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Abstract There is a growing attraction for robotic aerial systems in the
academic world and in industry. Aerial Cable Towed Systems (ACTSs)
are naturally subjected to various unknown external actions (wind, hu-
man, etc.). Accordingly, it is crucial to characterize their stiffness both
for balancing external disturbances and for their design. Thus, in this
paper, an ACTS with a point-mass end-effector, subjected to a generic
force, is considered. The effect of the number of cables and the cable
arrangement on the stiffness of the ACTSs is investigated. It turns
out that the cable arrangement is the factor that enhances most the
stiffness of the ACTSs.

1 Introduction

The last few decades have witnessed great advances in the domain of aerial
robotics. These robots gained attention because of their potential applica-
tions. Initially, they were employed for mapping, surveillance and monitoring
operations. Subsequently, interest in infrastructure maintenance operations,
search-and-rescue (S&R), etc. led scientists to spend effort on the control and
design of Aerial Cable Towed Systems (ACTSs) (Villa et al., 2018). Many of the
above-mentioned operations involve coping with external forces (i.e. physical
interaction) (Tognon and Franchi, 2020). Therefore, the study of the stiffness of
these systems plays a central role. Indeed, the ACTSs can take infinite config-
urations and the strict relationship between the available wrench, the stiffness
and their configuration is the reason behind this work. Recently, the first
studies concerning the available wrench set to evaluate the robustness of the
equilibrium of these robots were conducted in Erskine et al. (2019a). Despite
the differences between ACTSs and Cable-Driven Parallel Robots (CDPRs),
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the wrench feasibility analysis of ACTS described in Erskine et al. (2019a) was
based on the approach introduced in Bouchard et al. (2010) for the wrench fea-
sibility of CDPRs. The importance of the wrench analysis lies in being able to
assess the feasibility of a task. Hence, the so-called capacity margin was defined
in Ruiz et al. (2015). This capacity margin gave rise to a series of contributions
in which the ACTS should accomplish a task while re-configuring. The optimal
configuration was chosen with respect to the capacity margin (Erskine et al.,
2019b) (Ya et al., 2021). So far, presented works assess the task feasibility by
considering only the capacity margin (available wrench). However, the cables
introduce compliance into the system and the overall stiffness should also be
considered for optimal results.
This paper aims to analyze the effect of the cable arrangement, the number
of cables and the configuration parameters of the ACTS on its stiffness. The
proposed approach focuses on the use of a directional stiffness index to quantify
and compare the effects of cable arrangement and number.
The paper is organised as follows. Section 2 recalls the static model of an
ACTS. Section 3 provides some definitions of the stiffness and directional stiff-
ness of an ACTS. Section 4 describes the methodology used to evaluate the
effect of the cable arrangement and the number of cables on the directional
stiffness of an ACTS. Conclusions and future work are drawn in section 5.

2 System modeling

Let’s consider a generic ACTS with n cables and a point-mass load as shown
in Figure 1. The symbols used to describe its configuration are summarised in
Table 1. The static equilibrium for the point-mass load is given by:

Wt+we = 0 (1)

where t is the cable tension vector containing each cable tension ti, we is the
external wrench and W is the so-called wrench matrix, which can be expressed
as:

W =
[
q1 q2 . . . qn

]
(2)

3 Stiffness modeling

Based on previous CDPR stiffness modeling (Moradi, 2013) (Behzadipour,
2006), the stiffness of an ACTS can be defined as:

K = −δwe

δxL
(3)
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Table 1. Nomenclature.

Symbols Physical meaning Symbols Physical meaning
FO, FQi

inertial and ith drone
frames

qi ∈ R3 unit vector of the ith cable
in FO

O,Qi origin of inertial and ith
drone frames

fi ∈ R thrust force of the ith
drone

m ∈ R mass of each drone li ∈ R ith cable length
xL ∈ R3 position of the load in FO g ∈ R gravity constant
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Figure 1. Scheme of a generic ACTS with n cables and a suspended point-
mass load.

where a small variation in the external wrench δwe generates a small displace-
ment of the load δxL. Explicitly, substituting (1) into (3) gives:

K =
δ

δxL

(
Wt

)
=

δW

δxL
t+W

δt

δxL
=

δW

δxL
t+W

δt

δl

δl

δxL
=

δW

δxL
t+W

δt

δl
WT (4)

where l =
[
l1 l2 . . . ln

]
. Defining δt

δl = diag[k1, k2, . . . , kn] leads to the so-
called passive stiffness matrix Kp = Wdiag[k1, k2, . . . , kn]W

T =
∑n

i=1 kiqiq
T
i

that is a function of cable arrangement and cable elasticity ki whereas Ka =
δW
δxL

t =
∑n

i=1
ti
li
(I3 − qiq

T
i ) is the active stiffness matrix and depends on cable

tensions ti and cable lengths li, i = 1, . . . , n. Thus, the stiffness matrix K is:

K =

n∑
i=1

ti
li
(I3 − qiq

T
i ) +

n∑
i=1

kiqiq
T
i = Ka +Kp (5)
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where I3 is the identity matrix of dimension 3.

