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ABSTRACT
Kinematic analysis of under-constrained Cable-Driven Par-
allel Robots has been a topic of interest because of the in-
herent coupling between the loop-closure and static equilib-
rium equations. The non-linearity of the problem is mag-
nified with the addition of the coupling between the cable
lengths and their tensions based on the elastic cable model.
The paper proposes an unsupervised neural network algo-
rithm to perform real-time forward geometrico-static anal-
ysis of such robots in a suspended configuration under the
action of gravity. The formulation determines a non-linear
function approximation to model the problem and proves to
be efficient in solving consecutive and close waypoints in a
path. The methodology is applied on a six-degree-of-freedom
(6-DOF) spatial under-constrained suspended cable-driven
parallel robot. Specific comparison results in simulation and
hardware to show the effectiveness of the proposed method
in tracking a given path are illustrated. Finally, the degree
of constraint satisfaction is presented against the results ob-
tained from non-linear least-square optimization.

1 INTRODUCTION
Cable-Driven Parallel Robots (CDPRs) are a particular

class of parallel robots whose moving-platform (MP) is con-
nected to the robot fixed base frame by a number of cables.
Hereafter, the connection points between the cables and the
base frame will be referred to as exit points. Such a design
brings advantages of low inertia, high payload to weight ra-
tio, and a significantly large workspace as compared to their
serial and parallel counterparts. Numerous applications of

∗Address all correspondence to this author.

Fig. 1: The complete setup for hardware experiments with
the CDPR (left) and the laser tracking system (right).

such robots have been demonstrated, for instance, large scale
3D printing [1], rescue robots [2], large scale telescopes [3],
in rehabilitation mechanisms [4] and transfer robots for the
elderly [5].

The kinematic analysis for CDPRs proves to be more
complex as compared to the classical parallel robots with
rigid links. This is generally driven by the fact that cables
can only apply unilateral forces, i.e., only pull the MP and
not push it, making it fairly difficult to account for static
equilibrium. Many researchers have extensively contributed
to the kinematic analysis of such robots. The cable lengths
tend to be the most feasible proprioceptive measurement for
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such robots as compared to other physical quantities like ca-
ble tensions or orientations. There has been considerable
work including angular sensors [6], camera-based pose es-
timations [7] and tension sensors. However, such incorpo-
rations come at their own cost of assembly and accuracy.
If only cable lengths, i.e., pulley motor position measure-
ments, are considered, the kinematic analysis is significantly
influenced by the cable model used. Cables can be consid-
ered mass-less and non-elastic, mass-less but elastic, or with
non-negligible mass and elastic [8]. For the introduction of a
novel algorithm to solve the Direct Geometrico-Static Prob-
lem (DGSP) of CDPRs, this paper considers massless, elastic
cables and suspended CDPRs.

Apart from the nature of cables and the robot config-
uration, the number of cables modulating the intended de-
grees of freedom (DoFs) plays a vital role in influencing
the system kinematic analysis. Fully-constrained configu-
rations consist of the same number of cables as the degrees
of freedom, the external wrench being the final virtual cable
to guarantee tautness of all the cables [9]. However, with
the reduction in the number of cables, the system becomes
under constrained. Under-constrained CDPRs typically have
n-DoFs controlled by m(< n) cables allowing only m DoFs
to be controlled. The kinematic analysis of such robots is
inherently coupled with static analysis and cannot be solved
without solving the combined kinetostatic problem [10]. For
such systems, even when the cable lengths are fixed, the MP
still moves and adjusts according to the external wrench. Ac-
cordingly, the geometrico-static [11] problem becomes more
complex and may have several solutions.

The forward kinematics analysis for under constrained
suspended CDPRs has been approached as finding all the
possible solutions to the geometrico-static equations or in-
corporating various iterative strategies to solve in real-time.
Interval analysis [12,13] is one possible approach to solve for
the complete analysis taking into account that some cables
may be slack and have been explored for underconstrained
systems. Various works have led to optimization problems
for real-time analysis based on minimizing the potential en-
ergy [14], finding the lowest equilibrium pose [15] or min-
imizing cable tensions [16]. Iterative (usually, Levenberg-
Marquadt) algorithms have found themselves useful in lo-
cally minimizing pose errors [17], using Hessian matrix to
construct convex problem [14] and Jacobian matrix to solve
the linearized approximation of the FK problem [18] at hand.

