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A regularized high-order moment model for electrons in partially-ionized plasmas
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A model for electrons in partially-ionized plasmas that self-consistently captures non-

Maxwellian electron energy distribution function (EEDF) effects is presented. The model

is based on the solution of scalar and vectorial velocity moments up to the contracted

fourth-order moment. The set of fluid (macroscopic) equations is obtained with Grad’s

method and exact expressions for the collision production terms are derived, consider-

ing the electron-electron, electron-gas, and electron-ion elastic collisions as well as for

electron-gas excitation and ionization collisions. A regularization of the equations is pro-

posed in order to avoid spurious discontinuities, existing in the original Grad’s moment

model, by using a generalized Chapman-Enskog expansion that exploits the disparity of

mass between the electrons and the heavy particles (ions and atoms) as well as the dispar-

ity of plasma and gas densities, typical of gas discharges. The transport model includes

non-local effects due to spatial gradients in the EEDF as well as the impact of the EEDF in

the calculation of the elastic and inelastic collision rates. Solutions of the moment model

under spatially-homogeneous conditions are compared to direct simulation Monte-Carlo

(DSMC) and a two-term Boltzmann solver under conditions that are representative of high

plasma density discharges at low-pressure. The moment model is able to self-consistently

capture the evolution of the EEDF, in good quantitative agreement with the kinetic solu-

tions. The calculation of transport coefficients and collision rates of an argon plasma in

thermal non-equilibrium under the effect of an electric field are in good agreement with

the solutions of a two-term Boltzmann solver, largely improving models with a simplified

Bhatnagar–Gross–Krook (BGK) collisional operator.

a)Corresponding author
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I. INTRODUCTION

Electrons in partially-ionized plasmas often do not follow a Maxwellian distribution due to the

collisions with a much colder gas, spatial inhomogeneities, and the presence of electromagnetic

fields1,2. Fluid models for the electrons in partially-ionized plasmas usually solve for the first few

moments of the Boltzmann equation of the electrons, i.e., the continuity equation, the momentum

equation (often in the drift-diffusion approximation), and the energy equation, e.g.3–7. However,

these equations include transport coefficients and reaction rates that depend on the electron energy

distribution function.

In gas discharges, the transport coefficients and the reaction rates for electron fluid models are

often obtained by solving the spatially homogeneous electron kinetic equation in the two-term

approximation8,9. This approach expands the distribution function into spherical harmonics10,11

and solves for the evolution equations for the isotropic part and the anisotropy in the direction

of the first spherical harmonic, while the anisotropy is assumed to be small as compared to the

spherical part of the distribution function. The resulting coefficients are then put into lookup

tables as a function of the local electron mean energy12,13 or as a function of the local reduced

electric field14,15. Even though the mean-energy approximation considers a non-local electron

energy equation, the transport and rate coefficients are computed from the solution of a Boltzmann

solver that assumes a local equilibrium between electric acceleration and collisional momentum

and energy losses under spatially-homogeneous conditions, as in the local-field approximation.

However, the local approximation is not justified in the low-pressure regime where the electron

energy relaxation length can become comparable to the length of the spatial inhomogeneities and,

consequently, the spatial gradients need to be taken into account in the kinetic equation16,17.

Standalone fluid models for the electrons are used to study high plasma density (1016 − 1019

m−3) discharges at low pressure (< 50 mTorr)18–20. Altough fluid models under these conditions

are compromised by the fact that the electron-electron mean-free path is comparable to the size of

the device, the dimensions of the system are often too large for full kinetic simulations. These fluid

models do not use the transport coefficients from the Boltzmann solver as the local approximation

is no longer valid. Instead, most of these multi-fluid models, e.g.18–20, obtain the closure by taking

moments of a kinetic equation with a Bhatnagar–Gross–Krook (BGK) operator for the electron-

neutral collisions where the collisional frequency is computed as an average rate computed with

Maxwellian electrons. As it will be shown in this paper, the resulting system of fluid equations
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is incomplete (missing effects such as thermal friction or the effect of non-Maxwellian electron

energy distribution function (EEDF)) and overestimates the transport coefficients and collisional

rates, in particular the ionization and excitation rates.

Alternatively, in order to account for non-equilibrium processes, some authors have proposed

to solve the equations for higher-order moments. In addition to density, momentum, and en-

ergy conservation, Refs.20–23 include the equation for the electron heat flux. Zielke et al.20 and

Futtersack23 proposed a simplified equation for the heat flux with a closure that is obtained by

assuming a Maxwellian EEDF for the closure fluxes of the heat flux equation while neglecting the

inertial terms and a BGK operator for the elastic collisions with the gas. Alternatively, Dujko et

al.22,24 compute the collision terms of the moment model with collision rates computed through

the multi-term Boltzmann equation using the momentum transfer theory while the closure flux

of the quartic tensor is based on a adjustable parameter. Becker & Loffhagen21 propose a model

that obtains the closure for the heat flux equation that relies on the local approximation, i.e., the

transport fluxes and collisional rates are tabulated from the solution of a Boltzmann solver. Some

of these high-order moment models were studied and compared by Garland et al.25

In this paper, we will derive from the kinetic equation a non-linear model that is based

on the Grad’s method26–28. This work follows the methodology that has been used in other

non-equilibrium problems such as rarified gases29,30, granular gases31 or electrons in semi-

conductors32,33. In our model, the collision frequencies, the closure fluxes, and the transport

coefficients are analytically derived by taking moments of the Boltzmann collisional operator with

the non-Maxwellian distribution function and are function of the macroscopic variables. Thus,

as opposed to the above-mentioned models, the closure does not rely on the local approximation,

does not contains adjustable coefficients and does not use a simplified BGK collisional term.

Grad’s models have been studied in fully-ionized plasmas34–36 and partially-ionized plasmas37.

In the classical works34,35,37, in addition to the plasmadynamical moments (mass, momentum, and

energy for each particle species), the authors consider vectorial and tensorial moments. In addition,

the authors study the linear regime of the moment system. In this regime, the transport fluxes are

obtained by solving a linear system of equations. As we will show in this paper, with this choice of

moments (i.e., vectorial and second-rank tensorial), these models do not study perturbations in the

electron energy distribution function (EEDF), and, therefore, cannot capture the depletion of the

electron population at high density, characteristic of gas discharges. For this reason, we propose a

moment method that studies the evolution of moments that are responsible for the isotropic (scalar
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moments) and first anisotropy (vectorial moments) of the distribution function, which allows for

self-consistently capturing non-Maxwellian EEDFs. The relation between the Hermitian moment

expansion and the multi-term Boltzmann solver is discussed in detail in a number of references in

the context of electron swarms and gas discharges11,38–41.

Grad’s moment model equations are known to have mathematical problems (see, e.g., refs.27,30,42).

The fluxes of Grad’s moment set of equations are written exclusively as a function of the macro-

scopic variables F(U), as in hyperbolic systems. This results in spurious discontinuities, problems

at the boundaries, and, in general, problems to solve numerically the equations27,30. Struchtrup

& Torrilhon29,30 have proposed a method for the regularization of the equations in neutral gases

that consists in adding parabolic terms in the fluxes, i.e., F(U,∇U). This terms are derived from

a Chapman-Enskog expansion considering the equations of high-order moments43. This regu-

larization yields solutions that are smooth and stable as opposed to Grad’s equations, Burnett or

super-Burnett equations. In the present work, we will also regularize Grad’s equations by adding

parabolic terms that are obtained through a Chapman-Enskog expansion that exploits the smallness

of the electron mass and the disparity of plasma and gas densities, typical of gas discharges.

In this work, we present the derivation of the system of equations that solves for the scalar

and vectorial moments up to the contracted fourth moment (density, momentum, energy, heat-flux

and contracted fourth-moment, which in 3D results in 9 scalar equations), called in the following

9-M model. We determine the collision terms of the 9-M equations by taking moments of the full

Boltzmann collision operator, including electron-heavy (ions and gas) and electron-electron elastic

collisions and electron-gas inelastic and ionization collisions. In addition, we will regularize the

system of equations by considering a transport model that simplifies the momentum and heat-

flux equations when the anisotropic part of the electron velocity distribution function is small as

compared to the isotropic part, which is justified by the presence of electron-gas collisions.

In order to validate the collisional integrals and transport coefficients of our model, we compare

the solution of our model to kinetic simulations, both direct simulation Monte-Carlo (DSMC) and

to a two-term Boltzmann solver, under spatially-homogeneous conditions with conditions that are

representative of gas discharges at low-pressure and high-plasma density.

The plan of the paper is as follows. First, we present the electron kinetic equation and the

equation of transfer. Second, we present the 9-M Grad’s moment model equations. Third, we

determine the collision terms for the moment system. Fourth, we propose a regularization of

the equations based on a Chapman-Enskog expansion that exploits the electron-heavy mass ratio
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and the ionization degree. Finally, we compare spatially-homogeneous solutions of the model to

kinetic simulations.

II. ELECTRON KINETIC EQUATION AND GENERAL TRANSPORT EQUATION

A. Electron kinetic equation

The electron kinetic equation describes the evolution of the electron distribution in the phase

space, as follows,
∂ fe
∂ t

+v ·∇ fe−
eE
me

·∇v fe =
δ fe
δ t

∣∣∣∣
c
. (1)

Here, E is the electric field, me is the electron mass, and e is the elementary charge. We con-

sider the electron collisional processes that are the dominant collisions in a low-pressure non-

equilibrium plasma in an atomic gas. We consider the elastic collisions with heavy species (neu-

tral gas and ions), elastic collisions with electrons, excitation collisions with the gas and electron

impact ionization collisions. As a result, the collisional term of the kinetic equation reads

δ fe
δ t

∣∣∣∣
c
=

i,g

∑
α

δ fe
δ t

∣∣∣∣
el

eα
+

δ fe
δ t

∣∣∣∣
el

ee

+
δ fe
δ t

∣∣∣∣
exc

eg

+
δ fe
δ t

∣∣∣∣
iz

eg

, (2)

where the subscripts e, i, and g stands for the electron, ion, and gas species, respectively.

