
HAL Id: hal-03758339
https://hal.science/hal-03758339

Submitted on 23 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relational Databases Ingestion into a NoSQL Data
Warehouse

Fatma Abdelhedi, Rym Jemmali, Gilles Zurfluh

To cite this version:
Fatma Abdelhedi, Rym Jemmali, Gilles Zurfluh. Relational Databases Ingestion into a NoSQL Data
Warehouse. Sixteenth International Conference on Software Engineering Advances (ICSEA 2021), Oct
2021, Barcelone, Spain. �hal-03758339�

https://hal.science/hal-03758339
https://hal.archives-ouvertes.fr

Relational Databases Ingestion into a NoSQL Data Warehouse

Fatma Abdelhedi
CBI² research laboratory, Trimane,

Paris, France.
E-mail : fatma.abdelhedi@trimane.fr

Rym Jemmali
Toulouse Institute of Computer Science

Research (IRIT), CBI²- Trimane,
Paris, France

E-mail : rym.jemmali@trimane.fr

Gilles Zurfluh
IRIT, Capitole University,

Toulouse,France
E-mail : gilles.zurfluh@ut-capitole.fr

Abstract— The digital transformation of companies has led to
the evolution of databases towards Big Data. Our work is part
of this context and concerns more particularly the mechanisms
to extract datasets stored in a Data Lake and to store the data in
a Data Warehouse. The latter will allow, in a second time,
decisional analysis. In this paper, we present the extraction
mechanism limited to relational databases. To automate this
process, we used the Model Driven Architecture (MDA), which
offers a formalized environment for schema transformation.
From the physical schemas describing a Data Lake, we propose
transformation rules that allow the creation of a Data
Warehouse stored on a document-oriented NoSQL system. An
experimentation of the transformation process has been
performed on a medical application.

Keyword-Data Lake; Data Warehouse; NoSQL; Big Data;
Relational Database; MDA; QVT.

I. INTRODUCTION

Due to the considerable increase of data amount generated
by human activities, Data Lakes have been created within
organizations, often spontaneously, by the physical grouping
of datasets related to the same activity. A Data Lake [1] is a
massive grouping of data consisting of structured or
unstructured datasets. These datasets generally have the
following characteristics: (1) they can be stored on
heterogeneous systems, (2) each of them is exploited
independently of the others, (3) some of them can contain raw
data, i.e., data stored in their original form and without being
organized according to the use that will be made of them, (4)
the types and formats of the data can vary. In practice, a Data
Lake can group together different datasets [2] such as
relational databases, object databases, Comma Separated
Values (CSV) files, texts, spreadsheet folders, etc. The
massive data contained in a Data Lake represents an essential
reservoir of knowledge for business decision makers. This
data can be organized according to a multidimensional data
model in order to support certain types of decision processing
[3]. For example, in the French health sector, a Data Lake has
been created by the French public health insurance company
under the name of “Espace Numérique de Santé” (ENS); it
includes the electronic health records of insured persons,
health questionnaires, and care planners. However, the
heterogeneity of storage systems
combined with the diversity of content in the Data Lake is a
major obstacle to the use of data for decision-making. To
manipulate a Data Lake, a solution consists in ingesting the

data into a Data Warehouse and then transforming it
(grouping, calculations, etc.). Ingestion is a process that
consists in extracting data from various sources and then
transferring them to a repository where they can be
transformed and analyzed. For example, in [4] massive data
from various sources are ingested into a Data Warehouse and
exploited in the context of information retrieval on the Web.
Other works have introduced the concept of polystore, which
preserves the initial data sources (no ingestion) and allows
querying them by creating "data islands", each of which
contains several systems sharing a common query language.
For example, all relational databases are connected to the
"relational island", which is queried using standard SQL. This
solution, developed in particular in the BiGDAWG [5] and
ESTOCADA [6] projects, keeps the data in their native
formats.