Remark 3.1 (Effects of ki, li and ti on the ACTS stiffness). Equation (5)
states that K is directly proportional to ti and ki and inversely proportional
to li. Therefore, increasing ti and ki leads to an increase in K and vice-versa
for li. The tension values can not be chosen freely. They must have lower
and upper bounds and depend on the ACTS configuration. Cable lengths are
practically limited to guarantee quick changes in the cable directions during
the operation of the ACTSs. Note that in series with the cable stiffness ki, the
drone also contribute to the stiffness similarly to the winches of the CDPRs.
The contribution of the drone stiffness will be the subject of future work.

It is not always necessary to maximize the overall stiffness of a mechanism.
For instance, for extinguishing a building fire as described in Jamshidifar and
Khajepour (2020), the ACTS should remain almost static in front of the fire
while water flows out from the nozzle suspended by the quadrotors and cables.
Hence, depending on the task at hand, maximizing the stiffness in one direction
may be sufficient. In this perspective, the directional stiffness index can be
defined as (Moradi, 2013):

kds =
||we||

||(K−1we)T
we

||we|| ||
(6)

which evaluates the stiffness along the direction of the external wrench we.
The solution of equation (1) in terms of tensions can be written in a general
form as:

t = −W†we +Nλ (7)

where W† = WT (WWT )−1 is the pseudo-inverse matrix of W, N ∈ Rn×(n−3)

contains the vectors that span the kernel of W and λ ∈ R(n−3). Let F be the
n-dimensional box of feasible tensions:

F := {t ∈ Rn | tmin,i ≤ ti ≤ tmax,i, i = 1, ..., n} (8)

with tension limits tmin,i and tmax,i depending on the drone thrust limits fmin

and fmax and their attitude as derived in Erskine et al. (2019a):

tmin,i = mgqz,i +
√

f2
min +m2g2(q2z,i − 1) (9)

tmax,i = mgqz,i +
√
f2
max +m2g2(q2z,i − 1) (10)

Since the feasible tensions belong to a convex set due to the tension limits
tmin,i and tmax,i, the lambda space L can be defined as:
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L := {λ ∈ R(n−3) | tmin ≤ −W†we +Nλ ≤ tmax} (11)

which, in turn, is convex. Assume we want to minimize the displacement (i.e.
maximize the stiffness) of the load δxL = K−1δwe along the y direction, namely
δxL,y. Then, the optimal λ vector can be obtained by solving the following
optimization problem:

min
λ∈L

|δxL,y|

s.t. tmin,i ≤ ti ≤ tmax,i i = 1, ..., n
(12)

Thus, as long as dim(L) ≥ 1 (i.e. n > 3), it is possible to search for a
set of cable tensions such that the displacement along a given direction is the
smallest one.
There exist different methods to solve this problem: the Stiffness Oriented
Tension Distribution Algorithm (SOTDA) developed in Picard et al. (2021) is
the one used here.

4 Effect of the number of cables and their arrangement
on the ACTS stiffness

This section attempts to quantify the influence of the number of cables and
their arrangement on the stiffness of the ACTSs. However, since the arrange-
ment and number of cables are coupled inside K, it is necessary to develop a
methodology that distinguishes their effects before being able to quantify them.
Equation (5) can be rewritten as follows:

K =

3∑
i=1

kiqiq
T
i +

3∑
i=1

ti
li
(I3 − qiq

T
i )

+

n∑
j>3

kj

3∑
i=1

a2ijqiq
T
i +

n∑
j>3

tj
lj
(I3 −

3∑
i=1

a2ijqiq
T
i )

(13)

where:

qj =

3∑
i=1

aijqi aij ∈ R, j = 4, . . . , n (14)

is expressed as linear combination of the vectors qi which, in turn, generate
the base Bℓ (Lang, 2002):

Bℓ := {qi | i = 1, 2, 3} ℓ = 1, . . . ,∞ (15)

where subscript ℓ identify one base among infinity.
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Table 2. ACTS parameters.

