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Introduction

The advances in science and fabrication technology in the past two decades have enabled the fabrication of materials with microstructures characterized by inclusions or porosities in nanometer ranges [START_REF] Jelinska | Design the Elastic Modulus of Nanoparticles-Containing PVA/PVAc Films by the Response Surface Method[END_REF][START_REF] Malgras | Nanoarchitectures for Mesoporous Metals[END_REF][START_REF] On | Influence of sintering behavior on the microstructure and electrical properties of BaTiO3 lead-free ceramics from hydrothermal synthesized precursor nanoparticles[END_REF][START_REF] Yang | Particle-Laden Droplet-Driven Triboelectric Nanogenerator for Real-Time Sediment Monitoring Using a Deep Learning Method[END_REF][START_REF] Yang | A high density array of free standing alumina nanotubes aligned vertically on solid substrates in a large area[END_REF]. However, much work remains to be done in order to gain a deeper insight into the microstructure-property relationship in this class of materials. It is well-known that the interface/surface between various constituent phases of a nano-sized heterogeneous microstructure can play a crucial role in affecting not only the overall response but also the local stress concentration that may lead to failure due to the significant surface tension/stress [START_REF] J O U R N A L P R E -P R O O F Winter | Effects of pore design on mechanical properties of nanoporous silicon[END_REF]. Moreover, the impact of interfaces at the microscale on the overall and local response increases with the decreasing characteristic size of the embedding inhomogeneities due to the larger surface-to-area ratio and surface energies [START_REF] Duan | Nanoporous materials can be made stiffer than non-porous counterparts by surface modification[END_REF].

Quantitative characterization of the interface behavior of nanostructured materials often requires extensive molecular dynamics (MD) simulations or experiments, which have justified that the interface-energy-induced size effects are physically meaningful [START_REF] Chen | Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 2: New results[END_REF][START_REF] Davydov | On molecular statics and surface-enhanced continuum modeling of nano-structures[END_REF][START_REF] J O U R N A L P R E -P R O O F Fan | Size-dependent Young's modulus in ZnO nanowires with strong surface atomic bonds[END_REF][START_REF] Nguyen | Nanoscale Flexoelectricity[END_REF]. However, the MD simulations and actual experimental tests can be extremely computationally costly or tedious, hence preventing them from being efficiently employed in the parametric studies that aim to understand the microstructureproperty relationship over a broad variety of parameters and dimensions. Therefore, interest in J o u r n a l P r e -p r o o f continuum mechanics approaches has attracted extensive attention in light of the potential advantages offered by them.

From a continuum mechanics point of view, interfaces in mechanical problems can be categorized into four types according to their kinematic or kinetic characteristics [START_REF] Chatzigeorgiou | Generalized interfacial energy and size effects in composites[END_REF]Firooz et al., 2019;Firooz and Javili, 2019;[START_REF] Javili | Micro-to-macro transition accounting for general imperfect interfaces[END_REF]. In heterogeneous materials, the perfect interface model indicates that the inclusion and surrounding matrix are perfectly-bonded, wherein neither displacement discontinuity nor traction discontinuity is admissible across the interface separating different phases. Clearly, the assumption of the perfect interface in heterogeneous materials is inadequate to describe the physical nature and mechanical behavior of the interface region. Hence, in many cases, an imperfect interface model should be considered to accurately capture the overall composite response and the underlying deformation mechanisms. The elastic interface model is kinematically coherent but kinetically non-coherent.