1. Elastic collisions

In this work, we consider a Boltzmann operator for the elastic collisions, as follows,

δ fe
δ t

∣∣∣∣
el

eα
=
∫ ∫ (

f ′e f ′α − fe fα
)

gσeαdΩdvα , (3)

where the prime corresponds to the distribution after the collision, α is the subindex for the target

species (neutral, ions, and electrons), dΩ is the solid angle element of the deflected particle in the

center of mass reference frame, g = |ve−vα | is the modulus of the relative velocity between the

colliding particles, and σeα(g,Ω) is the differential cross-section of the interaction.

In elastic collisions of the type, e+α → e+α , the collision conserves the momentum and the

energy, as follows,

meve+mαvα = mev
′
e+mαv

′
α and

1
2

mev2
e +

1
2

mαv2
α =

1
2

mev′2e +
1
2

mαv′2α . (4)
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In the calculation of the rates and transport coefficients, we use effective cross sections inte-

grated over the angles37,44, as follows,

Q(l)
αβ (g) = 2π

∫ π

0

(
1− cosl χ

)
σαβ (g,χ)sin χdχ, (5)

where l = 1 is the momentum-transfer (or diffusion) cross section.

We consider a Coulomb potential screened at the Debye length for the electron-ion and

electron-electron collisions37 which yields the following momentum-transfer and viscosity cross

sections

Q(1)
eα (g) = 2πb2

0 ln

[
1+
(

rD

b0

)2
]

and Q(2)
eα (g) = 4πb2

0





ln


1+

(
rD

b0

)2

−

(
rD
b0

)2

1+
(

rD
b0

)2







, (6)

where b0 = e2/(2πε0µeαg2), the reduced mass µeα = memα/(me+mα), the Debye length r2
D =

ε0Te/(nee) and ε0 is the vacuum permittivity. Note that this collisional term is formally differ-

ent from the Fokker-Planck collision model that is usually used in the two-term approximation4.

Nevertheless, as noted in refs.37,45, this model provides similar results to the Landau collision

operator.

2. Inelastic and ionization collisions

We consider excitation collisions of the type, e+g
φ∗−→ e+g∗, where φ∗ is the excitation energy.

In this work, we do not follow the excited states of the gas, and we consider all the gas states as a

single species. The Boltzmann operator for excitation collisions reads,

δ fe
δ t

∣∣∣∣
exc

eg

=
∫ ∫ (

f ′e f ′g− fe fg
)

gσ exc
eg dΩdvg. (7)

In this case, the relation between the pre-collisional and post-collisional velocities are related by

meve+mgvg = mev
′
e+mgv

′
g and

1
2

mev2
e +

1
2

mgv2
g =

1
2

mev
′2
e +

1
2

mgv
′2
g + eφ∗. (8)

We define the following transport cross-section for the inelastic collisions, as described by

Robson11,

Q(l)
αβ (g)= 2π

∫ π

0

[
1−
(

g′

g
cos χ

)l
]

σαβ (g,χ)sin χdχ, and Q(T )
αβ (g)= 2π

∫ π

0
σαβ (g,χ)sin χdχ,

(9)

6



A regularized high-order moment model for electrons in partially-ionized plasmas

where, g′/g is the ratio of the relative velocities after and before the collision.

We consider the ionization process e+ g
φ iz

−→ e+ e+ i where φ iz is the ionization energy and

we neglect the recombination, as usually done in Boltzmann solvers8, since the plasma density is

much smaller than the gas density. The Boltzmann operator for the ionization collision reads38,

δ fe
δ t

∣∣∣∣
iz

eg

=
∫ ∫

2 f ⋆e1
f ⋆g g⋆egσ iz⋆

eg

dv⋆
e1

dve
dΩdv⋆

g−
∫ ∫

fe fggegσ iz
egdΩdvg, (10)

where the factor 2 of the restitution collision (i.e., positive term) is the stoichiometry coefficient.

In this case, the relation between the pre-collisional (v⋆
e ,v

⋆
g) and post-collisional (ve1,ve2,vi) ve-

locities are related by

mev
⋆
e +mgv

⋆
g = meve1 +meve2 +mivi and

1
2

mev
⋆2
e +

1
2

mgv
⋆2
g =

1
2

mev2
e1
+

1
2

mev
2
e2
+

1
2

miv2
i +eφ iz.

(11)

The definition of the transport cross-sections for inelastic collisions, as shown in Eq. (9), will also

be used for the ionization collisions.

B. General transport equation

We consider the transport equation in a reference frame moving at the electron mean velocity.

This equation is obtained by averaging the kinetic equation multiplied by a weight ψ that is a

function of the velocity v over the velocity space. We define the peculiar velocity, ce = v−ue,

where ue is the electron mean velocity, defined as

ue =
1
ne

∫
v fedv with ne =

∫
fedv. (12)

The general transport equation reads37

∂
∂ t

∫
feψdce+∇·

∫
feψ (ce+ue)dce−

∫
feF ∗

e ·∇ceψdce+
∫

fecei

∂ψ
∂ce j

∂ue j

∂xi
dce=

∫
ψ

δ fe
δ t

∣∣∣∣
c
dce,

(13)

where, the forces in the non-inertial reference frame read

neF ∗
e =−eneE−mene

(
∂
∂ t

+ue ·∇
)
ue. (14)
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III. A MOMENT MODEL WITH NON-MAXWELLIAN EEDF

A. The Grad’s method and the relation with the multi-term Boltzmann approximation

In order to close the fluxes and the collisional terms of the system of moment equations, Grad’s

method assumes that the non-equilibrium distribution function is a perturbed Maxwellian distri-

bution, as follows,

fe(x,ce, t) = f (0)e (x,ce, t)[1+χe(ce)], (15)

where the Maxwellian distribution function reads

f (0)e (x,ce, t) = ne

(
βe

π

)3/2

e−βec2
e with βe =

me

2eTe
. (16)

The perturbation is written as an expansion in Hermite polynomials, which in the case of irre-

ducible polynomials35 reads

χe(ce) =
N

∑
n=0

h(2n)H(2n)(ce)+
M

∑
n=0

h(2n+1)
r H(2n+1)

r (ce)+
P

∑
n=0

h(2n)
rs H(2n)

rs (ce)+ · · · , (17)

where we use the Einstein notation. Here, h(2n), h(2n+1)
r , h(2n)

rs ... are coefficients that are written

as a function of the macroscopic variables and hence each term of the expansion is related to the

resolution of a macroscopic moment equation. H(2n), H(2n+1)
r , H(2n)

rs ... are the irreducible Hermite

polynomials of order n where H(2n) correspond to the scalar polynomials, H(2n+1)
r are vectorial,

and H(2n)
rs are second-rank tensors. N, M, P... are the number of polynomials of each type that are

considered in the expansion.

The use of this expansion to solve the kinetic equation in multi-term Boltzmann discretization is

detailed in refs.11,38–41 Similarly, Balescu35 points out the correspondence between the irreducible

Hermite polynomials and the expansion in Laguerre-Sonine polynomials and spherical harmonics.

The perturbation in the polynomials H(2n) is responsible for the isotropic part of the distribution

function, H(2n+1)
r for the perturbations in the direction of the first spherical harmonic, H(2n)

rs for

the perturbations in the direction of the second spherical harmonic, etcetera.

In classical works in plasma physics such as refs.34,35,37, the perturbation of the distribution

function is chosen along the first and second spherical harmonic. Similarly, 13-M moment models

for rarefied gases27,29 solve for moments in these directions of the velocity space. Alternatively, in

this paper, we consider a model that considers perturbations in the same directions of the two-term

Boltzmann approach, i.e., an expansion in H(2n) and H(2n+1)
r . For this reason, in addition to mass,
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momentum and energy, we consider the heat-flux vector, which relates to h(3)r , in order to capture

perturbations in the first spherical harmonics, and the contracted fourth moment, related to h(4), in

order to capture perturbations in the isotropic part.

B. Grad’s 9-M equations

The 9-M equations are obtained by considering the following weights in the transport equation,

i.e., Eq. (13),

ψ =
(

1, mev,
me

2
c2
e ,

me

2
c2
ece,

me

2
c4
e

)T
. (18)

As a result, the macroscopic state of the electrons is characterized by nine scalar fields: particle

density ne, mean velocity ue, isotropic pressure pe, heat-flux vector qe, and the scalar contracted

fourth moment peii j j , where the subindices i, j refer to the directions following the Einstein nota-

tion. These fields are defined as follows,

ne =
∫

fedv, ρeuei =
∫

mevi fedv, pe =
1
3

∫
mec2

e fedv, (19)

qei =
1
2

∫
mec2

ecei fedv, and peii j j =
1
2

∫
mec4

e fedv.

