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Performance and Interaction Quality Variations of a Collaborative Cable-Driven Parallel
Robot
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aNantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000 Nantes, France

Abstract

In the field of large scale robotic, which is often remotely operated, having direct interaction can be disruptive for applications such
as moving heavy loads or 3D printing. A Cable-Driven Parallel Robot (CDPR) is used here in physical Human-Robot Interactions
(pHRI) with an admittance-based control strategy to physically interact with a user in tele-operation or in co-manipulation mode. A
user experiment involving participants is designed to assess the performance of the human-robot team in a given task completion.
Task performance and interaction quality metrics are defined and recorded during experiments with different robot configurations.
The novelty is to provide a methodology to compare the configurations based on the performance metrics. The methodology
accounts for variations of the metrics along time of use and assert a training effect leading to a progression or a regression of the
performances. The experiment apparatus includes a CDPR, a user task composed of targets to reach with the robot and a handle
equipped with a force sensor acting as a control input of a fixed admittance control strategy of the robot. Collected data show that
the task performances and the interaction quality vary during the experiments and denote different variation profiles among the
user population. Distribution of these profiles among configurations are analysed to determine the configuration that has the best
training effect on users.
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Figure 1: Main components of a CDPR

1. Introduction

A Cable Driven Parallel Robot (CDPR) belongs to a par-
ticular class of parallel robots (see fig. 1) where the Moving-
Platform (MP) is linked to a base frame using cables [1]. Mo-
tors are mounted on a rigid base frame and drive winches. Cable5

coiled on these winches are routed through exit points located
on the rigid frame to anchor points on the MP. The pose (posi-
tion and orientation) of the MP is determined by controlling the
cable lengths.

CDPRs have considerable advantages compared to their clas-10

sical parallel robot counterparts with rigid links. Mass in mo-
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tion is reduced thanks to cables being used instead of rigid
limbs [2]. CDPRs provide large translation workspaces and
are easier and more affordable to deploy than classical parallel
robots. CDPRs are well fitted for tasks requiring a large trans-15

lational workspace [3], a high payload/weight ratio [4, 5] or re-
configurability [6]. CDPRs are adapted to industrial tasks such
as painting [6], intra-logistics [7] and large part printing [8].

Despite their advantages for specific tasks, CDPRs are not
yet widely used in industrial environments. An obstacle to the20

industrial deployment of these robots is the lack of Human-
CDPR Collaboration. Classical CDPRs cannot be deployed
without restrictive safety measures to ensure safe working con-
ditions for the human operator sharing the robot workspace.
Non-collaborative CDPRs need large protective carter or detec-25

tion systems which stop the robot when an operator is detected
within the robot workspace. Such strategy prevents collision
between operator and cables and/or MP but also restrain the
human and the robot to work as a team in a shared workspace.
A collaborative CDPR with awareness of the operator, safety30

measures [9, 10] and adapted control strategy would be able
to work alongside the operator in a shared environment thus
collaborating together on the completion of a task with a com-
mon objective. When the operator teams up with the robot, the
human-robot team is able to perform tasks that neither the robot35

nor the human could easily perform alone [11]. The robot in-
creases the payload capacity and the reachability of the operator
and the operator brings knowledge and adaptation capacities to
the team.
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In order to develop such collaborative CDPRs, two main40

challenges need to be addressed. First an adapted control strat-
egy allowing the operator to control the robot needs to be set-
up. Then a system needs to be developed to prevent possible
collisions between the operator and moving parts of the robot
and ensure a safe working environment for the operator. This45

research addresses the first challenge, the design of a control
architecture to support human-robot collaboration, and the way
to measure its effectiveness. Within this context, this paper
presents a methodology to measure human-robot team perfor-
mance and its variation along time of use. The variation of this50

performance can directly assess the quality oh the human-robot
interaction [12].

In addition to purely task performance metrics, interaction
metrics needs to be defined to assess the quality of the human-
robot teaming [13]. In the field of haptics and specifically in55

bilateral teleoperation, transparency is largely used to assess
the quality of the human-robot interaction. The transparency
is defined as the capacity of the robot to not show resistance
when being actuated by the user. When the user manipulate the
system, the friction and inertia present in the load and the sys-60

tem should not be perceptible to the user. Researches has been
done toward the improvement of the transparency in teleoper-
ation. The transparency in bilateral tele-operation is improved
through friction compensation [14], use of hybrid control al-
gorithm and passive and active actuators combination [15] or65

the use of series elastic actuation in [16]. A novel multidi-
mensional transparency is defined in [17] which dimensions are
perceptual, local motor and remote motor transparency. When
the system used is in a co-manipulation meaning that the user
is physically interacting on an interaction port located on the70

robot end-effector various strategies are studied to increase the
transparency. Human motion prediction allows a collabora-
tive robotic system to increase transparency [18]. The user
hand impedance compensation reduce the effort required to
move the system thus improving the transparency [19]. Gen-75

erally, the transparency improvement sought is evaluated as
a subjective value assessed by users when comparing differ-
ent control algorithms and robot configurations. To the best
of the author knowledge, there is no transparency metric gen-
erally used to study and compare both teleoperation and co-80

manipulation cases. In addition, there is no study on the vari-
ation of the transparency and a training effect during the com-
pletion of a task. When a human performs a repeated task win
co-manipulation with a robot, the team performance may vary
for at least two reasons. The first reason deals with the task85

characteristic itself. Some parts of the task may be substan-
tially more difficult than others to perform. For example, the
effort needed to reach the same criterion of speed or precision
on two different parts of the task may be different for the user.
The second reason concerns the human adaptation [20]. The90

experience may induce internal modification of the user which
in turns modifies the human behaviour. The human may learn
from the CDPR behaviour then modify his behaviour in order to
maximize one or several team performance criteria. The human
may change his/her satisfying performance criterion in order to95

maintain a good situation mastery [21].

