tension f , in the framework of a discrete interface made

of a triangle tessellation. Coming either from the computational fluid dynamics domain, for

example in the front-tracking method framework, or from the computer aided design, only

few studies have dealt with their convergence properties and robustness (Li et al., 2015).

Moreover, no comparison between a large panel of numerical methods exists in the literature.

Lastly, the only available validations concern static surfaces where the nodes of the discrete

surface lie exactly on the reference surface.

In our contribution, three large families of methods are studied to get the numerical

approximations. In the framework of the computational fluid dynamics, we have developed

a original time dependent analytical surface, that qualitatively gives rise to characteris-

tic patterns met in multiphase flows, namely the formation of ligaments or the birth of a

drop/bubble on a flat surface/liquid film. These new test cases have allowed us, for the first

time, to examine the effect of the advection scheme, with remeshing procedures, onto the

accuracy of κ, n and f approximations.

The paper is organized as follows. The different numerical approximations of κ, n and f ,

which are stemmed from the three families of methods, are first briefly reminded (Sec. 2), and

then compared against each other for a complex static analytical surface (Sec. 3). Section 4 is

then devoted to comparisons for the time dependent surfaces, first for an exact advection but

with a remeshing procedure, and then using the numerical transport scheme. Conclusions

and perspectives are finally drawn in the last section.
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2. Numerical methods for evaluating the curvature κ, the unit normal vector

n and the capillary force f

The aim of this section is to define the numerical methods used in this paper to ap-

proximate the local curvature κ, the unit normal vector n and the capillary force f . These

evaluations rely on a discrete representation of the interface which consists of a set of planar

triangular elements, defined by their vertices, and the knowledge of the neighbours through

the edges of each triangle. This kind of representation is widely used in the framework of

front tracking methods.

Three main families of approximations are identified in the literature. They are based

either on

• the discretization of the Laplace-Beltrami Operator,

• an Integral Formulation to get the surface tension over a specific area,

• a reconstruction method of the interface by an analytical surface.

The different methods devoted to the calculation of the interface properties, and which

belong to the three families presented here above, are detailed in the following parts. But

first, some notations are introduced.

2.1. Main mathematical notations

The discrete approximation of the interface is made up of a family T of triangles. Let

X be the set of vertices of the whole triangles. The vertices of any T ∈ T are simply noted

δ2T ⊂ X . So, we refer to

• the coordinate of any vertex x ∈ X by x.

• the surface of any triangle T ∈ T by ST .

We also introduce

• the set whose elements are couples of vertices X2 = {(xα, xβ) ∈ X 2 | ∃ T ∈ T , {xα, xβ} ⊂ δ2T}.
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• the first and second neighbourhood of any vertex x ∈ X by N1(x) and N2(x), with

N1(x) = {x′ ∈ X | (x, x′) ∈ X2} (4)

N2(x) = {x′ ∈ X \ N1(x) | ∃ x′′ ∈ N1(x), (x′, x′′) ∈ X2} ∪ N1(x) (5)

To express the numerical approximations of the curvature, normal vector and capillary

force, the endpoints of the triangle edges have to be ordered. This order is closely linked to

the notion of the exterior normal vector, noted n. For a closed surface, it is easily defined.

As for an open one, a side of the surface is arbitrary chosen as facing ”exterior”, and n is

set pointing towards this region. Then, we define

• the orientation of any triangle T ∈ T by X2(T ) ⊂ X

X2(T ) = {(xα, xβ), (xβ, xγ), (xγ, xα) | δ2T = {xα, xβ, xγ}, ((xβ − xα)× (xγ − xα))·n > 0}

(6)

with × the cross product.

• the unit normal vector to any triangle T ∈ T by nT . So, ∀ T ∈ T , with δ2T =

{xα, xβ, xγ} and X2(T ) = {(xα, xβ), (xβ, xγ), (xγ, xα)}, then

nT =
(xβ − xα)× (xγ − xα)

‖(xβ − xα)× (xγ − xα)‖
(7)

• an approximation of the unit normal vector to the surface at any vertex x ∈ X by

nN1(x):

nN1(x) =

∑
T∈T |x∈δ2T STnT∥∥∥∑T∈T |x∈δ2T STnT

∥∥∥ (8)

This expression is simply proportional to the linear weighted combination by the tri-

angle surface ST of the normal vectors nT of all the triangles T sharing the vertex

x ∈ X .
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2.2. Discretization of the Laplace-Beltrami Operator (LBO-methods)

The Laplace-Beltrami Operator (LBO) is the generalization of Laplacian operator from

Euclidean spaces to curved manifolds. Commonly used in the domain of computer aided

design, it allows to get the geometrical properties of the surfaces, but also to smooth them.

Different approximations of the LBO exist in the literature (see Desbrun et al. (1999); Meyer

et al. (2003); Polthier et al. (2002); Taubin (1995) to cite but a few). In this paper, the

retained method is based on that by Meyer et al. (2003). The approximation of the mean

curvature normal vector K is:

K(xi) =
1

2Amixed

∑
(T,T ′)∈T ?

i

(cotαij + cot βij)(xj − xi) = 2κini (9)

with T ?i = {T ∈ T , T ′ ∈ T |δ2T = {xi, xl, xj}, δ2T ′ = {xi, xj, xk}} and αij = x̂ixlxj and

βij = x̂jxkxi (Fig. 1a), κi and ni are the approximations of the mean curvature and unit

(a) Angles αij and βij (b) Stencil for the mixed area Amixed (LBO-Meyer method)

Figure 1: Notations and stencil for the discrete LBO methods (Essadki, 2018; Meyer et al., 2003)

normal vector to the surface at xi, Amixed is the measure of the mixed area (Fig. 1b). The

shape of the mixed area Amixed depends on the topology of the triangles sharing the vertex

xi.

LBO-Meyer method (Meyer et al., 2003) In the original method, when the angles of

the element are acute, its contribution to Amixed is the Voronoi area (Fig. 2a).
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(a) Area for an acute triangle (LBO methods) Essadki (2018); Meyer et al. (2003)

(b) Areas for obtuse triangles (LBO-Meyer method) Meyer et

al. (2003)

(c) Areas for obtuse triangles (LBO-Essad. method) Essadki

(2018)

Figure 2: Construction of the mixed area Amixed of the discrete LBO, according to Meyer et al. (2003) and

Essadki (2018)

It corresponds to the area of the quadrangular element surface defined by the vertex

xi, the middle of the two edges adjacent to xi and the circumcenter xc of the triangle.

For obtuse triangles, the circumcenter is outside the triangle and two cases must be

discriminated (Fig. 2b, left). If x̂jxixk > π/2, the circumcenter is replaced by the

middle of the opposite edge. Otherwise, the area is that of the triangle defined by the

vertex xi and each middle of the two edges adjacent to xi (Fig. 2b, right).

LBO-Essad. method (Essadki, 2018) An alternative approach of the mixed areaAmixed
can be used. Whereas the formalism does not change for acute triangles (Fig. 2a), for

an obtuse angle, the local contribution is based on the Voronoi area for which the

circumcenter is replaced by the barycenter xg (Fig. 2c).

The approximated surface tension, at vertex xi, is simply expressed by fi = σK(xi) and
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the approximated local curvature and normal vector to surface S, at node xi, write:

ni = sign(fi · nN1(xi))
fi
‖fi‖

, κi =
1

2σ
sign(fi · nN1(xi))‖fi‖ (10)

2.3. Integral Formulation of the surface tension (IF-methods)

In the Integral Formulation family, the approximation of an average surface tension is

directly computed. Initially proposed in the front-tracking framework by Popinet and Zaleski

(1999) for 2D cases, this method has been later on extended to 3D cases by Tryggvason et

al. (2001). Assuming a constant surface tension σ, the average surface tension over S, f , is

the circulation of the ”pulls” exerted along the border ∂S:

f =
σ

S

∫
S

κndS =
σ

S

∮
∂S

t× ndl (11)

where t is the unit tangent vector to ∂S and n the unit normal vector to S.