The interface elasticity theory proposed by Gurtin andMurdoch (1975, 1978) has spurred extensive investigations of mechanical problems accounting for surface/interface elasticity and tension (Chatzigeorgiou et al., 2015b;Chen et al., 2018b;[START_REF] Dai | Stress concentration around an elliptical hole with surface tension based on the original Gurtin-Murdoch model[END_REF][START_REF] Duan | Thermo-elastic properties of heterogeneous materials with imperfect interfaces: Generalized Levin's formula and Hill's connections[END_REF][START_REF] Duan | Nanoporous materials can be made stiffer than non-porous counterparts by surface modification[END_REF][START_REF] Jiang | Physics-informed deep neural network enabled discovery of size-dependent deformation mechanisms in nanostructures[END_REF][START_REF] Mogilevskaya | Equivalent inhomogeneity method for evaluating the effective elastic properties of unidirectional multi-phase composites with surface/interface effects[END_REF]. In this model, the interface is viewed as a zero-thickness surface that can be treated as a two-dimensional manifold. The variation of surface stress is related to the traction jump condition formulated into the Young--Laplace equations [START_REF] Chen | Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids[END_REF] whereas the displacement continuity condition holds at the interface. In contrast to the elastic interface model, in the cohesive interface model, the traction is continuous across the interface while the displacement continuity condition is released. The cohesive interface model originally proposed by [START_REF] Barenblatt | The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[END_REF][START_REF] Barenblatt | The Mathematical Theory of Equilibrium Cracks in Brittle Fracture[END_REF] and [START_REF] Dugdale | Yielding of steel sheets containing slits[END_REF] is generally accepted, which has been further extended by Needleman and coworkers (Needleman, J o u r n a l P r e -p r o o f 1987; [START_REF] Xu | Numerical simulations of fast crack growth in brittle solids[END_REF]. The latter works have been extensively adopted in the literature to track interface separation in heterogeneous materials [START_REF] Bormann | On the competition between dislocation transmission and crack nucleation at phase boundaries[END_REF][START_REF] Elices | The cohesive zone model: advantages, limitations and challenges[END_REF]Tu and Chen, 2020a, b;[START_REF] Tu | Cohesive zone-based damage evolution in periodic materials via finite-volume homogenization[END_REF][START_REF] Van Den Bosch | A cohesive zone model with a large displacement formulation accounting for interfacial fibrilation[END_REF]. The general interface model unifies all the aforementioned interface models, allowing for both traction and displacement discontinuities across the interface. The general interface model proposed by [START_REF] Hashin | Thin interphase/imperfect interface in elasticity with application to coated fiber composites[END_REF] has been further studied in [START_REF] Benveniste | A general interface model for a three-dimensional curved thin anisotropic interphase between two anisotropic media[END_REF][START_REF] Benveniste | Imperfect soft and stiff interfaces in two-dimensional elasticity[END_REF][START_REF] Chatzigeorgiou | Generalized interfacial energy and size effects in composites[END_REF]. The general interface model reduces to both the cohesive and elastic interface models in the limit. For further details, discussions and extensions see [START_REF] Firooz | Homogenization of Composites With Extended General Interfaces: Comprehensive Review and Unified Modeling[END_REF].

In addition to the mechanical behavior, the piezoelectric response is also of theoretical and technological importance in piezoelectric nanostructures because of their promising applications in microactuators and nanogenerators [START_REF] Chebanenko | Numerical optimization of the piezoelectric generators[END_REF][START_REF] Craighead | Nanoelectromechanical Systems[END_REF][START_REF] Thabet | Assessment of dielectric strength and partial discharges patterns in nanocomposites insulation of single-core power cables[END_REF][START_REF] Yang | Robust Working Mechanism of Water Droplet-Driven Triboelectric Nanogenerator: Triboelectric Output versus Dynamic Motion of Water Droplet[END_REF][START_REF] Yu | Monitoring on triboelectric nanogenerator and deep learning method[END_REF]. Recent works have shown that the overall response of dielectric elastomer with interfacial phenomena can be radically different from that of its constituents [START_REF] Ghosh | Elastomers filled with liquid inclusions: Theory, numerical implementation, and some basic results[END_REF][START_REF] Lefèvre | Homogenization of Elastic Dielectric Composites with Rapidly Oscillating Passive and Active Source Terms[END_REF]. Despite many efforts that have been devoted to the study of the macroscopic properties of nanosized metal-matrix porous composites with surface elasticity, much fewer studies are found in the literature aimed at investigating the properties of nanoscale piezoelectric materials with surface piezoelectricity [START_REF] Chen | Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects[END_REF][START_REF] Gu | Variational principles and size-dependent bounds for piezoelectric inhomogeneous materials with piezoelectric coherent imperfect interfaces[END_REF][START_REF] Xiao | Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect[END_REF]. The molecular dynamics simulations conducted by [START_REF] Zhang | Strain effect on ferroelectric behaviors of BaTiO3nanowires: a molecular dynamics study[END_REF] and [START_REF] Dai | Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials[END_REF] provide direct evidence that the piezoelectric coefficients of piezoelectric nanostructures are also size-dependent. [START_REF] Hoang | Thermomechanics of Solids With Lower-Dimensional Energetics: On the Importance of Surface, Interface, and Curve Structures at the Nanoscale. A Unifying Review[END_REF] have further confirmed the existence of surface piezoelectricity effects in piezoelectric nanowires using the first-principle analysis. The finite-element package ANSYS has also been employed to investigate the piezocomposites with incomplete interface conditions by Nasedkin (2021), that is, J o u r n a l P r e -p r o o f only the surface stress effect has been taken into account while the surface electric displacement is neglected. This contribution deals with the homogenized behavior of the piezoelectric nanoporous materials enhanced with the kinematically coherent interface. This suggests that the surface stress and surface electric displacement jumps exist across the interface whereas the mechanical displacement and electric potential are continuous. The bulk material is a transversely isotropic piezoelectric solid, embedding cylindrical porosities with circular cross-sectional shape. The porosities have the same radius. Along the pore boundary, the surface stress and surface electric displacement prevail. The constitutive behavior of the interface is described by the extended Gurtin--Murdoch interface model [START_REF] Chen | Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects[END_REF]. Based on the composite cylinder assemblage model and the generalized self-consistent scheme, closed-form solutions are derived to exactly obtain the homogenized Hill's moduli, piezoelectric and dielectric constants. In the analytical approaches, the variation of surface stress and electric displacement is governed by the generalized Young--Laplace condition considering the stress equilibrium and charge conservation equations [START_REF] Chen | Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids[END_REF]. Additionally, the zeroth-order asymptomatic multiphysics finite-element micromechanics enhanced with surface piezoelectricity is developed for the first time, wherein the surface piezoelectricity is incorporated directly by additional surface energy associated with the elements that are situated along the pore boundary. The accuracy of the developed approaches is then extensively verified and critically assessed over a broad variety of parameters and dimensions.