The optimization problem discussed for the real-time
analysis can be seen to be a highly non-linear system and
can be easily correlated to neural network architecture. Ar-
tificial Neural Network (ANN) has been used extensively in
recent research to solve the inverse analysis of serial robots
and forward analysis of parallel robots. Supervised methods
are employed by collecting ground truth data and training
to find a function approximation. Such practices have been
extensively applied to serial [19], and cable [20] robots As
most controllers directly work on joint space applying direct
control over motor winches to modulate cable lengths, path
planning in joint space [21] is a better option. In such a sit-
uation, processing Cartesian poses for accurate tracking of a

planned path can take advantage of a real-time forward kine-
matics module.

In this paper, we propose an unsupervised feed-forward
neural network algorithm based forward kinematics of
under-constrained suspended CDPRs with elastic cables. On
the one hand, the under-constrained configuration couples
the kinematics and statics of the robot, whereas, on the
other hand, the elastic cable model couples the cable lengths
with their tensions. This makes the problem formulation
highly non-linear and coupled. The algorithm is motivated
by the aim of performing forward kinematics for such situ-
ations while tracking a pre-planned path and is fulfilled us-
ing the unsupervised neural network weight adaptation strat-
egy. Assuming that the waypoints belonging to the path
are close to each other, our model does not require signif-
icant weight updates. Thus, the convergence turns out to
be slower for the starting position and faster for the way-
points as compared to the popular least-square non-linear
(lsqnonlin by ®MATLAB) optimization framework. Fi-
nally, a pre-planned path is tracked using a six-degree-of-
freedom (6-DOF) spatial suspended CDPR with four driv-
ing cables. The overall performance for the proposed al-
gorithm and lsqnonlin is compared based on the time effi-
ciency and accuracy. Extending from our previous contribu-
tions [22, 23], we extend the approach to validate on hard-
ware with the setup as shown in Fig. 1 for a particular set of
poses from the pre-planned simulated trajectory.

The model of the manipulator and the associated nomen-
clature are discussed in Section 2. Section 3 describes the
elastic cable model used in the paper. Section 4 formulates
the geometrico-static problem of the CDPR under study. The
unsupervised neural network is described in Section 5. Sec-
tion 6 and Section 7 give the simulation and hardware results,
respectively, obtained using the proposed approach. Conclu-
sions and future work are drawn in Section 9. Accompanying
video can be found here. 1

2 PARAMETRIZATION
Let us consider an n-DOF CDPR with m cables. Its

ith closed-loop is represented in Fig. 2. The frame Fb
of origin O is attached to the base. The frame Fp of ori-
gin P is attached to the Moving-Platform (MP). ai denotes
the Cartesian coordinates vector of exit point Ai expressed
in Fb. bi denotes the Cartesian coordinates vector of an-
chor point Bi expressed in Fp. The MP pose is defined
by the vector p pointing from O to P and the rotation ma-
trix bRp ∈ SO(3) from Fb to Fp.

The ith loop closure equation is expressed as:

bai + lb
i ui− bRp

pbi−b p = 03 (1)

ui is the unit vector along the ith cable pointing from Ai to Bi
and 03 is a three dimensional zero vector. The subscript b (p,

1utkarshmishra04.github.io/redirects/jmr2022.html.

2

https://utkarshmishra04.github.io/redirects/jmr2022.html
https://utkarshmishra04.github.io/redirects/jmr2022.html


Fig. 2: Schematic of the ith closed-loop of the CDPR.

resp.) means that the corresponding vector is expressed in
frame Fb (Fp, resp.).

The upper and lower bounds on cable tensions are de-
noted as t and t, respectively (t = 86 N, t = 1 N). The pre-
planned path used for the verification purposes are chosen to
be within the wrench feasible workspace of the robot (based
on CRAFT [24]). The MP mass is named mE .