IF-Trygg. method (Tryggvason et al., 2011) There is an earlier version of this method

proposed by (Tryggvason et al., 2001) where a quadratic fitting is used to evaluate t

and n in the integral formulation. However we choice the recent one as it is the most

used. The discrete surface is centred around the vertex xi and relies on a set of adjacent

triangles (Fig. 3).

Figure 3: Stencil for the original (Tryggvason et al., 2011) method of the Integral Formulation (IF-Trygg.

method)
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The surface S is a collection of quadrangular polygons, defined piecewise on each

triangle, whose one of the vertices are xi, the middle of the two edges adjacent to xi

and the barycentre xg of the triangle. After simplification, it is possible to remove the

edge nodes and the barycentre, to get a relation based on the mesh vertices belonging

to N1(x):

fi =
σ

2S

∑
T∈T ?

i

(xk − xj)× nT (12)

with T ?i = {T ∈ T |δ2T = {xi, xj, xk}, (xj, xk) ∈ X2(T )}, S =
∑

T∈T ?
i
ST , and nT the

unit normal vector to the triangle T .

IF-triang. method The main difference with the previous method dwells in the shape of

the surface. In the triangular version of the Integral Formulation, S covers the whole

triangles having xi as a vertex (Fig. 4).

Figure 4: Stencil for the ‘triangle version’ of the Integral Formulation (IF-triang. method)

The average surface tension is then expressed by

fi =
σ

S

∑
(T,T ′)∈T ?

i

(xk − xj)×
STnT ′ + ST ′nT
‖STnT ′ + ST ′nT‖

(13)

with T ?i = {T ∈ T , T ′ ∈ T |xi ∈ δ2T, xi /∈ δ2T ′, {xj, xk} = δ2T ∩ δ2T ′, (xj, xk) ∈ X2(T )},

ST and ST ′ respectively the surfaces of the triangles T and T ′, nT and nT ′ their re-

spective unit normal vectors and S =
∑

T∈T ?
i
ST .
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Once the surface tension is evaluated, the approximated local curvature and normal vector

to the surface S at node xi are expressed in the same way as for the LBO-methods (see

Eq. (10)).

2.4. Surface Reconstruction (SR-methods)

Knowing the analytic equation of a surface enables the exact calculation of its geometrical

properties, specifically the mean curvature and the unit normal vector (Goldman, 2005).

This equation can be constructed over the entire surface, like what was proposed by Popinet

and Zaleski (1999) and Trontin et al. (2012) to approximate 1D interfaces with cubic splines,

or defined locally to approximate a part of the interface mesh (Du et al., 2006; Zinchenko

et al., 1997). The local approach leads obviously to simpler methods, especially for 2D

surfaces and complex interface shapes. Whereas the curvature does not depend on the local

coordinates, a transition matrix must be used to proceed to the change from the local to

the global basis.

For the local reconstruction methods, the local basis originates at the vertex xi where

the interface properties have to be approximated. Several methods are distinguished in this

paper depending on

• the expression of the approximate normal vector to the surface at xi,

• the stencil employed to reconstruct the local analytical surface,

• the eventual requirement that the node xi belongs to the reconstructed surface.

Once the approximate normal vector is defined, the two other vectors of the orthogonal

basis can be chosen arbitrarily. In this paper, the reconstructed analytical surface has a

polynomial expression and the calculation of the coefficients is the result of a least square

method. The parameters of the Surface Reconstruction method are now detailed.

Stencil for the reconstructed surface – N1(xi) or N2(xi).

The influence of the stencil on the reconstructed surface is studied. The least square

method is defined on mesh vertices that belong to, either the first neighbourhood
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N1(xi), or the second neighbourhood N2(xi) of the vertex xi. Furthermore, some

precautions must be taken into account when using the first neighbourhood N1(xi).

Indeed, if the number of vertices is not sufficient to use the least square method, a

completion is made by choosing arbitrary vertices in the second neighbourhood (Du et

al., 2006). In his Phd thesis, D.-A. Koffi Bi (2021) shows that when these additional

vertices are aligned with the first neighbourhood, it deteriorates the evaluation of

the curvature and normal vector based on the first neighbourhood. Therefore in this

peculiar situation, the solution adopted in this work is to automatically switch to a

reconstruction based on the second neighbourhood when needed.

Vertex xi solution (or not) of the reconstructed surface – a00 6= 0 or a00 = 0.

The local surface is approximated by the equation Z = f(X, Y ), with the polynomial

function f(X, Y ) defined by:

f(X, Y ) = a20X
2 + a11XY + a02Y

2 + a10X + a01Y + a00 (14)

where aij are unknown real coefficients to be determined, X, Y, Z are the local coordi-

nates relative to the local basis. Depending on the method, the coefficient a00 will be

set free or imposed to zero as proposed by Du et al. (2006); Zinchenko et al. (1997).

In this latter case, the reconstructed surface passes exactly by vertex xi.

Construction of the local basis (eX , eY ,nα), with α ∈ {c,m, iter}

The local basis is constructed first by defining the local tangent plane (eX , eY ), which is

characterized by its normal vector. Different approaches exist to evaluate this normal

vector.

• A first choice is a linear combination of all the unit normal vector nT to triangle

T , whose vertices belong to the stencil N1(xi):
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nc(xi) =

∑
T∈T |xi∈δ2T

STnT∥∥∥∥∥ ∑
T∈T |xi∈δ2T

STnT

∥∥∥∥∥
(15)

It can be noted that nc(xi) ≡ nN1(xi) defined in Eq. (8).

• In the works by Du et al. (2006), the authors utilize the formulation proposed

by Max (1999):

nm(xi) =

∑
T∈T ?

i

(xj−xi)×(xk−xi)

‖xj−xi‖2‖xk−xi‖2∥∥∥∥∥ ∑T∈T ?
i

(xj−xi)×(xk−xi)

‖xj−xi‖2‖xk−xi‖2

∥∥∥∥∥
(16)

with T ?i = {T ∈ T |δ2T = {xi, xj, xk}, (xj, xk) ∈ X2(T )}

• Another procedure, proposed in the paper by Zinchenko et al. (1997), is based on

an iterative calculation of the unit normal vector niter(xi) in order that this vector

corresponds exactly to the unit normal vector of the reconstructed interface at

xi.

To distinguish the different approaches used in the Surface Reconstruction methods, from

now on, they will be called SR-Nk-nα-β, with k ∈ {1, 2} for the stencil size, α ∈ {c,m, iter}

for the unit normal vector defining the local tangent plane and β ∈ {0, a00} to enforce or

not xi to belong to the reconstructed surface. It is worth to point out that the SR-N1-nm-0

and SR-N1-niter-0 methods were respectively proposed by Du et al. (2006) and Zinchenko

et al. (1997).

The calculations of the curvature κ and unit normal vector n are performed on the

reconstructed analytic function Z = f(X, Y ). The surface tension at node xi then reads:

fi = σκ(xi)n(xi) (17)
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Considering the formulae from differential geometry, the unit normal vector and the mean

curvature write (Goldman, 2005):

ñ =
∇F
‖∇F‖

(18)

and

κ̃ = −∇ · ñ =
∇F ·H(F ) · ∇F T − ‖∇F‖2Trace(H(F ))

2‖∇F‖3
(19)

where H(F ) is the Hessian matrix of function F (X, Y, Z) = Z − f(X, Y ), with compo-

nents Hαβ(F ) =
∂2F

∂α∂β
and (α, β) ∈ {X, Y, Z}2.

2.5. Discrete surfaces and solution accuracy

The discrete surfaces are constructed into successive steps. First, a planar surface is

covered by a set of equilateral triangles of edge size d. Let us note x̃ any vertex of this mesh,

with coordinates x̃ = (x, y, 0). Since the mesh of any interface, for example issued from a

front tracking method, is often made up of more or less irregular triangles, a disturbed mesh

is build from the regular one by using a mapping P(x̃) = ˜̃x such that

˜̃x = x̃ + r × p× d× (cos 2πθ, sin 2πθ, 0) (20)

In this expression, (r, θ) is a couple of random variables drawn from a [0, 1]-uniform distri-

bution and p is a prescribed number driving the magnitude of perturbations (0 ≤ p ≤ 0.2).