It is the goal of the present work to demonstrate that the widely-accepted classical micromechanics models such as the CCA and GSCM remain useful tools in predicting effective properties of piezoelectric nanocomposites with surface piezoelectricity. The differential coated cylinder assemblages (DCCA) have also been explored by [START_REF] Lefèvre | The Overall Elastic Dielectric Properties of Fiber-Strengthened/Weakened Elastomers[END_REF] in J o u r n a l P r e -p r o o f order to compute the effective properties of a single class of composites. It should be noted that the current manuscript focuses only on the kinematically coherent interface. Introducing the more complicated general interface model would increase the complexity of the problem by introducing mechanical displacement and electric potential discontinuities and bring more parameters that need to be identified, leading to distractions from the fundamental theoretical framework developed in this manuscript. Such extensions will be explored in our future work.

The rest of the manuscript is structured as follows: Section 2 recalls the extended coherent interface model with surface piezoelectricity and the homogenization theory in the presence of a coherent interface. Section 3 presents the extension of the CCA/GSCM accounting for surface piezoelectricity. The theoretical development of the multiphysics FEM with energetic surfaces is demonstrated in Section 4. Comparisons of the extended CCA/GSCM and multiphysics FEM, as well as the numerical instabilities in the unit cell solution encountered when the interface energies are negative, are discussed in Section 5. Section 6 draws pertinent conclusions. The FEM and exact solution of electric displacement fields for the generalized Kirsch problems are compared in the Appendix.

Preliminaries

The scope of this section is to define the problem under consideration. Hereafter, some preliminary notes concerning the extended coherent interface model and the homogenization theory in the presence of surface piezoelectricity are recalled. The elastic modulus C , piezoelectric constant e , and dielectric constant κ are the fourth-rank, third-rank, and second-rank tensors, respectively. In the case of transversely isotropic phase with the axis of symmetry parallel to the z axis [START_REF] Chen | Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects[END_REF], 

Coherent Interface Model with Surface Piezoelectricity
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where k , l , n , m and p denote the Hill's elastic moduli respectively for plane strain bulk modulus, cross modulus, unit uniaxial straining modulus, transverse shear modulus, and axial shear modulus [START_REF] Hill | Theory of mechanical properties of fiber-strengthened materials: I. elastic behavior[END_REF]. The piezoelectric tensor is characterized by three constants 31 e , 33 e

and 15 e while the dielectric tensor is defined by two constants 11

 and 33  .

J o u r n a l P r e -p r o o f In addition to the bulk materials, energetic surfaces are considered that stretch along the pore boundaries. In nanoscale piezoelectric solids, the idea is based on the notion that the interface stresses can be modelled as three in-plane stresses, s   , s zz  and s z  , along the tangent planes of a curved interface, as shown in Figure 1b, which can be described by the coherent interface model developed by Gurtin andMurdoch (1975, 1978). In this model, the surface is viewed as a twodimensional, infinitesimally thin sheet with its own material properties. In [START_REF] Chen | Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects[END_REF], the effect which describe the jump condition of the stress vectors and electric displacement taken from the bulk neighborhood. This is also known as the generalized Young--Laplace equation, [START_REF] Chen | Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids[END_REF]. For an interface separating the inclusion with a constant radius a and the surrounding bulk materials, the generalized Young--Laplace equation in the cylindrical coordinates reads:
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where " " denotes stress and electric displacement jumps along the two sides of the interface.

In the case of vanishing inclusion, the for an infinite-long porosity, the terms z  in Eq. (3) vanish as there are no variations of surface stress and electric displacement in the axial direction. The above equations replace the tractionfree and electric-displacement-free conditions at the pore boundaries in the classical boundary value problems without surface energy effects. The constitutive relation of the infinitesimally thin interface, under the generalized plane stress assumption, can be expressed as [START_REF] Chen | Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects[END_REF]
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where s ij c are the surface elastic moduli, s ijk e denote the surface piezoelectric constants, and s ij  represent the surface dielectric constants. These surface properties are typically determined by atomistic simulations [START_REF] Dai | Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials[END_REF][START_REF] Miller | Size-dependent elastic properties of nanosized structural elements[END_REF][START_REF] Shenoy | Atomistic calculations of elastic properties of metallic fcc crystal surfaces[END_REF]. In this manuscript, due to the lack of such data, we adopt a phenomenological perspective and assume the surface properties to be known quantities. It should be mentioned that the dimensions of stress and electric displacement in the energetic surfaces are force or electric charge per unit length, respectively, which are not the same as those in the bulk material, namely, force or electric charge per unit area, respectively. The difference in the units of stress and electric displacement is due to zero-thickness nature of the interface and is depicted in the Young--Laplace equation. In addition, the coherency of the interface requires that tangential and longitudinal components of the strain and electric field are continuous across the interface, namely:
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where strain and electric field components without superscript s are the quantities evaluated at ra = of the bulk material side.