3 ELASTIC CABLE MODEL
We consider the massless elastic cable model wherein

the cables are modelled as linear springs instead of rigid
links. Their elongation is a function of their elasticiy and
tension. This eventually couples the kinematic analysis of
the robot with the statics. Naturally, for a cable to get into a
stable elongation, it is a logarithmic function of time [25].
However, for simplicity, we consider solving for the final
elongation and use the stress-strain relationship [8]. For a
cable, let the parameters be A0, E0, tc, ℓa and ℓe defined as
the undeformed cross-sectional area, elastic modulus, cable
tension, length from the actuator-encoder and the final elon-
gated length, respectively. Then, the elastic elongation, ∆ℓ,
is given by:

∆ℓ= tc
ℓa

E0 A0
(2)

and along with the relation, ℓe = ℓa + ∆ℓ, the undeformed
length can be obtained as a function of cable tension and
elongated length, given by:

ℓa =
ℓe

1+ tc
E0 A0

(3)

4 GEOMETRICO-STATIC MODELING
After realizing the first coupling between kinematics and

statics based on elastic cable model in Section 3, this sec-
tion formulates the second coupling between them based
on the under-constrained suspended configuration. Specif-
ically, this section presents the static equilibrium formula-
tions with the inverse and forward kinematics. It should be

noted that all occurrences of ℓi correspond to the elongated
cable length.

4.1 Static Equilibrium
Let an external force fp and moment τττp be applied on

the moving platform. For the moving platform to remain
in equilibrium, there must exist a m-dimensional vector of
cable tensions, t= [t1, t2, . . . , tm], satisfying the Newton-Euler
equation given by,

−W t+we = 0n (4)

where W is the normalized wrench matrix of the mechanism
at this particular MP pose, given by

W =

[ bu1 . . . bum

(1/r)bRp
pb1×b u1 . . . (1/r)bRp

pbm×b um

]
(5)

and we = [fT
p (1/r)τττT

p ]
T as dimensionless homogenized ma-

trices with the help of a characteristic length r which is de-
fined as r2 = 1/m ∑

m
i=1

∥∥F bi
∥∥2

2 (refer [26, 27]). Hereafter,
we denote W as W(s), because wrench matrix is a function
of the MP pose, s (defined in the next subsection).

Now, as the wrench matrix formulation is similar for
both massless rigid and elastic cables [8], the tension dis-
tribution obtained from Eq. (4) holds true for our case.

4.2 Inverse Kinematics
The inverse kinematics (IK) formulation for CDPRs is

the mapping from the Cartesian space to the cable space.
For a given pose (position + orientation) of the moving-
platform (MP) of a n-DOF CDPR, IK computes the unde-
formed lengths of the m cables.

The MP pose, s = [bp,bϕ]T , is given by the position vec-
tor of the geometric center of the moving platform bp and
its orientation with respect to the base frame bϕ = [φ,θ,ψ].
Thus, bRp = Rz(ψ)Ry(θ)Rx(φ) and from Eq. (1),

ℓb
i ui =

b p+ bRp
pbi−b ai (6)

ℓi =
∥∥∥bp+ bRp

pbi−b ai

∥∥∥
2

(7)

where ℓℓℓa = [ℓa1, ℓa2, . . . , ℓam] is the vector of undeformed ac-
tuated cable lengths obtained using the corresponding elon-
gated cable lengths, ℓi (from Eq. (7)), and cable tensions, t
(from Eq. (4) using MP pose s) through Eq. (3). ∥.∥2 denotes
the two-norm of a vector. This IK mapping from s, t to ℓℓℓa is
referred to the mapping function defined as:

ξ : s ∈ Rn, t ∈ Rm 7→ ℓℓℓa ∈ Rm

4.3 Forward Kinematics
The forward kinematics (FK) of a cable-driven manip-

ulator consists of obtaining the MP pose, s, based on given
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cable lengths ℓℓℓa and external wrench. For the under-actuated
CDPR studied in this paper, the kinematic model is under-
determined. Thus, the FK problem is set up as a minimiza-
tion problem where the relative error between the given ac-
tuated cable lengths, ℓ̂ℓℓa, and the lengths obtained from the
IK at the current pose, ℓℓℓa = ξ(s, t) is a minimum. The error
required to be minimized is given by:

e(s) =
∥∥∥ℓ̂ℓℓa−ξ(s, t)

