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Abstract 

Aging is associated with cognitive changes, with strong variations across individuals. One way 

to characterize this individual variability is to use techniques such as magnetoencephalography 

(MEG) to measure the dynamics of neural synchronization between brain regions, and the 

variability of this connectivity over time. Indeed, few studies have focused on fluctuations in 

the dynamics of brain networks over time and their evolution with age. We therefore 

characterize aging effects on MEG phase synchrony in healthy young and older adults from the 

Cam-CAN database. Age-related changes were observed, with an increase in the variability of 

brain synchronization, as well as a reversal of the direction of information transfer in the default 

mode network (DMN), in the delta frequency band. These changes in functional connectivity 

were associated with cognitive decline. Results suggest that advancing age is accompanied by 

a functional disorganization of dynamic networks, with a loss of communication stability and 

a decrease in the information transmitted. 
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Introduction 1 

With an increasing number of people over 65, the world population is aging. Aging is associated 2 
with a reduced efficiency of cognitive functioning, that primarily affects memory and executive 3 
processes (e.g., Hedden & Gabrieli, 2004). However, some individuals show a major decline 4 
while others maintain cognitive performance similar to young adults (e.g., Hultsch et al., 2008). 5 
Recent research aims to better understand these individual differences during aging. Such 6 

variability across individuals has been associated with concepts of maintenance and cognitive 7 
reserve (Cabeza et al., 2018; Stern et al., 2020). Maintenance (Nyberg et al., 2012) corresponds 8 
to the preservation of similar cognitive and brain functioning to that of younger individuals with 9 
advancing age, while cognitive reserve corresponds to compensatory functional adjustments 10 
associated with the preservation of cognitive performance in the presence of structural changes. 11 

Cognitive reserve and maintenance can account for individual differences in aging- and 12 
pathology-related effects, and have been extensively investigated at both structural and 13 
functional levels (e.g., Stern et al., 2020). However, the contribution of the temporal dynamics 14 

of brain communications underlying cognitive reserve remains under-investigated. As changes 15 
in brain dynamics are expected to occur long before the disconnection associated with atrophy 16 
and brain lesions, this could yield highly sensitive elements on individual differences with age. 17 

Neuroimaging research in healthy aging has been primarily conducted using functional methods 18 

with high spatial resolution (e.g., positron emission tomography (PET) or functional MRI 19 
(fMRI)). These methods have provided insights into the anatomical and functional changes that 20 

occur with age, including changes in brain activity (Cabral et al., 2017; Smitha et al., 2017). 21 
These techniques also enable the study of brain connectivity changes. Connectivity measures 22 
are sensitive to cognitive changes and differences between individuals (e.g., Hedden et al., 23 

2016). Studies showed, for example, that the cognitive decline observed in normal aging may 24 
be due to functional connectivity disruptions, particularly in the default-mode network (DMN; 25 
this network is mainly activated when no task is assigned to the participant; Andrews-Hanna et 26 

al., 2007). The concept of cognitive reserve itself has also emerged in part from fMRI studies, 27 

as individuals with a higher cognitive reserve showed fewer brain and cognitive alterations than 28 
individuals with a lower level of cognitive reserve (Stern, 2009). The contribution of these 29 
methods in the precise localization of brain activity and in the study of brain networks is 30 

therefore undeniable. However, due to their constrained temporal resolution, age-related 31 
changes on the dynamics of the networks involved remain largely understudied. The use of 32 
methods with high temporal resolutions, such as magnetoencephalography (MEG) and 33 

electroencephalography (EEG; e.g., Baillet, 2017), can provide sensitive and specific elements 34 
on individual differences associated with cognitive aging.  35 