Moreover for steady problems (static case), the vertices are then projected on the known

analytical surface z = h(x, y) to define the discrete counterpart of the continuous surface.

It is worth pointing out that, even if p = 0, the discrete mesh of the surface is not any

more made up of equilateral triangles, since the projection has distorted the shape of all the

elements. For dynamics problems, the vertices are simply advected in time by the velocity

field. When p 6= 0, the error on the curvature and normal vector are evaluated on 10 random

draws (r, θ), both for the static and dynamic cases; the retained value is simply the average.
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In order to quantify the accuracy of the numerical methods with respect to the exact

solutions, two measures of the error are used. Let φ be either the scalar variable κ, the unit

normal vector n or the surface tension f . We denote by φ(xi) the exact value of φ at node

xi, and φi its numerical approximation. Then, two relative errors are defined over the N

vertices of the mesh by:

Errrel2 (φ) =


N∑
j=1

(φj − φ(xj)) · (φj − φ(xj))

N∑
j=1

φ(xj) · φ(xj)


1/2

(21)

Errrel∞ (φ) =

 max
j∈J1,NK

(φj − φ(xj)) · (φj − φ(xj))

max
j∈J1,NK

φ(xj) · φ(xj)

1/2

(22)

where ‘·’ denotes either the usual product or the scalar product if φ is a vector. Since the

studied surfaces are open, the error calculations are performed only for triangles far enough

from the boundaries. Notice that this condition depends on numerical methods because

they may rely on different stencil.

The numerous methods presented in this paper are mainly compared through curves

which present the relative errors (21) (22) as a function of the dimensionless initial mesh

size defined as d ×maxj∈J1,NK(κ(xj)), with κ(x) the exact curvature at node x. This latter

relation can be re-interpreted as a function of the mean curvature radius 1/κ(xj): let us as-

sume that d×maxj∈J1,NK(κ(xj)) = 10−2, then the edges of the initial triangles are 100 times

smaller than the minimum of mean radius of curvature, minj∈J1,NK(1/κ(xj)). To distinguish

in the graphs the two norms (21) (22), the curves drawn using L2 are continuous whereas

those with L∞-norm are discontinuous.

For the sake of brevity, the error curves for the surface tension will not be presented

since their behaviour are similar to that of the curvature (same order of convergence and

error level).
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3. Analysis of a stationary surface

In this section, the static surface proposed by Li et al. (2015) is studied (Fig. 5):

Figure 5: Top (left) and side (right) views of the discrete mesh projected onto the surface (23).

h(x, y) = sin(5x) sin(5y) with (x, y) ∈ [−π
5
,
π

5
]× [−π

5
,
π

5
] (23)

The main interest of this analytical surface is that it is characterized by a large variety

of curvatures, sum of the two principal curvatures. Points A, B, C and D have maximal

curvatures and point O exhibits a zero mean curvature with maximal but opposite principal

curvatures (saddle-node point). To avoid boundary effects, the initial flat surface is defined

on a larger domain, (x, y) ∈ [−2, 2]× [−2, 2] and all the vertices in the sub-domain (x, y) ∈

[−π/5, π/5]2 are taken into account for the error evaluation (21) (22).

3.1. Results

3.1.1. LBO-methods

The Laplace-Beltrami Operator discretization, LBO-Essad. (Essadki, 2018) and LBO-

Meyer (Meyer et al., 2003) methods, are compared in this section as a function of the mesh

size, and for a regular mesh (p = 0) and a disturbed one (p = 0.2).
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Without perturbation (p = 0), the LBO-Meyer method provides clearly the best results

for the curvature (Fig. 6a): it is second order accurate in L2-norm and tends to be first order

(a) Errrel(κ) (b) Errrel(n)

Figure 6: LBO methods - Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and n,

p = 0%

in L∞-norm. On the other hand for the LBO-Essad. method, the L2-order of convergence

is much smaller than 1 and the L∞-norm saturates for d × maxj∈J1,NK(κ(xj)) ≤ 0.2. This

first comparison indicates that the discretization of the mixed area Amixed for evaluating

the discrete Laplace-Beltrami Operator is of paramount importance when the triangles are

obtuse. Whereas the curvature calculation is very sensitive to the chosen discrete method,

the evaluation of the unit normal vector is not (Fig. 6b). The L2-order of convergence is

nearly 3, like, in a lesser extend, the convergence rate in L∞-norm.

With disturbances of 20% the initial edge size d, the shape of the triangles wander

strongly away from the equilateral structure. Figure 7a shows that both methods saturate

at the same level with the grid refinement when the curvature is considered. Despite this

lack of convergence, the unit normal vector continues to converge, for both methods, but at

the first order instead of the third order measured for regular meshes.

3.1.2. IF-methods

For the Integral Formulation methods, namely the IF-Trygg. (Tryggvason et al., 2011)

and IF-triang. methods, the same analysis as the one proposed for the LBO-methods, is
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(a) Errrel(κ) (b) Errrel(n)

Figure 7: LBO methods - Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and n,

p = 20%

performed for a regular mesh (p = 0) and a disturbed one (p = 0.2).

For regular meshes (p = 0), the numerical curvatures converge with the decrease in the

dimensionless grid size d × maxj∈J1,NK(κ(xj)) (Fig. (8a)). The accuracy of the IF-Trygg.

(a) Errrel(κ) (b) Errrel(n)

Figure 8: Integral Formulation - Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and

n, p = 0%

method is second order for both norms. The results are worse for the IF-triang. method.

Although the L2-order of convergence is equal to 2 for coarse grids, it decreases to 1.5

asymptotically. The behaviour of the L∞-norm, firstly second order, becomes first order

for the fine meshes. Thus, for the finest grid the maximal relative error for the IF-triang.
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method is larger than 2 decades to that of the IF-Trygg. one. The numerical approximation

of the normal unit vector is slightly better for the IF-Trygg. method than for the IF-triang.

method (Fig. (8b)). However, they converge both with a second order accuracy for the L2

and L∞-norms. This first set of tests seems to indicate that the IF-Trygg. method is more

efficient than the IF-triang. method.

As for the LBO-methods, the curvature approximation is deeply worsen as soon as 20%

disturbances are applied to the mesh (Fig. 9a). Again, the relative errors remains constant,

(a) Errrel(κ) (b) Errrel(n)

Figure 9: Integral Formulation - Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and

n, p = 20%

whatever the grid size is. In that case, the IF-triang. method seems to be slightly better,

about twice smaller than the IF-Trygg. method. The unit normal vector approximations

keep convergent behaviours, with a first order slope, whatever the norm and the method

(Fig. 9b). As for the curvature, the IF-triang. method is better, but the difference is not

really significant.

3.1.3. SR-methods

The last family of methods concerns the Surface Reconstruction techniques. Several ap-

proaches are compared in this section by using the notations presented in Sec. 2.4. Some are

based on the first vertex neighbourhood, the SR-N1-niter-0 (Zinchenko et al., 1997), SR-N1-

nm-0 (Du et al., 2006), SR-N1-nc-0, SR-N1-nm-a00 and SR-N1-nc-a00 methods, and others
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are expressed with the second neighbourhood, the SR-N2-nm-0, SR-N2-nc-0, SR-N2-nm-a00

and SR-N2-nc-a00 methods. Following the same methodology as before, the accuracy of the

approximations for the curvature and the unit normal vector are carried out as a function

of the grid size, in a first step for a regular mesh, and then for a 20% disturbed one.

