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ABSTRACT: Converting glycoside hydrolases (GHs) from hydrolytic to synthetic enzymes
via transglycosylation is a long-standing goal for the biosynthesis of complex carbohydrates.
However, the molecular determinants for the selectivity of transglycosylation (T) vs hydrolysis
(H) are still not fully unraveled. Herein, we show experimentally that mutation of one active
site residue can switch the enzyme activity between hydrolysis and transglycosylation in two
highly homologous GHs. Further QM/MM simulations reveal that the mutation modulates
the T vs H reaction barriers via the presence/absence of a single H-bond with the nucleophile
Asp. Such a H-bond controls the product selectivity via a dual effect: on one hand, it facilitates
the breaking of the glycosyl-enzyme intermediate. On the other, it displaces the sugar acceptor,
resulting in a reduced affinity and significant steric repulsion for transglycosylation. These
findings expand our understanding of the molecular mechanisms that modulate the T/H
balance in GHs.

Biosynthesis of carbohydrates or glycosides is mainly
catalyzed by glycosyltransferases (GTs).1−3 These en-

zymes require activated sugar phosphates as their donor
substrates. However, sugar phosphates are usually difficult to
obtain.4 In addition, heterologous expression of GTs is
challenging in most cases. These two factors have greatly
limited the in vitro use of GTs as catalysts for glycoside
biosynthesis in the bioindustry.5 As an alternative avenue, the
retaining glycoside hydrolases (GHs) can be exploited for
carbohydrates synthesis via the transglycosylation or the
glycosynthase reactions.6,7 GHs can recognize a broad range
of substrates, which are normally not activated sugar
phosphates and thus readily available.
The reaction mechanism of retaining GHs involves two key

catalytic steps: glycosylation and deglycosylation (Scheme 1).
In the glycosylation step, a catalytic nucleophile residue attacks
the sugar anomeric center, while a catalytic acid/base residue
(acting as a general acid) transfers a proton to the glycoside
oxygen atom, leading to the formation of a glycosyl-enzyme
covalent intermediate (GEI).8,9 In the subsequent deglycosy-
lation step, an acceptor molecule (water or sugar) attacks the
anomeric carbon and transfers a proton to the acid/base
residue (now acting as a general base).
If the acceptor is a water molecule, the deglycosylation step

leads to hydrolysis. Alternatively, if the acceptor is a sugar
molecule, the process results in the synthesis of a new
carbohydrate, and it is known as transglycosylation (Scheme
1). Although more than 160 GH families have been
characterized to date,10−12 most of them primarily catalyze
the hydrolysis of carbohydrates and therefore are classified as

hydrolytic GHs. Only a few of them13−18 display trans-
glycosylation activities.
In recent years, many practical strategies have been

developed to convert specific GHs into TGs,5,19−25 such as
the use of an activated glycosyl donor,19 the inactivation of the
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Scheme 1. Double-Displacement Mechanisms of Retaining
GHs
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nucleophile,26 or enzyme engineering at both donor and
acceptor sites.27 Concerning enzyme engineering at acceptor
sites, it was found that the transglycosylation vs hydrolysis
activity ratio (T/H) can be improved by either enhancing the
hydrophobicity of the active site or increasing the binding
strength of sugar acceptors.20−24 Additionally, alteration of the
water dynamics could be beneficial to the transglycosylation
activity.25 Concerning enzyme engineering at donor sites, it
was speculated that mutation of conserved residues at the −1
subsite may destabilize the transition state of hydrolysis
compared to that of transglycosylation, leading to increased T/
H ratios.28−30 However, the molecular determinants for the
selectivity of T/H, especially regarding how TGs can suppress
hydrolysis in favor of transglycosylation, have not been fully
unraveled yet.31