Brain activity is characterized by its spectral complexity, and can be distinguished according to 36 
its dominant frequency (delta, theta, alpha, beta, gamma). The delta waves (1-3Hz) are the 37 

slowest, while the gamma waves (40+Hz) are the fastest. Previous work highlighted that these 38 
brain rhythms are associated with different cognitive functions (Buszaki et al., 2006), for 39 
example the gamma frequency band is associated with information processing in higher-order 40 

cognitive tasks. Previous MEG studies show that networks activated at rest are activated 41 
periodically and in different frequency bands (de Pasquale et al., 2010). A decrease in 42 
functional connectivity has been observed during aging (Wig, 2017). Moreover, previous work 43 
has shown that in older individuals, activations and couplings are reduced in the alpha and 44 

gamma frequency bands, and increased in the delta frequency band (Vlahou, 2014). This 45 
slowing of neural activity (Celesia, 1986) has been linked to decreased cognitive performance 46 
(Toth et al., 2014), and slower information processing speed (Anderson & Craik, 2017). 47 
Conversely, the preservation of this neural activity allows cognitive abilities to be maintained 48 
with age. However, previous M/EEG studies have mainly focused on the average of activations 49 
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and connectivity over long periods of time (see Courtney & Hinault., 2021, for a review), and 1 

therefore do not provide insight into the dynamics of brain activities or their association with 2 
cognitive changes. It is therefore important to study the fluctuations of brain communications 3 

over time. 4 

Spontaneous fluctuations of brain activity have long been considered as noise to be eliminated 5 
and/or controlled for. They are now considered as a fundamental aspect of brain 6 

communications (e.g., Uddin, 2020). Recent work has demonstrated the importance of 7 
sustained synchronization between brain regions for performance in complex cognitive tasks 8 
(e.g., Daume et al., 2017). Moreover, disrupted synchronization has been associated with 9 
cognitive decline with age (Hinault et al., 2020). However, fluctuations of activity have not 10 
been considered in light of individual differences during aging. Impaired stability of brain 11 

network dynamics could lead to the neurocognitive changes observed with advancing age 12 
(Voytek & Knight, 2015). The directionality of connectivity between neuronal oscillations may 13 
also play a role in the transmission of neuronal communications. Therefore, changes in dynamic 14 

connectivity would take place in order to maintain cognitive performance, while failure to make 15 
these changes would lead to cognitive decline (Ariza et al., 2015). 16 

Here, we investigated the stability and variability of resting brain networks’ synchrony over 17 

time in young and older healthy participants from the Cam-CAN (Cambridge Centre for Ageing 18 

and Neuroscience) database (e.g., Shafto et al., 2014; Taylor et al., 2017). This database 19 
includes multimodal neuroimaging data (MEG, f/MRI) as well as cognitive performance 20 

assessment in each individual. Analyses were focused on the four main resting-state networks 21 
(default network, salience network, left and right fronto-parietal networks). Our objectives were 22 
twofold: i) To study changes in dynamic connectivity with age: Between young and old 23 

individuals, we hypothesized differences in functional networks, as well as greater variability 24 
in the activity of these networks; ii) To investigate the relationships between changes in 25 
dynamic connectivity and cognitive changes: We expected that stability in synchronization and 26 

directionality of connectivity over time would be associated with better cognitive performance 27 

with age, compared to high variability in these measures. Preservation of this neural activity 28 
would help maintain cognitive abilities with age. 29 

Methods 30 

Participants 31 

We analysed data from 46 young (29 women and 17 men; aged 22-29 years) and 46 older 32 
healthy adults (29 women and 17 men; aged 60-69 years; see participant demographics 33 

characteristic in Table 1). Participants were selected from the Cam-CAN database (e.g., Shafto 34 
et al., 2014; Taylor et al., 2017), in line with demographic characteristics of individuals 35 
recruited in previous work (e.g., Coquelet et al., 2017; Hinault et al., 2020). All participants 36 
were right-handed, showed normal cognitive functioning (Montreal Cognitive Assessment 37 
(MoCA) score >26; Nasreddine. et al., 2005), and no neurological or psychiatric condition.  38 