This paper presents a methodology, which permits to mea-
sure and analyse human-robot team performance and their vari-
ations. Since there are human inter-individual differences in
adaptation and development [22], the methodology is con-100

structed in order to allow the analysis of the team performance
with any human using the CDPR [23]. The collected perfor-
mance measures are objective and do not rely on survey or op-
erator assessment [24]. In the scope of this paper, the usability
of a CDPR is studied. Among the dimensions of usability this105

paper studies the human performance and training effect of CD-
PRs [25, 26]. Furthermore, the presented methodology allows
to compare different configurations of robot and is also appli-
cable to compare teleoperation and co-manipulation working
modes. The task influence on the performance can be assessed110

for each case. The training effect is analysed and classified in
profiles. The profile distribution is compared over configura-
tions to give insights on the one that have a maximum of user
improving performance thanks to the training effect.

The remaining sections are organized as follows: Section 2115

presents the user experiment methodology. Section 3 provides
the robot modelling and the control algorithm used in the exper-
iment. Section 4 details the user experiment performed to apply
the methodology. Section 5 presents the results analysis. Sec-
tion 6 gives a discussion. Finally, Section 7 draws conclusions120

and present perspectives.

2. User experiment methodology

In this section the methodology of the performance analysis
is detailed. The apparatus and the user task used to apply the
methodology are also presented.125

The method relies on performance criteria based on the con-
sidered task and the human-robot team performance. It is pos-
sible to compare the performance criteria and their variation
along time for each user of the system during an experiment.
The performance criteria are to be used and compared between130

different set of experiments where the mechanical configuration
of the CDPR changes. Separate experimentation cases are de-
fined where the task and the control scheme remain the same but
the CDPR mechanical configuration changes. This approach
would highlight a tangible effect of the configuration on the135

team performance. It is worth noting that the control scheme
of the robot is not adaptative. The control parameters are set
once and for all configurations which means that a variation of
performance along an experiment is only attributable to human
behaviour.140

2.1. Use Cases
The mechanical configuration of a CDPR includes the num-

ber and arrangement of cables as well as the position of an-
chor and exit points. The configuration has a direct impact on
the Degrees of Freedom of the end-effector and the size of the145

workspace reachable by the MP. One aspect of the performance
variation evaluation method is to study the impact of the con-
figuration on the performance. Two different mechanical con-
figuration cases are defined to be studied using the method and
are presented in Fig. 2:150
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(a) First Use Case (UC1) - Teleoperation of a platform with three cables

(b) Second Use Case - (UC2) - Co-manipulation of a platform with eight cables

Figure 2: The two Use Cases (UC1 and UC2) considered

• The first Use Case (UC1) includes a CDPR with three ca-
bles and a MP (40 × 40 × 60 mm) considered as a point-
mass as the cables are attached to the same anchor point
on the MP as shown in Fig. 2a. Using three cables, this
MP is doted of 3 Degrees of Freedom and can only de-155

scribe translational motions and it is not possible to con-
trol the rotation of the end-effector. In this Use Case, the
MP is used in teleoperation, the user is seated outside of
the robot workspace and operates the robot remotely. The
distance between the user and the centre point of the task160

workspace is 2.7 m.

• The second Use Case (UC2) features a CDPR with eight
cables and a bigger MP (280 × 280 × 200 mm) which has
a parallelepiped shape as shown in Fig. 2b. With eight ca-
bles it is possible to translate and orientate the end-effector165

of the robot. In addition, in this case, the robot is in a
direct pHRI co-manipulation mode. The user shares the
robot and task workspace, being seated next to the task, at
a distance of 0.45 m of the task workspace centre point.

2.2. Apparatus170

In both UCs the CRAFT CDPR prototype, shown in fig. 3
and located in LS2N, Nantes, France is used. Its size is 3.75
m x 4.34 m x 2.78 m. The prototype is equipped with eight
motorized winches and cables. Reconfigurable pulleys enable

force
sensor

handle

tip

moving

platform

targets

Figure 3: User experiment setup

the reconfigurability of the robot and allow the implementation175

of the two UCs.
A 3D printed white cone which tip is pointing toward the

ground is attached to the MP and act as the end-effector of the
robot. A structure holding three air inflated fabric cones is set
in the middle of the robot workspace. The fabric is inflated180

by electric fans so that the cone tips are pointing toward the
ceiling of the structure. The tip of each cone represents a target
respectively named A, B and C.

The participant task is to align the tip of the end-effector with
the tip of three targets successively. Six paths are defined as185

straight line segments between the three points A, B and C.
Those paths are denoted as AB, BC, CA, AC, CB and BA. The
definition of this task was inspired by Piaget’s research on the
spatial field and the elaboration of groups of displacements in
the child. This task was designed in order to compare each dis-190

placement (eg. A to B) with its inverse (eg. B to A) and to
check the associative property of the displacements. [27] The
air inflated cone tips representing the targets give a physical
landmark on the position of the target while ensuring the robot
does not notably interact physically with the target. In the con-195

text of this work, only the pHRI is studied and not the physical
interactions between the robot and its environment. In addi-
tion to the robot and its controller, the cell is equipped with a
computer collecting data and measurements from the robot con-
troller during the experiment. A camera records the participant200

hand acting on the handle while a second camera records the
end-effector motion throughout the robot workspace. The com-
puter hosts a task monitoring routine which watches the partici-
pant performance and delivers corresponding audio instructions
to the participant.205

3. Robot modelling and control

In this section, the modelling and control algorithm of the
CDPR used in the experiment are detailed. The Inverse Geo-
metric Model (IGM), Inverse Kinematic Model (IKM) and the
dynamic models are expressed and used in the detailed control210

3



A′
i

A′
i

Bi

Ai

Ai

re Ci

P

lpi

αi
βi

γi
l′
i

li

Fb

ai

mi

bi

Fp

ui

u′
i

O

ρi

xi

yi

yi
zi

p

ci

xp

yp

zp

ni

xb

xb

yb

yb

zb

Figure 4: i-th loop closure considering pulley model

strategy. The admittance-based control law for pHRI with the
CDPR is described as well.