∥∥∥
2

(8)

Thus, for a given ℓ̂ℓℓa, the FK formulation is expressed as:

ζ : ℓ̂ℓℓa ∈ Rm 7→ s ∈ Rn

such that

ζ(ℓ̂ℓℓa) = argmin
s

∥∥∥ℓ̂ℓℓa−ξ(s, t)
∥∥∥

2

5 NEURAL NETWORK FORMULATION
The components of robot kineto-statics play a vital role

in defining the solution of the forward kinematics and the
feasibility of the solution as a measure of satisfaction of
the static equilibrium. Unlike serial robots, solving the for-
ward kinematics is relatively difficult than solving the inverse
kinematics for such parallel robots. The proposed neural net-
work (NN) formulation is guided by an unsupervised itera-
tive strategy to solve the surrogate objective of finding a suit-
able MP pose for given cable lengths.

The complete NN framework is built to take the cable
lengths from the trajectory in joint space along with the ex-
ternal wrench being applied on the MP. Thus, the input vector
is given by x = [ℓ̂ℓℓ

T
a we

T ]T . Finally, the framework solves for
the MP pose and required cable tensions to maintain the MP
in a static equilibrium while considering elastic cable elonga-
tions. Accordingly, the output vector is given by y= [sT tT ]T .
The overall proposed strategy is formulated as solving:

NN : x ∈ Rm+n 7→ y ∈ Rm+n

s.t. for ℓ̂ℓℓa,we ∈ x and s, t ∈ y

NN(x) = y = argmin
s, t

∥∥∥ℓ̂ℓℓa−ξ(s, t)
∥∥∥

2

−W(s) t+we = 0n

The above quadratic optimization problem was formu-
lated as a surrogate objective (L) based on penalty formation
from the constraints such that

L(y = [sT , tT ]T ) =
∥∥∥ℓ̂ℓℓa−ξ(s, t)

∥∥∥2

2
+µ∥−W(s) t+we∥2

2

(9)
However, it can be observed that the summation holds

two different measurement units, namely, square meter and
Newton, respectively. In order to homogenize the surrogate

objective, the characteristic length (meter) and the weight
(Newton) of the MP were used respectively. Hence, the ho-
mogenized objective function is expressed as:

L̂(y) =
1
r2

∥∥∥ℓ̂ℓℓa−ξ(s, t)
∥∥∥2

2
+µ
(
∥−W(s) t+we∥2

mE g

)2

(10)

where g = 9.81m/s2 is the acceleration due to gravity. Such
a penalty function formulation can be solved using Gradient
Descent, Newton or Quasi-Newton method and Trust Region
methods.

5.1 Network Architecture
The formulated input-output problem is solved by

means of an unsupervised neural network scheme where the
error is calculated using the inverse kinematic lengths of the
predicted MP pose vector. The gradients are calculated based
on the Stochastic Gradient Descent (SGD) algorithm and the
weights are updated based on those gradients.

Fig. 3: Considered neural network architecture with the acti-
vation function.

Consider a Neural Network (NN) consisting of two hid-
den layers with weights W of shape h× (m+n), V of shape
(m+ n)× h and biases B of shape h× 1 respectively, where
h is the number of hidden nodes in the hidden layers. The
activation functions used for the hidden layers is the sigmoid
function, σ(x), defined by:

σ(x) =
1

1+ e−x (11)

The back-propagation error is defined using L̂ from
Eq. (8). From SGD formulation, the weights and biases are
optimized with reference to calculated change in weights δW
of shape h× (m+n), δV of shape (m+n)×h and biases δB
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of shape h×1 given by:

δW ( j, i) =
∂L̂

∂W ( j, i)
∀ i = [1 (m+n)], j = [1 h] (12)

δV (k, j) =
∂L̂

∂V (k, j)
∀ j = [1 h], k = [1 (m+n)] (13)

δB( j,1) =
∂L̂

∂B( j,1)
∀ j = [1 h] (14)

The updated weights and biases (Wnew,Vnew and Bnew)
are obtained by using the above δ□ values obtained
for the corresponding current weights and biases
(Wcurrent ,Vcurrent and Bcurrent ). The update equations
are given by:

Wnew =Wcurrent −αδW (15)
Vnew =Vcurrent −αδV (16)
Bnew = Bcurrent −αδB (17)

where α is defined as the learning rate, typically in the range
of 10−4.