Behavioural measures 39 

A detailed description of the behavioural measures can be found in supplementary materials 40 
and in Shafto et al. (2014) and Taylor et al. (2017). Cognitive performance was assessed with 41 
the Mini-Mental State Evaluation (MMSE; Folstein et al., 1975) used as a measure of general 42 
cognitive functioning, the Visual Short-Term Memory (VSTM; Vogel et al., 2001) which 43 

measures working memory, the Cattell test (Horn & Cattell, 1966) which is a measure of 44 
reasoning ability and the Hotel Test (Shallice & Burgess, 1991) which assesses planning 45 

abilities.  46 
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MEG and structural MRI data acquisition 1 

Resting brain activity was measured for 10 minutes (sampling rate: 1kHz, bandpass filter: 0.03-2 
330 Hz) with a 306-channel MEG system. Participants' 3D-T1 MRI images were acquired on a 3 
32-channel 3T MRI scanner. The following parameters were used: repetition time = 2250 ms; 4 
echo time = 2.99 ms; inversion time = 900 ms; flip angle = 9 degrees; field of view = 256 mm 5 
x 240 mm x 192 mm; voxel size = 1 mm; GRAPPA acceleration factor = 2; acquisition time = 6 

4 minutes and 32 seconds.  7 

Data pre-processing 8 

The Elekta Neuromag MaxFilter 2.2 has been applied to all MEG data (temporal signal space 9 
separation (tSSS): 0.98 correlation, 10s window; bad channel correction: ON; motion 10 
correction: OFF; 50Hz+harmonics (mains) notch). Afterwards, artifact rejection, filtering (0.3-11 
100 Hz bandpass), temporal segmentation into epochs, averaging and source estimation were 12 
performed using Brainstorm (Tadel et al., 2011). In addition, physiological artefacts (e.g. 13 

blinks, saccades) were identified and removed using spatial space projection of the signal. In 14 
order to improve the accuracy of the source reconstruction, the FreeSurfer (Fischl, 2012), 15 

software was used to generate cortical surfaces and automatically segment them from the 16 
cortical structures from each participant's T1-weighted anatomical MRI. The advanced MEG 17 
model was obtained from a symmetric boundary element method (BEM model; OpenMEEG; 18 
Gramfort et al., 2010; Kybic et al., 2005), fitted to the spatial positions of each electrode (Huang 19 

et al., 1999). A cortically constrained sLORETA procedure was applied to estimate the cortical 20 
origin of the scalp MEG signals. The estimated sources were then smoothed and projected into 21 

a standard space (i.e., the ICBM152 model) for comparisons between groups and individuals, 22 
while accounting for differences in native anatomy. This procedure was applied for the entire 23 
recording duration.  24 

Network segmentation 25 

In line with previous work (e.g., Smitha et al., 2017; Van den Heuvel et al., 2009), we 26 
investigated the four main brain networks at rest: the default-mode network (DMN), the 27 

salience network (SN), the left fronto-parietal network (FPL) and the right fronto-parietal 28 
network (FPR). Each network is composed of different brain regions: the DMN is composed of 29 
the posterior cingulate cortex, the medial prefrontal and the inferior parietal cortex. The SN is 30 

composed of the anterior cingulate cortex, the insula and the pre-supplementary motor area. 31 
The FPL is composed of the left dorsolateral prefrontal cortex and the left superior parietal 32 
cortex. Finally, the FPR is composed of the right dorsolateral prefrontal cortex and the right 33 

superior parietal cortex (Figure 1). These networks are involved in different cognitive activities 34 
or functions: the DMN is mainly observed at rest and shows lower connectivity levels when 35 
participants are currently performing cognitive tasks (Raichle et al., 2001). The SN is associated 36 
with the processing of salient stimuli in the environment (Seeley et al., 2007). Finally, the 37 
bilateral fronto-parietal network is involved in spatial attention, planning and cognitive control 38 

(Kam et al., 2019). We separately investigated the FPL, which is involved in working memory 39 

(Murphy et al., 2019) and the FPR which is involved in inhibitory processing (Nee et al., 2007). 40 

