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Abstract— The digital transformation of companies has led to 
the evolution of databases towards Big Data. Our work is part 
of this context and concerns more particularly the mechanisms 
to extract datasets stored in a Data Lake and to store the data in
a Data Warehouse. The latter will allow, in a second time, 
decisional analysis. In this paper, we present the extraction
mechanism limited to relational databases. To automate this 
process, we used the Model Driven Architecture (MDA), which 
offers a formalized environment for schema transformation. 
From the physical schemas describing a Data Lake, we propose 
transformation rules that allow the creation of a Data 
Warehouse stored on a document-oriented NoSQL system. An 
experimentation of the transformation process has been 
performed on a medical application.
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I. INTRODUCTION

Due to the considerable increase of data amount generated 
by human activities, Data Lakes have been created within 
organizations, often spontaneously, by the physical grouping 
of datasets related to the same activity. A Data Lake [1] is a 
massive grouping of data consisting of structured or 
unstructured datasets. These datasets generally have the 
following characteristics: (1) they can be stored on 
heterogeneous systems, (2) each of them is exploited 
independently of the others, (3) some of them can contain raw 
data, i.e., data stored in their original form and without being 
organized according to the use that will be made of them, (4) 
the types and formats of the data can vary. In practice, a Data 
Lake can group together different datasets [2] such as 
relational databases, object databases, Comma Separated 
Values (CSV) files, texts, spreadsheet folders, etc. The 
massive data contained in a Data Lake represents an essential 
reservoir of knowledge for business decision makers. This 
data can be organized according to a multidimensional data 
model in order to support certain types of decision processing 
[3]. For example, in the French health sector, a Data Lake has 
been created by the French public health insurance company 
under the name of “Espace Numérique de Santé” (ENS); it 
includes the electronic health records of insured persons, 
health questionnaires, and care planners. However, the 
heterogeneity of storage systems
combined with the diversity of content in the Data Lake is a 
major obstacle to the use of data for decision-making. To 
manipulate a Data Lake, a solution consists in ingesting the 

data into a Data Warehouse and then transforming it 
(grouping, calculations, etc.). Ingestion is a process that 
consists in extracting data from various sources and then 
transferring them to a repository where they can be 
transformed and analyzed. For example, in [4] massive data 
from various sources are ingested into a Data Warehouse and 
exploited in the context of information retrieval on the Web. 
Other works have introduced the concept of polystore, which 
preserves the initial data sources (no ingestion) and allows 
querying them by creating "data islands", each of which 
contains several systems sharing a common query language. 
For example, all relational databases are connected to the 
"relational island", which is queried using standard SQL. This 
solution, developed in particular in the BiGDAWG [5] and 
ESTOCADA [6] projects, keeps the data in their native 
formats.

Our work aims at performing decisional processing on a 
Data Lake. This problem is part of a medical application in 
which, massive data are stored in a Data Lake that will be used 
by medical decision makers. We have chosen to ingest the 
data from the Data Lake into a Data Warehouse that will later 
be reorganized for Big Data Analytics. This paper is limited 
to the ingestion of relational databases and excludes for the 
moment other forms of datasets present in the Data Lake.
Our paper is organized as follows: in the following Section 2, 
we present the medical application that justifies our work's 
purpose. Section 3 describes the context of our study as well 
as our research problem which aims at facilitating the 
querying of data contained in a Data Lake by decision makers. 
Section 4 describes the databases metamodels used in our 
application. Section 5 presents our contribution which 
consists in formalizing with the Model Driven Architecture
(MDA), the process of transforming the Data Lake databases 
into a unique NoSQL Data Warehouse. Section 6 describes an 
experimentation of the proposed process based on our medical 
application. Section 7 contrasts our proposal with related 
works. Finally, Section 8 concludes this paper and highlights
possible directions for exploring the continuity of the work.

II. CONTEXT OF WORK

In this section, we present the case study that motivated 
our work, as well as the problem addressed in this paper.

A. Case Study
Our work is motivated by a project developed in the health 

field for a group of private health insurance companies. These 



insurance companies, stemming from the social and solidarity 
economy, propose to their customers a coverage of the 
medical expenses, which comes in complement of those 
refunded by a public institution: the public health insurance 
fund.

To ensure the management of their clients, these private
health insurance companies are facing a significant increase 
in the volume of data processed. Indeed, some of these 
companies carry out all the computer processing related to a 
record. A digital health platform (ENS) has been developed 
by the the public authority to store the medical data of each 
insured person. Private health insurance companies can 
extract data from the ENS to process the files of their clients
and, more broadly, carry out analyses of any kind (in 
compliance with confidentiality rules). For each insured 
person, the ENS contains administrative data, medical files
(civil status, medical imaging archives, reports, therapeutic 
follow-ups, etc.), the history of refunds and questionnaires. 
When the ENS is fully deployed at the national level, its 
volume will be considerable since it concerns 67 million 
insured persons.