Figure 10 illustrates the convergence of the curvature κi, for a regular grid (p = 0), of the

(a) Errrel(κ) with N1(xi) (b) Errrel(κ) with N2(xi)

Figure 10: Surface Reconstruction - Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ,

p = 0%

different methods based on the first neighbourhood N1 (Fig. 10a) and second neighbourhood

N2 (Fig. 10b). Whatever the norm, the methods are second order accurate. However, the

best results are obtained with methods that enforce the vertex xi to belong to the surface

(SR-Nk-nα-0, with k ∈ {1, 2}, and α ∈ {c,m, iter}). Likewise, the increase in the stencil

from N1 to N2 for the reconstructed surface seems to cause a slight deterioration in the

approximation. The same remarks apply when the relative errors on the normal vector are

studied (Fig. 11).

When the triangular mesh is no longer regular (p = 20%), the curvature convergence is

maintained, but with a reduced convergence order equal to one (Fig. 12). Again, enforcing

the vertex xi to lay on the surface provides slightly better results. On the other hand,

the relative errors on the normal vectors are not sensitive to the perturbation magnitude
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(a) Errrel(n) with N1(xi) (b) Errrel(n) with N2(xi)

Figure 11: Surface Reconstruction - Relative errors in L2 (continuous line) and L∞ (dash line) norms on n,

p = 0%

(a) Errrel2 (κ) with N1(xi) (b) Errrel2 (κ) with N2(xi)

Figure 12: Surface Reconstruction - Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ,

p = 20%

(Fig. 13). Indeed, both the error levels and convergence orders are preserved for disturbed

meshes.

3.2. Comparisons

In this section, the best methods of each family of discretization for the curvature and

normal vector are now compared. This comparison step is performed for p = 20% which

leads to the largest errors, but also for p = 0%. Indeed, one may use (or imagine) smoothing

procedures to recover a nearly regular mesh which would be close to what is obtained for

p = 0%. Thus, for the Laplace-Beltrami-Operator discretization, only the LBO-Meyer
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(a) Errrel(n) with N1(xi) (b) Errrel(n) with N2(xi)

Figure 13: Surface Reconstruction - Relative errors in L2 (continuous line) and L∞ (dash line) norms on n,

p = 20%

method (Meyer et al., 2003) is considered. Concerning the discrete Integral Formulation,

both the IF-Trygg. (Tryggvason et al., 2011) and IF-Triang. are retained. For the last

family of methods, the best ones are those satisfying that the vertex xi, where the curvature

and normal vector are calculated, belongs to the reconstructed surface. Thus, both the

SR-N1-nm-0 (Du et al., 2006) and SR-N2-nm-0 methods are kept, depending on the size of

the neighbourhood for the calculation of the approximate surface.

3.2.1. Errors on curvature and normal vector

For the curvature calculation on a regular grid, although all the approaches exhibit

convergence behaviours, the SR-N1-nm-0 method provides the best results up to nearly two

order smaller than those obtained with IF-Triang. when the L2 norm is considered. This

gap is increased up to three decades when the L∞ norm is chosen (Fig. 14a).

The differences between the methods are much smaller when the analysis is focused on

the unit normal vector (Fig. 14b). The most interesting result is probably the third order

convergence of the LBO-Meyer method, which provides, on the one hand a quite bad ap-

proximation for coarse meshes and on the other hand best results for the finest meshes.

For the curvature calculation with 20%-magnitude perturbations, only the reconstruction

methods SR-N1-nm-0 and SR-N2-nm-0 keep going to converge with the mesh refinement, but
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(a) Errrel(κ) (b) Errrel(n)

Figure 14: Synthesis - Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and n, p = 0%

with a rate falling from second to first order for both norms (Fig. 15a) ; the other methods

saturate. It is worth noticing that, even for small random perturbations, the quality of the

(a) Errrel(κ) (b) Errrel(n)

Figure 15: Synthesis - Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and n, p = 20%

curvature approximations is highly deteriorated (Fig. 16). Indeed, for a given dimensionless

mesh size d × max(κ) = 1.22 × 10−2, adding tiny random disturbances of maximal mag-

nitude p = 5% increases the error induced by Surface Reconstruction methods by at most

one decade, nearly two decades for the IF-triang. method and three decades for LBO-Meyer

and IF-Trygg. methods The use of irregular meshes for the normal evaluation reduces the

order of convergence to one, except for the Surface Reconstruction methods which are quite

insensitive to the perturbations (Fig. 15b).
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Figure 16: Variation of the relative errors as a function of the maximum amplitude p of the perturbations

A partial conclusion on the accuracy of the different numerical approximations can now

be drawn. Contrary to the LBO and Integral Formulation methods, the Surface Reconstruc-

tion seems promising for the curvature calculation since it preserves convergence properties,

even for disturbed meshes. Indeed, such meshes are very common: they can for example

be met in front tracking methods for which the interface between two immiscible fluids are

discretized by a set of triangles whose vertices are advected by the flow field. Although

the accuracy of the normal vector approximation is better for the Surface Reconstruction

methods, the LBO and Integral Formulation remains attractive, despite much larger errors,

especially with the L∞-norm.

3.2.2. CPU-cost and efficiency

Although the Surface Reconstruction methods provide very often the best approxima-

tions, their computational times are 3 times larger than that stemming from the LBO-Meyer

approximation, and up to 10 times larger when compared to the IF-Trygg. method for the

finest meshes. Thus, to perform pertinent comparisons, the accuracy of the different numer-

ical methods must be studied in regards of the overall CPU time required to get them. The

machine used is an Intel(R) Xeon (R) CPU E7-8890 v4 @ 2,20Ghz.

Whereas the Laplace Beltrami Operator and Integral Formulation methods compute the
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surface tension, from which the curvature and the unit normal vector are directly deduced,

the Surface Reconstruction method needs at first the evaluation of an analytical approxi-

mation of the discrete surface, then the independent calculation of the curvature and the

normal vector to finally evaluate the surface tension. The expensive part of these algorithms

lies in the surface tension calculation for the LBO and IF methods, and in the Surface Re-

construction for the SR method. Therefore, the computation times for the evaluations of

the curvature, the unit normal vector, the surface tension or the three together are similar.

Figures 17 illustrates the relative errors committed on the curvature approximations as a

function of the CPU time spent to evaluate κi, ni and fi over the whole vertices of the mesh.

It must be noticed that the increase in the CPU time corresponds obviously to the decrease

in the mesh size. For p = 0% , the most efficient methods are IF-Trygg. and SR-N1-nm-0

(Fig. 17a). Assuming a relative error of 1%, the aforementioned methods take about 0.02 s

(a) (b)

Figure 17: Relative errors on κ in function of the time in L2 (continuous line) and L∞ (dash line) norms,

with (a) p = 0% and (b) p = 20%.

and require a mesh size d×maxi(κ(xi)) = 0.3 for IF-Trygg and 0.5 for SR-N1-nm. But for

p = 20%, this accuracy can only be reached by the Surface Reconstruction methods, for a

CPU time about 5 times larger than with p = 0% and a grid size d × maxi(κ(xi)) = 0.2

(Fig. 17b) .
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3.3. Summary

For stationary surfaces, the evaluation of the curvature, which behaves as the surface

tension, is the most sensitive step. Only the Surface Reconstruction methods prove to be

convergent and accurate with the mesh refinement, whatever the regularity the surface mesh

and the applied norm. The Laplace-Beltrami Operator and Integral Formulation methods

are not robust regarding the mesh regularity. And even for regular grids where they provide

good results, their efficiencies are never better than the Surface Reconstruction methods.

These tests for static surfaces give us a first glimpse of the accuracy and robustness of

the different approaches to get the surface properties. The next section is focused on the

coupling between the surface advection and the computation of the curvature and normal

vector.

4. Analysis of advected surfaces

In the previous section, the calculation of the curvature and normal vector estimates are

carried out for a fixed discrete surface: the resulting errors are then only governed by the

mesh size, the regularity of the triangles and the accuracy of the approximation methods.