5.2 Calculation of Derivatives and Weight Updates
The final problem gets reduced to calculation of the gra-

dients, i.e, the changes in weights. To solve this problem,
some pre-calculations are done to represent the predicted
output vector ynn from the input x, such that,

ynn
(m+n)×1 =V(m+n)×hσ(Wh×(m+n)x(m+n)×1 +Bh×1) (18)

Each uth individual term in the output vector is a function of
the components of the input vector:

ynn
u =

h

∑
j=1

(
V (u, j)σ

(
m+n

∑
i=1

W ( j, i)x(i)+B( j,1)

))
(19)

As a result, the gradients defined in Eqs. (10) to (12)
take the form:

∂L̂
∂W ( j, i)

=
m+n

∑
u=1

∂L̂
∂ynn

u

∂ynn
u

∂W ( j, i)
(20)

∂L̂
∂V (k, j)

=
m+n

∑
u=1

∂L̂
∂ynn

u

∂ynn
u

∂V (k, j)
(21)

∂L̂
∂B( j,1)

=
m+n

∑
u=1

∂L̂
∂ynn

u

∂ynn
u

∂B( j,1)
(22)

The individual segments can be calculated based on
derivative of the error with respect to the outputs and the
derivatives of outputs with respect to the weights. Finally,
Algorithm 1 describes the Unsupervised Forward Kinemat-
ics Neural Network (UFKNN).

Algorithm 1: Unsupervised Forward Kinematics
Neural Network (UFKNN)

Result: MP pose and cable tension vector
Determine input vector [l1, . . . , lm,we1, . . . ,wen];
Wi j← Hidden Layer Weights;
B j← Hidden Layer Biases;
Vjk← Output Layer Weights;
Wi j, B j, B jk← Random Initializing;
σ()← Sigmoid Activation function;
α← learning rate;
while iteration ≤ max iterations do

inp← (A)[l1, . . . , lm,we1, . . . ,wen] ;
out[q1, . . . ,qn, t1, . . . , tm]←
Vjk(σ(Wi j ∗ inp+B j));

Loss(L̂)← f unction(out) from (8);
if L̂ ≤ L̂threshold then

Stop;
else

δwi j,δb j,δv jk,← ∂L̂/Wi j,∂L̂/B j,∂L̂/Vjk;
Wi j←Wi j−αδwi j;
B j← B j−αδb j;
Vjk←Vjk−αδv jk;

end
end

6 SIMULATION RESULTS
Algorithm 1 is implemented on a 6-DOF spatial robot

with four cables. The primary motivation of the method-
ology is to develop some form of re-usability by making a
module to learn the FK for a particular manipulator about
which the module has no clue beforehand. Thus, the re-
sults are analyzed by making the manipulator traverse a
planned joint space trajectory and are compared against the
results obtained with lsqnonlin, a non-linear optimizer using
the Levenberg-Marquardt algorithm. It is expected that the
weights estimated for one instance do not vary much when
the MP moves to the next waypoint. Hence, the time taken
to calculate the forward kinematics for each instance possi-
bly takes less time than the previous one. This conclusively
makes trajectory tracking faster by only using proprioceptive
sensors. The results are presented thereafter considering the
rigid cable model.

The spatial 6-DOF suspended underconstrained config-
uration as shown in Fig. 4a is considered. The setup with a
size of 4.24 m x 3.67 m x 2.76 m (l x b x h) has a 5.6 Kg
moving platform of size 0.28 m x 0.28 m x 0.20 m. As the
problem domain increases and becomes more complex, the
general intuition that the number of non-linear parameters
will increase leads us to choose a higher number of hidden
nodes. However, the appropriate learning rate was obtained
iteratively by observing the quality of the results. Table 1
gives the parameters that are used in this illustrative exam-
ple.

