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Dispersion on certain Cartesian products of graphs

Introduction and main result

In this note we discuss dispersion on Cartesian products of the form Z d G F , where G F is a finite graph. The proof of the estimate is quite simple, it combines known estimates on the Bessel function with the Floquet theory of periodic graphs. However, to our knowledge, the phenomenon has not been observed before in the literature.

Recall that the Cartesian product G H of two graphs G and H is the graph with vertex set V (G) × V (H), such that (u, v) ∼ (u ′ , v ′ ) iff (u = u ′ and v ∼ v ′ ) or (u ∼ u ′ and v = v ′ ).

The product Z G F is very easy to visualize. Simply take the integer line Z, replace each vertex by a copy of G F , then connect the matching vertices. If G F = P 2 , the 2-path, this creates an infinite ladder. More generally, if G F = P k is a k-path, we get an infinite strip of width k. We can similarly construct Z d G F by replacing each vertex in Z d by a copy of G F and connecting the matching vertices. For example, Z 2 P 2 consists of an infinite layer of cubes. Our results apply to all these graphs. We can furthermore add a potential Q on G F which is copied across the layers (i.e.

Q(n + v p ) = Q(v p )).
In this way we obtain a Schrödinger operator H Z d G F with a periodic potential.

Denote the points on

Z d G F by v = n + v p , where n ∈ Z d and v p ∈ G F .
We may now state our main result. Let

H G F = A G F + Q. Theorem 1.1. We have for H = H Z d G F , (1) 
e itH (n

+ v p , m + v q ) = d j=1 i n j -m j J n j -m j (2t) e itH G F (v p , v q ) ,
where J k (t) is the Bessel function. This implies a dispersion bound of the form

(2) e itH f ∞ < 1 t d/3 f 1 ∀ t > 0 for f ∈ ℓ 1 (Z d G F ), which is sharp.
The Schrödinger operator H has purely absolutely continuous spectrum and is thus spectrally delocalized (see Section 2). The transport is also ballistic, so waves travel at maximum speed [START_REF] Boutet De Monvel | Ballistic transport in periodic and random media[END_REF]. Here [START_REF] Boutet De Monvel | Ballistic transport in periodic and random media[END_REF] shows that as the waves travel, they "flatten out". In fact, since e itH is unitary, e itH f 2 = f 2 is conserved, so the only way that the supremum norm can decay with time is that the wave spreads out. Dispersion excludes the possibility that |e itH f (x)| 2 is a "sliding bump" of the form ψ(x-t) for some ψ ≥ 0 of compact support.

We mention that H is also spatially delocalized in the sense that its (generalized) eigenvectors have a kind of equidistribution in space. More precisely, quantum ergodicity holds partially on large finite subgraphs. See [START_REF] Mckenzie | Quantum ergodicity for periodic graphs[END_REF] for details in a more general framework.

Dispersion on (discrete) graphs has not been extensively studied to our knowledge. We mention the adjacency matrix on Z d in [START_REF] Stefanov | Asymptotic behaviour of small solutions for the discrete nonlinear Schrödinger and Klein-Gordon equations[END_REF] with sharp speed t -d/3 , on the (q + 1)-regular tree T q with sharp speed t -3/2 [1, 3, 10], the integer line Z with a periodic potential taking 2 values [START_REF] Mi | Dispersive estimate for two-periodic discrete one-dimensional Schrödinger operator[END_REF], more recently taking k values [START_REF] Mi | Dispersive estimates for periodic discrete one-dimensional Schrödinger operators[END_REF], with upper bounds t -1/3 and t -1/(k+1) on the speed, respectively. The paper [START_REF] Egorova | Dispersion estimates for one-dimensional discrete Schrödinger and wave equations[END_REF] considers the case of Z with an ℓ 1 potential and derive the speed t -1/3 . Finally, [START_REF] Ignat | Dispersive Properties for Discrete Schrödinger Equations[END_REF] considers two coupled discrete Schrödinger equations on Z and obtain again the speed t -1/3 . 

• , Q • .
The results of [START_REF] Mi | Dispersive estimate for two-periodic discrete one-dimensional Schrödinger operator[END_REF][START_REF] Mi | Dispersive estimates for periodic discrete one-dimensional Schrödinger operators[END_REF] can be compared to those of a ladder graph (Fig. 4) and a k-strip, endowed periodic potentials Q 1 , . . . , Q k coming in parallel sheets. Our proof shows that it is easier to prove dispersion on these graphs than on the simple one-dimensional line Z taking successive potentials Q 1 , . . . , Q k .

Proof of Theorem 1.1

Endow the finite graph G F with a potential Q which is copied across the G F layers. By construction, the graph Γ = Z d G F is periodic, with fundamental crystal G F . In other words, the Cartesian product is obtained by translating the fundamental domain V f = G F under the action of Z d . This is a special case of the periodic graphs considered in [START_REF] Korotyaev | Schrödinger operators on periodic discrete graphs[END_REF]. As such, the Floquet theory applies to them. Let us discuss this in more detail.

Due to translation invariance, we have Γ = Z d + G F so that points in Γ take the form k + v n for some k ∈ Z d and v n ∈ G F . Here k can be regarded as an "integer part" while v n a "fractional part" in the fundamental domain.