By using the transport equation, we obtain the following system of equations,

∂ne
∂ t

+
∂

∂xi
neuei = ṅe, (20)

me
∂
∂ t

neuei +
∂

∂x j

(
meneueiue j + peδi j

)
=−eneEi +Ri, (21)

3
2

∂ pe
∂ t

+
∂

∂xk

(
qek +

3
2

peuek

)
+ pe

∂uek

∂xk
= Q, (22)

∂qei

∂ t
+

∂
∂x j

(
rei j +qeiue j

)
+ rei jk

∂uek

∂x j
+qe j

∂uei

∂x j

− 5
2

pe
ρe

∂ pe
∂x j

δi j = Rh f
i − 5

2
pe
ρe

(Ri −meṅeuei) , (23)

∂
∂ t

peii j j +
∂

∂xk

(
reii j jk + peii j juek

)
+4rei j

∂uei

∂x j

−4
qei

ρe

∂ pe
∂x j

δi j = Q(4)−4
qei

ρe
(Ri −meṅeuei) . (24)

We define the normalized contracted fourth-moment that measures the deviations of the fourth-

order moment from a Maxwellian,

∆e =
peii j j − 15

2
nee2T 2

e
me

15
2

nee2T 2
e

me

. (25)
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Note that ∆e represents the excess kurtosis of the distribution function. We define the electron

temperature (in eV) from the mean internal energy by considering an ideal gas law, as follows,

Te =
1

3nee

∫
mec2

e fedv =
pe

nee
. (26)

In Eqs. (23) and (24), the fluxes that appear in the equations are defined as

rei jk =
1
2

∫
meceice jcek fedv, rei j =

1
2

∫
mec2

eceice j fedv, and reii j jk =
1
2

∫
mec4

ecek fedv. (27)

These fluxes will be computed with the expression of the Grad’s distribution function. Addition-

ally, the right-hand-side of the equations contains the collisional terms, i.e., ṅe, R, Q, Rh f , and

Q(4), which will be derived in the next section.

C. Grad’s non-equilibrium distribution function and closure fluxes

The Grad’s non-equilibrium distribution function for this choice of moments reads

f (9M)
e (x,ce, t) = f (0)e (x,ce, t)

[
1+χ(9M)

isot (c)+χ(9M)
anisot(c)

]
(28)

where

χ(9M)
isot (ce) =

2

∑
n=0

h(2n)H(2n)(ce) =
(

15
8
− 5βe

2
c2
e +

β 2
e

2
c4
e

)
∆e

and

χ(9M)
anisot(ce) =

1

∑
n=0

h(2n+1)
r H(2n+1)

r (ce) =
8β 2

e

5ρe
qeicei

(
βec2

e −
5
2

)
.

The non-equilibrium distribution function can be easily computed from the definition of the

moments35.

The closure fluxes are obtained by introducing the distribution function into Eq. (27). The

explicit expressions of the transport fluxes for this closure read

rei jk =
2
5
(
qeiδ jk +qe jδik +qekδi j

)
, rei j =

5
2

p2
e

ρe
(1+∆e)δi j, and reii j jk = 14

pe
ρe

qek . (29)

In the following, it will be useful to define the EEDF of the Grad’s 9-M model to study the

evolution of the distribution function in the energy space. The EEDF is defined as gedEe =

c2
edce

∫
fedΩve where the energy in eV is Ee = mec2

e/(2e). In the case of the 9-M model, the

EEDF reads,

g(9M)
e (x,Ee, t) =

1
2

(
2e
me

)3/2

E
1/2
e

∫
fe(x,ce(Ee,Ωve), t)dΩve

=
2ne

Te
√

π

(
Ee

Te

)1/2

e−
Ee
Te

[
1+

15
8

∆e−
5
2

(
Ee

Te

)
∆e+

1
2

(
Ee

Te

)2

∆e

]
. (30)
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A regularized moment model for electrons in partially-ionized plasmas

C. Grad’s non-equilibrium distribution function and closure fluxes

The Grad’s non-equilibrium distribution function for this choice of moments reads

f (9M)
e (x,ce, t) = f (0)

e (x,ce, t)
h
1+ c(9M)

isot (c)+ c(9M)
anisot(c)

i
(27)

where

c(9M)
isot (ce) =

3

Â
n=0

h(2n)H(2n)(ce) =

✓
15
8
� 5be

2
c2
e +

b 2
e

2
c4
e

◆
De

and
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In Fig. 1, we illustrate the effect of the heat flux vector and normalized contracted fourth-

moment in the distribution function. The heat-flux vector is a result of a perturbation in the skew-

ness of the distribution function, whereas the contracted fourth moment is a result of a perturbation

in the kurtosis of the distribution function and the EEDF. As it can be seen, De < 0 corresponds

to Druyvesteyn-like distribution functions with a depopulated tail at high energies. Alternatively,

De > 0 corresponds to two-temperature like distributions with two different slopes at low and high

energies.
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ṅ e
,R

,Q
,R

h
f ,a

nd

Q
(4

) ,w
hi

ch
w

ill
be

de
riv

ed
in

th
e

ne
xt

se
ct

io
n.

9

A
re

gu
la

riz
ed

m
om

en
tm

od
el

fo
re

le
ct

ro
ns

in
pa

rti
al

ly
-io

ni
ze

d
pl

as
m

as

A
s

a
re

su
lt,

th
e

m
ac

ro
sc

op
ic

st
at

e
of

th
e

el
ec

tro
ns

is
ch

ar
ac

te
riz

ed
by

ni
ne

sc
al

ar
fie

ld
s:

pa
rti

cl
e

de
ns

ity
n e

,b
ul

k
ve

lo
ci

ty
u

e,
is

ot
ro

pi
c

pr
es

su
re

p e
,h

ea
tfl

ux
ve

ct
or

q
e,

an
d

th
e

sc
al

ar
co

nt
ra

ct
ed

fo
ur

th
m

om
en

t
p e

ii
jj

,w
he

re
th

e
su

bi
nd

ic
es

i,
jr

ef
er

to
th

e
di

re
ct

io
ns

fo
llo

w
in

g
th

e
Ei

ns
te

in
no

ta
-

tio
n.

Th
es

e
fie

ld
s

ar
e

de
fin

ed
as

fo
llo

w
s,

n e
=
Z

f e
dv

,
r e

u e
i
=
Z

m
ev

if
ed

v
,

p e
=

1 3

Z
m

ec
2 e

f e
dv

,
(1

9)

q e
i
=

1 2

Z
m

ec
2 e
c e

i
f e

dv
,

an
d

p e
ii

jj
=

1 2

Z
m

ec
4 e

f e
dv

.

B
y

us
in

g
th

e
tra

ns
po

rt
eq

ua
tio

n,
w

e
ob

ta
in

th
e

fo
llo

w
in

g
sy

st
em

of
eq

ua
tio

ns
,

∂n
e

∂t
+

∂ ∂x
in e

u e
i
=
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FIG. 1. Left panel: Effect of a perturbation in the heat flux on the electron distribution function in the

velocity space. Center panel: Effect of a contracted fourth-moment perturbation on the distribution function

in the velocity space. Right panel: effect of a contracted fourth-moment perturbation on the electron energy

probability function (EEPF). The distribution functions are computed for fixed values of Te = 4 eV and

ne = 1017 m−3.

Sometimes, in order to quatify the distribution function in the energy space, the electron probabil-

ity function (EEPF) is used instead the EEDF. The EEPF is simply computed as g(9M)
p (x,Ee, t) =

E
−1/2
e g(9M)

e (x,Ee, t). Note that, in semi-log scale, the EEPF of a Maxwellian as a function of

the energy is a straight line. For this reason, the EEPF allows to easily identify non-Maxwellian

distribution functions in the energy space.

In Fig. 1, we illustrate the effect of the heat-flux vector and normalized contracted fourth-

moment in the distribution function. The heat-flux vector is a result of a perturbation in the sym-

metry of the distribution function. In statistics, this perturbation in the symmetry is usually referred

to as skewness. On the other hand, the contracted fourth moment is a result of a perturbation in

the tails of the distribution function, which in statistics is referred to as kurtosis of the distribution

function. The perturbations in the fourth-moment allows for representing non-Maxwellian distri-

bution functions in the energy space, as shown in Fig. 1. As it can be seen, ∆e < 0 corresponds

to Druyvesteyn-like distribution functions with a depopulated tail at high energies. Alternatively,

∆e > 0 corresponds to two-temperature like distributions with two different slopes at low and high

energies.

As presented in Fig. 2, the Grad’s 9-M non-equilibrium distribution function can represent

the EEDF in low-pressure discharges in a noble gas. In Fig. 2, we present an example of the

experimental measurements by Aanesland et al.46 of the EEDFs in a low-pressure inductively-

coupled plasma (ICP) discharge, operating without magnetic filter with argon at 10 mTorr and

11



A regularized high-order moment model for electrons in partially-ionized plasmas

FIG. 2. Experimental measurements (solid lines) of the EEPF for an argon ICP discharge at 10 mTorr and

130 W, reproduced from Aanesland et al.46, Appl. Phys. Lett. 100, 044102 (2012), with the permission

of AIP Publishing. The measurements are taken at 1 cm (blue), 7.5 cm (green), and 12 cm (red) from

the antenna that produces the inductive heating. We fit (circles) the experimental results with a Maxwellian

(left) and a 9-M Grad’s function (right). The 9-M Grad EEPF captures the shape of the experimental EEDFs.

power of 130 W. The measurements are presented at three different distances from the RF antenna

that generates the plasma. We fit the experimental EEPFs with a Maxwellian and a Grad 9-M

distribution functions. The results show that the Grad 9-M can better capture the shape of the

EEPF both at high-energies (in the inelastic range, i.e., for energies above the first excitation

potential) and low-energies (in the elastic range, for energies below the excitation potential). Note

that the maximum at low energies of the experimental EEPFs is an artifact of the Langmuir probe

measurements that are not able to collect all the electrons at low energies47. Consequently, the

actual EEPF under the measured conditions should present the maximum at Ee = 0, as in the Grad