In the context of this project, the ENS constitutes a real 
Data Lake because of (1) the diversity of data types and 
formats (2) the volumes stored which can reach several 
terabytes and (3) the raw nature of the data. The objective of 
the project is to study the mechanisms for extracting data from 
the ENS and organizing it to facilitate analysis (Big Data 
Analytics).

B. Problematic
Our work aims to develop a system allowing private health 

insurance companies to create a Data Warehouse from a Data 
Lake. This paper deals more specifically with the mechanisms 
of extraction and unification from commonly used databases, 
we limit the framework of our study as follows:

-The ENS Data Lake is the source of the data; in this paper,
we voluntarily reduce its content to relational databases. 
Indeed, this category of datasets represents an important part 
of the ENS data:

- The generated Data Warehouse is managed by a
document-oriented NoSQL system. This type of system offers 
(1) a great flexibility to reorganize objects for analysis and (2)
good access performances to large volumes of data (use of
MapReduce).

To achieve our goal, each database in the Data Lake is 
extracted and converted into another model to allow its 
storage in the Data Warehouse. We do not address here the 
problems related to the selective extraction of data and their 
aggregative transformation.

To test our proposals, we have developed a Data Lake with 
several relational databases managed by MySQL[7] and 
PostgreSQL[8] systems. These databases contain respectively 
data describing the follow-up of the insured and the
processing of the files in a medical center. The available 
metadata are limited to those accessible on the storage systems 
(absence of ontologies for example). The Data Warehouse, 

which is supported by an OrientDB [9] platform, must allow
the analysis of the care pathways of insured persons with 
chronic pathologies. We chose the OrientDB system to store 
the Data Warehouse. Indeed, this document-oriented NoSQL 
system allows to consider several types of semantic links such 
as association, composition and inheritance links; it is thus 
well adapted to our case study where the richness of the links 
between objects constitutes an essential element for decisional 
processes.

III. OVERVIEW OF OUR SOLUTION

Although a Data Lake can contain files of any format, we 
focus in this paper on the extraction of relational databases and 
the feeding of a NoSQL Data Warehouse. Several works have 
dealt with the transfer of a relational database to a NoSQL 
database. Thus, some works have proposed algorithms for 
converting relational data to document-oriented systems, such 
as MongoDB [10]; however, these works transform relational 
links into embedded documents or DBRef links. However, 
these NoSQL linkage solutions are not satisfactory with 
respect to object systems[11]. Moreover, to our knowledge, 
no study has been conducted to convert several relational 
databases contained in a Data Lake into a NoSQL Data 
Warehouse.

In our ingestion process, we have defined three modules:
the first module named CreateDW, the second ConvertLinks 
and the last one MergeClasses.We used a Data Lake as a 
source database for our process, which we limited in this paper
to Relational databases and as a target database,we used a 
NoSQL Data Warehouse that will contain the final processed 
data. We named our process RDBToNoSDW. Our proposal is 
based on Model Driven Architecture (MDA) which allows to 
describe separately the functional specifications and the
implementation of an application on a platform. Among the 
three models present in MDA (CIM, PIM and PSM), we are 
located at the PSM level where the logical schemas are 
described. We also use the declarative language Query View
Transformation (QVT) [12] specified by the Object 
Management Group (OMG) [13], which allows us to describe 
the ingestion of data by model transformations.

To use the MDA transformation mechanism, we proposed 
two metamodels describing respectively the source and target 
databases. From these metamodels, we specified the
transformation rules in QVT language to ensure data 
ingestion.

IV. METAMODELING

We present successively our metamodels proposal of a 
source Relational database and a target document-oriented
NoSQL database.

A. Relational Metamodel
The Data Lake, source of our process, can contain several

relational databases. A relational database contains a set of 
tables made of a schema and an extension. The schema of a 
table contains a sequence of attributes. The extension is 



composed of a set of rows grouping attribute values. Among 
the attributes of a table, we distinguish the primary key whose 
values identify the rows and the foreign keys, which 
materialize the links. Figure 1 represents the Ecore[14]
metamodel of a relational database.

Figure 1. Metamodel of a relational database

B. Document-Oriented NoSQL Metamodel
The target of our process corresponds to the Data

Warehouse represented by a NoSQL database. A document-
oriented NoSQL database contains a set of classes. Each class 
gathers objects that are identified (by a reference) and
composed of couples (attribute, value); a value is defined by a 
type, it can be either multivalued or structured. We distinguish 
a particular type, the reference, whose values make it possible 
to link the objects. These concepts are represented in Figure 2
according to the Ecore formalism.