In order to address the aforementioned long-standing issues,
we herein investigate two similar enzymes that strongly differ
in their T/H ratio by a combination of experimental and
computational methods. Specifically, we focus on amylosu-
crases (ASs, EC 2.4.1.4) from Neisseria polysaccharea
(NpAS)32−36 and Deinococcus geothermalis (DgAS)37 as well
as their hydrolase counterparts, sucrose hydrolases (SHs, EC
3.2.1.-) from Xanthomonas axonopodus (XaSH, 57% identical
to NpAS)38 and CcSH (Caulobacter crescentus). Both enzymes
are members of the GH family 13. ASs convert sucrose into
amylose-like α-(1,4)-glucans (Supporting Information, Figure
S1), while SHs display almost exclusive preferences for
hydrolysis, converting sucrose into equal amounts of D-glucose
and D-fructose. Our experimental results show that a single
mutation (serine to alanine) at the −1 subsite in SHs convert
hydrolytic enzymes into TGs and, conversely, introducing the
reverse mutation (alanine to serine) in ASs convert TGs into
hydrolytic enzymes. Using a combination of molecular
dynamics (MD) simulations and quantum mechanics/
molecular mechanics-based metadynamics (QM/MM MetD),
we unravel the molecular determinants of this conversion,
revealing the specific role of a single hydrogen bond in
modulating the balance between transglycosylation and
hydrolysis.
As a first step in our investigation, we performed a multiple

sequence alignment to identify residues that could be
responsible for the T/H preferences among ASs and SHs
(Figures S2−S5). The conserved residues Ala287/Ser281 (in
NpAS/XaSH), which forms hydrogen bond interactions with
the nucleophile, were identified as being key for the T/H
selectivity. Therefore, site-directed mutations were focused on
the swapping of Ala/Ser in ASs and SHs.
To determine the effect of the Ala/Ser single mutation on

the hydrolysis and transglycosylation activities, the T/H ratios
of wild-type and mutants at a single donor concentration (D-
sucrose) were determined without an acceptor. In such a case,
hydrolysis and transglycosylation compete to reach an
equilibrium. The product of hydrolysis is D-glucose, whereas
the main product of transglycosylation can be either an α-1,4
glucan with a high degree of polymerization for ASs or an
oligosaccharide with a low degree of polymerization for SHs
(Figure S6). The measured T/H ratio reflects the preference
for transglycosylation vs hydrolysis. As shown in Table 1,
NpASA287S reduces the T/H ratio by 59-fold (from 8.80 to
0.15) with respect to the wild-type NpAS. The opposite trend
happens in XaSHS281A, which increases the T/H ratio by 28-
fold (from 0.05 to 1.40). Therefore, the single mutation can
completely shift the selectivity from specific hydrolysis to

transglycosylation in XaSH and vice versa for NpAS (Figure
S7).
Subsequently, kinetic parameter analyses were performed

(Table S1). Sucrose was used as the donor substrate for both
hydrolysis and transglycosylation, while D-glucose was used as
the acceptor for transglycosylation only.39 In these conditions,
the transglycosylation product is D-maltose. Wild-type NpAS
has a high preference for transglycosylation, with a kcat

T /kcat
H

value of 13.43. However, upon A287S mutation, the trans-
glycosylation activity (kcat

T ) decreased significantly (0.7 s−1 in
NpASA287S versus 9.4 s−1 in NpAS). Meanwhile, the hydrolysis
activity (kcat

H ) is enhanced (1.9 s−1 in NpASA287S versus 0.7 s−1

in NpAS). Likewise, XaSH exhibits high preference for
hydrolysis, with a kcat

T /kcat
H value of 0.02, while the Ser281 →

Ala281 mutation in XaSH switches the hydrolysis and
transglycosylation activities, with the transglycosylation being
preferred over hydrolysis (kcat

T /kcat
H , ∼1.7). Similar results were

obtained for another pair of enzymes of the same family
(DgAS, a transglycosylase, and CcSH, a hydrolase) (Figure S8).
Overall, our experimental results for both single and double

concentration models demonstrate that the Ala → Ser
mutation convert ASs into hydrolytic enzymes, while the
corresponding reverse mutation, Ser → Ala, convert SHs into
transglycosylases. Therefore, only one amino acid mutation
(Ala/Ser) can remarkably modulate the product selectivity (T/
H) in ASs and SHs.
To get further insight into the effect of a single mutation on