9-M fit. In addition, we can see that the normalized fourth moment ∆e is a quantity that varies

along the axis of the discharge due to the non-local transport. The values of ∆e that were found in

the fit are negative as the distribution function is depleted at high energies.
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IV. DETERMINATION OF THE COLLISION TERMS

We compute the collisional source terms that appear in Eqs. (20)-(24) as the moment of the

collisional operator in the kinetic equation, with the weights of Eq. (18), as follows,

∫
ψe

δ fe
δ t

∣∣∣∣
c
dv =

∫




1

mev

me
2 c2

e

me
2 c2

ece
me
2 c4

e




δ fe
δ t

∣∣∣∣
c
dv =




ṅe

R

Q

Rh f

Q(4)




, (31)

where the collisional operators for the elastic, inelastic and ionization collisions are presented in

Eqs. (3), (7), and (10). As usually done in the two-term Boltzmann solvers for low-temperature

plasmas, we consider the neutral gas and the ions, i.e., α ∈ (i, g), to be a Maxwellian at a different

temperature than electrons, i.e.,

f (M)
α (x,vα , t) = nα

(
βα
π

)3/2

exp
(
−βαv2

α
)

with βα =
mα

2eTα
. (32)

By introducing the Grad’s distribution function of Eq. (28), the integral of Eq. (31) can be resolved

analytically. The computation of the collisional integrals for a multi-species plasma is far from

being trivial. Nevertheless, the exact analytical expressions can be obtained in the case of Grad’s

method. In this work, we computed the integrals assisted by a computer algebra code written in

the python library SymPy48.

A. Electron-gas and electron-ion elastic collisions

We use the reciprocity relations of the elastic collision (c.f., Eq. (3.28) in ref.27) to write the

moment of the elastic collisional operator Eq. (3), as follows,
∫

ψe
δ fe
δ t

∣∣∣∣
el

eα
dv =

∫ ∫ ∫
(ψ ′

e−ψe) fe fαgσdΩdvαdve, (33)

where α ∈ (i,g).

The integral of the collisional operator will be performed in the inertial reference frame with a

change of the integration variables by replacing the velocities ve and vα by the relative velocity g

and the velocity of the center of mass G, that are defined as follows,

G=
meve+mαvα

me+mα
, g = ve−vα . (34)
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The linear momentum conservation implies that G′ =G and the conservation of energy g = g′, so

the pre-collisional and post-collisional velocities in the center of mass variables read

ve =G+
µeα
me

g vα =G− µeα
mα

g, v′
e =G+

µeα
me

g′ and v′
α =G− µeα

mα
g′, (35)

where the reduced mass is defined as µeα = memα/(me+mα).

We can write g′ as a function of g and the scattering angles37 and integrate the collision unit

sphere as follows,
∫

ψe
δ fe
δ t

∣∣∣∣
el

eα
dve =−µeα

∫ ∫
F el

eα(g,G) fe fαgdgdG. (36)

where F el
eα(g,G) for the first five moments is presented in Appendix A 1.

In order to perform the analytical integration, we need to perform another change of variables

as the electrons and the heavy species have a different temperature. We define the new variable

G̃=G+
µeα
βT

(
βe

me
− βα

mα

)
g, with βT = βe+βα , and βeα =

βeβα
βT

. (37)

With this new variable, the multiplication between the two distribution functions reads,

fe fα = nenα

(
βT

π

)3/2(βeα
π

)3/2

e−βT G̃2
e−βeα g2

(1+χe), (38)

where χe needs to be expressed as a function of the new variables (G̃,g). In this work, we consider

cases where the electron velocity is much smaller than the electron thermal speed, i.e., u2
e ≪ β−1

e .

The integration of the integrals in Eq. (36) can be done with the table 6.1 of ref.35 and are

verified with a computer algebra code. In the following results, we neglect the terms of order

O(u2
eβe) or smaller.

Once the integrals are solved, as the results are solved in the inertial frame, we write the col-

lisional source terms in the non-inertial reference frame, moving at ue through the relations of

Eq. (A5) in Appendix A 2.

The electron-heavy elastic collisional source terms read



ṅe

R

Q

Rh f

Q(4)




∣∣∣∣∣∣∣∣∣∣∣∣∣∣

el

eα

=




0

−meneν
(u,1)
eα ue−meneν

(q,1)
eα

qe
pe

− me
mα

neν
(T,2)
eα e(Te−Tα)− me

mα
neν

(∆,2)
eα ∆eeTα +meneν

(u,1)
eα u2

e +meneν
(q,1)
eα

qe
pe
·ue

−neν
(u,3)
eα eTeue−ν(q,3)

eα qe

− me
mα

ν(T,4)
eα

p2
e

ρe

(
1− Tα

Te

)
− me

mα
ν(∆,4)
eα ∆e

p2
e

ρe

Tα
Te
+4neν

(u,3)
eα eTeu2

e +4ν(q,3)
eα qe ·ue




.

(39)
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The collisional frequencies, which are proportional to the heavy particle density, read

ν(u,1)
eα =

16
3

nαΩ(1,1)
eα , ν(q,1)

eα =
16
3

nα

[
2
5

Ω(1,2)
eα −Ω(1,1)

eα

]
, (40)

ν(T,2)
eα = nα

[
(16+30∆e)Ω

(1,1)
eα −40∆eΩ

(1,2)
eα +8∆eΩ

(1,3)
eα

]
, (41)

ν(u,3)
eα =

16
3

nαΩ(1,2)
eα , ν(q,3)

eα =
16
3

nα

[
2
5

Ω(1,3)
eα −Ω(1,2)

eα

]
, (42)

ν(T,4)
eα = 2nα

[
(32+60∆e)Ω

(1,2)
eα −80∆eΩ

(1,3)
eα +16∆eΩ

(1,4)
eα

]
(43)

ν(∆,2)
eα = 16nα

[
Ω(1,2)

eα − 5
2

Ω(1,1)
eα

]
, ν(∆,4)

eα = 64nα

[
Ω(1,3)

eα − 5
2

Ω(1,2)
eα

]
(44)

In the expressions of the frequencies, we use the generalized Chapman-Cowling integrals44 that

represent the integration of the cross-section over the energy of the collisions and are defined as

Ω(l,r)
eα (Te) =

1
2

(
1

πβe

)1/2 ∫ ∞

0
ξ 2r+3e−ξ 2

Q(l)
eαdξ with ξ =

√
βeg. (45)

Note that the electron-gas energy relaxation frequency of Eq. (41) depends on the normalized

fourth moment. This effect represent non-Maxwellian EEDF effects in the electron-gas energy

exchange, which are usually neglected in fluid models.

B. Electron-gas inelastic and ionization collisions

As done above, we will first compute the source terms in the inertial reference frame and we

will use the variables that were defined in Eq. (34). The same relations as in the elastic colli-

sions holds, except for the energy conservation relation. In the ionization collisions, we consider

that the secondary electron is created at the same energy as the primary electrons (equal sharing

hypothesis). As a result, the energy conservation for excitation and ionization collisions read,

respectively,
µeg

2
g2 =

µeg

2
g′2 + eφ∗ and

µeg

2
g2 = µegg′2 + eφ iz. (46)

The reciprocity relation of Eq. (33) still holds in the case of inelastic and ionization collisions.

The moment of the collisional operator reads

∫
ψe

δ fe
δ t

∣∣∣∣
iz,inel

eg

dv =
∫ ∫ ∫

(ψ ′
e−ψe) fe fggσdΩdvαdve =

−µeg

∫ ∫ [
F el

eg(g,G)+F inel,iz
eg (g,G)

]
fe fggdgdG. (47)
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The integral over the scattering angles can be divided into two contributions, the first one that

is identical to the one derived for the elastic collisions, Eq. (A1), and another contribution that

depends on the energy loss of the excitation/ionization collisions. This integral over the scattering

angles is presented in Eq. (A3) in Appendix A 1.

In order to tackle the integration of Eq. (47), we follow the same procedure as in the electron-

heavy elastic collisions. First, we perform the change of variables of Eq. (37), after, we neglect

the terms of order O(u2
eβe) or smaller, and finally, we change the reference frame, as expressed in

Eqs. (A5).

As seen in the collisional integral of Eq. (47), the inelastic and ionization collisional source

terms have two contributions. The first has the same expression to the elastic collisions of Eq. (39)

with the momentum transfer cross-section of the inelastic and ionization process. However, this

contribution is in general smaller as the elastic collision frequency is larger than the inelastic or

ionization ones. The second contribution, depends on the energy loss by the electron during the

collision, as follows,




ṅe

R

Q

Rh f

Q(4)




∣∣∣∣∣∣∣∣∣∣∣∣∣∣

inel,iz

eg

=
excit,iz

∑
k=0




nengK(0)
iz

0

−nengK(0)
k eφ∗

k
5
3uenengK(0)

k eφ∗
k

−2ng
(

p2
e

ρe

)(
2K(1)

k

(
φ∗

k
Te

)
−K(0)

k

(
φ∗

k
Te

)2
)




. (48)

The rate coefficients depend on the integral of the isotropic part of the distribution function, as

follows,

K(r)
inel = 4π

(
me

2eTe

)r ∫ ∞

0
v2r+3

e Q(T )
eg f (0)e

(
1+χ(9M)

isot

)
dve. (49)

This integral depends on the temperature, density, and fourth-moment of the distribution function.