Such an approach has already been used in literature (Li et al., 2015; Wardetzky, 2008; Xu,

2004). The only drawback of this static approach is that it does not take into account all

the processes involved in the simulation of moving or deforming interfaces.

The aim of this part is to study, in what extend the advection of the interface mesh with

all associated numerical procedures (advection, reseeding, swapping) may alter the results,

both in the convergence process and in the accuracy.

4.1. Problem presentation

To address this problem, an analytical flow field acting on a moving interface, with

deformations, is proposed in the first part of this section. Thereafter, the mechanisms used

to advect and manage the interface mesh deformation are presented. These supplementary
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processes must also be taken into account for the definition of the reference value, which

forms the third part. Later on, the methodology of the numerical tests is presented.

4.1.1. Velocity field

In order to design a dynamic interface with deformation, a divergence-free flow field

defined in spherical coordinate frame is first considered

v =
Q

r2
er, r > 0 (24)

with 4πQ the algebraic volume flow rate through the sphere of radius r. Starting from a

discrete surface located at z = z0, each vertex xi, initially at coordinates xi(t = 0) = (r(t =

0), θ, ϕ), is advected in the radial direction according to equation:

r(t) =
3

√
3Qt+

z30
cos3 θ

(25)

Depending on the sign of parameter Q, the origin of coordinates corresponds to a sink or a

source. If Q < 0, the surface is stretched to the singularity, forming an elongated ligament

characterized by two principal curvatures with opposite signs. On the contrary, for Q > 0,

the surface inflates, producing an increasing bubble with a sharp lateral edge, similar to an

impact on a liquid film. The interface topology in this configuration also looks like a droplet

impinging a flat liquid film. These two cases are treated in separated subsections, as they

clearly define quite different interface deformation dynamics, with curvature singularities of

liquid finger type for the case Q < 0 whereas the other case provides an abrupt curvature

evolution of liquid impact type in the most varying interface geometry zones.

4.1.2. Surface advection

The mesh of the initial surface is made up of equilateral triangles with an edge size d.

The vertices of these elements are then randomly displaced with a maximal disturbance p,

according to relation (20). Advection from t = n∆t to (n + 1)∆t of each vertex xi of the

mesh is the result of the numerical integration of equation dxi/dt = Vi by a second order

Runge-Kutta scheme (Heun’s method). The vertex velocity Vi is spatially interpolated by
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the PERM method (McDermott and Pope, 2008) which relies on the knowledge of the exact

velocity components (Eq. 24) on the staggered Eulerian grids. The fix Eulerian grid size is

always twice the edge length d of the equilateral triangles, before applying any perturbation.

The time step ∆t is based on the Courant number equal to 0.5. Using the maximal instan-

taneous velocity magnitude over all the vertices xi, namely maxi(Q/r
2
i ) = Q(3Qt+ z30)−2/3,

and the Eulerian grid size 2d, the instantaneous time step writes ∆t = (3Qt+ z30)2/3× d/Q.

During the transport, the edges of the triangles are stretched or compressed, leading

eventually to undesirable elements. To overcome this issue and in order to keep triangle

edges in the range [d/2, 2d], several procedures are implemented (Roghair et al., 2016). A

new vertex may be inserted at the middle of a triangle edge, if its size exceeds 2d. Con-

versely, if the triangle edge is less than d/2, it is suppressed by merging its two vertices at

the center of the former edge. At last, to improve the quality of the triangles, edges may be

flipped between two flatten triangles sharing their longest edge. All these procedures, which

aim to keep a good approximation of the real interface, are performed at each time step

(see Appendix B for more details). Concerning the transport of the interface mesh, both

the exact advection (the edge velocity is not interpolated but uses the analytical flow field

Eq. 25) and the discrete advection scheme described before, as in real multiphase flow simu-

lations, are performed. Indeed, considering an exact advection is interesting here in order to

separate several numerical effects linked to interface management, advection or geometrical

properties.

The error calculations for the moving surface are restricted to θ ≤ θ0, with θ0 =

arctan(L0/z0), L0 = 1, z0 = 1 for Q < 0 and z0 = 0.01 for Q > 0. The extension of

the initial flat surface is large enough to avoid edge effects during curvature and normal

vector computations.
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4.1.3. Reference surface

In Sec. 3, the mesh vertices were exactly located on the stationary surface. For advected

surfaces, the time integration, as well as the different procedure developed to improve the

mesh quality, do not ensure that the vertices belong to the analytical surface any more

after exact or discrete advection. Therefore, to perform comparisons and error measure-

ments (21) (22), a reference surface must be defined; this issue is addressed below.

Two different cases are met, depending on the exact or approximative nature of the

vertex transport.

For an exact transport, the advected vertices are located on the analytical surface (25).

Due to the mesh improvement procedures, the modified or new nodes are projected on the

reference surface in order that all the vertices keep an exact position as a function of time.

Therefore, reference values are simply calculated with relations (18) and (19).

On the other hand, the advection of the vertices by a numerical scheme (Sec. 4.1.2) does

not allow to stay on the analytical surface at any time. To compare the curvature and the

normal vector to reference solutions, each vertex xi(t
(n)) of the mesh must be associated to

a point xrefi (n∆t) located on the analytical surface Sref(n∆t). This point, defined as the

intersection between this surface and the streamline stemming from the considered vertex

xi(t
(n)), is obtained as follows (Fig. 18). The vertex xi(t

(n)) is first advected with the exact

transport equation backward in time to give a point xrefi (0) belonging to the initial flat

surface at z = z0. Since the exact and approximative trajectories differ, the coordinates

xref
i (0) and xi(t

(0)) (assuming the node xi existed at t = 0 in the mesh) are different from

each other. Therefore, the time required to move the vertex xi from xi(t
(n)) to xref

i (0), is not

n∆t. The reference point xrefi (n∆t) is then simply obtained by advecting forward the point

xrefi (0) with the exact transport equation over the time interval n∆t. Finally, the reference

curvature and the normal vector are computed at coordinates xref
i (n∆t) with relations (18)

and (19) applied to the analytical surface Sref(n∆t).
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Figure 18: Choice of the reference value to compute the relative errors.

4.1.4. Methodology of the numerical tests

Following the same methodology as in the previous section, the LBO-Meyer (Meyer et

al., 2003), IF-Trygg. (Tryggvason et al., 2011), IF-Triang., and the SR-N1-nm-0 (Du et al.,

2006) methods are considered. In addition, variants of the Surface Reconstruction method

are studied for larger stencils (N2 instead of N1) or by keeping the degree of freedom a00 in

the evaluation of the approximated surface Z = f(X, Y ) (Eq. 14). For all these methods,

the tracking of the interface as a function of time is carried out for an initial mesh made up

of, either perfect equilateral triangles, or irregular patterns (see. Eq. 20).

To point out the role played by the advection scheme on the curvature and normal vector

evaluation, simulations are carried out into two steps.

First, the displacement of the vertices is performed in an exact way in order to get rid

of errors associated to the transport scheme. Thus, the difference between the numerical

and exact solutions can only be due to the mesh structure, namely the spatial distribution

of the triangles and their departure from the ideal equilateral shape. Contrary to the sta-

tionary surfaces, whose vertices always belong to six triangles, the addition or suppression

of vertices/triangles during the advection process modify the number of neighbours.
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In a second step, the transport scheme is accounted for, in order to estimate how much it

reduces the accuracy of the numerical approximations for the curvature and normal vector.

4.2. Ligament formation – Case Q < 0

For a sink located at the origin O(r = 0), the parameter Q is negative. The front tracking

surface, initially at z = z0, is sucked all the more that the vertices are close to the singularity.

The resulting surface exhibits a thin tail coming closer and closer to O as time runs out.

It is interesting to notice that, as can be observed in a two-phase flow, the evolution of the

surface looks like a long liquid ligament which becomes thinner and thinner as a function

of time. In real two-phase flow, the surface tension instabilities would potentially break up

the structure to produce droplets.