Homogenized Constitutive Relations

Following the classical homogenization theory, the homogenized constitutive relations of the nanoporous piezoelectric materials can be expressed in terms of effective constants, designated by J o u r n a l P r e -p r o o f an asterisk, that relate the macroscopic strain ε and electric field E vectors to the macroscopic stress σ and electric displacement D vectors as follows:
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In the above equations, the macroscopic strain and electric field are computed directly by the classical volume-averaging of their local quantities as follows:
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where V denotes the total volume over the entire representative volume element or repeating unit cell. In contrast, the effective stress and electric displacement, in the presence of surface stress and electric displacement, are evaluated using the divergence theory (Chatzigeorgiou et al., 2015b;[START_REF] Ghosh | Elastomers filled with liquid inclusions: Theory, numerical implementation, and some basic results[END_REF] in the following form:
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Generalized CCA/GSCM Model with Surface Piezoelectricity

In this section, the composite cylinder assemblage model, developed by [START_REF] Hashin | The Elastic Moduli of Fiber-Reinforced Materials[END_REF], and the generalized self-consistent model, developed by [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF], are further extended to model the nanoporous piezoelectric materials, enhanced with surface piezoelectricity.

Following Chatzigeorgiou et al. (2019a;2019b), to obtain a complete set of effective properties of 
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From the above equation, it is noted that to obtain the complete set of the homogenized properties under axisymmetric loading, one can sequentially apply only one unit macroscopic ( )
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which produce the following strains and electric field upon using the strain-displacement and electric potential-electric field relations,
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) are the unknown constants. These general expressions lead to the stresses and electric displacements that satisfy the equilibrium and charge conservation equation. We note that the expressions for the radial and tangential displacements are similar to those in a thickwalled cylinder subject to internal and/or external pressure based on the classical linear elasticity theory.

Subsequently, the radial and axial stresses in the bulk materials, as well as the energetic hoop, axial stresses and axial electric displacement, are expressed in terms of the unknown constants and surface and bulk properties upon the use of the generalized Hooke's law under the generalized plane strain condition: 
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J o u r n a l P r e -p r o o f

The unknown constants i  are obtained from the boundary condition and the extended Young--Laplace equation. Specifically, the homogenized displacement boundary condition imposed at rb = under the generalized plane strain constraint reads:
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The Young--Laplace equation for the radial stress is expressed as:

( )
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It should be noted that the Young--Laplace equation for the radial electric displacement is automatically satisfied under the axisymmetric loading path hence the radial electric displacement jump condition is omitted herein.

Finally, the global system of equations for the determination of the unknown constants expressed in terms of the macroscopic strain and electric field are obtained as: 
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In the cylindrical coordinates, upon the use of the coordinate transformation relation, Eq. ( 17) at rb = becomes:
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The equilibrium and Maxwell conservation equations under the combined axial shear and transverse electric field loading given in terms of displacement and electric potential read:
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By solving Eq. ( 20), the displacement z u and electric potential  accounting for the boundary conditions in Eq. ( 19) are obtained as:
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which produce shear strain and electric field in the following form: J o u r n a l P r e -p r o o f
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The shear stress and radial electric displacement in the bulk materials, together with the energetic interface shear stress and hoop electric are obtained in terms of the unknown constants, the surface and bulk properties in the following form: 
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The unknown constants i  are obtained from the boundary conditions Eq. ( 19) and the generalized Young--Laplace equations as follows:

( ) The analytical solution for the transverse effective shear modulus * m cannot be obtained directly for the CCA model because the equivalence between homogeneous displacement and traction boundary conditions no longer holds for a single composite cylinder. Therefore, the GSCM model (including the fiber, matrix, and effective medium) has been considered to compute the effective properties under transverse shear loading for nanocomposites with an energetic surface (Chen et al., 2018b). Herein, the three-phase model will be further simplified to model real porosity with surface piezoelectricity. For this loading case, the biaxial tension-compression far-field loading is applied as follows:
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The displacement fields in the matrix and effective medium are given in the following form [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF]: 
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In the cylindrical coordinates, the above equation becomes:
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To determine the unknown coefficients in Eqs. ( 27) and ( 28), the generalized Young--Laplace equation and continuity condition at the matrix/composite interface are enforced: In addition, the Eshelby formula states that for a homogeneous medium containing an inclusion, the strain energy under applied displacement conditions is the same as that of the same medium when it contains no inclusion, which leads to the following condition to be satisfied:
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( ) =denote the stresses and displacements in the medium when it contains no inclusion, respectively. For detailed derivation, see [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF]. Solution of Eqs. ( 30)-( 32) yields the quadratic expression for the determination of the effective transverse shear modulus m  . It should be pointed out that using the differential coated cylinder assemblages (DCCA) approach for all the properties renders similar results for the effective properties (see [START_REF] Lefèvre | The Overall Elastic Dielectric Properties of Fiber-Strengthened/Weakened Elastomers[END_REF][START_REF] Milton | The coherent potential approximation is a realizable effective medium scheme[END_REF].