One should note that for large negative normalized fourth-moments, i.e., ∆e < −0.2 a small part

of the tail of the distribution function can become negative. This negative tail has negligible

impact in the elastic collisions as the polynomial is multiplied by an exponential. However, it

can produce an error in the computation of the inelastic rate coefficients. For this reason, in the

current work we perform an numerical integration of the integral of Eq. (49) by only considering

the positive part of the distribution function. In Fig. 3, we show the influence of the fourth moment

in the ionization rate coefficient for the argon ionization cross section49. For negative values of ∆e

(which corresponds to a distribution function that is depopulated at high energies), the ionization
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rate coefficient is much smaller than the one computed for a Maxwellian distribution function.

Alternatively, positive values of ∆e produce a larger ionization rate coefficient than the Maxwellian

distribution function.
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FIG. 3. Influence of the contracted fourth moment on the ionization rate coefficient K(0)
iz for argon.

C. Electron-electron elastic collisions

We use the reciprocity relation to write the moment of the electron-electron collisional operator,

as follows,
∫

ψe
δ fe
δ t

∣∣∣∣
el

ee

dv =
1
2

∫ ∫ ∫
(ψ ′

e+ψ ′
e1
−ψe−ψe1) fe fe1gσdΩdve1dve. (50)

In this case, we perform the integrals in the reference frame moving at the electrons mean

velocity. In this frame, we introduce the following variables

ce =G+
1
2
g ce1 =G− 1

2
g, c′e =G+

1
2
g′ and c′e1

=G− 1
2
g′. (51)

Here, g = ce−ce1 and G= 1/2(ce+ce1).

The integral over the scattering angles reads
∫

ψe
δ fe
δ t

∣∣∣∣
c
dve =

me

2

∫ ∫
F el

ee (g,G) fe fe1gdgdG. (52)

where F el
ee (g,G) for the first five moments is presented in Eq. (A4) of Appendix A 1.

The multiplication of the two distribution function is approximated as follows

fe fe1 = f (0)e f (0)e1 (χe+χe1), (53)
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where we neglect the non-linear terms.

The electron-electron elastic collisions conserve mass, momentum and energy for the electron

species. Therefore, the collisional source terms have contributions to the heat flux and the con-

tracted fourth moment relaxation, as follows




ṅe

R

Q

Rh f

Q(4)




∣∣∣∣∣∣∣∣∣∣∣∣∣∣

el

ee

=




0

0

0

−νq
eeqe

−ν∆
ee

p2
e

ρe
∆e




. (54)

The relaxation frequencies are computed as

νq
ee =

16
15

neΩ
(2,2)
ee , and ν∆

ee = 8neΩ
(2,2)
ee , (55)

where the integral of the cross-section over the energies reads

Ω(2,2)
ee (Te) =

1
2

(
2

πβe

)1/2 ∫ ∞

0
ξ 7e−ξ 2

Q(2)
ee dξ with ξ =

√
βe/2g. (56)

V. REGULARIZED EQUATIONS: TRANSPORT MODEL FOR SMALL

ANISOTROPIES IN THE ELECTRON VELOCITY DISTRIBUTION FUNCTION

The numerical resolution of Grad’s moment equations yields fundamental problems that are

related to the mathematical structure of the equations. The system of Eqs. (20)-(24) can be written

as
∂U
∂ t

+A
∂U
∂x

= S. (57)

This hyperbolic structure of the system of equations can lead to spurious discontinuities and prob-

lems in the boundary conditions27,32.

A possible fix to this problem relies on a regularization of the equations that consists in adding

parabolic terms, i.e., second-order spatial and/or mixed derivative to the system. The first attempt

to derive the moment equations, including the parabolic terms, based on the order of accuracy

in the Knudsen number was proposed by Müller et al.43 In our work, we will follow the method

proposed by Struchtrup & Torrilhon29,30. They proposed a regularization of the moment model

by a Chapman-Enskog expansion of the macroscopic variables in series of the Knudsen number
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(see, e.g., Chapter 7 of the monograph by Struchtrup27). In their work, they propose to expand

the pressure deviator and the heat flux vector. Magin et al.50,51 extended this procedure to multi-

component plasmas. However, our case is fundamentally different as the electron heavy mass ratio

appears in the normalized equations and the Knudsen numbers of the electron-gas and electron-

electron are different because the ionization degree is usually small in gas discharges.

A. Normalized equations

We use the following normalization that considers the electron velocity is of the order of

Bohm’s speed and the heat flux of the order of the advection of energy at that speed, as follows,

n̂e = ne/n0
e , ûe =

ue√
eT 0

e /mi
, T̂e = Te/T 0

e , q̂e =
qe

p0
e

√
eT 0

e /mi
, p̂eii j j

=
peii j j

p02
e /(men0

e)
,

Ê =EL0/T 0
e , x̂ = x/L0, t̂ = t

√
eTe/mi/L0.

Here, n0
e and T 0

e , are the reference electron density and temperature, respectively, that are char-

acteristic values of the conditions of the discharge. The reference pressure is computed as p0
e =

n0
eeT 0

e . The reference length L0 is taken to be a characteristic macroscopic length related to the size

of the system of study. We normalize the collision frequencies to reference collision frequencies,

as follows

ν̂eh = νeh/ν0
eh, ν̂ee = νee/ν0

ee, ν̂ inel
eg = ngK(r)

inel/ν inel,0
eg , ν̂ iz

eg = ngK(r)
iz /ν inel,0

eg .

Here, the reference collision frequencies are computed as ν0
eh = n0

gΩ(1,0)
eg (T 0

e ), ν0
ee = n0

eΩ(1,0)
ee (T 0

e )

and ν inel,0 = n0
gK(0)

iz (T 0
e ) where n0

g is the reference gas density. Note that the inelastic and ioniza-

tion collisions are normalized to the same reference frequency.

We define the electron-heavy, electron-electron, and inelastic electron-gas Knudsen numbers,

and electron-heavy mass ratio, as follows,

Kneh =

√
eT 0

e /me

L0ν0
eh

, Knee =

√
eT 0

e /me

L0ν0
ee

, Kninel
eg =

√
eT 0

e /me

L0ν inel,0
eg

, and ε =
me

mh
.

The normalized equations read
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∂ n̂e
∂ t̂

+
∂

∂ x̂i
n̂eûei =

n̂eν̂ iz
eg√

εKninel
eg

, (58)

∂
∂ t̂

n̂eûei +
∂

∂ x̂ j

(
neûei ûe j +

p̂e
ε

δi j

)
=− n̂eÊi

ε
− 1√

εKneh

i,g

∑
α

(
n̂eν̂

(u,1)
eα ûei + n̂eν̂

(q,1)
eα

q̂ei

p̂e

)
, (59)

3
2

∂ p̂e
∂ t̂

+
∂

∂ x̂k

(
q̂ek +

3
2

p̂eûek

)
+ p̂e

∂ ûek

∂ x̂k
=

√
ε

Kneh

i,g

∑
α

[
n̂eν̂

(T,2)
eα

(
T̂α − T̂e

)
+ n̂eν̂

(u,1)
eα û2

e + n̂eν̂
(q,1)
eα

q̂ei

p̂e
ûe j

]
− 1√

εKninel
eg

(excit,iz)

∑
k

n̂eν̂
(0,k)
eg φ̂∗

k ,

(60)

∂ q̂ei

∂ t̂
+

∂
∂ x̂ j

(
r̂ei j

ε
+ q̂ei ûe j

)
+ r̂ei jk

∂ ûek

∂ x̂ j
+ q̂e j

∂ ûei

∂ x̂ j
− 5

2
T̂e
ε

∂ p̂e
∂ x̂ j

δi j =

− 1√
εKneh

i,g

∑
α

[
n̂e

(
ν̂(u,3)
eα − 5

2
ν̂(u,1)
eα

)
T̂eûei +

(
ν̂(q,3)
eα − 5

2
ν̂(q,1)
eα

)
q̂ei

]

− 1√
εKnee

ν̂q
eeq̂ei +

1√
εKninel

eg

n̂eûei

(
5
2

ν̂(0,iz)
eg T̂e+

(excit,iz)

∑
k

5
3

ν̂(0,k)
eg φ̂∗

k

)
, (61)

∂
∂ t̂

p̂eii j j
+

∂
∂ x̂k

(
r̂eii j jk + p̂eii j j

ûek

)
+4r̂ei j

∂ ûei

∂ x̂ j
−4

q̂ei

n̂e

∂ p̂e
∂ x̂ j

δi j =

√
ε

Kneh

i,g

∑
α

[
ν̂(T,4)
eα

p̂2
e

n̂e

(
T̂α
Te

−1
)
+4n̂eν̂

(u,3)
eα T̂eû2

e −4
(

ν̂(u,1)
eα + ν̂(q,3)

eα

)
q̂ei ûei

]
(62)

− 1√
εKnee

ν̂∆
ee

p̂2
e

n̂e
∆e−

2√
εKninel

eg

(excit,iz)

∑
k

(
p̂2
e

n̂e

)(
2ν̂(1,k)

eg φ̂∗
k − ν̂(0,k)

eg φ̂∗2

k

)
. (63)

B. Generalized Chapman-Enskog expansion

As explained by Struchtrup & Torrilhon30, a regularization of the moment model can be ob-

tained by expanding the macroscopic variables in series of the Knudsen number. In this work, we

exploit the smallness of the electron to heavy mass ratio as well as the fact that in weakly-ionized

plasmas, the Knudsen number of the electron-gas collisions is smaller than the electron-electron

collision Knudsen number and the latter is smaller than the inelastic electron-gas collisions, as

follows,

Kneh = O
(

ε1/2
)
≲ Knee ≪ Kninel

eg . (64)

With this ordering, one can see that the non-dimensional equations of the odd moments follow a

different structure than the even moments. The momentum and heat-flux equations contain terms
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in the fluxes that are of the same order of magnitude of the elastic collisional terms, i.e., of order

O(ε−1). Alternatively, the relaxation terms of the elastic collisions are multiplied by the mass

ratio in the energy and the fourth moment equations and hence the elastic collisional terms are

of the same order as the flux terms, i.e., of order O(ε0). This is consistent with the two-term

approximation that assumes that the anisotropic part of the distribution function is much smaller

than the isotropic one due to the effect of the electron-gas collisions.