Our work aims at performing decisional processing on a
Data Lake. This problem is part of a medical application in
which, massive data are stored in a Data Lake that will be used
by medical decision makers. We have chosen to ingest the
data from the Data Lake into a Data Warehouse that will later
be reorganized for Big Data Analytics. This paper is limited
to the ingestion of relational databases and excludes for the
moment other forms of datasets present in the Data Lake.
Our paper is organized as follows: in the following Section 2,
we present the medical application that justifies our work's
purpose. Section 3 describes the context of our study as well
as our research problem which aims at facilitating the
querying of data contained in a Data Lake by decision makers.
Section 4 describes the databases metamodels used in our
application. Section 5 presents our contribution which
consists in formalizing with the Model Driven Architecture
(MDA), the process of transforming the Data Lake databases
into a unique NoSQL Data Warehouse. Section 6 describes an
experimentation of the proposed process based on our medical
application. Section 7 contrasts our proposal with related
works. Finally, Section 8 concludes this paper and highlights
possible directions for exploring the continuity of the work.

II. CONTEXT OF WORK

In this section, we present the case study that motivated
our work, as well as the problem addressed in this paper.

A. Case Study
Our work is motivated by a project developed in the health

field for a group of private health insurance companies. These

insurance companies, stemming from the social and solidarity
economy, propose to their customers a coverage of the
medical expenses, which comes in complement of those
refunded by a public institution: the public health insurance
fund.

To ensure the management of their clients, these private
health insurance companies are facing a significant increase
in the volume of data processed. Indeed, some of these
companies carry out all the computer processing related to a
record. A digital health platform (ENS) has been developed
by the the public authority to store the medical data of each
insured person. Private health insurance companies can
extract data from the ENS to process the files of their clients
and, more broadly, carry out analyses of any kind (in
compliance with confidentiality rules). For each insured
person, the ENS contains administrative data, medical files
(civil status, medical imaging archives, reports, therapeutic
follow-ups, etc.), the history of refunds and questionnaires.
When the ENS is fully deployed at the national level, its
volume will be considerable since it concerns 67 million
insured persons.

In the context of this project, the ENS constitutes a real
Data Lake because of (1) the diversity of data types and
formats (2) the volumes stored which can reach several
terabytes and (3) the raw nature of the data. The objective of
the project is to study the mechanisms for extracting data from
the ENS and organizing it to facilitate analysis (Big Data
Analytics).

B. Problematic
Our work aims to develop a system allowing private health

insurance companies to create a Data Warehouse from a Data
Lake. This paper deals more specifically with the mechanisms
of extraction and unification from commonly used databases,
we limit the framework of our study as follows:

-The ENS Data Lake is the source of the data; in this paper,
we voluntarily reduce its content to relational databases.
Indeed, this category of datasets represents an important part
of the ENS data:

- The generated Data Warehouse is managed by a
document-oriented NoSQL system. This type of system offers
(1) a great flexibility to reorganize objects for analysis and (2)
good access performances to large volumes of data (use of
MapReduce).

To achieve our goal, each database in the Data Lake is
extracted and converted into another model to allow its
storage in the Data Warehouse. We do not address here the
problems related to the selective extraction of data and their
aggregative transformation.

To test our proposals, we have developed a Data Lake with
several relational databases managed by MySQL[7] and
PostgreSQL[8] systems. These databases contain respectively
data describing the follow-up of the insured and the
processing of the files in a medical center. The available
metadata are limited to those accessible on the storage systems
(absence of ontologies for example). The Data Warehouse,

which is supported by an OrientDB [9] platform, must allow
the analysis of the care pathways of insured persons with
chronic pathologies. We chose the OrientDB system to store
the Data Warehouse. Indeed, this document-oriented NoSQL
system allows to consider several types of semantic links such
as association, composition and inheritance links; it is thus
well adapted to our case study where the richness of the links
between objects constitutes an essential element for decisional
processes.