The reference path for this case is chosen to be a vertical
spiral in the center of the fixed frame, as in Fig. 4a, and the
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(a) Model and Cartesian path (b) Path in cable space

Fig. 4: CDPR configuration and Cartesian reference path.

Table 1: Parameters for spatial CDPR-UFKNN algorithm
and lsqnonlin comparison.

Parameter Value Parameter Value

mE 7.515 Kg h 160

r 0.396 m α 10−4

µ 50 L̂threshold 0.0015

itrlsq
max 2×105 tollsq 10−10

E0 45 GPa d0 0.7 mm

A0 πd2
0/4

corresponding path in joint space is shown in Fig. 4b. Such
a path is within the wrench feasible workspace (WFW) of
the CDPR and considers the points at the boundaries of the
WFW. We base our decision under the assumption that due to
increasing non-linearities and difficulty in finding solutions
at the boundary of the WFW, the closer the MP to workspace
boundary, the less accurate the algorithm. Now, to track the
accuracy of the algorithm in finding an appropriate solution,
we prepare ground-truth outputs using the Cartesian data and

fixed tension vector equal to t = [t1, t2, t3, t4], respective val-
ues can be seen in Table 1. The wrench to be applied on the
MP at every pose instance is calculated by considering the
fixed tension vector and the wrench matrix corresponding to
that MP pose.

The comparison setup for both the algorithms was based
on an iterative rule based on the fact that the right initial so-
lution should speed up the convergence of the algorithms.
The ground truth output belonging to the first pose instance
was fed into the algorithms. During this initial setup process,
while lsqnonlin takes only 10 secs to converge, the neural
network formulation requires about 1 min to tune the initial
network weights. All the calculations were performed us-
ing ©MATLAB with CPU computations on an INTEL ®i7-
7500U CPU@2.70GHz.

After both the algorithms perfectly fit into the starting
pose, the previous outputs from the algorithms were used as
initial guesses (for lsqnonlin) or weights (for neural network)
for each of the next pose instances. The performance and
accuracy are measured on a variety of factors as described
below. Here, performance is referred to the overall time and
minimization objectives which are the primary optimization
objectives. Accuracy, on the other hand, refers to the relative
deviation of the cable length, cable tensions and Cartesian
poses from the desired values.

(a) Time Comparison (b) Minimum surrogate objective value

Fig. 5: Comparison of optimization objectives.
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(a) Cable 1 length error (b) Cable 2 length error (c) Cable 3 length error (d) Cable 4 length error

Fig. 6: Comparison of cable length errors for spatial CDPR.

(a) Cable 1 tension error (b) Cable 2 tension error (c) Cable 3 tension error (d) Cable 4 tension error

Fig. 7: Comparison of tension errors for spatial CDPR.

6.1 Performance
The overall performance for both the algorithms was

compared based on the computation time for each of the 50
pose instances and the extent of minimization of the surro-
gate objective. The results are shown in Fig. 5. Figure 5a
clearly justifies the learning of the neural network. It should
be noted that the pre-iterations for the initial pose for 1 min
can be considered as the time taken by the algorithm to
learn the model-specific kineto-statics. The time taken by
the counterpart is relatively higher, which quantitatively cor-
responds to twice on average. Though lsqnonlin gets the
privilege of having a very close initial guess (as the way-
points are very close to each other), it has to perform a black-
box optimization every time due to its model-free approach.
The UFKNN algorithm does not store the guesses but a non-
linear approximation of the kineto-static model itself. This
model-based behavior plays a vital role in this advantage.

The minimization of the loss function was clipped at the
L̂threshold value for the UFKNN algorithm, and hence the val-
ues less than that cannot be shown (even if they might be
possible). This threshold value was chosen such that the al-
gorithm marginally reaches the optimization performance of
lsqnonlin in lesser time. Figure 5b shows the negligible dif-
ference between the minimized objective values for both the
algorithms.

6.2 Accuracy
As the problem at hand is a coupling of the kinematics

and statics of the under-constrained CDPR model, the pose
can be changed to satisfy wrench feasibility and decrease the
wrench satisfaction error. Thus, it is essential to judge the
formulation’s accuracy by comparing it with the ground truth

reference poses. The metrics for comparison are the cable
lengths, cable tensions, and the predicted Cartesian poses.
Figures 6 and 7 cumulatively show the accuracy comparison
of both the algorithms.