the T/H ratio, we performed QM/MM-based metadynamics
simulations of the hydrolysis and transglycosylation reactions
in NpAS and XaSH. As both reactions share the first step of
the reaction (glycosylation, Scheme 1), we focused on the
second step (deglycosylation), which determines the T/H
balance. The glucose molecule (the natural acceptor) was
docked into the active site to model the transglycosylation
reaction. The chemical reaction was driven by three collective
variables (Figure S29): the first one (CV1) measures the
degree of GEI bond cleavage, the second one (CV2) quantifies
the degree of nucleophilic attack by the acceptor (water or
glucose), and the third one (CV3) considers proton transfer
from the acceptor to the acid/base residue.
For NpAS, the hydrolysis reaction starts with the

nucleophilic attack of the catalytic water on the anomeric

Table 1. Transglycosylation and Hydrolysis Ratio Measured
for all GH13 Enzymes Investigated and Their
Corresponding Ala/Ser Mutantsa

enzyme transglycosylation (%) hydrolysis (%) T/H

NpAS 89.8 ± 1.3 10.2 ± 0.4 8.80
NpASA287S 12.9 ± 1.2 87.1 ± 1.2 0.15
XaSH 5.1 ± 1.8 94.9 ± 1.8 0.05
XaSHS281A 58.4 ± 6.0 41.6 ± 1.1 1.40
DgAS 87.7 ± 1.9 12.3 ± 0.8 7.13
DgASA285S 16.5 ± 2.8 83.5 ± 2.9 0.20
CcSH 6.4 ± 0.3 93.6 ± 0.3 0.07
CcSHS271A 52.7 ± 5.4 47.3 ± 0.4 1.11

aThe T/H ratio was measured as a percentage of the reaction
products once the reaction reached final equilibrium (24 h) using the
natural donor sucrose as the donor. All reactions were performed for
24 h at 30 °C in a 10 mL reaction system (pH = 7.0) containing 0.1
mg/mL enzyme (DgAS, XaSH, CcSH, XaSHS281A, and CcSHS271A), 0.2
mg/mL enzyme (NpAS) or 0.4 mg/mL enzyme (NpASA287S and
DgASA285S).
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carbon atom C1 (Figure 1A, Table S2, Movie S1). As the
catalytic water molecule approaches the C1 atom, its covalent

bond distance with Asp286 (C1−Oδ1) gradually increases. In
line with previous studies, both hydrolysis and trans-
glycosylation reactions transpire via a highly asynchronous
and dissociative DNAN mechanism4041−43 (see Movie S2,
Figure 1B, Figure S9 and Table S3). The reaction free energy
barrier for transglycosylation is 8.2 kcal/mol (Table 2), which

is 0.7 kcal/mol lower than that of hydrolysis, indicating that
transglycosylation is favored over hydrolysis. Such a finding is
in line with the experimental value (Table S1). Noteworthy,
the computed structure of the enzyme complex with the
transglycosylation product is in good agreement with the
crystal structure of the enzyme complex with the natural
substrate, which occupies the same −1 and +1 subsites (Figure
S10).
For NpASA287S, both the hydrolysis and transglycosylation

mechanisms turned to be similar to those in the wild-type
enzyme (see Movies S3 and S4, Figures S11 and S12 and
Tables S4 and S5). The computed free energy barrier of
hydrolysis in NpASA287S is 7.1 kcal/mol (Table 2). For
transglycosylation, the calculated barrier is 9.6 kcal/mol, which
is 2.5 kcal/mol higher than the hydrolysis reaction. These
results show that the balance between hydrolysis and

transglycosylation has been reversed in NpASA287S compared
to the wild-type enzyme, i.e., NpAS changes its activity
preference from transglycosylation to hydrolysis upon the
A287S mutation. These findings are consistent with our
experimental data, which show that the T/H ratio has been
fully reversed in NpASA287S compared to wild-type NpAS
(Table S1).
To verify the reverse effects of Ser→ Ala mutation in XaSH,

we conducted similar MD and QM/MM-MD simulations in
XaSH and XaSHS281A. The catalytic mechanism of XaSH
turned out to be very similar to NpAS (see Figures S13−S16,
Tables S6−S9, and Movies S5−S8). In WT XaSH, hydrolysis
and transglycosylation show energy barriers of 10.3 and 20.3
kcal/mol, respectively (Table 2). This is in line with our
experimental results that WT XaSH is dominated by hydrolysis
(Table S1), while the transglycosylation activity is negligible.44