Regions of interest were selected following segmentation of individual anatomies based on the 41 
Desikan-Killiany atlas (Desikan et al., 2006).  42 
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Study of dynamic connectivity 11 

Phase-locking value analyses (PLV; Lachaux et al., 1999) were used to determine the functional 12 
synchrony between regions of interest. PLV estimates the variability of phase differences 13 
between two regions over time. If the phase difference varies little, the PLV is close to 1 (this 14 

corresponds to high synchronisation between the regions), while the low association of phase 15 
difference across regions is indicated by a PLV value close to zero. To ensure PLV results did 16 

not reflect volume conduction artefacts, control analyses were conducted using phase lag index 17 
(weighted PLI analyses). Because PLV is an undirected measure of functional connectivity, and 18 
to investigate brain dynamics with complementary metrics, analyses of transfer entropy (TE) 19 

have also been conducted. TE measures of how a signal a can predict subsequent changes in a 20 
signal b (Ursino et al., 2020). It then provides a directed measure of a coupling’s strength. If 21 

there is no coupling between a and b, then TE is close to 0, while TE is close to 1 if there is a 22 

strong coupling between a and b. 23 

The range of each frequency band was based on the frequency of the individually observed 24 

alpha peak frequency (IAF), measured as the average of peaks detected with both 25 
occipitoparietal magnetometers and gradiometers. From previous work (Toppi et al., 2018) the 26 

following frequency bands were considered: Delta (IAF-8/IAF-6), Theta (IAF-6/IAF-2), Alpha 27 
(IAF-2/IAF+2), Beta (IAF+2/IAF+14), Gamma1 (IAF+15/IAF+30) and Gamma2 28 
(IAF+31/IAF+80). To reduce the dimensionality of the data, the first principal component 29 

analysis (PCA) decomposition mode of the time course of activation in each region of interest 30 
(ROI) of the Desikan-Killiany atlas brain fragmentation was used. The first component, rather 31 

than the average activity, was chosen to reduce signal leakage (Sato et al., 2018). Thirty-five 32 

sliding time windows of 30s each were then extracted for the epochs of interest to calculate the 33 

variability across time windows (standard deviation) of the PLV. The analyses were conducted 34 
on the average activity within each network, however additional analyses were conducted at 35 
the coupling level to further investigate the observed results. 36 

Statistical tests 37 

Permutation analyses were performed in Brainstorm (Tadel et al., 2011), using methods 38 
originally implemented in Fieldtrip (Maris & Oostenveld et al., 2011). Both toolboxes support 39 

Figure 1: Visualisation of the different regions forming the four studied brain networks; 

in blue: the DMN; in orange: the SN; in yellow: the FPL; in purple: the FPR 
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open access and scripts are available online. To assess differences between age groups in 1 

demographic and functional connectivity variables, t-tests and ANOVAs were applied using 2 
Jamovi software (https://www.jamovi.org/; version 1.6.23). Functional data (PLV, TE) were 3 

analyzed using 2 (age group: young/old) x 4 (networks: DMN, SN, FPL, and FPR) x 6 4 
(frequency bands: delta, theta, alpha, beta, gamma1, gamma2) repeated-measures ANOVAs to 5 
determine which network and frequency band showed the greatest young/old changes. The 6 
Greenhouse-Geisser epsilon correction was used where necessary. Original degrees of freedom 7 
and corrected p-values are reported. Finally, regressions aimed at determining the association 8 

between functional connectivity measures and behavioral measures within each group. Results 9 
were FDR corrected for multiple comparisons (Benjamini & Hochberg, 1995). 10 

Results 11 

Age-related differences in cognitive performance 12 

The main behavioral and demographic data from the Cam-CAN database are summarized in 13 

Table 1.  14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

Relative to younger individuals, older adults showed lower scores in the MMSE (p=0.013), 26 
VSTM (p<0.001), Cattell (p<0.001) and hotel test (p=0.018 for number of rooms; and p=0.005 27 
for time) scores. For the hotel test, a decrease in the rate of correct answers was observed 28 