III. OVERVIEW OF OUR SOLUTION

Although a Data Lake can contain files of any format, we
focus in this paper on the extraction of relational databases and
the feeding of a NoSQL Data Warehouse. Several works have
dealt with the transfer of a relational database to a NoSQL
database. Thus, some works have proposed algorithms for
converting relational data to document-oriented systems, such
as MongoDB [10]; however, these works transform relational
links into embedded documents or DBRef links. However,
these NoSQL linkage solutions are not satisfactory with
respect to object systems[11]. Moreover, to our knowledge,
no study has been conducted to convert several relational
databases contained in a Data Lake into a NoSQL Data
Warehouse.

In our ingestion process, we have defined three modules:
the first module named CreateDW, the second ConvertLinks
and the last one MergeClasses.We used a Data Lake as a
source database for our process, which we limited in this paper
to Relational databases and as a target database,we used a
NoSQL Data Warehouse that will contain the final processed
data. We named our process RDBToNoSDW. Our proposal is
based on Model Driven Architecture (MDA) which allows to
describe separately the functional specifications and the
implementation of an application on a platform. Among the
three models present in MDA (CIM, PIM and PSM), we are
located at the PSM level where the logical schemas are
described. We also use the declarative language Query View
Transformation (QVT) [12] specified by the Object
Management Group (OMG) [13], which allows us to describe
the ingestion of data by model transformations.

To use the MDA transformation mechanism, we proposed
two metamodels describing respectively the source and target
databases. From these metamodels, we specified the
transformation rules in QVT language to ensure data
ingestion.

IV. METAMODELING

We present successively our metamodels proposal of a
source Relational database and a target document-oriented
NoSQL database.

A. Relational Metamodel
The Data Lake, source of our process, can contain several

relational databases. A relational database contains a set of
tables made of a schema and an extension. The schema of a
table contains a sequence of attributes. The extension is

composed of a set of rows grouping attribute values. Among
the attributes of a table, we distinguish the primary key whose
values identify the rows and the foreign keys, which
materialize the links. Figure 1 represents the Ecore[14]
metamodel of a relational database.

Figure 1. Metamodel of a relational database

B. Document-Oriented NoSQL Metamodel
The target of our process corresponds to the Data

Warehouse represented by a NoSQL database. A document-
oriented NoSQL database contains a set of classes. Each class
gathers objects that are identified (by a reference) and
composed of couples (attribute, value); a value is defined by a
type, it can be either multivalued or structured. We distinguish
a particular type, the reference, whose values make it possible
to link the objects. These concepts are represented in Figure 2
according to the Ecore formalism.

Figure 2. Metamodel of a document-oriented NoSQL database

V. DATA MANAGEMENT

This involves transferring relational databases from the
Data Lake to a NoSQL database corresponding to the Data
Warehouse. To carry out this ingestion process, we have
defined three modules that will successively ensure (1) the
transformation of relational data into NoSQL data (CreateDW
module), (2) the conversion of relational links (foreign keys)
into references (ConvertLinks module) and (3) the merging of
tables containing objects of the same semantics
(MergeClasses module).

A. CreateDW Module
This module transforms each relational database of the

Data Lake into a unique NoSQL database according to the
MDA approach. The NoSQL warehouse being unique, it will
contain the data coming from the different relational databases
of the Data Lake. The application of a set of transformation
rules defined on the metamodels of Section 4, generates a set
of classes in a NoSQL database. We informally present the
rules that have been expressed in the QVT language.

Rule 1: Each table in a relational database is transformed
into a class in the NoSQL database. To avoid synonymy, the
name of the class will be prefixed by the name of the original
database.

Rule 2: Each row of a table, associated with its schema, is
transformed into a record in the corresponding target class; the
record then contains a set of couples (attribute, value). The
primary key is stored as any attribute. At this stage, the foreign
keys are also stored with their relational values; they will be
converted into references by the ConvertLinks module. These
two rules, that we formalized in QVT language, are applied
for each relational database of the Data Lake and feed the
NoSQL DB; we will present their syntax in Figure 4 of the
experimentation section. In parallel with the application of
these transformation rules, an algorithmic processing allows
to record metadata; these metadata match each relational
primary key with the Record Identifier (RID) of the
corresponding record in the NoSQL database.