3.1. Inverse Geometric Model (IGM)
Figure 4 shows the i-th loop closure and geometric pa-

rameters of the CDPR. A base frame Fb = (O, xb, yb, zb)215

is attached to the robot base. The MP frame is denoted
as Fp = (P, xp, yp, zp). Exit points Ai are located on the exit
pulleys on the rigid frame though which cables are routed from
the motorized winches. Anchor points Bi are the points located
on the MP where cables are attached. A unit vector ui expresses220

the direction of the cable between the exit points and the anchor
points. Thus the loop closure equation associated to each cable
is expressed as:

bli = libui =
b−−−→AiBi =

bRp
pbi +

bp − bai =
bbi +

bp − bai (1)

with i ∈ [[1, . . . ,m]], m being the cable number. bli is the i-th ca-
ble vector, bai is the exit point coordinate vector corresponding225

to the point Ai as expressed in the frame Fb, pbi is the coor-
dinate vector of anchor point Bi as expressed in the frame Fp,
bp is the vector going from O to P expressed in the frame Fb

and bRp is the rotation matrix between Fb and Fp.
We can then write the i-th unit cable vector:230

bui =
bli
li

(2)

with li being the i-th cable length so that li = ∥li∥2.
In the geometric model, it is necessary to take into account

the pulley model. Indeed, using two axis pulleys implies to
have moving exit-point when the MP moves. The pulley model
accounts for the displacement of the pulley and correct the de-235

sired cable length accordingly. The figure 5 shows the main

Mounting

plate

Pulley

Block holder

Block

Cable

Figure 5: Two axis pulley

components of the pulleys routing the cables. The pulleys are
composed of a block holder which is rigidly attached to the
robot frame. A block is on a vertical axis revolute joint with
the block holder. A pulley mounted on ball-bearing is linked240

through an horizontal axis revolute joint with the block. The
cable enters the block through a bored hole on the vertical rev-
olute axis and is wrapped around the pulley before exiting the
pulley and being attached to the MP.

A frame Fi is attached on the i-th pulley with Ai as origin245

and xi, yi and zi as axis. The axis zi is vertical and the axis yi

goes through the point Ai and the pulley centre Ci. Cable core
is contained in the plane defined by vectors yi and zi. The angle
describing the rotation of the block is denoted ρi and is obtained
as:250

ρi = atan2
(
lyi, lxi

)
(3)

where lyi and lxi are the component of li along the axis xb and yb

respectively as expressed in the frame Fb.
Vector bni goes from the base frame origin to the pulley cen-

tre Ci and is expressed as:

bni =
bai + re

bRi yb =
bai + re

byi (4)

with re the winding radius of the cable core on the pulley255

and bRi the rotation matrix between the frame Fb and Fi so
that:

bRi = Rzi(ρi − π/2) =

cos (ρi − π/2) − sin (ρi − π/2) 0
sin (ρi − π/2) cos (ρi − π/2) 0

0 0 1


(5)

Vector bmi goes from the pulley centre Ci to the anchor
point Bi:

bmi =
bbi − bni (6)

The vector going from the pulley centre point Ci, to exit point260

on the pulley groove A′i is denoted as ci. Vector bci is expressed
in the base frame Fb as:

bci = re

cos(ρi) cos(αi)
sin(ρi) cos(αi)

sin(αi)

 (7)
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with
αi = βi + γi (8)

and

βi = atan2(l′i , re) (9)

and

γi = − arcsin
(

(bai −b bi)T bzi

∥mi∥2

)
(10)

The i-th cable vector, from exit point on pulley A′i and the265

anchor point:

bl′i =
bmi −b ci (11)

The unwind cable length between point A′i and anchor
point Bi:

l′i =
√

mi mT
i − r2

e (12)

and the unit vector bu′i

bu′i =
l′i
l′i

(13)

The total cable length between entry point on the pulley, Ai,270

and anchor point on the MP, Bi, is expressed as:

l f i = l′i + lpi (14)

where lpi is the cable length that is wind around the pulley so
that:

lpi = rp(π − αi) (15)

with rp is the winding radius of the cable core around the pulley.
The corresponding joint position is obtained given the cable275

length l f i and the winch radius rw as:

q =
l f

rw
(16)

3.2. Inverse Kinematic Model (IKM)

The desired cable velocity vector l̇d is obtained using the For-
ward Jacobian matrix A as:

Atd = l̇d (17)

where td = [vd ωd]T is the twist of the MP with vd being the280

desired translational velocity and ωd being the desired angular
velocity of the MP.