(p=0.018). A significant increase in response time for the hotel test was also observed in older 29 
individuals (p=0.005). 30 

Increased variability of delta phase synchrony frequency band in older adults 31 

We first observed a significant effect of network, F(3, 270) = 8.085, p<0.001, η2 = 0.082, 32 
frequency, F(5, 450) = 202.748, p<0.001, η2 = 0.693, and age, F(1,90) = 4.698, p= 0.033, η2= 33 

0.05. The interaction between frequency and age, F(5,450) = 6.57, p<0.001, η2 = 0.068, revealed 34 
that this difference in variability between young (M = 0.076, SE = 0.002) and older adults (M 35 
= 0.087, SE = 0.002) was stronger for the delta frequency band. This effect was not observed 36 
in other frequency bands. The Age x Networks interaction for the delta frequency band was 37 
also significant, F(3,270) = 6.823, p<0.001, η2 = 0.07,  with the  DMN network showing the 38 

Variables Young adults Older adults p-value 

Number of participants 46 46 - 

Number of females 29 29 - 

Age 26.5 64.5 - 

Years of education 22.2 (2.873) 19.1 (3.262) 0.001 

MMSE 29.5 (0.863) 28.9 (1.173) 0.013 

VSTM 0.5 (0.088) 0.4 (0.069) 0.001 

Cattell 37.8 (3.628) 30.5 (6.285) 0.001 

Hotel_Num_rows 4.7 (0.585) 4.3 (1.008) 0.018 

Hotel_Time 227.7 (119.796) 326.9 (194.305) 0.005 

Table 1: Demographics and scores for both groups younger and older participants 
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largest difference. These results indicate an increased variability of the delta DMN activity with 1 

advancing age (Figure 2). We observed a significant negative regression between such 2 
variability and cognitive performance (VSTM, p = 0.009, r = -0.387). The rest of the analyses 3 

was therefore focused on the DMN network, in the delta frequency band. 4 

We then performed permutation t-tests on the DMN couplings between age groups. Different 5 

couplings were found to be significantly more variable for the older group compared to the 6 

younger group especially for interhemispheric and fronto-parietal couplings (Figure 3). In the 7 

older group, the interhemispheric coupling (bilateral supramarginal regions) was found to be 8 
negatively correlated with cognitive performance (VSTM test; r = -0.344, p = 0.021). These 9 
data suggest an increase in variability in the overall DMN network in the delta frequency band, 10 
but also an increase in the significant variability of specific couplings in this network, both 11 

being associated with lower cognitive performance.  12 

Figure 2:  

A: Increased variability of the DMN network in the delta frequency band for the older 

group (p = 0.001) compared to younger individuals; B: Negative association between 

increased PLV DMN variability and VSTM score (regression test, r = - 0.387, p = 

0.009) in older adults 
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Reversal of the direction of information transfer of delta band in older adults 1 

As phase synchrony measures are undirected, transfer entropy was used to determine whether 2 
a specific direction of connectivity was associated with age-related differences. We performed 3 

a repeated measures ANOVA (Age x Networks x Frequencies x Direction) to determine which, 4 
network, which frequency band and in which direction the largest young-to-old changes were 5 
found. We showed a significant effect of frequency, F(5, 450) = 361.1, p<0.001, η2 = 0.801. A 6 

significant effect of age, F(1, 90) = 17.7 p<0.001, η2= 0.165 was also observed. Results revealed 7 
an increase in the direction of information transfer variability in the delta frequency band, in 8 
older adults relative to young adults. An interaction between frequency and age was also 9 
observed, F(5, 450) = 14.61, p<0.001, η2 = 0.140. This significant interaction effect indicates 10 

larger coupling strength in delta frequency in the older group (M = 1.218, SE = 0.0231) 11 
compared to the younger group (M = 0.921, SE = 0.0231). 12 