Figure 2. Metamodel of a document-oriented NoSQL database

V. DATA MANAGEMENT

This involves transferring relational databases from the 
Data Lake to a NoSQL database corresponding to the Data 
Warehouse. To carry out this ingestion process, we have 
defined three modules that will successively ensure (1) the 
transformation of relational data into NoSQL data (CreateDW 
module), (2) the conversion of relational links (foreign keys) 
into references (ConvertLinks module) and (3) the merging of 
tables containing objects of the same semantics 
(MergeClasses module).        

A. CreateDW Module
This module transforms each relational database of the

Data Lake into a unique NoSQL database according to the 
MDA approach. The NoSQL warehouse being unique, it will 
contain the data coming from the different relational databases 
of the Data Lake. The application of a set of transformation 
rules defined on the metamodels of Section 4, generates a set 
of classes in a NoSQL database. We informally present the 
rules that have been expressed in the QVT language.

Rule 1: Each table in a relational database is transformed 
into a class in the NoSQL database. To avoid synonymy, the 
name of the class will be prefixed by the name of the original 
database.

Rule 2: Each row of a table, associated with its schema, is 
transformed into a record in the corresponding target class; the
record then contains a set of couples (attribute, value). The 
primary key is stored as any attribute. At this stage, the foreign 
keys are also stored with their relational values; they will be
converted into references by the ConvertLinks module. These
two rules, that we formalized in QVT language, are applied 
for each relational database of the Data Lake and feed the 
NoSQL DB; we will present their syntax in Figure 4 of the 
experimentation section. In parallel with the application of 
these transformation rules, an algorithmic processing allows 
to record metadata; these metadata match each relational 
primary key with the Record Identifier (RID) of the 
corresponding record in the NoSQL database.

B. ConvertLinks Module
In the standard object-oriented systems[15], links are

materialized by references. Since this principle is used in 
NoSQL systems, it is necessary to convert relational foreign
keys that have been transferred to the Data Warehouse into 
references.

The mechanism we have developed in ConvertLinks is not 
based on the expression of MDA rules but corresponds to an 
algorithmic process. In the NoSQL database, all records of a 
class are systematically marked with identifiers (RID for 
Record ID). During the transfer of data into the records, the 
relational primary and foreign keys were transferred in the 
form of pairs (attribute, value). Thus, thanks to the metadata 
recorded by the previous CreateDW module, the values of the 
foreign keys are converted into RID.



C. MergeClasses Module
The ingestion of data from the Data Lake has been done

by transferring the data from the different relational databases 
into the NoSQL database. However, it is common for tables 
with the same semantics to be transferred from different 
relational databases; these tables are said to be "equivalent", 
for example the DB1-Insured table and the DB2-Patients table 
containing data on the insured. It is therefore useful to group 
the data contained in "equivalent" tables within a single class 
of the NoSQL database. To achieve this grouping, we relied 
on an ontology establishing the correspondences between the 
terms of the relational databases contained in the Data Lake. 
This ontology is provided by relational data administrators 
bringing their business expertise. These administrators, after
consultation, have associated the tables considered as 
semantically equivalent.

Using this ontology, the MergeClasses module creates 
new classes in the NoSQL database; each of these classes 
groups the data from the various equivalent tables. This 
process is not limited to a union operation between records.

In fact, distinct records concerning the same entity can 
have complementary attributes that will be combined in a 
single record.

VI. IMPLEMENTATION AND TECHNICAL ENVIRONMENT

In this section, we describe the techniques used to 
implement the RDBToNoSDW process. We used the Eclipse 
Modeling Framework (EMF) technical environment that is 
suitable for modeling, metamodeling, and transforming 
models. EMF has the Ecore metamodeling language to create 
and manipulate metamodels. Ecore is based on XMI to 
instantiate models and QVT to transform metamodels. 
Algorithmic processing was coded in Java because of its 
compatibility with Eclipe which is the development 
environment used. 

The CreateDW module of our process generates a unique 
NoSQL database from the Data Lake databses. It uses a 
relational metamodel and a NoSQL metamodel as represented 
with Ecore in Figures 2 and 3. The instantiation of the two 
relational databases is done with the XMI language. Figure 3
shows the XMI instantiation of a source relational database. 
The transformation rules have been translated with the QVT 
language (Figure 4) and apply to all relational databases, 
independently of the RDBMS used.