In the next subsections, the initial flat surface is located at z0 = 1 and the volume flow

rate is set to 4πQ = −0.4π/3. The calculations are carried out until time t = 9 s. Figure 19

illustrates the shape of the surface at the final instant, for vertices advected in an exact way.

(a) Bottom view (b) Side view

Figure 19: Bottom and side views of the discrete mesh transported in a spherical velocity field, Q < 0

4.2.1. Exact transport – Ideal case

In the ideal case, vertices added by the remeshing process are projected back on the

analytical surface and simulations are carried out with the exact transport model, starting
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from the surface at z = z0 discretized by equilateral triangles (see Eq. 25).
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Figure 20: Relative errors in L2 (continuous line) and L∞ (dash line) norms for κ and n, p = 0% with exact

transport - Q < 0

The behaviors of the curvature error as a function of the reduced mesh size (Fig. 20)

show convergences in L2-norm, but with very different orders depending whether IF or LBO

methods are used (0.3, 0.34, 0.47 respectively for LBO-Meyer, IF-Trygg. and IF-Triang.)

or the SR approximations are considered (nearly second order). This distinction is also true

for the L∞-norm: whereas the asymptotic convergence is close to 2 for the SR-methods, a

saturation is observed for the two other classes of methods. Concerning the normal vector,

all the methods are convergent with a second order slope in L2-norm, order that is preserved

in L∞-norm with the SR methods and reduced to first order for the IF and LBO-methods.

Introducing 20%-perturbations in the initial mesh destroys the convergence of the cur-

vature (Fig. A.27 in Appendix A) for the LBO and IF approximations in L2-norm, and

even exhibits a divergence behavior in L∞-norm. This deterioration of accuracy is also mea-

sured for the SR solutions where the order of convergence falls from 2 to 1, whatever the

norm considered. The normal vector approximations are also getting worst for the LBO

and IF methods, decreasing from 2 to 1, whereas their orders are unchanged for the SR

approximations.
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4.2.2. Numerical scheme for the advection

Unlike the ideal case, the new vertices from the remeshing process are not projected back

on the analytical surface and the advection is a second order Runge-Kutta scheme (Heun’s

method). The vertex velocity is interpolated by the PERM method (McDermott and Pope,

2008).

Figure 21 gives the relative errors for the curvature and the normal vector, when the

initial flat surface is made of equilateral triangles and an advection of the vertices is carried

out by the numerical scheme. For the curvature evaluation, the substitution of the exact
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Figure 21: Relative errors in L2 (continuous line) and L∞ (dash line) norms for κ and n, p = 0% with

Lagrangian transport - Q < 0

transport by a numerical scheme increases the level of the errors for all methods (Figs. 20a

and 21a). Moreover, the SR-N1-nm-0 (Du et al., 2006) approximation loses precision to

become as accurate as the LBO-Meyer (Meyer et al., 2003) solution, which is much cheaper

in computation time than SR-N1-nm-0. To recover more accurate solutions, the number of

neighbouring triangles utilized to define the reconstructed surface is increased fromN1 toN2,

and the degree of freedom a00 of the analytical surface Z = f(X, Y ) (Eq. 14) is let free in the

fitting process. These changes lead to the SR-N2-nm-a00 method. The use of the numerical

scheme for the vertex advection also deteriorates the order of convergence. As discussed here-

above, the improvement in the quality of the approximations is the result of the increase

in the stencil size with, for the Surface Reconstruction methods, the addition of one degree
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of freedom to compute the surface fitting. These two conditions ensure a smoothing effect

of the surface irregularities, which originates from local remeshing performed to preserve a

good mesh quality (see Sec. 4.1.2 for details).

For the normal vector calculation, the level of the errors is higher than the one obtained

with the exact transport and the order of convergence is 1 (Figs. 20b and 21b).

A quick insight on results initialized with the flat surface made of equilateral triangles,

whose vertices are randomly perturbed with maximum magnitude equal to a 20% edge

length (see Fig. A.28 in Appendix A), shows that no significant difference appears between

solutions obtained with p = 0% and p = 20%. Thus, contrary to the exact advection case

where the orders of convergence were substantially reduced with the loss of mesh regularity,

this is not observed here because the transport scheme introduces errors that dominate those

produced by the lack of mesh regularity.

4.2.3. CPU-cost and efficiency

The choice of a numerical method results from an equilibrium between the accuracy it

provides and the computation time required to get the solution. Figure 22 shows the relative
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Figure 22: Relative errors on κ (a) and n (b) according to CPU time in L2 (continuous line) and L∞ (dash

line) norms, p = 0% - Q < 0 and numerical transport.

errors for the curvature and normal vector as a function of the CPU-cost, for an initial flat

surface made up of undisturbed (p = 0%) triangles advected by the numerical scheme. It has
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to be noticed that, for a given method and mesh, the computation time is identical between

the curvature and the normal vector because both approximations are highly linked together

(see eq. 10 for LBO- and IF-methods, and Eqs. 18 and 19 for the SR-methods).

For the curvature evaluation, the SR-N2-nm-a00 and IF-Triang. methods are the most

CPU-time efficient as soon as the relative error in L2-norm is less than 20%. In that case,

the aforementioned methods are 2, even 3 times more accurate for the same CPU cost. Their

superiority is less clear when the normal vector has to be approximated (Fig. 22b). Indeed,

unlike for the curvature, no method is really distinguishable from the others, except maybe

the IF-Trygg. method (Tryggvason et al., 2011) which goes a little bit faster, mainly when a

coarse approximation is required. The computation times for disturbed initial meshes with

p = 20% provide similar conclusions (Appendix A, Fig. A.29).

4.3. Bubble shape – Case Q > 0

When the flow emerges from the singularity O(r = 0), the initial surface at z = z0 is

inflated in the radial direction, giving rise to a hemispherical shape connected on its bound-

ary to a nearly flat surface. Like for Q < 0, this peculiar shape may be related to interfaces

observed in two-phase fluid flows like droplet impinging onto a liquid film on a wall. A

last interpretation could be the rising of a gas bubble which emerges through a gas/liquid

interface. However, this case may be more critical than for Q < 0 because the region of

rapid variation of cuvature is much wider.

In this part, the initial surface is located at z0 = 0.01 and the volume flow rate is equal

to 4πQ = +0.4π/3. Again, the surface advection is carried out until time t = 9 s. Figure 23

illustrates the shape of the surface at the final instant, for vertices advected in an exact way.

4.3.1. Exact transport – Ideal case

Like in Sec. 4.2.1 for Q < 0, the exact advection of the initial surface meshed by equi-

lateral triangles is first studied, where the additional nodes, stemming from the refinement

step, are projected on the analytical surface to ensure that all vertices lie on this surface.
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(a) Bottom view (b) Side view

Figure 23: Top and side views of the discrete mesh transported in a spherical velocity field, Q > 0

Figure 24a exhibits that the errors on the curvature evaluation, calculated with the Laplace-
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Figure 24: Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and n, p = 0% with exact

transport - Q > 0

Beltrami Operator and Integral Formulations methods, stagnate when the mesh size de-

creases. The Surface Reconstruction methods SR-N1-nm-0 and SR-N2-nm-0 converge with

a slope slightly better than 1.

Applying 20%-perturbations to the initial mesh does not change the behaviors of the

errors with the mesh refinement: the levels of the errors are only slightly increased for the

curvature and the normal vector approximations (Fig. A.30 in Appendix A) .
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4.3.2. Numerical scheme for the advection

As a reminder, the advection is performed with a second order Runge-Kutta scheme

(Heun’s method) and the vertex velocity is interpolated by the PERM method of McDermott

and Pope (2008).

The accounting of the advection scheme for the initial surface meshed by equilateral tri-

angles increases unsurprisingly the error levels, especially for the curvature variable (Fig. 25a

versus Fig. 24a). On the finest mesh, the saturation of the LBO- and IF-methods is found
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Figure 25: Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and n, p = 0% with

Lagrangian transport - Q > 0

again in L2-norm and L∞-norm. Only the SR-N2-nm-a00 method sticks out of the others

and gives the smallest level of errors on the curvature. The order of convergence, beginning

from 1 on coarse meshes, becomes smaller than 1 when refining the mesh.