Student's t-tests were performed to determine the direction of information transfer for young 13 
and older adults in the DMN. We saw a significant difference between the fronto-parietal and 14 
parieto-frontal direction (p=0.013), with a significantly larger coupling strength parieto-frontal 15 

direction relative to the opposite direction for young adults that was not observed in older 16 
participants. This decrease in communication can be linked to the cognitive performance 17 
observed in this group. Indeed, we conducted regressions analyses to determine the association 18 

between these entropy transfer measures and behavioural measures within each group. We 19 

found negative regressions of information transfer with cognitive performance in each direction 20 
(VSTM, p=0.031, r= -0.319; Cattell, p=0.020, r= -0.341) in the delta frequency band for older 21 
adults (Figure 4). 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

Discussion 30 

Our main objective was to investigate changes in the stability and variability of brain 31 
communication dynamics with age and the relationship of these changes with age-related 32 

Figure 3:  

A: DMN couplings in the delta frequency band showing increased PLV variability in 

the older group (t-test, p = 0.001); B: Negative association between increased 

variability of PLV DMN coupling (bilateral supramarginal regions) and Cattell score 

(regression test, r = -0.344, p = 0.021) in older adults 

Figure 4: Negative association between increased of parieto-frontal direction in DMN 

network and Cattell score (regression test, r = - 0.341, p = 0.020) 
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cognitive changes. Our connectome-based approach, based on MEG data in healthy young and 1 

older participants from the Cam-CAN database, allowed us to investigate changes of 2 
connectivity dynamics with aging. Two time-resolved connectivity aspects were studied: the 3 

stability of synchronized communications over time, and directed connectivity. Brain activity 4 
was studied at rest, as previous work suggested a link between the activity of specific networks  5 

at rest and cognitive abilities (e.g. Nashiro et al., 2017). In this study, we first showed an 6 

increased variability of phase synchrony over time with age, especially in the delta frequency 7 
band. We also showed a reversal of the main direction of synchronized connectivity with age: 8 
connectivity in the fronto-parietal direction was found to be increased in older participants, 9 
whereas it was stronger in the parieto-frontal direction for younger participants. These 10 
observations are in line with the available literature on functional connectivity during non-11 

pathological aging (e.g. Geerligs et al., 2015). The results also show for the first time that the 12 
stability or variability of functional networks, as well as information exchange over time, are 13 
associated with individual cognitive differences during aging. This was made possible by the 14 

excellent temporal resolution of MEG, combined with advanced source reconstruction 15 
analyses. 16 

The study of oscillatory activity allowed us to specify age-related changes in the variability of 17 

phase synchrony over time, and the specific frequency band associated with these differences. 18 

Phase synchrony between brain regions is a critical parameter of neural communications (e.g., 19 
Fries, 2015). Indeed, with advancing age, changes in synchronized network communications 20 

have been observed (see Courtney & Hinault, 2021, for a review). Our results reveal an 21 
increased variability of phase synchrony in the default network, mainly in the delta frequency 22 
band with age. Such variability of neural synchrony was negatively correlated with cognitive 23 

performance (measures of general cognition, and working memory). This result is consistent 24 
with MRI work showing that an age-related decrease in connectivity within the DMN is related 25 
to a decrease in memory and executive functions (e.g. Andrews-Hanna et al., 2007). Our results 26 

are also consistent with previous M/EEG work reporting an overall slowing of brain activity 27 

with advancing age (e.g., Celesia, 1986), with an increase of slow rhythms relative to faster 28 
rhythms. Increased slow waves seem to be associated with the cognitive decline observed with 29 
advancing age. Here, we show that this slowing of brain rhythms with age is associated with a 30 

loss of stability in neuronal communications, and poorer performance. 31 

In association with synchrony analyses, transfer entropy analyses allow the quantification of 32 

directed connectivity (see Ursino et al., 2020). This quantifies the information flow between 33 
brain regions more precisely than functional connectivity, thus allowing the detection of causal 34 
interactions (i.e., A must precede B) between brain regions. Such investigation of directed 35 
connectivity revealed a decrease in the parieto-frontal direction of brain communications 36 
relative to the fronto-parietal direction in the default network and the delta frequency band with 37 