Figure 3. XMI instantiation of a source relational database

Figure 4. QVT transformation rules from relational to NoSQL databases

Figure 5. Result XMI file of a target NoSQL database (after QVT rules 
execution)

The result of applying the QVT transformation rules
(Figure 4) is shown in Figure 5.

At the end of the execution of the CreateDW module, we 
obtain a NoSQL Data Warehouse containing a set of classes 
as shown in Figure 6. Each of them corresponds to a relational 
table without any filtering having been carried out (possible 
presence of "equivalent" tables stored in different databases 
from the source).

Figure 6. Extract from the list of the Data Warehouse classes stored in 
OrientDB 

The ConvertLinks module converts relational foreign keys 
into RID. For example, we consider a table “Patient”
containing a patient information’s with a field "Doctor"
representing a foreign key. This field will, therefore, be 
converted to a reference (RID).  Figure 7 shows a record of 
the "Patient" class after running the ConvertLinks module.



Figure 7. Extract from the “Patient” class after limks convertion 

Finally, the MergeClasses module groups the records of 
the classes considered as "equivalent" based on the ontology 
provided by the experts. Figures 8 and 9 represent respectively 
two records from two classes "ServiceProvision_Insured" and 
"Analysis_Patients". The two records, having in common 
several semantically equivalent attributes, will be merged into 
a single record stored in the same class "Insured_DW" as 
shown in Figure 10.

Figure 8. Record fron the « ServiceProvision_Insured » class

Figure 9. Record fron the « Analysis_Patients » class

Figure 10. Record fron the new created « Insured_DW » class

Figure 11. Extract from the "Insured_DW" class

Figure 11 represents an extract of the new class 
"Insured_DW" containing a record resulting from merging
records belonging to the two classes
"ServiceProvision_Insured" and "Analysis_Patients".

VII. RELATED WORKS

In this section, we present research work on extracting data 
from a Data Lake and more specifically data from several 
relational databases and creating a NoSQL Data Warehouse. 
The advent of Big Data has created several challenges for the 
management of massive data; among these we find the 
creation of architectures to ingest massive data sources as well 
as the integration and transformation of these massive data 
(Big Data) allowing their subsequent query. In this sense, 
some works have focused on the proposal of architectures 
(physical and logical) allowing the use and the management 
of Data Lakes. The work in [16] proposes an approach to 
structure the data of a Data Lake by linking the data sources 
in the form of a graph composed of keywords. Other works 
propose to extract the data of a Data Lake from the
metamodels of the sources. The authors in [17] have proposed 
a metamodel unifying NoSQL and relational databases. There 
are several formalisms [18] to express model transformations 
such as the QVT standard, the ATL language [19], which is a
non-standardized model transformation language more or less 
inspired by the QVT standard of the Object Management 
Group, etc.
Other works have studied only the transformation of a 
relational database into a NoSQL database. Thus in [20, 21]
the authors developed a method to transfer data from 
relational databases to MongoDB. This approach translates 
the links between tables only by nesting documents. In [22],
the authors present MigDB, an application that converts a 
relational database (MySQL) to a NoSQL one (MongoDB.
This conversion is done over several steps: transforming 
tables into JSON files, then transmitting each JSON file to a 
neural network. This network allows to process the links at the 
JSON file level, either by nesting or by referencing. This work 
considers association links only. The same is true in [23],
where the authors propose a method for transferring relational 
databases to MongoDB by converting the tables into CSV 
files that are then imported into MongoDB. However, the 
proposed method simply converts tables into MongoDB 
collections without supporting the various links between 
tables.
Our solution is based on the metamodeling of the sources of a 
Data Lake, the transformation of these metamodels thanks to 
the QVT standard and then the creation of a NoSQL Data 
Warehouse stored under OrientDB allowing to query the data 
of the Data Lake.

VIII.CONCLUSION

We have proposed a process to ingest data from a Data 
Lake into a Data Warehouse. The Data Lake contains several 
databases. This paper focuses on a specific problem, we have 
limited the content of the Data Lake to relational databases.



Three modules ensure the ingestion of the data. The 
CreateDW module transforms each relational database into a 
unique NoSQL database by applying MDA rules. This 
mechanism will be extended to transform other types of 
databases stored in the Data Lake. The ConvertLinks module 
translates relational links (keys) into references in accordance 
with the principles of object databases supported by the 
OrientDB system. Finally, the MergeClasses module merges 
semantically equivalent classes from different Data Lake 
databases; this merge is based on an ontology provided by 
business experts.

Currently, we are continuing our work on the ingestion of 
data from a Data Lake by extending it to other types of data 
sources, ingesting and processing data coming from CSV 
files, NoSQL databases (document and column-oriented
databases) and text files. Indeed, these types of files are 
present in the Data Lake of our medical case study.
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