Let us define the operator U :

ℓ 2 (Γ) → ⊕ T d * ℓ 2 (G F )dθ, where T d * = [0, 1) d , by (U ψ) θ (v n ) = k∈Z d e -2πiθ•k ψ(k + v n ) .
Then U is unitary, with inverse

U -1 : (g θ ) → T d * g θ (v n )e 2πik•θ dθ, and (3) 
U HU -1 = ⊕ T d * H(θ) dθ , where H(θ)f (v n ) = u∼vn e 2πiθ•⌊u⌋ f ({u}) + Q(v n )f (v n ) , see [2, §3.2]
for details. 1 Here ⌊k + v p ⌋ = k and {k + v p } = v p are the integer and fractional parts, respectively, and the sum runs over the neighbors of v n in all Γ, not just G F .

By definition of the Cartesian product, the neighbors of v n = v n + 0 are of two kinds : those of the form v n ± e j , where e j is the standard basis of Z d (the neighbors of 0 in Z d ) and those of the form v p + 0 = v p , where v p ∼ v n in G F . The operator thus simplifies to

H(θ)f (v n ) = d j=1 2 cos 2πθ j f (v n ) + vp∼vn f (v p ) + Q(v n )f (v n ) ,
where we used that ⌊v n ± e j ⌋ = ±e j , {v n ± e j } = v n , ⌊v p ⌋ = 0, {v p } = v p .

Thus, if H G

F = A G F + Q is the
Schrödinger operator of the finite graph G F , then in our setting, the fiber operator H(θ) is simply

H(θ) = d j=1 2 cos(2πθ j ) • Id + H G F .
In other words, H(θ) is just H G F shifted by a scalar. The Floquet eigenvalues take the form E s (θ) = ( d j=1 2 cos(2πθ j )) + µ s , where µ s are the eigenvalues of H G F , in particular E s (θ) are analytic and non-constant, so the spectrum is purely absolutely continuous (see [START_REF] Reed | Analysis of Operators[END_REF]Section XIII.16]). Moreover, (4) e itH(θ) = e 2it d j=1 cos(2πθ j ) e itH G F .

1 In [START_REF] Boutet De Monvel | Ballistic transport in periodic and random media[END_REF], the unitary operator is instead ( U ψ) θ (vn) = e -2πiθ•vn (U ψ) θ (vn), so the fiber operator obtained there is

H(θ) = e -2πiθ• H(θ)e 2πiθ•
, where e ±2πiθ• f (vp) = e 2πiθ•vp f (vp). This operator and ours are thus unitarily equivalent, the present version is just more suitable for our computations.

Finally, by ( 3),

e itH (n + v p , m + v q ) = U δ n+vp , U e itH U -1 U δ m+vq = T d * vr∈G F (U δ n+vp ) θ (v r )(e itH(θ) U δ m+vq ) θ (v r ) dθ . But (U δ n+vp ) θ (v r ) = k∈Z d e -2πiθ•k δ n+vp (k + v r ) = e -2πiθ•n δ vp,vr .
Hence,

e itH (n + v p , m + v q ) = T d * vs∈G F e 2πiθ•n e itH(θ) (v p , v s )(U δ m+vq )(v s ) dθ = T d * e 2πiθ•(n-m) e itH(θ) (v p , v q ) dθ .
Recalling (4), this becomes

e itH (n + v p , m + v q ) = T d * e 2πiθ•(n-m) e 2it d j=1 cos(2πθ j ) dθ e itH G F (v p , v q ) ,
which is (1), since 1 0 e 2πiνx e it cos(2πx) dx = i ν J ν (t).

This proves our main formula. From here dispersion follows from known estimates. In fact, by [START_REF] Landau | Bessel Functions: Monotonicity and Bounds[END_REF], we know that |J ν (t)| ≤ ct -1/3 , with c ≈ 0.786 and that this estimate is sharp in the speed t -1/3 (and in the constant). On the other hand,

|e itH G F (v p , v q )| ≤ e itH G F = 1. Since e itH f ∞ = sup v∈Γ w∈Γ e itH (v, w)f (w) ≤ sup v,w∈Γ |e itH (v, w)| • f 1 ,
the theorem follows.

Note that the term e itH G F (v p , v q ) cannot improve dispersion as it is the evolution kernel of a Schrödinger operator on a finite graph, in particular has point spectrum and is dynamically localized. More precisely, if we had max vp,vq |e itH G F (v p , v q )| ≤ c f (t) for some f (t) → ∞, this would imply e itH G F ψ ∞ ≤ c f (t) ψ 1 , and this would contradict the following lemma. This shows that the speed t -d/3 cannot be improved by varying G F . Lemma 2.1. There is no dispersion on finite graphs. More precisely, if ψ 2 = 1, it is impossible to find f (t) → ∞ such that e itH G F ψ ∞ ≤ c f (t) ψ 1 .

Proof. Let ψ t = e itH G F ψ. Suppose on the contrary that ψ t ∞ ≤ c f (t) ψ 1 . Let 0 < ε < 1. By the RAGE theorem [START_REF] Teschl | Mathematical Methods in Quantum Mechanics[END_REF], we can find a compact K such that sup t χ K c ψ t < ε. So

χ K ψ t 2 = ψ t 2 -χ K c ψ t 2 ≥ 1 -ε 2 . But χ K ψ t 2 ≤ ψ t ∞ • |K| ≤ c ψ 1 f (t) • |K| .
It follows that |K| ≥ c ′ f (t)(1ε 2 ). Taking t → ∞ yields a contradiction since K is compact.
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 1 Figure 1. The 4-strip, Z P 4 .
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 2 Figure 2. The graph Z C 3 .
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 3 Figure 3. The graph Z ⋆ 3 , where ⋆ k is the star graph with k edges.
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 4 Figure 4. The ladder graph, Z P 2 , endowed two potentials Q • , Q • .