6.2.1 Cable Lengths
The desired cable lengths corresponding to the pre-

scribed path in cable space are a part of the inputs that are
given to the algorithms. After predicting the MP pose by
the UFKNN algorithm, the obtained cable lengths are calcu-
lated through inverse kinematics. The final error is the dif-
ference between the calculated and the desired cable lengths.
The comparison of these cable errors is given in Fig. 6 for
all cables. The maximum deviation in cable length is equal
to 5 mm, which is negligible with respect to four-meter frame
length. It is apparent that UFKNN reaches the same accuracy
as lsqnonlin in terms of cable lengths, but in lesser time.

6.2.2 Cable Tensions
The cable tension values were fixed for all MP pose in-

stances, whereas the external wrench, which is also an input
to the algorithm, is varied such that the wrench feasibility
condition holds. While this is not possible for realization in
practical experiments, such conditions can be used to vali-
date the algorithm, which is the main goal of the paper. The
outputs of the algorithm correspond to the MP pose and ca-
ble tensions. The obtained tensions are compared with the
fixed desired tensions, and the error plot is shown in Fig. 7.
The maximum absolute error in cable tensions is 0.25 N for
lsqnonlin and 0.20 N for the UFKNN algorithm. The cor-
responding mean errors are 0.17 N and 0.10 N respectively.
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Fig. 8: (left) The hardware setup description and main components. (middle) the three markers on MP along with the stand
used as a base position for calculating cable lengths. (right) The laser tracker to measure the cartesian position and orientation
of the MP.

The error plot follows a common pattern which might be be-
cause of the fixed tension values for all MP pose instances.
All these cable tensions usually result in a very high degree
of wrench satisfaction i.e. ∥−W(s) t+we∥2

mE gr ≈ 10−3.
Additionally, to complete the comparison analysis, the

relative deviation of the predicted MP pose from the refer-
ence poses is analyzed. The predicted poses are found to
be considerably close to real values; however, if observed
closely, the relative deviation caused by the UFKNN algo-
rithm is less than that of lsqnonlin. The mean Cartesian
error for the MP poses of the complete path is 5.7 mm for
UFKNN algorithm and 6.7 mm for lsqnonlin. The deviations
are mostly due to angular displacements, which are desired
to be at 0 degrees, but such high precision cannot be expected
from numerical computations.

7 EXPERIMENTAL RESULTS
The algorithm described in Section 5 is extended to

hardware with the CRAFT [24, 28] CDPR setup after val-
idating the approach with the simulated CDPR model as
shown in Section 6. The main hardware of the setup is
shown in Fig. 9 which shows the primary components:
a PC (equipped with © MATLAB and © CONTROLDESK
software), four © PARKER SME60 motors and TPD-M
drivers, a © DSPACE DS1007-based real-time controller
and four custom-made winch, each comprising a servomo-
tor, a gearbox and a drum. Based on the reading of the motor
encoders, the rolled cable lengths are estimated. Here, it is
worth to be noted that the calculated length is the unelon-
gated cable length where the effects of elasticity is needed
to be incorporated to get the actual cable lengths. We con-
sider that the only external wrench acting on the system is
due to the gravity wrench. Using the proposed approach,
the approximated Cartesian position, orientation and cable
tensions are calculated. To validated the calculated entities,
we incorporate a © LEICA AT901-MR Laser Tracker Sys-
tem (LTS) to track the Cartesian MP position with a precision
of ±10µm+ 5µm/m and © FUTEK LSB205 load/tension
sensors in order to calculate the cable tensions with an accu-
racy of ±2 N.

Fig. 9: Communication between main hardware compo-
nents.