0 0 0 0 d0 rb c c c c rr r r rr r r S u u u u b          = + - - =  ( 

Finite-Element Asymptotic Homogenization Accounting for Surface Piezoelectricity

In this section, following the work by [START_REF] Cavalcante | Homogenization of elastic-plastic periodic materials by FVDAM and FEM approaches -An assessment[END_REF][START_REF] Chen | Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 2: New results[END_REF][START_REF] Chen | Computationally-efficient homogenization and localization of unidirectional piezoelectric composites with partially cracked interface[END_REF][START_REF] Saeb | Aspects of Computational Homogenization at Finite Deformations: A Unifying Review From Reuss' to Voigt's Bound[END_REF], the multiphysics finite-element micromechanics homogenization theory accounting for the surface piezoelectricity is developed for studying the size-dependent behavior in nanoporous piezoelectric materials for the first time.

In the same spirit as the asymptotic expansion theory widely used in the homogenization of mechanical problems in composites [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF]He and Pindera, 2021a, b), the displacement and electric potential fields in the q th element are represented by the two-scale expansion involving the macroscopic coordinates x and the microscopic coordinates y of the following form:  and electric fields ( ) q i E are obtained in terms of macroscopic and fluctuating components as follows:

( ) ( ) ( ) ( ) qq i ij j i qq ii u x u Ex    =+  = - + (33) 
( ) ( ) ( ) ( ) ( ) ( ) 1 2 q qq j i ij ij ij ij ji q qq i i i i i u u yy E E E E y            = + = + +        = + = -  (34) 
Applying the differential operators to the fluctuating displacement and electric potential, the fluctuating strain and electric fields are obtained in the following form:

( ) ( ) ( ) ( ) ( ) ( ) q q q o q u q o q   =  = - ε B u EB ( 35 
)
where ( )

( ) ( ) T 1 ... o q N     =  u u u with ( )   ( )T 1 2 3 ,, op p u u u     = u , ( ) ( ) ( ) T 1 ,..., o q N      =  ,
N denotes the total number of nodes in q th element.

( )

q u
B denotes the strain-displacement matrix and

( ) q  B
denotes the electric field-electric potential matrix, which are used to construct the potential energy integral at the element level [START_REF] Chen | Computationally-efficient homogenization and localization of unidirectional piezoelectric composites with partially cracked interface[END_REF].

Before passing to the actual boundary value problem, it is essential to express all the fields and constitutive laws, namely Eqs. ( 1) and ( 4), in Cartesian coordinates. The axes in the Cartesian ( )

1 2 3 ,,
x x x and cylindrical ( )

,, rz 
coordinates are linked through the following relation:

1 2 3 cos , sin , x r x r x z  = = = (36).
Accordingly, the stress, strain, electric displacement, and electric field vectors in Voigt notation are transformed between the cylindrical (indicated by the tilde symbol) and Cartesian coordinate systems:

TT TT , , , , , , ,    
 =  =  =  =  =  =  =  =  ε Q ε σ Q σ ε Q ε σ Q σ E R E D R D E R E D R D (37) 
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where R denotes the second-order rotator: 

              -       = -         -     Q (40)
Given the above rotators, the transformation of the generalized stiffness matrices between the cylindrical and Cartesian coordinates takes the form:

TT T T T T , , , , ,       =   =   =   =   =   =   C Q C Q e Q e R κ R κ R C Q C Q e Q e R κ R κ R (41)
In contrast with the analytical solutions in the previous section, in which the surface piezoelectricity is incorporated through the generalized Young--Laplace equation, the surface effects in the multiphysics finite-element method are taken into account directly through the J o u r n a l P r e -p r o o f additional surface energies associated with the affected elements stretching along the pore boundary. Therefore, the total potential energy  of the unit cell contains the strain and electric energies with contributions from the bulk materials b U and energetic surfaces s U , along with the work done by the external force and electric charge W :

( ) ( ) ( ) T T sT sT T T 1 1 d d 2 2 bs V S U U W V S V  = + -=  - +  -  -  -  σ ε D E σ ε D E σ ε D E (42)
The generalized local stiffness matrices are obtained by the minimization of total potential energy Eq.( 42), which is done by substituting Eqs. ( 34) and ( 35) into Eq. ( 42) with the help of the generalized Hooke's law in the Cartesian coordinates and then taking the partial derivatives

   = u0 and    = 0: bT sT b b s s b s uu u uu u u u b s s s uu                          + = +                                         K K K K f f u K K K K f f (43)
where the superscripts b and s denote the contributions from the bulk materials and energetic surface, respectively, with:

( ) ( ) T T T T T T s T T T T T TT d , d , d d , d , d d , d b b b uu u u u u V V V s s s s s uu u u u u S S S bb u u u VV ss u u u V V V S S S VV              =   = -   =   =   = -   =   =   -  = -   +   =   -        K B C B K B κ B K B e B K B C B K B κ B K B e B f B e E B C ε f B e ε B κ E f B e E B C ( ) ( ) T Ts T d , d s s s SS SS     = -   +    ε f B e ε B κ E (44)
The local stiffness matrices are assembled into a global system of equations by enforcing the continuities of fluctuating displacements and electric potentials at common nodes of adjacent elements, as well as the periodic conditions at the mirrored faces of a repeating unit cell. The final form of the system of equations for the determination of the fluctuating nodal displacements and electric potentials can be expressed in the following symbolic form:
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T uu u u u           =            Φ (45)
The homogenized generalized stiffness matrix of the unit cell is obtained by sequentially applying one unit strain or electric field to solve the Eq. ( 45) iteratively for the fluctuating nodal displacements  and electrical potentials  Φ , hence the stress and electric displacement fields are obtained. Subsequently, the full set of macroscopic stress and electric displacements for the unit cell are determined through the volume-averaging of their corresponding local fields over the entire volume V and the interface S according to Eq. ( 9).

Numerical Results

The main purpose of this section is to test the accuracy of the developed CCA vis-à-vis the multiphysics FEM model with surface piezoelectricity, the latter of which is currently the computational standard in the simulation community. In this section, numerical results are generated extensively for the first time to demonstrate the effect of surface piezoelectricity on the size-dependent response of piezoelectric nanoporous materials. In the following simulations, the PZT-7A piezoelectric bulk material, as shown in Table 1, has been considered, whose properties were found in (Chen et al., 2018a;[START_REF] Tu | Electromechanical response of multilayered piezoelectric BaTiO3/PZT-7A composites with wavy architecture[END_REF]. The surface parameters are typically identified using atomistic simulations of atomic lattices of finite thickness by progressively decreasing the number of through-thickness atomic planes and extrapolating in the limit to zero [START_REF] Dai | Surface piezoelectricity: Size effects in nanostructures and the emergence of piezoelectricity in non-piezoelectric materials[END_REF][START_REF] Miller | Size-dependent elastic properties of nanosized structural elements[END_REF][START_REF] Shenoy | Atomistic calculations of elastic properties of metallic fcc crystal surfaces[END_REF]. For instance, most publications (Chen et al., 2018b;[START_REF] Duan | Nanoporous materials can be made stiffer than non-porous counterparts by surface modification[END_REF] in the literature used the surface parameters, obtained from molecular dynamics simulations for two different crystallographic directions [START_REF] Miller | Size-dependent elastic properties of nanosized structural elements[END_REF]. It should be noted that for certain crystallographic orientations of single-crystal metals, the molecular dynamics simulation may produce negative surface moduli, yielding pointwise negative J o u r n a l P r e -p r o o f strain energy density. Thermodynamically there is no restriction about the positiveness of the surface properties (contrarily to a bulk material, whose stiffness tensor needs to be positive definite). However, one needs to verify that the chosen surface parameters do not lead to unstable overall response (Javili et al., 2013;[START_REF] Javili | Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies[END_REF][START_REF] Wang | The surface effects on solid and hollow nanowires under diametral loading[END_REF].

Due to the lack of a complete set of surface parameters for the piezoelectric materials in the open literature, the surface parameters are considered as known quantities. In the continuum mechanics-based simulation of elastic nanostructured materials with the Gurtin-Murdoch interface, the surface parameters obtained by the MD simulation may produce either stiffening or softening behavior of such materials with decreasing nano-pore size depending on whether the surface energies are positive or negative (Chen et al., 2018b). Therefore, in this manuscript, two types of surfaces, labeled as surface A and surface B are utilized unless otherwise stated, which produce negative and positive surface energies, respectively, as shown in Table 2. While a justification of the applicability of the surface parameters with negative surface energy density remains an open question due to the lack of reliable experimental methods, they serve as good candidates for critically assessing the predictive capability of the continuum mechanics-based computational approaches with the extended Gurtin-Murdoch interfaces. The validity of the developed approaches with physically realistic surface parameters for simulating actual piezoelectric nanoporous materials is out of the scope of the present manuscript and will be reported elsewhere in our future publications. 

Homogenized Properties

In the classical micromechanics methodologies, the composite medium is considered to be statistically homogeneous microstructures in nature which contain the same phase volume fractions and statistical distributions as the material-at-large. In this case, the overall response of unidirectional porous composite is transversely isotropic, characterized by five elastic constants, three piezoelectric constants and two dielectric constants. In the finite-element simulations, if the porosities are randomly distributed or placed periodically in a hexagonal array, the homogenized properties are also transversely isotropic as the classical micromechanics methods. However, finite-element simulations of randomly distributed porosities require statistical analysis of unit cells containing a sufficient number of pore phases such that the statistical distributions of inclusions and their volume fractions are captured. Therefore, the hexagonal repeating unit cell depicted in Figure 5 is adopted for comparison with the CCA/GSCM model, both of which yield the transversely isotropic effective behavior. It is also worth mentioning that [START_REF] Hashin | The Elastic Moduli of Fiber-Reinforced Materials[END_REF] developed the composite cylinder assemblage theory by assuming that "all fibers are surrounded by the largest possible nonoverlapping equal circular cylindrical surfaces" and using hexagonal array as the base for their random array.