As a result, we can obtain the velocity and heat flux from the terms of order O(ε−1) of the

equations, that in dimensional form read

∇pe =−eneE−meneν
(u,1)
eh ue−meneν

(q,1)
eh

qe
pe
, (65)

5
2(1+2∆e)

epe
me

∇Te+ 5
2
(eTe)

2

me
(∆e∇ne+ne∇∆e) =−pe

(
ν(u,3)
eh − 5

2ν(u,1)
eh

)
ue

−
(

ν(q,3)
eh +νq

ee− 5
2ν(q,1)

eh

)
qe. (66)

These equations form a system of Stefan-Maxwell equations where the fluxes neue and qe can be

expressed as a function of the collisional frequencies, the temperature, the density, the contracted

fourth moment, and the spatial gradients of these variables, as follows,

ue = −De

(
1
ne

∇ne+(1+χe)∇ lnTe+αe∇∆e

)
−µeE, (67)

qe = Λeneue−κe∇Te−ϑe∇ne−κe∇∆e. (68)

The resulting transport coefficients are functions of the EEDF that is parametrized by the density,

the temperature, and the fourth-order moment ∆e and the integrals of the collisional cross-sections.

We show the analytical expressions of the transport coefficients in Appendix B.

We show in Eq. (67) that our model captures the classical Fick’s diffusion (diffusion of parti-

cles produced by density gradients), thermophoresis (diffusion produced by temperature gradients)

and the electric mobility. In addition, our model captures a novel effect that produces diffusion

of particles due to spatial gradients of the normalized fourth moment. This represents transport

processes due to spatial variations in the shape of the EEDF. This transport effect can be seen as

a non-local effect when the EEDF is not Maxwellian and is fundamental in order to regularize

the equation for the contracted fourth-order moment, as it will be shown in the following section.

Analogously, the heat flux Eq. (68) has contributions due to the convection (proportional to the

particle flux), thermal conduction (proportional to temperature gradients), the Dufour effect (pro-

portional to density gradients). As in the particle flux, there is a non-local effect due to spatial

gradients of the contracted fourth moment.
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C. Regularized equations

The system of regularized moment equations at order O(ε0) corresponds to the conservation

laws of particle density, electron energy, and contracted fourth moment. For convenience, the

dimensional equations can be written in conservation form, as follows,

∂ne
∂ t

+
∂

∂xk
neuek = nengK(0)

iz , (69)

3
2

∂ pe
∂ t

+
∂

∂xk

(
5
2

peuek +qek

)
=−eneuekEk +

i,g

∑
α

me

mα
neν

(T,2)
eα e(Tα −Te)−

(excit,iz)

∑
k

neν
(0,k)
eg eφ∗

k ,

(70)

∂ peii j j

∂ t
+

∂
∂xk

(
7
3

peii j juek +14
pe
ρe

qek

)
=−4

e
me

qekEk −10
e

me
peuekEk +

i,g

∑
α

me

mα
ν(T,4)
eα

p2
e

ρe

(
Tα
Te

−1
)

− p2
e

ρe
ν∆
ee∆e−4νq

eeqekuek −2ng

(
p2
e

ρe

) (excit,iz)

∑
k

(
2K(1)

k

(
φ∗

k
Te

)
−K(0)

k

(
φ∗

k
Te

)2
)
. (71)

Here, the closure of the system of equations uses the velocity and heat flux of Eqs. (65) and (66).

Note that we have neglected the term that is proportional to me/mg∆eTg that appears in Eq. (39).

The first advantage of the regularized equations as compared to Grad’s equations is the reduced

number of variables to be computed, as the velocity and heat flux are computed as transport fluxes

through an algebraic equation. However, the most important difference is related to the mathemat-

ical structure of Eqs. (69)-(71), which differs greatly from the Grad’s system of equations. Instead

of a hyperbolic system (i.e., fluxes that depend as F(U)), the system contains also parabolic terms

(i.e., fluxes that depend as F(U,∇U)). In this sense, we note the importance of the terms that are

proportional to ∇∆e in the particle and heat transport fluxes expressions.

In order to illustrate the mathematical structure of the regularized fourth-moment balance equa-

tion, we consider the fourth-moment balance Eq. (71) under the effect of a constant electric field

without density nor temperature gradients. By injecting Eqs. (65) and (66), and the definition of

normalized fourth moment, Eq. (25), into Eq. (71) the equation for the normalized fourth moment

reads the following familiar form

∂∆e

∂ t
−∇ · (D∆∇∆e+µ∆E∆e) = σ∆E2 −P(∆)

loss −
2
15

ν∆
ee∆e, (72)

where D∆, µ∆, and σ∆ are positive coefficients that are given in Appendix B, and P(∆)
loss groups the

loss terms due to electron-heavy elastic and inelastic collisions. Indeed, Eq. (72) is an advection-

diffusion-reaction equation for the scalar normalized fourth moment ∆e. The diffusion is produced
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by electron-electron and electron-heavy elastic collisions and gradients in ∆e whereas the electric

field is responsible for the advection. As in the energy equation, the equation for the fourth-order

moment has a production term that is proportional to the square of the electric field and a loss term

produced by the collisions with the other species. Finally, the last term represents the relaxation to

a Maxwellian at the scales of the electron-electron collisional time. We recall that negative values

of ∆e represent Druyvestein-like distribution. Thus, the collisions with the gas tend to deplete the

distribution function. Alternatively, oscillating or DC electric fields have the opposite effect, as

well as the electron-electron elastic collisions.

VI. SPATIALLY HOMOGENEOUS RESULTS

In this work, we validate the collision production terms and the transport coefficients through

the comparison of the moment model with spatially homogeneous solutions to kinetic simulations.

We will consider the cross-sections of argon52 for both the kinetic and the moment model. The

equations for each validation case are presented in the Appendix C.

A. Relaxation to a Maxwellian

We first study the effect of the electron-electron collisions standalone. For this, we study a

relaxation to thermal equilibrium from a non-equilibrium state. This is a fundamental property

that needs to be fulfilled by any moment model. In this first case, we solve for the spatially

homogeneous fourth-moment equation, Eq. (C1), with a fourth-order Runge-Kutta scheme. We

initialize the equation in thermal non-equilibrium, with a perturbation in the normalized fourth

moment, as follows, ∆e(t = 0) =−0.1. The density and temperature remain constant at ne = 1017

m−3 and Te = 5 eV, without perturbations in the anisotropic part of the distribution function.

We compare the moment simulation to a DSMC model that discretizes the Landau collision

operator with the Nanbu-Babovsky scheme as proposed by Dimarco et al.53 To initialize the ki-

netic simulation, we sample the particles following the non-equilibrium distribution function of

Eq. (28) with the above-mentioned perturbations in the fourth moment. The DSMC results use

1000 particles. The results present the 95% confidence interval of 25 statistically independent

simulations of the same relaxation.

In Fig. 4, we show the comparison between the moment model and the DSMC of the evolution

23



A regularized high-order moment model for electrons in partially-ionized plasmas

0 10 20 30 40 50
time [µs]

0.15

0.10

0.05

0.00

0.05

∆
e
 [-

]

Moment Model
DSMC (95 % conf. inter.)

FIG. 4. Relaxation to thermal equilibrium from a non-Maxwellian function due to electron-electron colli-

sions, with a DSMC model and a 9-M Grad model.

contracted fourth moment. In the case of the kinetic simulations, we compute the fourth moment

of the particle distribution and present the error bars that correspond to the 95% confidence interval

corresponding to the ensemble of realizations. Both simulations relax to a Maxwellian distribution

function (∆e = 0). The relaxation time is similar to the DSMC simulation with a discretized

Landau-Fokker-Planck operator for Coulomb collisions. Finally, note that, as the electron-electron

collisional frequencies of Eq. (55) are positive for all electron temperatures and hence the system

relaxed to thermal equilibrium.

B. Collisional cooling of electrons in a gas

In the second case, we study the cooling of electrons due to collisions with an argon gas at

room temperature (Tg = 300 K). As the simulation has no electric field nor spatial gradients, only

the isotropic part of the electron distribution function evolves in time. The main energy loss

mechanism is due to inelastic collisions with the gas. However, only electrons with energies above

the excitation and ionization potential lose the energy, resulting in a depopulation of the EEDF at

high energies. As a result, a fluid model with a Maxwellian EEDF is not able to properly predict

the cooling rate as it overestimates the population of electrons at high energies.