B. ConvertLinks Module
In the standard object-oriented systems[15], links are

materialized by references. Since this principle is used in
NoSQL systems, it is necessary to convert relational foreign
keys that have been transferred to the Data Warehouse into
references.

The mechanism we have developed in ConvertLinks is not
based on the expression of MDA rules but corresponds to an
algorithmic process. In the NoSQL database, all records of a
class are systematically marked with identifiers (RID for
Record ID). During the transfer of data into the records, the
relational primary and foreign keys were transferred in the
form of pairs (attribute, value). Thus, thanks to the metadata
recorded by the previous CreateDW module, the values of the
foreign keys are converted into RID.

C. MergeClasses Module
The ingestion of data from the Data Lake has been done

by transferring the data from the different relational databases
into the NoSQL database. However, it is common for tables
with the same semantics to be transferred from different
relational databases; these tables are said to be "equivalent",
for example the DB1-Insured table and the DB2-Patients table
containing data on the insured. It is therefore useful to group
the data contained in "equivalent" tables within a single class
of the NoSQL database. To achieve this grouping, we relied
on an ontology establishing the correspondences between the
terms of the relational databases contained in the Data Lake.
This ontology is provided by relational data administrators
bringing their business expertise. These administrators, after
consultation, have associated the tables considered as
semantically equivalent.

Using this ontology, the MergeClasses module creates
new classes in the NoSQL database; each of these classes
groups the data from the various equivalent tables. This
process is not limited to a union operation between records.

In fact, distinct records concerning the same entity can
have complementary attributes that will be combined in a
single record.

VI. IMPLEMENTATION AND TECHNICAL ENVIRONMENT

In this section, we describe the techniques used to
implement the RDBToNoSDW process. We used the Eclipse
Modeling Framework (EMF) technical environment that is
suitable for modeling, metamodeling, and transforming
models. EMF has the Ecore metamodeling language to create
and manipulate metamodels. Ecore is based on XMI to
instantiate models and QVT to transform metamodels.
Algorithmic processing was coded in Java because of its
compatibility with Eclipe which is the development
environment used.

The CreateDW module of our process generates a unique
NoSQL database from the Data Lake databses. It uses a
relational metamodel and a NoSQL metamodel as represented
with Ecore in Figures 2 and 3. The instantiation of the two
relational databases is done with the XMI language. Figure 3
shows the XMI instantiation of a source relational database.
The transformation rules have been translated with the QVT
language (Figure 4) and apply to all relational databases,
independently of the RDBMS used.

Figure 3. XMI instantiation of a source relational database

Figure 4. QVT transformation rules from relational to NoSQL databases

Figure 5. Result XMI file of a target NoSQL database (after QVT rules
execution)

The result of applying the QVT transformation rules
(Figure 4) is shown in Figure 5.

At the end of the execution of the CreateDW module, we
obtain a NoSQL Data Warehouse containing a set of classes
as shown in Figure 6. Each of them corresponds to a relational
table without any filtering having been carried out (possible
presence of "equivalent" tables stored in different databases
from the source).

Figure 6. Extract from the list of the Data Warehouse classes stored in
OrientDB

The ConvertLinks module converts relational foreign keys
into RID. For example, we consider a table “Patient”
containing a patient information’s with a field "Doctor"
representing a foreign key. This field will, therefore, be
converted to a reference (RID). Figure 7 shows a record of
the "Patient" class after running the ConvertLinks module.

Figure 7. Extract from the “Patient” class after limks convertion

Finally, the MergeClasses module groups the records of
the classes considered as "equivalent" based on the ontology
provided by the experts. Figures 8 and 9 represent respectively
two records from two classes "ServiceProvision_Insured" and
"Analysis_Patients". The two records, having in common
several semantically equivalent attributes, will be merged into
a single record stored in the same class "Insured_DW" as
shown in Figure 10.