A =



bu′1
bb1 × bu′1

...
...

bu′i
bbi × bu′i

...
...

bu′m bbm × bu′m


6×m

(18)

The desired actuator velocity vector q̇d is obtained using the
cable velocity l̇d and the winch radius rw as:

q̇d =
l̇d
rw

(19)

3.3. Dynamic model285

The dynamic equilibrium of the MP is written as [28]:

Wτ − Ip ṫd − Ctd + wh + wg = 0m (20)

with τ being the cable tension vector, Ip ṫd is the dynamic ef-
fect wrench with Ip being the spatial inertia matrix of the MP
and ṫd = [v̇d ω̇d]T is the desired acceleration vector of the MP,
wh = [fh mh]T is the external wrench applied by the user to290

the MP containing force and moment, wg is the wrench due to
the gravity force, Ctd is the term of the centrifugal and Coriolis
wrenches and W is the pose-dependent wrench matrix associ-
ated to the MP taking the form:

W =
[

bu1 . . . bui . . . bum
bb1 × bu1 . . . bbi × bui . . .

bbm × bum

]
6×m

(21)

3.4. Control architecture295

3.4.1. Admittance
The robot control interface consists into a 3D printed handle

mounted on a three-axis force and torque sensor. In the UC1,
the robot is controlled in teleoperation as shown in Fig. 2a. The
control interface is rigidly fixed on the table located outside the300

robot so that the participants have the handle in front of them
and can see the MP within the robot workspace. In the UC2, the
interface is mounted on the bottom frame of the MP, as depicted
in Fig. 2b. The force sensor measures the force fh exerted by
the hand of the participant on the handle. An admittance con-305

trol law converts the measured force into a desired translational
acceleration of the MP using an admittance control that was
derived from [29]:

v̇d =
fh − fv

mv
(22)

mv is a virtual mass used to provide the user with an inertial
feeling of the MP and fv is a virtual force defined as:310

fv =


kv sign (vd) if vd , 0
kv sign (fh) if |fh| ≥ ft and vd = 0

fh if |fh| < ft and vd = 0
(23)

with ft a force threshold used to yield the admittance control
robust with regard to force sensor drift. kv is a dissipative term
that will let the MP decelerate and stop if the user does not
apply any force to the handle.

Given the desired acceleration computed using the admit-315

tance law, the desired speed and position of the MP are ob-
tained using a first and second order integral of the acceleration
respectively:
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Figure 6: Admittance control scheme for HRI

vd =

∫
v̇d dt (24)

pd =

∫
vd dt =

∫∫
v̇d dt2 (25)

In addition to the definition of the desired translational ac-
celeration, velocity and position, the admittance control also320

virtual limits on accelerations so that the robot does not let
the participant reach the limits of the task workspace which
is a subspace of the manipulator workspace. The manipulator
workspace associated to UC1 is smaller than the one associated
to UC2. Thus, the task is conveniently located in the robot cell325

so that in both configurations, the MP can reach all of the task
workspace. A function routine checks the position of the MP
and sets a force opposed to the human force so that the MP
decelerates and never crosses the task workspace limits.

The MP pose describes the MP position and orientation ex-330

pressed in the base frame Fb. The desired MP pose is denoted
is expressed as xd =

[
pd rd

]T pd and rd being the desired the
point-displacement and orientation vectors of the MP, respec-
tively. The Euler parameters are used to parametrize the MP ori-
entation. In UC1, the MP can be considered as a point-mass to335

which the three cables are connected. As a consequence, in
order to compare the performances obtained with the two use
cases, only the the three degrees of freedom translational mo-
tions of the MP are controlled. Therefore, the orientation of the
MP is kept constant in UC2. Note that the rotational motions340

of the MP are constrained with the control system in UC2, and
not geometrically. It means that for both UC1 and UC2, the ad-
mittance law only controls the translational motion of the MP,
that is to say translational acceleration v̇d, velocity vd and posi-
tion pd. In UC2, the MP orientation is kept null by the control345

system.

3.4.2. Control scheme
The control scheme of the robot in the UC2 is shown in

Fig. 6. The desired trajectory in the operational workspace is
obtained using the admittance law described in equation (23).350

A desired MP pose xd, twist td and acceleration ṫd are obtained
as a function of the force exerted by the user on the handle fh.
Using the IGM of the robot, the desired joint position qd is com-
puted. The desired joint velocity q̇d is obtained using the IKM
of the robot.355

A Proportional-Integral-Derivative controller issues a correc-
tion torque ΓPID using the measurement of the joint position er-
ror e, the time-derivative of the joint error ėq and the integral of
the joint error

∫
eq dt such as:

ΓPID = Im

(
Kp eq + Ki

∫
eq dt + Kd ėq

)
(26)

where Im is the motor and gearbox inertia, Kp is the proportional360

correction gain, Ki is the integral correction gain and Kd is the
derivative correction gain.

A term anticipating the motor and gearbox friction Γ f is com-
puted using a Coulomb and viscous friction model denoted as:

Γ f = kv q̇d + Γs sign(q̇d) (27)

where kv is the viscous friction coefficient and Γs is the static365

friction torque. The feed forward term of the torque ΓFF is
computed to anticipate the torque needed to fulfil the static and
dynamic equilibrium of the MP as:

ΓFF =
W+

rw

(
Ip ṫd + C td − wh − wg

)
(28)

W+ being the pseudo-inverse of the wrench matrix. The control
torque exerted by the motors on the winches is computed as370

the sum of the feed-forward, the friction anticipation and the
correction torques as:

Γ = Γ f + ΓFF + ΓPID (29)

4. Human-robot team experiment

4.1. Participants

The study involved 49 participants, 30 participants for UC1375

and 19 participants for UC2. In the UC1, the ages are between
18 and 62 years with a mean of 37.17 years and a standard de-
viation of 12.45 years. In the UC2, the ages of the participants
are between 20 and 49 years with a mean of 28.37 years and
a standard deviation of 8.19 years. Most of the participants are380

recruited from the staff of École Centrale de Nantes. The partic-
ipants were adult with a normal or corrected to normal vision.
All participants are required not to have ever taken part to this
experiment or a precedent stage of this experiment before. This
condition ensures that they have no experience and allows to385

study the training effect of the considered robot. They signed
a written informed consent in order to take part in the experi-
ment1.