age. This reversal of information transfer between young and old participants was negatively 38 
associated with cognitive performance (especially for working memory and fluid intelligence). 39 
The reversal of information transfer and decreased variability in phase synchrony observed here 40 

may help furthering the age-related pattern described in the PASA model (Cabeza et al., 2018). 41 
According to this model, the increase in the recruitment of frontal regions in older adults would 42 
be an indicator of their attempts to compensate for the decrease in their cognitive abilities. Here, 43 
we show a decrease in information transfer to these frontal regions, which is negatively 44 

associated with cognitive performances. Reduced connectivity of these frontal regions has been 45 
found to be negatively correlated with cognitive performance (Toth et al., 2014), which may 46 
reflect a decrease in recruitment to these frontal regions. Indeed, frontal regions are the first 47 
regions to see their neuroanatomy impacted by aging (Dennis & Cabeza, 2008). These results 48 
allow us to understand this concept at the network communication dynamics levels. Further 49 
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investigation of investigation transfer during task completion will be necessary to specify its 1 

associations with the direct implementation of cognitive processes.  2 

Several methodological considerations must be discussed regarding the reported results. First, 3 
the investigation of resting-state activity prevents in part the direct investigation of the neural 4 
bases of cognitive processes, which may explain the small number of associations with 5 
cognition. This could also reflect the fact that the Cam-CAN database does not include tasks 6 

directly testing executive functions. However, studying dynamic network connectivity at rest 7 
furthers our knowledge on the stability of these networks and help better characterize their 8 
individual variations. Second, the use of the Desikan-Killiany atlas, which has a less precise 9 
spatial resolution than other atlases, could limit the interpretations of SN results. However, the 10 
spatial resolution of the MEG does not enable a much higher spatial resolution. The Desikan 11 

atlas limits the degrees of freedom and has been frequently reported in previous work (e.g., 12 
Ceisnaite et al., 2021; Canal-Garcia et al., 2022). Third, eta-squares for the effect of age on 13 
variance and transfer entropy show small to medium effects. Nevertheless, because we observed 14 

these effects in healthy older adults, at rest, suggests they are sensitive to early age-related 15 
changes. Future work is necessary to assess longitudinal changes of dynamic connectivity. 16 
Finally, the use of PLV for M/EEG data can be problematic because of volume conduction 17 
effects. However, volume conduction effects are unlikely to explain couplings between distant 18 

brain regions, and cannot account for between-group differences or correlations with behavioral 19 
performance. Using the first mode of principal component analysis (PCA) of the activation time 20 

course in each region of interest, rather than mean activity, reduces signal leakage (e.g., Sato et 21 
al 2018). Finally, even alternative measures (such as Phase Lag Index (PLI), or coherence), do 22 

not fully control for this risk of conduction volume (Palva et al 2017). Additional weighted PLI 23 
analyses were conducted, and results were replicated for the DMN network in the delta 24 
frequency band. 25 

Empirically, the variability of brain communications has received little investigation, as it was 26 

long considered as noise, but is now recognized as contributing to brain functions (Uddin et al., 27 

2020). Here, we show that healthy aging is associated with an increased variability in 28 
synchronized brain communications, and with changes of the main connectivity directions 29 
between brain regions. Results highlight that even when brain networks are not engaged in a 30 

particular cognitive activity, significant changes occur with age regarding connectivity 31 
dynamics and information flow between regions of different functional brain networks. 32 
Advancing age appears to be accompanied by a functional disorganization of dynamic 33 

networks, with a loss of communication stability and a decrease in the information transmitted. 34 
The study of dynamic connectivity contributes to a better understanding of the cognitive decline 35 

with aging. The stability of communications and its alteration should be considered in the 36 
framework of maintenance, reserve and resilience (Cabeza, 2018; Stern, 2020). 37 
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