The unit cell was discretized into 96 24  four-noded Lagrange elements in the circumferential and radial directions, respectively, which contain 2351 nodes in total with four . The surface piezoelectricity effects are notable for both type A and type B surfaces in this nano-parameter range. The pore volume fraction has been kept as 30%.

As anticipated, while small differences are observed for the effective transverse shear modulus, the CCA predictions correlate remarkably well with the finite-element solutions for all the axisymmetric moduli, axial shear modulus, piezoelectric constants, and dielectric constants at this porosity volume fraction. It should be emphasized that all the predicted properties of these two 

Feasibility of the surface parameters

As demonstrated in the previous subsections, due to the negative surface energies, surface A produces a reduction in homogenized moduli relative to the classical results without surface piezoelectricity. The extent of homogenized moduli reduction is strongly influenced by the surface properties, as well as the pore radii and volume fractions. This raises the question of whether the employed surface parameters are physically meaningful since the homogenized moduli of nanoporous composites should retain a positively definite character. Therefore, there exists a limit for the surface constants when they are assumed negative values for any given microstructure (Chatzigeorgiou et al., 2015a). In addition, the surface with negative moduli may produce solution bifurcation. For instance, numerical instabilities associated with the solution of stress fields in nanoporous materials with negative surface energies have been extensively reported in the literature using both analytical and numerical approaches [START_REF] Chen | Homogenization and localization of elastic-plastic nanoporous materials with Gurtin-Murdoch interfaces: An assessment of computational approaches[END_REF][START_REF] Javili | Relationships between the admissible range of surface material parameters and stability of linearly elastic bodies[END_REF][START_REF] Kochmann | Analytical stability conditions for elastic composite materials with a non-positive-definite phase[END_REF][START_REF] Wang | The surface effects on solid and hollow nanowires under diametral loading[END_REF], which prevent the computation of the homogenized moduli for sufficiently small nanopore radii. In contrast, no solution instabilities J o u r n a l P r e -p r o o f have been observed for the surface with positive surface energies over a broad range of pore radii and volume fractions.

In order to generate a reliable set of results, the admissible parameter range needs to be properly established. As observed, the homogenized moduli predicted by surface A will vanish when the pore radii are sufficiently small. In addition, surface A may produce solution bifurcation in the unit cell boundary value problem due to the significant locally negative surface energies, which is characterized by discontinuities in homogenized property prediction across critical pore radii. Surface B parameter, however, yields smooth variation of the homogenized moduli over the entire pore radius range, without experiencing any numerical instabilities as observed in the surface A case.

J o u r n a l P r e -p r o o f

Figure 12 Comparison of the selected homogenized moduli as a function of pore radii at two different volume fractions and three sets of surface properties, illustrating that admissible parameter range needs to be properly established to generate a reliable set of results

Conclusion

This manuscript attempts to shed light on surface piezoelectricity effects on the effective sizedependent material properties of nanoporous piezoelectric materials. Kinematically coherent interface that considers the interface traction and electric displacement jump conditions, described by the extended Gurtin--Murdoch model, is adopted. Two novel homogenization techniques based on the extended CCA, GSCM and the multiphysics FEM have been developed to account for the surface effects, which are extensively compared and verified. In the former approach, three systems of equations, under axisymmetric loading, combined axial shear and in-plane electric field loading, as well as transverse shear loading, are derived respectively to obtain the closed-form solutions for the corresponding Hill's moduli, the piezoelectric and dielectric constants. The variation of the surface stress and surface electric displacement is addressed by the generalized Young--Laplace equations, which satisfy the interface stress equilibrium and charge-conservation conditions. In the latter approach, the local and global stiffness matrices for the bulk materials and energetic surfaces are formulated using the minimization of total potential energy. The surface energy effects are incorporated directly through additional surface energies associated with the affected elements that stretch along the pore boundary. The totally different solution techniques, but with remarkable agreements of the homogenized properties between the exact and approximate solutions over a wide parameter space (except for the transverse shear modulus in the case of GSCM), provide strong support for the accuracy of the developed computational tools for simulating the size-dependent multiphysics behaviors of the nanoporous materials. Care must also be taken when the interface with negative surface energies is assumed for nanoporous materials. 
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  Figure 1a depicts a sketch of unidirectional piezoelectric nanocomposites, in the Cartesian