4.2. Procedure

The experimentation includes two manipulation phases390

where each participant manipulates the robot. The first one con-
sists in a familiarization phase while the second is the user task
experimentation.

1The experimental protocol was approved by the University of Nantes ethi-
cal committee.
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4.2.1. Familiarization phase
The familiarization aims to ensure that each participant un-395

derstands how the robot behaves when he/she acts on the han-
dle. Before the familiarization phase, the operating of the robot
is orally explained to the participant. The MP would place it-
self in a zone of the robot workspace free of any object where
no collision between cables and environment or between MP400

and environment can occur. Then the participant is asked to
perform simple movements with the robot such as moving the
platform to the left and to the right, to the top and to the bottom
and to the background and to the foreground.

4.2.2. Experimentation phase405

The experimentation phase aims to measure the human-robot
team performance variations. Once the participant has under-
stood how to operate the robot the user task is orally explained.
The participant is asked to perform as much as possible paths
during the time of the experiment (10 minutes). The paths410

should be as close as possible to straight line between the tar-
gets. An audible signal informs the participant that the exper-
iment started then a speech synthesizer gives the instruction as
to which target the user should aim. When the required target
is reached, the synthesizer issues the next target to reach. If the415

participant has not reached a target in a given amount of time, a
routine repeats the last instruction to the participant. An audible
signal lets the participant know when the experiment comes to
an end. A video displaying an extract of one participant of each
UC can be found using this link 2.420

4.3. Data collection

During the robot use, all the variables defined in the control
scheme of the robot are computed in real-time with a control
frequency fs = 1 kHz. A computer communicates with the
robot and collects the data of the control scheme in real-time to425

record it in a file. For each participant of each UC, the variables
such as desired MP pose, cable length and velocities, joint po-
sition and velocities are recorded accordingly with the running
time of the task. Data from the robot sensors (i.e. the force sen-
sor mounted on the handle and the joint position encoders) are430

also collected and recorded with the same time scale. Figure 7
shows the data collected during the task execution for partici-
pant #10 in UC2. Figure 7a plots the force exerted by the user
on the handle. Figure 7b plots the recorded MP pose.

Using the data collected during the experiment, additional435

variables are computed for each sampling time. The variable
time, deviation and transparency will be used to compute de-
pendant variables for the forthcoming performance analysis.

4.3.1. Time
A timer runs from the beginning to the end of the experiment440

and records the task progression along time. The current time
when targets are reached is saved in a variable.

2www.metillon.net/mechatronics_video
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Figure 7: Data collected during the experimentation in UC2 for participant #10
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4.3.2. Deviation
An ideal path is defined as a straight lines between targets.

The deviation is the distance from the tip end-effector to the445

ideal path. This variable is a scalar that must have a low value
to indicate a good performance in terms of precision of the user
in the task completion.

4.3.3. Transparency
The transparency describes the collinearity of the force ex-450

erted by the user on the handle and the MP velocity. For the
sake of clarity and without loss of generality, only the trans-
lational movements of the MP are considered in this paper.
Therefore, the transparency of the CDPR used as a human-robot
interface is defined as follows:455

µ = vT
n fhn (30)

where vn and fhn are the unit vectors of v and fh, respectively.
The transparency describes the collinearity of the velocity of
the MP with the force applied by the operator. The direction
of the force applied by the human, defines the desired direction
of motion. µ ranges from -1 to 1 where -1 indicates opposite460

direction of the user force and the displacement direction of
the MP. 0 indicates the orthogonality between the user force
and the MP displacement direction while 1 indicates a perfect
collinearity that means the MP moves in the direction sought by
the user. As this indicator spans the range -1 and 1, averaging465

the transparency would lead to bias in interpretation around a
null average. Therefore an additional index ν is defined so that:

ν = 1 − µ (31)

where ν spans over [0, 2]. The lower bound, 0, denotes a good
transparency as force and velocity are collinear. The 1 value
indicates orthogonality and 2 indicates an opposite direction of470

motion with the user force direction. ν does not suffer from the
bias induced by the averaging. Figure 8 details the geometric
entities associated to the computed deviation and transparency.

4.4. Data aggregation

At the beginning of the experimentation, the supervisor asks475

the participant to reach the first target (A). When the user
reaches the requested target, the data collection starts and the

supervisor requests the user to reach the following target (B).
During the data collection, the supervisor keeps track of the
task state and records the current path in a variable according480

to the time. The task state is used afterhand to cut the collected
dataset in sequence of data for each path performed by the user.

4.5. Dependent variables

Using the data sequences, dependent variables, known as per-
formance criteria for the deviation and completion time and in-485

teraction quality index for transparency are computed.

Time. The Time variable times the completion of each path.
This index accounts for the different lengths of the segments
being weighted by a distance ratio.

Deviation. The Deviation index represents the mean of the de-490

viation over the path sequence.

Transparency. The Transparency response is the mean of the
transparency index ν over the path sequence.

4.6. Independent variables

Two independent variables are identified to explain the per-495

formance variation. The two variables PerformedPath and
PathType denote the effect of training and task influence re-
spectively.