The operation of the LTS is facilitated by assembling
three markers on one plane of the moving platform as shown
in Fig 8 (left and middle). The Cartesian positions of these
markers are calculated based on the frame transformation to
correlate the schematic in Fig 8 (left) to Fig 2 in frame Fb.
The normal to the plane spanned by the three markers is
used to determine the moving-platform orientation. This
method is used to obtain the inputs (cable lengths and ex-
ternal wrench) and the ground truth outputs (Cartesian pose
and cable tensions) for 10 poses (4 are shown in Fig. 10). The
obtained solutions were compared against the actual sensor
data and the calculated cable lengths. Considering elasticity
in the cable between the cable length between the pulley and
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Fig. 10: Four moving platform poses used for validating the proposed methodology experimentally.

Fig. 11: Error in predicted and laser-tracker calculated translational pose (top left) and orientation (top right) corresponding
to the predicted MP poses. (bottom) Error in known and calculated cable lengths for all four cables.

the drum, Eq (3) was modified as follows:

ℓa =
ℓe−

tc HFb
E0 A0

1+ tc
E0 A0

(23)

The MP poses measured by the laser tracker, namely, the
ground truth, are compared to the MP poses predicted by the
NN based FK module. The error bar plots for the 10 poses
are shown in Fig. 11 (top). As the system is under-actuated,
we observed higher deviations up to 12 degrees in the ori-
entations about the x and y-axes. However, as shown in the
Fig. 11 (top right), the orientation error about z-axis is less
than 3 degrees. Similarly, we observed less than 3% error
in Cartesian position prediction relative to the dimensions of
the frame (the MP translational errors in meters are shown).
Finally, the maximum deviation in cable lengths is shown in
Fig 11 (bottom).

8 DISCUSSION

Artificial Neural Network (ANN) is an elegant approxi-
mation tool, however it is typically data hungry and also fails
to capture epistemic uncertainties in real systems. Although,
previous works have been dependent on extensive data col-
lection and supervised learning, there are still no hardware
guaranteeing the use of NN based approaches for CDPRs.
In a work like the one presented in this paper, hyperparame-
ter tuning plays a vital role in the performance as overfitting
and underfitting are common problems occuring with NNs.
Further, the update rule relies on gradient calculation which
becomes exponentially difficult with increasing system com-
plexity. Prior works have optimized in the output space of
the problem at hand, but the proposed approach optimizes in
parameter space without using a huge amount of data. Fur-
thermore, it is worth to be mentioned that we are under an
assumption that the local approximation of forward kinemat-
ics formulation does not change significantly if consecutive
reference nodes are sufficiently close to each other.
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We also analyse the real-time performance of the algo-
rithm based on the time taken to solve for the considered pose
instant and, the time taken for the moving platform (MP) to
traverse between the current and the considered pose instant.
If the algorithm is able to solve for the Cartesian pose and
tensions as soon as the MP reaches that particular pose, the
algorithm can be performed in real time. With a control fre-
quency of 1 KHz, an average velocity of approximately 1 m/s
can be achieved. Now, if the algorithm is able to solve for a
pose instant at a distance of 1 m from current pose in 1 sec, it
is real time. As we observe a similar analysis i.e. calculation
time of nearly 1 sec, we can claim an approximate real-time
performance. Finally, it is worth noting that the computation
time for the next pose increases if the distance to reach is
increased. This increased time-demand is compensated by
the fact that the MP also takes longer to reach the pose, thus,
validating our explanation.

9 CONCLUSION
This paper presented an unsupervised neural network

weight adaptation framework according to the kineto-statics
of under-constrained Cable-Driven Parallel Robots (CDPRs)
with elastic cables and solves the FK problem for a sus-
pended configuration. The approach is validated with both
simulated and hardware based results in a 6-DOF spatial
CDPR setup and compared with a non-linear least-square
optimization-based lsqnonlin algorithm. The comparison
demonstrates the advantages of the model-based UFKNN al-
gorithm to approximate the robot’s kineto-statics compared
with model-free black-box optimization techniques currently
in practice. This method is beneficial to track paths in ca-
ble space, namely in the actuation space. The method is
computation time-efficient and works at the same accuracy
as other related optimization techniques. Future work in-
cludes implementing the proposed algorithm on conducting
further experiments to incorporate the overall workspace of
the robot and evaluate the capabilities of the approach. Fi-
nally, the algorithm will be extended to non-negligible mass
and sagging-based cable models to determine the solutions
to the forward kinematics of more complex and realistic CD-
PRs.
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