As usual, the error levels for the normal vector calculation are quite low (Fig. 25b),

compared to those obtained for the curvature. The approximations based on the smallest

stencil provide the best results (LBO-Meyer, IF-Trygg. and SR-N1-nm-0). The two other

methods, namely IF-Triang. and SR-N2-nm-a00, give similar errors, slightly larger than the

previous ones.

The addition of 20% random perturbations to the initial discretization of the flat surface

increases slightly the error levels (Fig. A.31 in Appendix A). For the curvature evaluation
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(Fig. A.31a), the SR-N2-nm-a00 method seems converging with a first order accuracy, except

for the two finest meshes for which the error tends to stagnate. This increase in the relative

error is found for all the methods, since it is related to a bad approximation of the surface

by the discrete mesh, as discussed here-above for p = 0%, and not to the evaluation method

of the curvature itself.

Concerning the approximation of the normal vector (Fig. A.31b), the same comments

given for p = 0% apply: except the finest meshes, for which SR-N2-nm-a00 is the most

accurate, the methods based on the smallest stencils (LBO-Meyer, IF-Trygg. and SR-N1-

nm-0) provide usually the lower errors.

4.3.3. CPU-cost and efficiency

The same analysis, as the one carried out for Q < 0 on the relative accuracy versus

the CPU-time (Sec. 4.2.3), is now considered (Fig. 26). The data of the relative error are
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Figure 26: Relative errors on κ (a) and n (b) according to CPU time in L2 (continuous line) and L∞ (dash

line) norms, p = 0% - Q > 0.

extracted from Fig. 25. The SR-N2-nm-0 method, which was clearly better than the others

for estimating the curvature when Q < 0, turns out to be also the best choice, even if its

efficiency becomes less obvious (Fig. 26a). However, this is the only one capable of providing

approximations lower than 10% in L2-norm, with a L∞-norm often very much lower than

those given by the other methods.
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On the whole, the IF-Trygg. method (Tryggvason et al., 2011) is the most efficient for

the calculation of the normal vector (Fig. 26b). It is more than ten times less expensive

than SR-N2-nm-a00 method for coarse meshes, but this gap is closed for the finest surface

discretizations. To ensure that the normal vectors are well approximated on all the mesh

vertices, the L∞-norm must be considered. In that case, only the SR-N2-nm-a00 method

allows getting relative errors lower than 1%. The computation times for disturbed initial

meshes with p = 20% provide similar conclusions (Appendix A, Fig. A.32).

4.4. Summary

The robustness of the Surface Reconstruction methods has already been proved for sta-

tionary surfaces, regarding the initial disturbances. The key point to get a good approxima-

tion remains the evaluation of the curvature of the surface which requires the most restrictive

condition on the mesh size. The accounting of the mesh vertex advection by a numerical

scheme deteriorates the relative accuracy of the solution whatever the methods to estimate

the surface properties. However, the SR-N2-nm-a00 method still remains the most compet-

itive. In a more general way, methods using a larger stencil (SR-N2-nm-a00 and IF-Triang.

methods) are the most accurate in the dynamic case with Lagrangian transport.

5. Conclusion

Three families of numerical methods have been investigated to evaluate the local curva-

ture and the unit normal vector to a surface. They were compared on steady and unsteady

interfaces, the later being newly proposed in the present work. To this end, an original

analytical solution of a time dependent surface has been developed. Starting from a flat

surface and depending on the direction of the flow rate, a long thin ligament or a hemispher-

ical shape bubble joined at its boundary to a flat surface grows with time. These dynamic

surface evaluation problems are interesting as they allow to recover geometrical trends found

in real two-phase flows.
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A first general conclusion, valid for both static and dynamic surfaces, is that there is

no major difficulty to get an accurate approximation of the normal vector. The main issue

lies in the curvature calculation. Indeed, its analytical expression is based on second order

derivatives and then requires regularity. The Laplace-Beltrami-Operator approximations

and the Integral Formulation methods are very accurate and efficient for regular meshes.

However, as soon as perturbations are introduced, for example on the equilateral triangle

mesh for the stationary surface or through the remeshing procedures (dynamic surfaces)

that are used during the time integration to track the surface, the curvature evaluation does

not converge any more with the decrease of the mesh size. The third approach, the Surface

Reconstruction method, is basically more expensive than the previous popular methods.

However, it is more robust and provides better results as soon as the surface mesh evolves

or is perturbed. Nonetheless, special cares must be taken for SR-N1 methods as it is done

in this paper. Their neighbourhood must be extended to the second one when the degree

of freedom for reconstructing the surface is not reached. Generally, even if the SR methods

are less accurate on coarse meshes, they become more robust with mesh refinement. So,

the Surface Reconstruction methods using the first neighbourhood excel in the dynamic

case with exact transport, that is the initial and additional vertices brought by the mesh

management process are projected back on the exact surface. Whereas the SR-N2 methods

shine in a more segregate case with Lagrangian transport and mesh perturbation. Although

expensive, the Surface Reconstruction methods turn out to be the most efficient methods

when the surface is advected: for a given relative accuracy, the CPU-time is often the lowest

compared to other methods.

This thoroughly study on the surface geometric properties has emphasized the fact that

the remeshing process plays a fundamental role to get a correct evaluation of the curva-

ture. An expected improvement could be to make use of the fitted surface to preserve a

good representation of the theoretical one. The new or moved vertices, stemming from the

refinement or coarsening step of the discrete mesh, could be projected on the local recon-

structed surface in order to preserve a high quality approximation of the analytical surface.
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Moreover, the approaches used in the Surface Reconstruction methods are the most used

and also among the simplest. Other techniques exist (especially in the domain of computer

aided graphics that could give better results (Cazals and Pouget, 2005; Pottmann et al.,

2007; Rusinkiewicz, 2004). However, it has to be noted that all these approaches have to

be coupled with Navier-Stokes resolution. Hence, the precision brought by these methods

must be compared in light of those used in the Navier-Stokes discretisation.
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Appendix A. Errors for 20%-disturbed meshes

As described in the body of the present article, when the initial mesh was made up of

equilateral triangles, the remeshing process has destroyed the regular structure of the discrete

surface. As a consequence, the measured errors were much larger than those recorded for the

stationary surface, especially for the curvature. Therefore, introducing random disturbances

on the initial location of the vertices does not significantly modify, neither the behaviour,

nor the level of the errors. This remark is valid whatever the Q-value, as well for the exact

advection (Eq. 25):

• see Fig. A.27 versus Fig. 20 for Q < 0,

• see Fig. A.30 versus Fig. 24 for Q > 0

as for the transport numerical scheme:

• see Fig. A.28 versus Fig. 21 for Q < 0,

• see Fig. A.31 versus Fig. 25 for Q > 0.

and for the CPU-cost and efficiency:

• see Fig. A.29 versus Fig. 22 for Q < 0,

• see Fig. A.32 versus Fig. 26 for Q > 0.
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Figure A.27: Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and n, p = 20% with

exact transport - Q < 0
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Figure A.28: Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and n, p = 20% with

Lagrangian transport - Q < 0

Appendix B. Remeshing of the surface

In order to have an adequate description of a surface during its evolution in a multiphase

flow simulation, different process are implemented and described below.

Edge splitting.

This operations consists on adding a new vertex on an edge of a triangular mesh. It

happens when this selected edge is longer than a specific length. In our study, we

decide that any edge of length d greater than the Eulerian grid size h is splitting in

two new edges. So, if a triangle has 1, 2 or 3 large edges, it results in the formation
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Figure A.29: Relative errors on κ (a) and n (b) according to CPU time in L2 (continuous line) and L∞

(dash line) norms, p = 20% - Q < 0 and numerical transport.