PerformedPath. PerformedPath is a counter of the number of
path completed by the user during the experiment. It starts at 0500

and is incremented of 1 every time a path is completed.

PathType. The PathType determines which path the user is
completing and if the task has an effect on the perfor-
mance. It is a categorical variable that has six levels cor-
responding to all paths determined by targets A, B and C505

that are denoted PathType AB, PathType BA, PathType AC,
PathType CA, PathType BC and PathType CA.

5. Performance analysis

5.1. Analysing the task and UC effect on the human-robot per-
formances510

In addition to the effect of the UC on the performance, it is
necessary to determine if the task itself has an influence on the
performance. As the paths composing the task are not equiva-
lent in term of distance and arrangement in the robot workspace,
such difference can lead to a variation of the performance.515

To identify such influence, a global analysis of variance
(ANOVA) was led using all the observations of PerformedPath
of all the users of both UCs (3106 observations). A model in-
cluding the UC, the PathType and the UC:PathType interaction
was defined to highlight any effect of the PathType on overall520

performance but also the interaction of UC and PathType which
would indicate a varying effect of the nature of the task among
the Use Cases. An ANOVA analysis was performed for each
response, Time, Deviation and Transparency.
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Table 1: Summary of ANOVA for Deviation, Time and Transparency, ∗∗ de-
notes a p-value inferior to 0.01, ∗ denotes a p-value between 0.01 and 0.05 and
n.s. indicates a p-value superior to 0.05

Performance Factor η2 F value df

Time
UC 0.3108 1445.882 ∗∗ 1

PathType 0.0176 16.386 ∗∗ 5
UC:PathType 0.0043 4.015 ∗ 5

Deviation
UC 0.2488 1055.833 ∗∗ 1

PathType 0.0189 16.041 ∗∗ 5
UC:PathType 0.0017 1.475 n.s. 5

Transparency
UC 0.2908 1294.519 ∗∗ 1

PathType 0.0094 8.354 ∗∗ 5
UC:PathType 0.0025 2.231 ∗ 5

Table 2: Overall performance of UCs

Time [s] Deviation [mm] Transparency [-]
Mean SD Mean SD Mean SD

UC1 18.04 5.47 74.48 26.23 0.60 0.08
UC2 8.91 3.19 28.31 11.04 0.77 0.12

Table 1 summarizes the ANOVA for each response, the re-525

sults indicate a significance of the UC and PathType coefficient
for all three responses (p << 0.05) and a significance for the
UC:PathType coefficient for Time and Transparency. However,
when studying the correlation ratio η2 of the predictor, it can be
noted that PathType and UC:PathType effect on three responses530

is very small (η2 < 0.02). These values indicate that these pre-
dictors represent less than 2% of the variability of the responses
thus denoting that the PathType is not influencing the perfor-
mances. It is possible to conclude that the nature of the task has
a negligible effect on the human-robot team performances.535

Table 2 details the average and the standard deviation of per-
formance criteria of both UCs. It can be seen that the mean
value of Time for UC1 is 18.04 s (SD = 5.47 s) and for UC2
is 8.91 s (SD = 3.19 s). For the Deviation variable, the mean
is 74.48 mm (SD = 26.23 mm) for UC1 and 28.31 mm (SD =540

11.04 mm) for UC2. In term of Transparency, the mean value
is 0.60 (SD = 0.08) for UC1 and 0.77 (SD = 0.12) for UC2.
The UC2 presents a better performance in term of the task per-
formance. However in term of interaction quality, the mean
transparency index of UC2 is bigger than the UC1 value denot-545

ing a worse transparency in UC2 than in UC1.

5.2. Analysing the relationships between performance criteria

In order to compare the average performance of each partic-
ipant of both UCs, the mean value of each performance criteria
is computed for each participant. Figure 9 plots the mean value550

of each performance per participant. It can be seen that the
variability in term of Time and Deviation performance is more
important in UC1 than in UC2. The Transparency has more
variability in the UC2.

10 20 30
0

50

100

Time [s]

D
ev

ia
tio

n
[m

m
]

UC1
Mean UC1
UC2
Mean UC2

Tr
an

sp
ar

en
cy

0.5

0.6

0.7

0.8

0.9

Figure 9: Participant performance comparison UC1/UC2, each circle is a UC1
participant and each triangle is a UC2 participant

Figure 10 shows the correlation of the performance criterion555

for both UCs using the Matlab plotmatrix and corrcoeff func-
tions. Graphs on the diagonal and lower part of the matrix rep-
resent histogram and scatter plot of observation of mean perfor-
mance for each participant in each UC. Values in the graphs on
the upper part of the matrix indicate the linear correlation coef-560

ficients R between variables in rows and columns. The p-value
of the coefficients is used to determine if the correlation is sta-
tistically significant (probability of the null hypothesis). Their
corresponding significance is denoted with ∗∗ when the p-value
is inferior to 0.01, ∗ when the p-value is between 0.01 and 0.05565

and n.s. when the p-value is superior to 0.05. A correlation
coefficient which value is close to 1 or -1 indicates a strong de-
pendence and 0 indicates independence. It can be noted that the
Time and Deviation criterion have a significant correlation coef-
ficient of 0.65 in the UC1 indicating that when participant have570

a good performance in term of Time they also have a good per-
formance in term of Deviation. In the UC2, the variables Time
and Transparency are also significantly correlated in the UC2
with a correlation coefficient of -0.81. This indicates that when
the Time performance is good, the transparency performance is575

lower.