Symbols Value Symbols Value
m 15 kg fmin,i 150 N
l 2 m fmax,i 450 N
dcable (diameter) 0.7 mm we (0, -10, 0)T N
Ecable (Young modulus) 4 GPa

Equation (13) provides some insight regarding the dependency of the matrix
K on the system parameters described in Remarks 3.1. Assume that k1 =
· · · = kn = k, l1 = · · · = ln = l and that each cable direction and basis Bℓ are
randomly generated by using a continuous uniform distribution U (Weisstein,
1999). In particular, each component of qi is generated as U([0, 1]). This makes
the procedure general and systematic allowing each cable to take any direction
in space. Hence, the variables that play an important role in the stiffness are,
Bℓ, aij , ti, k, l. Moreover:

� assign Bℓ and assume n > 3, then according Behzadipour (2006):

∀ aij ∈ R s.t. ti > 0 ∀ i ⇒ qiq
T
i ≥ 0 ⇒ the largern, the higher kds

� assign n ≥ 3 and assume the existence of a finite number of possible
configurations: it becomes possible to estimate the mean k̃ds and standard
deviation k̂ds of kds as (Weisstein, 1999):

k̃ds =
kds,max + kds,min

2
(16)

k̂ds =

√
(kds,max + kds,min)2

12

nc + 1

nc − 1
(17)

where kds,max and kds,min represent the extreme values of the interval
I = [kds,min, kds,max] to which kds belongs, whereas I is discretized into
nc elements.

To assess the effects of number of cables and cable arrangement, some pa-
rameters are set and given in Table 2. The directional stiffness index were
computed neval = 105 times using the fixed set of data. Results are collected
in Tables 3 and 4 and depicted in Figures 2. The mean value k̃ds is represen-
tative of the directional stiffness of all the configurations; independently from
the cable arrangements. In parallel, the standard variation k̂ds, is an indica-
tor of the influence of cable directions: it underlines the influence of changing
Bℓ. These properties are inherent in the stiffness of the system modelled by
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Table 3. 1st Simulation data.

n k̃ds k̂ds
3 304 N/m 1239 N/m
4 301 N/m 208 N/m
5 393 N/m 245 N/m
6 497 N/m 281 N/m
7 601 N/m 311 N/m
8 710 N/m 340 N/m
9 815 N/m 362 N/m
10 923 N/m 387 N/m

Table 4. 2nd Simulation data.

n k̃ds k̂ds
3 310 N/m 2436 N/m
4 301 N/m 204 N/m
5 395 N/m 245 N/m
6 499 N/m 282 N/m
7 602 N/m 311 N/m
8 708 N/m 338 N/m
9 813 N/m 363 N/m
10 924 N/m 386 N/m

equation (13): this is supported by the strong correlation between the results
obtained from arbitrary simulations; as depicted in Figures 2.

Collected data shown that k̂ds drop down rapidly in the transition between
n = 3 and n = 4. Subsequent values of k̂ds (from n ≥ 5) decrease as the number
of cables rises. Meanwhile, for k̃ds, adding one cable leads to an increase in
stiffness. In other words, the k̃ds variations due to a change of cable number
become almost constant for n ≥ 5.

Thus, from n ≥ 5 the net difference between the effects of the number and
direction of the cables on the stiffness becomes apparent.

These numerical results pave the way for a more general result:

Theorem 4.1. Consider an ACTS with n cables and a point-mass end-effector.
Then if n → ∞, k̂ds becomes constant.

Proof. Let’s pick two different bases B := {qi | i = 1, 2, 3} and B∗ := {q∗
i | i =

1, 2, 3} and assume that k1 = · · · = k∞ = k, l1 = · · · = l∞ = l.

Figure 2. Directional stiffness (mean and standard deviation) as a function of
the number of ACTS configurations.
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It is straightforward to see that, given an external wrench we ∈ R3, t =
−W†we and t∗ = −W∗†we are equal because both W† and W∗† contains all
the direction vectors possible. Therefore, the new stiffness matrix K∗ is:

K∗ =

3∑
i=1

kiq
∗
iq

∗T
i +

3∑
i=1

ti
li
(I3 − q∗

iq
∗T
i ) +

n∑
j>3

kj

3∑
i=1

a∗2ij q
∗
iq

∗T
i

+

n∑
j>3

tj
lj
(I3 −

3∑
i=1

a∗2ij q
∗
iq

∗T
i )

(18)

with a∗ij ∈ R.
As before, using the concept of linear combination yields:

q∗
i =

3∑
k=1

bkqk bk ∈ R, qk ∈ B (19)

which substituted in (18), leads to:

K∗ =

3∑
i=1

ki

3∑
k=1

bikqkq
T
k +

3∑
i=1

ti
li
(I3 −

3∑
k=1

bikqkq
T
k )

+

n∑
j>3

kj

3∑
i=1

a∗2ij

3∑
k=1

bikqkq
T
k +

n∑
j>3

tj
lj
(I3 −

3∑
i=1

a∗2ij

3∑
k=1

bikqkq
T
k )

(20)

with bik ∈ R.
Subsequently, recalling that k̂ds = f(B, aij) and using the arbitrariness of

the coefficients of the linear combination, gives us the results.