10-3

10-2

10-1

100

101

10-2 10-1 100

R
e
l.
 E

rr
.

d*max(κ)

LBO-Meyer
IF-Triang
IF-Trygg
SR-N1-nm-0 (Glimm)
SR-N2-nm-0

0 0 0

1

1

1

(a) Errrel(κ)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

10-2 10-1 100

R
e
l.
 E

rr
.

d*max(κ)

LBO-Meyer
IF-Triang
IF-Trygg
SR-N1-nm-0 (Glimm)
SR-N2-nm-0

0 0 0

2

2

2

(b) Errrel(n)

Figure A.30: Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and n, p = 20% with

exact transport - Q > 0

of respectively 2, 3 and 4 small triangles B.33. And the new vertices are added in the

middle of their respective edges.

Edge collapsing.

It is the opposite of the edge splitting process. In this case, any edge of length d smaller

than h/2, with h the Eulerian grid size, is removed. This results in the suppression of

two triangles, and the collapsing of the edges vertices onto their middle point B.34.

Edge swapping.
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Figure A.31: Relative errors in L2 (continuous line) and L∞ (dash line) norms on κ and n, p = 20% with

Lagrangian transport - Q > 0
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Figure A.32: Relative errors on κ (a) and n (b) according to CPU time in L2 (continuous line) and L∞

(dash line) norms, p = 20% - Q > 0 and numerical transport.

(a) one edge splitting case (b) two edges splitting case (c) three edges splitting case

Figure B.33: Different edge splitting cases
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(a) Edge xixj to collapse (b) After collapsing

Figure B.34: Before and after collpasing the edge xixj onto their middle vertex xα.

Contrary to the two previous methods that aim to have a appropriate mesh resolution

of the surface troughout its evolution, this method deals with the quality of the mesh.

So, it swaps the edge shared by two triangles in order to construct more equilateral

triangles, as described in figure B.35.

(a) Edge xixj to swap (b) After swapping

Figure B.35: Edge xixj is swapped to create the edge xαxβ .

References

Brackbill, J.U., Kothe, D.B. & Zemach, C., 1992, A continuum method for modeling surface tension, Journal

of Computational Physics, 100, 335–354

Canu, R., Puggelli, S., Essadki, M., Duret, B., Ménard, T., Massot, M., Reveillon, J. & Demoulin, F.X.,

2018, Where does the droplet size distribution come from?, International Journal of Multiphase Flow,

107, 230–245

46



Delhaye, J.M., 1974, Jump conditions and entropy sources in two-phase systems. Local instant formulation,

International Journal of Multiphase Flow, 1, 395–409

Demoulin, F.X., Beau, P.A., Blokkeel, G., Mura, A. & Borghi, R., 2007, A new model for turbulent flows

with large density fluctuations: Application to liquid atomization, Atomization and Sprays, 17, 315–345

Desbrun, M., Meyer, M., Schroder, P. & Barr, A.H., 1999, A new model for turbulent flows with large

density fluctuations: Application to liquid atomization, SIGGRAPH99, 317–324

Du, J., Fix, B., Glimm, J., Jia, X., Li, X., Li, Y. & Wu, L., 2006, A simple package for front tracking,

Journal of Computational Physics, 213, 613–628

Essadki, M., Drui, F., de Chaisemartin, S., Larat, A., Ménard, T. & Massot, M., 2019, Statistical modeling

of the gas-liquid interface using geometrical variables: toward a unified description of the disperse and

separated phases, International Journal on Multiphase Flows

Essadki, M., 2018, Contribution to a unified Eulerian modeling of fuel injection: from dense liquid to

polydisperse evaporating spray, Universite Paris-Saclay Ph.D. thesis

Fedkiw, R., Aslam, T., Merriman, B. & Osher, S., 1999, A non-oscillatory Eulerian approach to interfaces

in multi-material flows (the Ghost Fluid method), Journal of Computational Physics, 152, 457–492

Goldman, R., 2005, Curvature formulas for implicit curves and surfaces, Computer Aided Geometric Design,

22, 632–658

Li, X., Xu, G. & Zhang, J., 2015, Localized discrete Laplace-Beltrami operator over triangular mesh,

Computer Aided Geometric Design, 39, 67–82

Max, N., 1999, Weights for computing vertex normals from facets normals, Journal of Graphics Tools, 4,

1–6

McDermott, R. & Pope, S.B., 2008, The parabolic edge reconstruction method (PERM) for Lagrangian

particle advection, Journal of Computational Physics, 227, 5447–5491

Meyer, M., Desbrun, M., Schroder, P. & Barr, A.H., 2003, Discrete Differential-Geometry Operators for

Triangulated 2-Manifolds, Visualization and Mathematics III, 35–57

Polthier, K., Hass, J., Hoffman, D., Jaffe, A., Rosenberg, H., Schoen, R. & Wolf, M., 2002, Computational

aspects of discrete minimal surfaces, Proc. of the Clay Summer school on Global Theory of Minimal

Surfaces

Popinet, S. & Zaleski, S., 1999, A front-tracking algorithm for accurate representation of surface tension,

International Journal for Numerical Methods in Fluids, 30, 775–793

Roghair, I., Van Sint Annaland, M. & Kuipers, J.A.M., 2016, An improved Front-Tracking technique for

the simulation of mass transfer in dense bubbly flows, Chemical Engineering Science, 152, 351–369

Shin, S. & Juric, D., 2002, Modeling Three-Dimensional Multiphase Flow Using a Level Contour Reconstruc-

tion Method for Front Tracking without Connectivity, Journal of Computational Physics, 180, 427–470

47



Taubin, G., 1995, A signal processing approach to fair surface design, SIGGRAPH ’95, 351–358

Trontin, P., Vincent, S., Estivalezes, J.-L. & Caltagirone, J.P., 2012, A subgrid computation of the curvature

by a particle/level-set method. Application to a front-tracking/ghost-fluid method for incompressible

flows, Journal of Computational Physics, 231, 6990–7010

Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y.-

J., 2001, A Front-Tracking Method for the Computations of Multiphase Flow, Journal of Computational

Physics, 169, 708–759

Tryggvason, G., Scardovelli, R. & Zaleski, S., 2011, Direct Numerical Simulations of Gas-Liquid Multiphase

Flows Cambridge University Press

Vaudor, G., Ménard, T., Aniszewski, W., Doring, M. & Berlemont, A., 2017, A consistent mass and mo-

mentum flux computation method for two phase flows. Application to atomization process, Computers

and Fluids, 152, 204–216

Wardetzky, M., 2008, Convergence of the Cotangent Formula: An Overview, Discrete Differential Goemetry,

38, 275–286

Xu, G., 2004, Discrete Laplace–Beltrami operators and their convergence, Computer Aided Geometric De-

sign, 21, 767–784

Zinchenko, A.Z., Rother, M.A. & Davis, R.H., 1997, A novel boundary-integral algorithm for viscous inter-

action of deformable drops, Physics of Fluids, 9

Zuzio, D., Estivalezes, J.-L., Villedieu, P. & Blanchard, G., 2013, Numerical simulation of primary and

secondary atomization, Comptes Rendus Mecanique, 341, 15–25

Cazals, F. & Pouget, M., 2005, Estimating differential quantities using polynomial fitting of osculating jets,

Computer Aided Geometric Design, 22, 121–146

Pottmann, H., Wallner, J., Yang, Y. L. , Lai, Y. K.& Hu, S. M., 2007, Principal curvatures from the integral

invariant viewpoint, Computer Aided Geometric Design, 24, 428–442

Wardetzky, M., 2004, Estimating Curvatures and Their Derivatives on Triangle Meshes, Symposium on 3D

Data Processing, Visualization, and Transmission, September 2004

Yu, D-H., 2002, Natural Boundary Integral Method and Its Applications Springer Netherlands 539

Koffi Bi, D.-A., 2021, Numerical characterisation of curvatures and normal vectors at multiphase flows

interfaces PhD thesis Université Gustave Eiffel
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