In this simulation, we consider electron-electron elastic, electron-argon elastic, and inelastic

collisions. The ionization collision is treated as an inelastic collision and hence the electron den-
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sity does not grow during the simulation. The moment model considers the evolution equations

of the electron temperature and contracted fourth moment, i.e., Eqs. (C2) and (C3). We compare

this model to a fluid model that considers a Maxwellian distribution function and solves only for

the temperature equation, i.e., Eq. (C2) with the collisional rates computed with a Maxwellian

distribution function. The DSMC simulation discretizes the electron-electron collisions as dis-

cussed in the previous case and the electron-argon collisions with a null-collision method54. We

initialize the simulations with a Maxwellian distribution function, i.e., ∆e = 0, at Te = 5 eV and an

electron density of ne = 1017 m−3 that remains constant. We consider two ionization degrees of

ne/ng = 10−2 and 10−3 with the argon gas at Tg = 300 K that remains constant.
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FIG. 5. Evolution of the temperature and the fourth moment of electrons colliding with an argon gas at

two different ionization degrees (10−2 on the left and 10−3 on the right). We show the comparison between

DSMC, the moment model (Grad) and the model with a Maxwellian dirstribution.

The evolution of the temperature and contracted fourth moment is presented in Fig. 5 for both

considered ionization degrees. As expected, the fluid model with a Maxwellian EEDF predicts

a much faster relaxation, particularly in the case with lower ionization degree. For instance, for

ne/ng = 10−2, the fluid model with a Maxwellian EEDF cools down to 2.5 eV in approximately

30 µs, whereas the moment method and the DSMC reach this temperature around 20 µs later.

Similarly, for ne/ng = 10−3, the fluid model with a Maxwellian cools down to 2 eV in around 10

µs whereas the kinetic and higher-order moment simulations reach this temperature in more than

twice this time.

In Figs. 6 and 7, we present the evolution of the EEDF with ionization degrees of ne/ng = 10−2

and ne/ng = 10−3, respectively. As expected, the EEDF of the DSMC simulation depopulates
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FIG. 6. Simulation of electron cooling by collisions with a gas at an ionization degree of ne/ng = 10−2:

Comparison of the EEDF as computed by DSMC, a moment model considering the energy and fourth

moment equations (Grad), and a model considering only the energy equation (Maxwellian). The excitation

and ionization energies are marked in purple.
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FIG. 7. Simulation of electron cooling by collisions with a gas at an ionization degree of ne/ng = 10−3:

Comparison of the EEDF as computed by DSMC, moment model considering the energy and fourth moment

equations (Grad), and a model considering only the energy equation (Maxwellian). The excitation and

ionization energies are marked in purple.

faster at energies that are larger than the excitation and ionization potential (marked with purple

lines in the figures). For ne/ng = 10−3, this depopulation occurs faster as the collision frequency is

proportional to the gas density. After the first instants of the simulation, the EEDF Maxwellizes by

electron-electron collisions, which frequency is larger for lower electron temperatures. In the high-

order moment model, the depopulation at high energies is self-consistently captured for negative

values of ∆e. Moreover, we realize that the EEDF of the moment model is quantitatively very

similar to the DSMC result. As a result, as the inelastic collision rates depend on the contracted
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fourth moment (cf., Eq. (49)), the energy losses are better captured than in the case of a fluid

model that considers a Maxwellian distribution. In addition, as compared to the DSMC model,

the moment model is computationally very efficient as it solves only for two equations and the

collision rates can be pre-computed and saved into lookup tables as a function of Te and ∆e.

C. Comparison to a two-term Boltzmann solver

We study the regularized moment equations that were presented in Section V. We com-

pare the moment model to the solutions of the Boltzmann solver in the two-term approximation

BOLSIG+4,55. In addition, we compare the solutions to a fluid model that uses the collisional

terms with a BGK operator with the frequency computed as a rate with a Maxwellian distribution

function. This model is often used in fluid models for low-temperature plasmas at low pressure,

e.g., refs.18–20,56. In a first step, we neglect the electron-ion collisions in order to verify sepa-

rately the different contributions due to the different species. No growth of the electron density is

included in the model and the ionization collision is treated as an excitation collision.

We study spatially homogeneous solutions with an external DC electric field. The high-order

moment system of equations solves for a balance equation of the temperature Eq. (C4) and the

contracted fourth moment Eq. (C5), while the drift velocity and the heat flux are computed as

a function of the electric field and the transport coefficients, as defined in Eqs. (B3)-(B4). As

explained by Hagelaar55, the solution depends on the reduced electric E/ng, the ionization degree

ne/ng, and the electron density that in all the cases is set to ne = 1017 m−3.

For each value of electric field and ionization degree we solve the system of equations until

convergence to a steady state. We use a Runge-Kutta fourth-order scheme for the discretization of

the equations, and implicit backward differentiation formula (BDF) for the stiffer cases.

In Fig. 8, we show the comparison of the electron energy probability functions as computed

by the Boltzmann solver, the moment model, and the model with a Maxwellian distribution. We

show the solution for ne/ng = 10−2 and 10−3, with reduced electric fields between 1 Td and 50

Td. As in the previous test cases, the solution of the energy distribution functions of the 9-M

Grad model self-consistently captures the slope of the distribution function at low energies as

well as the depopulation at high energies. At low values of the electric field the EEPF seems

to be closer to a Maxwellian in the moment model. This can be explained due to a difference

in the model of the electron-electron collision frequency that is slightly higher in the case of a
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FIG. 8. Comparison of the computed EEPF between Boltzmann solver, Grad 9-M model and a 5-M model

with a BGK operator for two ionization degrees, ne/ng = 10−2 and 10−3 and reduced electric fields between

1 Td and 50 Td. The Grad moment model captures the slope of the distribution function at low energies as

well as the depopulation at high energies as computed by the Boltzmann solver. The main differences are

found at energies above the excitation potential.

Boltzmann operator. Nevertheless, the moment model finds a very good agreement with the two-

term Boltzmann solution.

In Fig. 9, we show the evolution of the macroscopic variables for E/ng = 50 Td and ne/ng =

10−3. As it can be seen, the electric field produces a drift velocity, which increases the electron
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FIG. 9. Comparison of the evolution of the fluid variables for 5-M BGK solver and 9-M Grad model at

E/N = 50 Td and ne/ng = 10−3.

temperature by Joule heating through electron-gas elastic collisions. Similarly, this electric field

produces a heat-flux in the opposite direction. The temperature converges to an equilibrium be-

tween the Joule heating and the losses from inelastic and elastic collisions (which strongly depend

on the fourth moment). In addition, the converged fourth moment is the result of a similar equi-

librium. The losses of fourth moment are produced by elastic and inelastic collisions with the gas

and the thermal friction. This losses are balanced by the Maxwellization due to electron-electron

collisions, and the gain of fourth moment due to the drift and heat flux (proportional to u2
e and q2

e ).

In Fig. 9, we can see that the electron temperature is higher in the case of the moment model even

though the drift velocity is smaller. This is explained by the fact that, as ∆e = −0.2, the distribu-

tion function is depleted at high energies and hence the energy losses are much smaller than in the

Maxwellian case for the same temperature. Note that the values of ∆e and Te are similar to these

shown in the experimental results of Fig. 2.

We compute the mean energy, ionization and excitation rates, reduced mobility, diffusion co-

efficient, and reduced energy mobility as a function of the electric field, as defined in Appendix

B. Note that, as opposed to the Boltzmann solver, the transport coefficients are not computed with

the EEDF, but directly from the definitions of Eqs. (B1)-(B7). In Fig. 10, we present the electron

properties computed for 41 values of the reduced electric field between 10−1 Td and 103 Td and

ne/ng = 10−2. In this range of electric fields, the transport coefficients and rates are quantita-

tively very similar to those computed with the two-term Boltzmann simulation. In particular, the
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FIG. 10. Mean energy, ionization and excitation rate coefficients, reduced mobility, reduced diffusion

coefficient, and reduced energy mobility, as a function of the reduced electric field for an argon plasma,

considering electron-gas and electron-electron collisions. We compare the solution of a Boltzmann solver

(red circles), a 5-M model with a BGK collision operator (blue), and the 9-M Grad model (green).

high-order moment model captures the ionization and excitation rates that are orders of magni-
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tude different from the BGK model and that are much closer to these computed by the Boltzmann

solver (with a difference below 10%). Similarly, the rest of transport coefficients of the high-order

moment present a remarkable improvement as compared to the BGK model when they are com-

pared to the Boltzmann solver. The high-order moment model has the largest errors at high electric

fields, where the anisotropic part of the distribution function is no longer small and higher-order

moments in the anisotropic part of the distribution function are needed.

In Fig. 11, we study the dependence of the transport coefficients and rates on the ionization

degree. To compute these properties, we carry out 31 simulations with different ionization degrees

for each value of electric field. In a classical fluid model that considers a Maxwellian distribution

function (5-M model), the electron temperature balance is independent of the ionization degree

(see Eq. (C7)). This is due to the fact that the collisional frequencies only depend on the electron

temperature and gas density and therefore the balance equation for the temperature in 0D does not

depend on the electron density. However, in the high-order moment model, the mobility, energy

mobility, and the balance equation of the fourth moment depend as well on the electron-electron

collision frequency and hence on the ionization degree. In Fig. 11, we study four values of reduced

electric field, between 1 and 500 Td. We show that the dependence on the ionization degree is well

captured by the high-order moment model. The main difference is found in the ionization rate at

low electric field. This can be explained by an overestimation of the electron-electron collision

rate at low temperatures that produces a distribution function that is more Maxwellian than the

Boltzmann solver. Similarly, differences in the computation of the diffusion coefficient are found.