Figure 1

 1 Figure 1(a) A schematic illustration of unidirectional nanoporous materials with pore radius of a ; (b) A schematic illustration of an infinitesimally thin surface with a constant curvature, illustrating the variation of surface stress and electric displacement balanced by the traction and electric displacement on the matrix side of the interface of a porous nanocomposite according to the Young--Laplace equations

  been added to the linear version of Gurtin--Murdoch surface elasticity theory. The interfacial stress and electric displacement variations are governed by the interface stress equilibrium and charge conservation equations, respectively, J o u r n a l P r e -p r o o f

D

  are the stresses and electric displacement evaluated along ra = at the bulk material side. displacements associated with the energetic surfaces. It should be noted that,

  such composites, three different loading modes may be identified, including (a) combined radial tension, axial tension, and axial electric field loading; (b) combined axial shear and transverse electric field loading; (c) transverse shear loading as follows:J o u r n a l P r e -p r o o f 3.1 Axisymmetric moduli k  , l  , n  , piezoelectric and dielectric constants In this regard, the generalized homogenized Hooke's law in the cylindrical coordinates for this loading reads:

  Eq. (10) to obtain the associated stress field and electric displacement, which yields the corresponding homogenized properties in each column of the generalized stiffness matrix.

Figure 2

 2 Figure 2 Combined longitudinal tension, longitudinal electric field, and all-around tension loading

Figure 3

 3 Figure 3 Combined axial shear and transverse electric field loading

  unknown constants.

  which yield the following system of equations for the determination of the unknown constants:

Figure 4

 4 Figure 4 Transverse shear loading

  fluctuating displacement and electric potential fields induced by the microstructures, which are approximated directly in terms of nodal quantities, ( ) r n a l P r e -p r o o f 20 and interpolation functions. Accordingly, the microscopic strain ( ) q ij

  r n a l P r e -p r o o f

J

  o u r n a l P r e -p r o o f degrees (three displacement components and one electric potential) at each node. Gaussian quadrature rule with 55  points was utilized to evaluate numerically the local stiffness matrix at each element. The periodicity boundary conditions of fluctuating displacements and electric potential are directly enforced during the assembly of the local stiffness matrices by assigning the same number to the nodes in the mirrored faces when the meshes are generated.

Figure 5

 5 Figure 5 Finite-element mesh discretization of the hexagonal periodic porous array with 30% pore volume fraction for comparison with CCA model

J

  o u r n a l P r e -p r o o f families of composites are similar except for the transverse shear modulus where they show marked differences that are reminiscent of what has been observed in the absence of surface electricity. It is also noted that surface A (corresponding to negative surface energies) yields lower effective properties with decreasing the pore dimension relative to the classical results without surface piezoelectricity. An opposite tendency is observed for surface B (corresponding to positive surface energies). For both surfaces, the effect of surface piezoelectricity decreases quickly with the increasing pore radius and almost converges to the results without surface piezoelectricity at 20 a nm = .
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 689 Figure 6 Normalized effective Hill's moduli of a transversely isotropic porous PZT-7A with 0.30 porosity volume fraction as a function of pore radius. Comparison of the multiphysics FEM vis-à-vis CCA/GSCM models

Figure

  A and B surfaces, two additional sets of surface parameters, which are obtained by multiplying the parameters in Table 2 by factors of 2.5 R = and 5 R = , are used for comparison.

  Figure A1 Finite-element mesh discretization for simulating the far-field transverse electric loading Figures A2-A3 present comparison between the local electric displacement field x D and

  Figure A2 Comparison of the electric displacement field generated by exact solution and multiphysics FEM under far-field loading by

  

  

  

  

  

  

  

  

Table 1

 1 Material parameters for the bulk PZT-7A ceramics

Table 2

 2 Material parameters for the energetic surfaces

	Type	( ) -1 11 Nm s c		( ) -1 13 Nm s c		c	( ) -1 33 Nm s			c	( ) -1 44 Nm s		
	Surface A		-14.8				-7.424					-13.1					-2.53		
	Surface B		29.6				14.84					26.2					5.06		
	Type	e	( 31 nCm s	1 -	)	e	( 33 nCm s	-	1	)	( 15 nCm s e	1 -	)		( 11 10 Cm 18 s --1	)		( 33 10 Cm 18 s --1	)
	Surface A		0.2324				-1.099					-0.931					-0.3984			-0.2081
	Surface B		-0.4648			2.198					1.862					0.7968			0.4162
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Admissible parameter range needs to be properly established in order to generate a reliable set of results.

Appendix: Generalized Kirsch Problem with Surface Piezoelectricity

Exact solution for a cylindrical porosity in an infinite plate subjected to far-field loading has been frequently utilized in the literature to validate various homogenization approaches with incorporated surface effects, which is the so-called generalized Kirsch problem with surface piezoelectricity. In the appendix, the analytical solution for electric displacement and antiplane shear stress distributions under the far-field transverse electric displacement loading by 0 

The far-field loading in Eq. (A1) can be rewritten in terms of the displacement and electric potential as follows:

The solution of Eq. (A2) that satisfies the stress equilibrium and electrostatic conditions, along with the far-field loading takes the form: 
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