Figure 8. Record fron the « ServiceProvision_Insured » class

Figure 9. Record fron the « Analysis_Patients » class

Figure 10. Record fron the new created « Insured_DW » class

Figure 11. Extract from the "Insured_DW" class

Figure 11 represents an extract of the new class
"Insured_DW" containing a record resulting from merging
records belonging to the two classes
"ServiceProvision_Insured" and "Analysis_Patients".

VII. RELATED WORKS

In this section, we present research work on extracting data
from a Data Lake and more specifically data from several
relational databases and creating a NoSQL Data Warehouse.
The advent of Big Data has created several challenges for the
management of massive data; among these we find the
creation of architectures to ingest massive data sources as well
as the integration and transformation of these massive data
(Big Data) allowing their subsequent query. In this sense,
some works have focused on the proposal of architectures
(physical and logical) allowing the use and the management
of Data Lakes. The work in [16] proposes an approach to
structure the data of a Data Lake by linking the data sources
in the form of a graph composed of keywords. Other works
propose to extract the data of a Data Lake from the
metamodels of the sources. The authors in [17] have proposed
a metamodel unifying NoSQL and relational databases. There
are several formalisms [18] to express model transformations
such as the QVT standard, the ATL language [19], which is a
non-standardized model transformation language more or less
inspired by the QVT standard of the Object Management
Group, etc.
Other works have studied only the transformation of a
relational database into a NoSQL database. Thus in [20, 21]
the authors developed a method to transfer data from
relational databases to MongoDB. This approach translates
the links between tables only by nesting documents. In [22],
the authors present MigDB, an application that converts a
relational database (MySQL) to a NoSQL one (MongoDB.
This conversion is done over several steps: transforming
tables into JSON files, then transmitting each JSON file to a
neural network. This network allows to process the links at the
JSON file level, either by nesting or by referencing. This work
considers association links only. The same is true in [23],
where the authors propose a method for transferring relational
databases to MongoDB by converting the tables into CSV
files that are then imported into MongoDB. However, the
proposed method simply converts tables into MongoDB
collections without supporting the various links between
tables.
Our solution is based on the metamodeling of the sources of a
Data Lake, the transformation of these metamodels thanks to
the QVT standard and then the creation of a NoSQL Data
Warehouse stored under OrientDB allowing to query the data
of the Data Lake.

VIII.CONCLUSION

We have proposed a process to ingest data from a Data
Lake into a Data Warehouse. The Data Lake contains several
databases. This paper focuses on a specific problem, we have
limited the content of the Data Lake to relational databases.

Three modules ensure the ingestion of the data. The
CreateDW module transforms each relational database into a
unique NoSQL database by applying MDA rules. This
mechanism will be extended to transform other types of
databases stored in the Data Lake. The ConvertLinks module
translates relational links (keys) into references in accordance
with the principles of object databases supported by the
OrientDB system. Finally, the MergeClasses module merges
semantically equivalent classes from different Data Lake
databases; this merge is based on an ontology provided by
business experts.

Currently, we are continuing our work on the ingestion of
data from a Data Lake by extending it to other types of data
sources, ingesting and processing data coming from CSV
files, NoSQL databases (document and column-oriented
databases) and text files. Indeed, these types of files are
present in the Data Lake of our medical case study.

REFERENCES

[1] F. Nargesian, E. Zhu, R. J. Miller, K. Q. Pu, and P. C.
Arocena, « Data lake management: challenges and
opportunities », Proc. VLDB Endow., vol. 12, no 12, p.
1986‑1989, August 2019.

[2] P. P. Khine and Z. S. Wang, « Data lake: a new ideology in
big data era », ITM Web Conf., vol. 17, 2018.

[3] M. El Malki, A. Kopliku, E. Sabir, and O. Teste,
« Benchmarking Big Data OLAP NoSQL Databases », in
Ubiquitous Networking, vol. 11277, Ed. Cham: Springer
International Publishing, 2018, p. 82‑94.