Even though the results of the 9-M Grad model largely improve those of the 5-M BGK model with

a BGK operator, the Grad model finds larger disagreement with the kinetic solution for increasing

values of electric field and decreasing ionization degrees. This is due to two reasons. First, the

non-equilibrium conditions are stronger at lower ionization degrees because of the effect of the

collisions with the gas at low temperature. Second, in the presence of higher electric fields, the

non-equilibrium conditions are also strong due to the large drift between the electrons and the

gas. Note that although the mean energy as computed by the 5-M BGK is in better agreement

with the kinetic solution at 500 Td, the rest of properties are overestimated by the 5-M BGK

model. For this reason, even though the 5-M overestimates the energy losses (due to a larger

inelastic and ionization rates), more power is absorbed (due to a larger mobility) resulting in the

correct mean energy. However, as the transport and collision rate coefficients are overestimated,

we expect that the 5-M BGK model would not be able to correctly predict the plasma conditions
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FIG. 11. Comparison of the electron transport coefficients of an argon plasma are computed with a Boltz-

mann solver and the high-order moment model for different ionization degrees.

in a multi-dimensional simulation considering self-consistent ionization.

Finally, we study the effect of the electron-ion collisions. We recall that we use a Boltzmann

operator with a Coulomb potential cut-off at the Debye length, which is different from the model
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FIG. 12. Effect of the electron-ion collisions on the mean energy and reduced mobility as a function of the

reduced electric field at ne/ng = 10−2. The moment model also presents a bistability and hysteresis at the

same critical values of electric field as found by the Boltzmann solver whereas the 5-M BGK model is not

able to correctly predict the critical electric field.

in the two-term Boltzmann solver. Both in the moment model and in the Boltzmann solver, we

assume the ions to be in thermal equilibrium with the gas and to have the same density of the

electrons. As discussed by Hagelaar4, when the electron-ion collisions are included in the model,

an abrupt change in electron mobility and electron mean energy appears above a certain critical

electric field. Below this critical value, the electrons are in thermal equilibrium with the ions,

and above this values the electrons establish an equilibrium with the neutral gas. In Fig. 12, we

present the computed mean energy and reduced mobility including electron-ion collisions. The

bistability is also present in the high-order moment model. We note that the critical electric field

is the same for both models. In addition, the same hysteresis is present in the moment model,

predicting similar values for the critical electric field. On the other hand, the 5-M model that uses

collision frequencies as usually used in simplified plasma models, is not able to correctly predict

the critical values of the electric field in the bistability.
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VII. CONCLUSIONS

The goal of this work is the development of a moment model to describe electron transport

phenomena with non-Maxwellian EEDF in partially-ionized plasmas at low pressure. The charac-

terization of the electron energy distribution function is fundamental to describe plasma discharges

as the ionization, inelastic rates and electron transport coefficients are a function of the EEDF. The

model self-consistently captures non-Maxwellian EEDFs through the resolution of scalar and vec-

torial moments up to the contracted fourth moment whereas the collisional terms of the equations

are consistently derived from the kinetic equation.

We have derived the moment evolution equations with Grad’s method. The moments of the

multi-species collisional operator have been consistently derived, including electron-electron and

electron-heavy (neutrals and ions) elastic collisions as well as inelastic and ionization collisions.

The set of equations includes effects that are usually neglected in simplified fluid models for

partially-ionized plasmas such as the thermal friction or the effect of the EEDF in the inelastic

collision rates and the electron-gas energy relaxation frequency. Note that the latter can have an

impact in the quantification of the gas heating term.

We have regularized the Grad’s moment equations, based on a Chapman-Enskog expansion

that exploits the electron-heavy mass ratio and the ionization degree. The resulting regularized

moment equations are a system of mixed hyperbolic-parabolic-reaction equations for the scalar

even moments whereas the vectorial moments are computed from a system of Stefan-Maxwell

equations. The transport equation for the fourth-moment has a mathematical structure that is

similar to the energy equation, including an advection and diffusion terms, a gain due to the electric

field and losses due to elastic and inelastic collisions with the gas. In the transport fluxes of

particles and energy, in addition to Fick’s diffusion, thermodiffusion and heat conduction, a novel

non-local effect appears due to the spatial variation of the EEDF when it is not Maxwellian.

Numerical solutions of the moment system under spatially-homogeneous conditions are com-

pared to kinetic simulations. The model proves to relax to thermodynamic equilibrium due

to electron-electron collisions. In addition, the depletion of the EEDF at high energies due to

electron-gas inelastic collisions is correctly captured by the moment model, which has a large

impact in the estimation of the cooling rate of electrons in partially-ionized plasmas. Finally, we

compare to a two-term Boltzmann solver under the presence of an electric field. The EEDF and

the transport coefficients as computed by the moment model are quantitatively very close to those
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found by kinetic simulations. In addition, the numerical experiments show the great improvement

as compared to a BGK operator.

We have studied conditions that are representative of high plasma density discharges at low

pressure. These conditions are characteristic of ICP discharges at low pressure (< 50 mTorr) with

plasma densities of 1016 ≲ ne ≲ 1019 m−3, such as those presented in Fig. 2 from Aneslaand

et al46. Other plasmas such as capacitively coupled or atmospheric pressure dicharges present

stronger non-equilibrium conditions, due to higher gas pressures or lower ionization degrees. Un-

der stronger non-equilibrium conditions, the methodology that has been presented, including the

choice of moments, determination of the collisional terms and the regularization of the equations,

can be extended. This can be of particular interest in the transition from streamer to arc. Under

stronger non-equilibruim conditions, a possible extension is to consider higher-order moments in

order to capture larger perturbations in the EEDF, consequence of higher gas pressures, or other

anisotropies, e.g., pressure tensor, more adapted for the presence of a magnetic field. Numerical

solutions of the set of regularized equations in 1D will be explored in future work as well as a

comparison to experimental results of an ICP discharge.
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Appendix A: Integrals over the scattering angles of the collision and change of reference

frame

1. Expressions for the integration over the scattering angles

The integral over the scattering angles in an electron-heavy elastic collision reads

F el
eα(g,G) =




0

giQ
(1)
eα

(g jG j)Q
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1
2

[
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Here, we use the following relation for the integration of the cross-section in the unit sphere
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The integral over the scattering angles in an electron-gas inelastic collision reads
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The integral over the scattering angles in an electron-electron elastic collision reads

F el
ee (g,G) =




0

0
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1
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2. Change of reference frame

In order to obtain the collision terms in a non-inertial reference frame from the solutions ob-

tained in an inertial reference frame, we use the following expressions

Qeα = Qeαin −Reα ·ue (A5)

R
(h f )
eα = R

(h f )
eαin −

5
3

Qeαue+
8
3
(Reα ·ue)ue+

1
2

u2
eReα (A6)

Q(4)
eα = Q(4)

eαin −4R(h f )
eα ·ue+10Qeαu2

e −18u2
eReα ·ue, (A7)

where the subindex in corresponds to the source term computed in the inertial frame. As explained

above, we neglect the terms of order O(u2
eβe) or smaller in the change of reference frame.

Appendix B: Transport coefficients

The transport coefficients are written as a function of the frequencies and the normalized con-

tracted fourth moment as follows

De =
eTe
me
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where the electron heavy collision frequency is computed as the sum of the contributions of ions

and gas, i.e., νeh = νei+νeg.
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The transport coefficients for the normalized fourth moment equations, Eq. (72) read
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Appendix C: Spatially homogeneous models

1. Relaxation to a Maxwellian

We study a model that consider only the electron-electron collisions to study the relaxation to

thermodynamic equilibrium (∆e = 0). The model solves for the fourth moment, as follows

d∆e

dt
=− 2

15
ν∆
ee∆e. (C1)

2. Collisional cooling of electrons in a gas

We study a model that consider the collisional cooling of the electron population due to elastic

and inelastic collisions. We do not consider the growth of the electron number density due to

ionization, which is treated as an inelastic collision. Similarly, we do not consider electron-ion

collisions. The system of equations solve for the temperature and normalized contracted fourth

moment, as follows

dTe
dt

= −2
3

excit,iz

∑
k=0

ngK(0)
k φ∗

k +
2
3

me

mg
ν(T,2)
eg (Tg−Te) , (C2)

d∆e

dt
= − 4

15
ng

excit,iz

∑
k=0

(
2K(1)

k

(
φ∗

k
Te

)
−K(0)

k

(
φ∗

k
Te

)2
)
+

2
15

me

mg
ν(T,4)
eg

(
Tg
Te

−1
)

− 2
15

ν∆
ee∆e−2

1
Te

dTe
dt

(1+∆e). (C3)

38



A regularized high-order moment model for electrons in partially-ionized plasmas

3. Comparison to two-term Boltzmann solver

We study a model of a spatially homogeneous discharge with an imposed electric field Ex.

The equations for temperature and contracted fourth-moment are solved to steady state with the

following two equations,
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= −2
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where the velocity and heat flux are computed at every time step with the expressions in Eqs. (67)-

(68), that are computed as

uex =−µeEx and qex =−µeΛeneEx. (C6)

Here, the transport coefficients are computed as a function of the collisional frequencies that de-

pend on the energy, according to Eqs. (B3)-(B4). First, we consider a model without electron-ion

collisions, i.e., α = g and after we include also the electron-ion collisions, i.e., α ∈ (g, i).

To compare the results, we use a fluid model with a Maxwellian EEDF that solves for the

balance equation for the temperature
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where the rate K(0)
k is computed with a Maxwellian distribution and the drift velocity is computed

as

uex =−µBGK
e Ex with µBGK

e =
e

meν
(BGK)
h

. (C8)

Here, the electron-heavy collision frequency is computed as ν(BGK)
h = ν(BGK)

eg + ν(BGK)
ei . The

electron-gas collision frequency is computed as an average rate with a Maxwellian distribution

at the electron temperature18,56, as follows
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eg f (0)e dve. (C9)

and the electron-ion collision frequency is computed as derived by Zhdanov37 for Te ≫ Ti
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