5.3. Comparing the training effect of UCs

Analysing the overall performance of the UCs presents the
mean of performance but cannot define if the performance is
affected by a training effect, that is to say if the performances580

of participants vary with the time of use of the system. To de-
termine the training effect on the performance and the interac-
tion quality the variations of the criteria with time of use of the
system is analysed. The correlation between the performance
criteria and PerformedPath is studied. A significant correlation585

between the number of PerformedPath and the performance cri-
teria would indicate that the users of the system improve them-
selves using the system. In this section, the overall training
effect is under study. Using all the performed paths of each
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Figure 10: Correlation of performance criteria for both Use Cases, R is the
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are linear model

UC, a linear regression model is fitted to each criterion for each590

participant so that:

y = a0 + a1PerformedPath (32)

where y is the response Time, Deviation or Transparency, a0
and a1 are the linear correlation coefficient. The p-value of
the models are computed to determine whether each model is
statistically more significant than a constant model. When the595

p-value is inferior to the defined α level (α = 0.05 in this study)
the constant model cannot be strongly rejected. For each re-
sponse, 1362 observations (paths of 30 participants) for UC1
and 1517 observations (paths of 19 participants) for UC2 were
analysed. Figure 11 plots the three performance criteria (Time,600

Deviation and Transparency) for every observed path of each
user on separate UCs in blue. The fitted linear model line is
plotted in red. The fitted coefficients obtained are shown in Ta-
ble 3.

Considering the Time and Deviation performance criteria, fit-605

ted coefficients a1 indicates a stronger progression in the UC1
while coefficients a0 denote a better initial performance in the
UC2. In term of Transparency, the fitted model for the UC1
is not statistically significant meaning that a linear correlation
between the Transparency and the PerformedPath is not more610

probable than a constant model of Transparency.

5.4. Individually comparing performance variation
Analysing the overall variation of performance along Per-

formedPath for all participant denoted that the task performance

10



Table 3: Linear regression coefficients of performance criteria for each UC, ∗∗
denotes a p-value inferior to 0.01, ∗ denotes a p-value between 0.01 and 0.05
and n.s. indicates a p-value superior to 0.05

UC1 UC2

Time [s] a0 21.979 10.027
a1 -0.214 ∗∗ -0.033 ∗∗

Deviation [mm] a0 82 32
a1 -0.508 ∗∗ -0.087 ∗∗

Transparency [-] a0 0.602 0.715
a1 1.204e-04 n.s. -1.005e-03 ∗∗

criteria (Time and Deviation) are overalls correlated with the615

PerformedPath. The Transparency for the UC1 however turned
out to not be significantly correlated with PerformedPath. In
addition, Figure 11 showed outliers that might have a different
performance variation profile than the majority of users. For
that reason, the individual variation of performance is studied620

for each participant. A linear regression is performed for each
response of each participant of both UCs. The model defined
in eq. 32 is fitted for all the observed paths of each participant.
When the coefficients are statistically significant, the sign of
a1 is considered to classify the participants among three varia-625

tion profiles namely regression, stagnation and progression. Ta-
ble A.7 in Appendix A shows the fitted linear coefficients for
the Transparency response of each participant that performed
in the UC2. After assigning a performance variation profile to
each participant, the occurrences of each profiles are counted.630

To analyse the distribution of performance variation profiles
of each performance metrics of both UC, two models are de-
fined. Mh, described as homogenous model, corresponds to the
hypothesis Hh supposing that the probability of each distribu-
tion is equal. Mt, as target model, corresponds to the hypothesis635

Ht supposing the two distribution have different probabilities.
The likelihood of each model is computed and the ratio of Lt

over Lh is Bt/h =
Lt
Lh

. If Bt/h is less than 1, this indicates that the
two distributions are not different and follow the same prob-
ability. A value superior to 1 denotes a different distribution640

probability therefore the two distributions are different.
Table 4 details the count of performance variation profiles

for the Time in UC1 and UC2. For the Time criteria the ratio
Bt/h = 0.053 denoting that the two distributions are not differ-
ent. Both UCs have a higher proportion of participant stagnat-645

ing and progressing than regressing on the Time performance.
Table 5 summarizes the count of the profiles for the Deviation

in both UCs. The ratio for Deviation is Bt/h = 0.137 which tells
that profile distribution is the same for both UCs. UC1 and UC2
have the same proportion of profiles. It can be seen that most650

participants progress and stagnate and few participant regress.
Table 6 details the count of performance variation profiles of

the Transparency for both UCs. For the Transparency, the ratio
Bt/h is 2.077. In this case, the performance profile distribution
of UC1 is different than the UC2. This indicates that the UC2655

tends to have a higher proportion of participant regressing in

Table 4: Time variation profiles distribution

Regression Stagnation Progression

UC1 Proportions 0 % 46.7 % 53.3 %
Counts 0 14 16

UC2 Proportions 0 % 52.6 % 47.4 %
Counts 0 9 10

Total Proportions 0 % 47.0 % 53.0 %
Counts 0 23 26

Table 5: Deviation variation profiles distribution

Regression Stagnation Progression

UC1 Proportions 6.7 % 60 % 33.3 %
Counts 2 18 10

UC2 Proportions 0 % 63.1 % 36.9 %
Counts 0 12 7

Total Proportions 4.0 % 61.3 % 34.7 %
Counts 2 30 17

term of Transparency.