However, the energy barrier of hydrolysis increases to 13.5
kcal/mol in XaSHS281A upon Ser → Ala mutation, while the
barrier of transglycosylation is significantly reduced to 9.6 kcal/
mol. Therefore, the activity preference has shifted to
transglycosylation. All these findings are basically in line with
our experiments.
To identify the root cause of Ala → Ser mutation on the T/

H balance, we superimposed the MD-equilibrated structures of
the glycosyl-enzyme intermediate (GEI) for the WT NpAS and
NpASA287S, as shown in Figure 2A. This revealed that, in
NpASA287S, the hydroxyl group of Ser287 forms a tight
hydrogen bond (present over 95% time of the MD simulation)
with the catalytic nucleophile (Asp286) (see also Figure S17
and Table S10). The hydroxyl OS atom of Ser287 maintains an
average distance of around 2.7 Å with the Oδ2 atom of Asp286,
while its backbone −NH group forms a hydrogen bond with
the catalytic acid/base residue (Glu328). Compared to the
WT NpAS, the new hydrogen bond causes the movement and
rotation of Glu328 and significantly displaces the sugar
acceptor from its position in the wild-type enzyme, weakening
the interaction between the sugar and Arg446 (Table S11).
Indeed, a linear interaction energy analysis (Figure 2B)

shows that nonbonding interactions between the sugar
acceptor and the protein are significantly reduced in
NpASA287S, compared with those in wild-type NpAS.
Altogether, the simulations predict a decreased binding affinity
of the sugar acceptor upon mutation. This is consistent with
our kinetic results showing that the Km value for the sugar
acceptor increases in NpASA287S (Table S1). A similar trend
was observed in chitinases of GH family 18.24 Noteworthy, the
displacement of the sugar also creates a large cavity around
Arg446, which allows solvent molecules to penetrate into the
active site, facilitating hydrolysis (W1 and W2 in A). We
observed a similar phenomenon in the hydrolase XaSH (WI in
Figure S19a).
Analysis of the transition state structures for trans-

glycosylation, evidence that the presence of the Ser···
nucleophile H-bond introduces significant steric repulsion, as
shown in Figure 3A. Due to the H-bond induced rotation of
the sugar acceptor (Figure S18), the pyranose ring at the −1
subsite and the acceptor glucose suffer from significant steric
repulsion at the TS of transglycosylation, which results in a
high barrier of transglycosylation in XaSH. By contrast, the S
→ A mutation in XaSHS281A remarkably reduces the steric
repulsion (Figure 3B), resulting in a low barrier of trans-
glycosylation (Table 2). A similar scenario was observed in
NpAS (Figure S19b,c).

Figure 1. Representative snapshots from QM/MM modeling of
hydrolysis (A) and transglycosylation (B) in NpAS. TS, transition
state; P, product.

Table 2. Computed Reaction Free Energy Barriers (in kcal/
mol) for Hydrolysis and Transglycosylation in XaSH and
XaSHS281A

a

enzyme ΔGH
⧧ ΔGT

⧧

NpAS 8.9 8.2
NpASA287S 7.1 9.6
XaSH 10.3 20.3
XaSHS281A 13.5 9.6

aΔGH
⧧ , free energy barrier for the hydrolysis reaction; ΔGT

⧧, free
energy barrier for the transglycosylation reaction.
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In summary, our simulations clearly reveal the specific role
of a single H-bond in modulating the balance between
hydrolysis and transglycosylation in GH13 enzymes by dual
effects. On one hand, the Ser···nucleophile hydrogen bond
facilitates the glycosyl−enzyme covalent bond (C1−Oδ1)
cleavage during both hydrolysis and transglycosylation
(Table S12). On the other hand, it disrupts the binding and
positioning of the sugar acceptor, resulting in a reduced
enzyme affinity for the sugar acceptor and significant steric
repulsion between it and the pyranose ring of the −1 subsite
during the transglycosylation reaction. These dual effects
increase hydrolysis but reduce transglycosylation activity,
decreasing the T/H ratio. These findings could be extended
to other members of GH families for which active site
interactions have been suggested to play a role in the T/H
ratio (Figure S20, Table S13).39,45−48 The insights on the key
roles of hydrogen bonds in controlling T/H preferences
provided here could also be useful in the engineering of other
GHs toward the synthesis of new carbohydrates.
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