Remark 4.2 (Numerical trend of ∆Îkds
). To shed light on Theorem 4 the

trend of ∆Îkds
= Îkds,s+1− Îkds,s is depicted in Figure 3. Each step-s implies an

increase of 10 cables in the configuration. It can be seen that as the number of
cables n increases, ∆Îkds

decreases. Consequently when n → ∞ then ∆Îkds
→

0 and k̂ds = const.

Corollary 4.3. The arbitrariness of the coefficients of the linear combination
leads to K = K∗.

Proof. Once again, using equation (20), it is straightforward to see that there
exists a set of coefficients for the linear combination (19) such that the two
matrices K = K∗ are identical.
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Corollary 4.4. The arbitrariness of the coefficients of the linear combination
leads to k̂ds = k̂∗ds.

Proof. Relying on Theorem 4, Corollary 4.3 and Remark 4.2, when n → ∞
and ∆Îkds

→ 0 then all the k̂ds are constant and then equal one another

k̂ds = k̂∗ds.

Remark 4.5 (Empirical design rule). The results of Corollary 4.4 involves
design aspects of the ACTSs. It points out that for a high number of cables
the effect of the configuration vanishes. Technically speaking, the limit on the
number of cables can be set at 10. Indeed, Tables 2 and 3 show that by varying
the number of cables in this range, ∆Îkds

≈ 20 N/m < k̃ds ≈ 100 N/m.

In order to fully consider the influence of cable directions on stiffness, it is
necessary to evaluate the lambda space L: it provides the possibility of picking
a set of tensions that increases stiffness. The shape of L and thus the tensions
applicable to the cables depend on the configuration.

Hereby, we compare the directional stiffness of a classical ACTS with a
hybrid one, both with n = 5. The classic ACTS is characterized by cables
whose directions point upwards. In the hybrid, the 4th and 5th cables are
attached to the ground as in Jamshidifar and Khajepour (2020), whereas the
other three cables have the same directions as in the classical one shown in
Figure 4.

In this example the directional stiffness index and the load-displacement
δxL,y are used for comparison. Figure 5 depicts the load-displacement within
the available wrench set W for the classical and hybrid ACTSs.

In particular, the available wrench set is projected onto the cartesian planes
and discretized, then the load-displacement δxL,y is computed for all the points
of the grid. The wrench sets generated are different for the two ACTSs: the
relevant parameters that distinguish the two ACTS are summarized in Table

Figure 3. Decreasing trend of ∆Îkds
due to the increase in the number of

cables.

9



Table 5. Features of classical and hybrid ACTS.

Wxy Wyz Wxz

ACTS VolumeW δxL,ymin ∆δxL,y δxL,ymin ∆δxL,y δxL,ymin ∆δxL,y

Classical 1.2 e8 0.021 0.0004 0.012 0.008 0.012 0.008
Hybrid 3.0 e7 0.018 0.005 0.018 0.006 0.018 0.004

∆(·) defines the difference between the maximum and the minimum δxL,y values.

5. For the scope of this section, the important aspect of this analysis is that
kds,Classical = 467 N/m and kds,Hybrid = 470 N/m are in accordance with the
data collected in the Table 3 for n = 5. Indeed, the generated baseB is common
for both the ACTS and the directional stiffnesses are similar between them and
w.r.t. the mean value of k̃ds for n = 5. However, as the tensions depend on the
configuration, the δxL,y can be recomputed and eventually minimised using
the SOTDA procedure. Figure 6 depicts the lambda space L for the hybrid
ACTSs only. Indeed, the lambda space L of the classical ACTS degenerates
in a point (i.e. λ = 0). This crucial difference is due to the change in the
cable arrangement. As a consequence, the proper choice of λ can guarantee a
reduction of the displacement up to ≈ 2 times. Indeed, the new kds,Hybrid =
1083 N/m: it is higher than the maximum value gived in Table 3 because here
the SOTDA is exploited.

y

z

x

Classical ACTS

y

z

x

Hybrid ACTS

Pu
lleyMo

tor

Figure 4. Classical and hybrid configurations of an ACTS with n = 5.
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Figure 5. Estimated load-displacement δxL,y within the 2D available wrench
set for the classical (a) and hybrid (b) ACTS. The load is subjected to a wrench
we = (0, −10, 0)T and its position is xL = (0, 0, 1)T.
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Figure 6. Estimated load-displacement δxL,y over the lambda space L for the
hybrid ACTS.

5 Conclusion and future works

A preliminary study of the factors influencing the stiffness of ACTS was con-
ducted in this paper. The results show that the cable arrangement of an ACTS
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has a major impact on its stiffness. Indeed, the directional stiffness index is
twice as important with the hybrid configuration of the ACTS than with the
suspended configuration. Future work aims to generalize these results for sys-
tems with rigid body end-effector and to carry out the design of a controller
capable of guiding the system to achieve the maximum index of directional
stiffness. The theoretical results will be validated experimentally.
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