6. Discussion

In this paper an experiment including a Collaborative Cable-
Driven Parallel Robot was led involving human participants660

in the completion of a task. Two different robot configura-
tions are compared. The first configuration includes a CDPR
with three cables in a suspended configuration with a teleop-
eration working mode. The second configuration includes a
CDPR with eight cables in a suspended configuration with a665

co-manipulation working mode. The control strategy and the
task are common to the two Use Cases. Performance criteria
were defined to assess the task completion quality as well as the
interaction quality. The performances of both UCs were anal-
ysed and compared in order to assess the impact of the robot670

configuration and the nature of the interaction.
The nature of the task carried out was found to not have a sig-

nificant effect on the performances in both UC. The time metric
accounts for the differences in the path lengths and the metric
of the deviation is not influenced by the length and the relative675

positions of the targets.

Table 6: Transparency variation profiles distribution

Regression Stagnation Progression

UC1 Proportions 16.7 % 50 % 33.3 %
Counts 5 15 10

UC2 Proportions 42.1 % 47.4 % 10.5 %
Counts 8 9 2

Total Proportions 26.5 % 49.0 % 24.5 %
Counts 13 24 12
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Overall performance analysis shows that the UC2 yields bet-
ter task performances than the UC1. The performance improve-
ment is associated to the nature of the interaction as participant
of UC2 benefits from a better viewpoint of the task as they are680

closer to the targets. In addition the kinaesthetic sense is im-
proved as they can feel better the robot motion. In UC1 the
handle is fixed therefore no motion or force feedback of the
robot is given to the participant. The transparency is found to
be overalls better in UC1. This results arise from the nature685

of the movement executed by the participants. In UC1, partic-
ipants tends to exert short force bursts onto the handle leading
to the robot translation in the direction sought by the partici-
pant. Then the robot decelerates and stops and the participants
exert another force in a different direction. In this case the robot690

is mostly decelerated by the dissipative term in the admittance
control strategy. In the UC2, participants tend to have a con-
tinuous contact with the handle both for accelerating the MP in
the desired direction and for decelerating when arriving close
to the target. As the transparency varies when the participant695

is opposed to the robot motion, participants intrinsically spent
more time opposing the robot motion in UC2 than in UC1.

Overall variations of performance metrics along time of use
of the robot during experiment denote a training effect. Com-
pletion time and deviation performance increase faster in the700

UC1 but initial performance is better in UC2 therefore partic-
ipants tend to progress slower in UC2 but have better perfor-
mance. In term of transparency, the UC1 does not have one
significant linear model overalls. This denote the presence of
different variation profiles among the participant population. In705

UC2 the transparency tends to deteriorate overalls. The pres-
ence of outliers and less significant models for the whole par-
ticipant population indicates the presence of different variation
profiles.

Different variation profiles were identified among the partic-710

ipants. Regression, stagnation and progression profiles were
defined based on the coefficients and significance of linear re-
gression models for every participants. The UC1 have a higher
proportion of participants improving the transparency than the
UC2. This is explained by the fact that the training effect lead715

to longer and more accurate force bursts exerted by the partici-
pant to reach the targets. As the participants progress in time to
complete the paths and in the deviation, they spent more time
acting on the handle in the right direction and less time waiting
for the robot to stop. Therefore, the transparency increased. A720

large proportion of participant have a decreasing transparency
in UC2. This comes from the training effect and the task per-
formance improvement. As they handle the robot, they tend
to exert more force and increase the speed, therefore, the time
spent decelerating the robot to not overshoot the target increase725

and lead to a decrease of the transparency.

7. Conclusion

In the scope of this paper, it was shown that the nature
of the physical interaction between a human operator and a
cable-driven parallel robot has a significant effect on the per-730

formance variation profiles among human users of a human-

robot team. Teleoperation and co-manipulation modes impact
differently the quality of the interaction evaluated using the de-
fined transparency index. A collaborative robot should max-
imize the number of its users improving in term of task per-735

formance while being suited to account for the individuality of
potential users. To do so, it is possible to consider using an
adaptative control strategy for which the parameters vary to ac-
count for human variety of profiles. The parameter variation
law can be based on the task performance metrics if available740

or on the interaction quality index. Such strategy can be found
in the field of variable impedance control [30, 31]. Another
perspective is to consider giving an information feedback to the
user. The feedback could rely on the task completion metrics, if
available, to let the user know on the performance of the human-745

robot team. This information might help the users to adapt their
behaviour to improve the performance. In term of control the-
ory this can be seen as an additional feedback loop where the
robot controls the human [32].
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Appendix A. Coefficients for transparency linear regres-
sion of UC2

Table A.7: Linear regression coefficients for Transparency variation in UC2 per
participant, ∗∗ denotes a p-value inferior to 0.01, ∗ denotes a p-value between
0.01 and 0.05 and n.s. indicates a p-value superior to 0.05

Participant a0 a1 Profile

1 0.593 -4.337e-03 ∗ Progression
2 0.779 6.389e-04 n.s. Stagnation
3 0.711 1.115e-03 ∗ Regression
4 0.636 -1.795e-04 n.s. Stagnation
5 0.664 4.828e-05 n.s. Stagnation
6 0.770 -7.514e-04 n.s. Stagnation
7 0.787 1.318e-03 ∗ Regression
8 0.819 1.101e-03 ∗ Regression
9 0.629 1.330e-03 ∗∗ Regression
10 0.750 1.348e-03 ∗ Regression
11 0.853 -7.331e-04 n.s. Stagnation
12 0.951 4.330e-04 n.s. Stagnation
13 0.764 -1.625e-03 ∗ Progression
14 0.550 2.395e-03 n.s. Stagnation
15 0.797 1.422e-03 ∗∗ Regression
16 0.812 1.482e-03 ∗∗ Regression
17 0.875 6.495e-04 n.s. Stagnation
18 0.769 9.907e-04 ∗∗ Regression
19 0.822 6.228e-04 n.s. Stagnation
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