[4] Meehan, J., Aslantas, C., Zdonik, S., Tatbul, N., & Du, J.
(2017). Data Ingestion for the Connected World. CIDR.

[5] J. Duggan, J. Kepner, A. J. Elmore, and S. Madden, « The
BigDAWG Polystore System », SIGMOD Rec., vol. 44, no
2, p. 6, 2015.

[6] R. Alotaibi, B. Cautis, A. Deutsch, M. Latrache, I.
Manolescu, and Y. Yang, « ESTOCADA: towards scalable
polystore systems », Proc. VLDB Endow., vol. 13, no 12, p.
2949‑2952, August 2020.

[7] https://www.mysql.com (Accessed: 19 March 2021)
[8] https://www.postgresql.org (Accessed: 19 March 2021)
[9] https://orientdb.com/docs/3.0.x/ (Accessed: 01 March 2021)
[10] A. A. Mahmood, « Automated Algorithm for Data Migration

from Relational to NoSQL Databases », Al-Nahrain J. Eng.
Sci., vol. 21, no 1, p. 60, feb. 2018.

[11] http://www.odbms.org/odmg-standard/reading-room/odmg-
2-0-a-standard-for-object-storage/ (Accessed: 30 June 2021)

[12] https://www.omg.org/spec/QVT/1.2/PDF (Accessed: 12 May
2021)

[13] https://www.omg.org (Accessed: 12 May 2021)
[14] https://download.eclipse.org/modeling/emf/emf/javadoc/

2.9.0/org/eclipse/emf/ecore/package-summary.html
(Accessed: 22 June 2021)

[15] http://www.odbms.org/wp-content/uploads/2013/11/001.04-
Ullman-CS145-ODL-OQL-Fall-2004.pdf (Accessed: 30
June 2021)

[16] C. Diamantini, P. Lo Giudice, L. Musarella, D. Potena, E.
Storti, and D. Ursino, « A New Metadata Model to
Uniformly Handle Heterogeneous Data Lake Sources:
ADBIS 2018 Budapest, Hungary, September 2-5, 2018,
Proceedings », 2018, p. 165‑177.

[17] C. J. F. Candel, D. S. Ruiz, and J. J. García-Molina, « A
Unified Metamodel for NoSQL and Relational Databases »,
ArXiv210506494 Cs, May 2021.

[18] J. Bruel and al., « Comparing and classifying model
transformation reuse approaches across metamodels »,
Softw. Syst. Model., 2019.

[19] A. Erraissi and M. Banane, « Managing Big Data using
Model Driven Engineering: From Big Data Meta-model to
Cloudera PSM meta-model », International Conference on
Decision Aid Sciences and Application (DASA), Nov. 2020,
p. 1235‑1239.

[20] Hanine, M., Bendarag, A., Boutkhoum, O. (2015) « Data
Migration Methodology from Relational to NoSQL
Databases ». International Journal of Computer and
Information Engineering, 9(12), 2559 - 2563.

[21] L. Stanescu, M. Brezovan, and D. D. Burdescu, « Automatic
Mapping of MySQL Databases to NoSQL MongoDB »,
Proceedings of the Federated Conference on Computer
Science and Information Systems, Oct. 2016, p. 837‑840.

[22] G. Liyanaarachchi, L. Kasun, M. Nimesha, K. Lahiru, and A.
Karunasena, « MigDB - relational to NoSQL mapper », in
2016 IEEE International Conference on Information and
Automation for Sustainability (ICIAfS), Dec. 2016, p. 1‑6.

[23] S. Chickerur, A. Goudar, and A. Kinnerkar, « Comparison of
Relational Database with Document-Oriented Database
(MongoDB) for Big Data Applications », in 2015 8th
International Conference on Advanced Software
Engineering Its Applications (ASEA), Nov. 2015, p. 41‑47.

