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Introduction

Some commodities, such as natural gas, exhibit seasonality in prices. For example, in the winter months, the higher demand for natural gas raises the prices. Therefore, commodity prices are simulated with a seasonal average and a random component. Considering that the linear drift is zero, the seasonal average is constant over time.

The random component of the commodity future prices is generally broken down into major contributors or factors. These are known as the principal components. The principal components for the same commodity are generally independent -that is, we assume that there exists in the world N major independent factors driving the randomness in the price.

However, we also assume a correlation between the prices of commodities and hence we assume that the randomness contributed by the principal components on the commodity prices are correlated.

As described, the general effect of each principal component on the price is random and thus in a simulation, a correlated random number is generated for each principal component. These random numbers are known as the Fourier coefficients. The final price for a given contract is then simply its seasonal mean plus the random Fourier coefficient multiplied by its corresponding principal component.

Each of the principal components are column vectors containing as many elements as contracts in the term structure. The magnitude of the elements of the vector corresponding to the earlier contracts, such as one, two, three, etc. month contracts are usually higher than later contracts, such as the 30-month contract, which increases the volatility of earlier contracts. This correctly models the observation that shorter contracts normally exhibit higher volatility than longer contracts.

The complex stochastic behavior in commodity prices cannot be fully described by one-factor models. [START_REF] Schwartz | Short-Term Variations and Long-Term Dynamics in Commodity Prices[END_REF] proposed a two-factor model that assumes the first factor to be a zero-mean consists of an offline step where the mean reversion rates, the ratio of the long and short factor volatilities and the correlation between the long and short factors are determined via historical analysis. This offline step is performed relatively infrequently (typically once a month). There's also an online step of the calibration which happens every time the model is used to price an option or to simulate price paths.

The online calibration ensures that the model prices for vanilla options match exactly the market prices.

Finally, there is an introspective step where trading desk adjusts the factor parameters in the offline step to better match the market prices for non-vanilla options such as swaptions and term-settled options. This introspective step happens whenever we have an observation of the market price for these illiquid options (through broker quotes or market consensus services).

We examine historical prices and implied volatilities for the pipeline and natural gas prices in an attempt to understand the seasonality within the data. In order to have sufficient data to get meaningful results we have used six years of historical data.

To account for seasonality in price volatility, we consider the risk factor implied volatility as a function of contract number (i.e., time to maturity) for each calendar month. The set of volatilities for the entire six-year interval was used as a baseline.

In each case, the monthly volatility was taken to be the average of the implied volatilities for a given time to maturity over a given calendar month, adjusting for contract rollover. For six years of data, this means that the volatility for each calendar month will be the average of roughly 130 data points.

The six-year average was taken to be the average implied volatility over the entire interval, also adjusting for contract rollover.

The empirical results clearly demonstrate the strong periodicity in the contract prices over time which we are trying to model. Note that we use implied volatilities rather than market price-derived volatilities because the implied volatilities represent the expected future behaviour of each contract, uncontaminated by the event-driven price movements that can skew the market volatilities, and therefore present a much cleaner seasonal signal to extract. This expected seasonal periodicity in volatility is the behaviour we are trying to model. The rest of this article is organized as follows: First we describe the existing commodity factor models. Second, we present a new multi-factor model for commodity prices. Third, we propose a generic calibration method for the model. Then, we elaborate the valuation of commodity derivatives and Monto-Carlo simulation. Next, we discuss the empirical result. Finally, the conclusions are provided.

Single, Two, and Three-Factor Models

A single factor model assumes that the forward curve of an asset is driven entirely by the spot price.

Thus, a single-factor model suffices for these types of assets. The generic formulation reduces to

𝑑𝐹 𝑇 (𝑡) 𝐹 𝑇 (𝑡) = 𝑝(𝑡)𝑑𝑊(𝑡)
The function p(t) is the familiar time-dependent local volatility function in the equity derivatives modeling literature, which is typically calibrated via bootstrapping to the term structure of market implied volatility for options at different maturities.

Crude oil futures with different delivery months are intrinsically linked and traditionally people simplify the model by dropping the T-dependent volatility function q. To reduce the number of parameters, we also assume that the mean reversion rate of the long factor is zero, leaving only a single mean reversion rate for the short factor to be determined. The model simplifies to

𝑑𝐹 𝑇 (𝑡) 𝐹 𝑇 (𝑡) = 𝑝 𝑆 (𝑡)𝑒 -𝛽(𝑇-𝑡) 𝑑𝑊 𝑆 (𝑡) + 𝑝 𝐿 (𝑡)𝑑𝑊 𝐿 (𝑡)
Natural gas and power are strongly seasonal, and such assets delivered at different months (or even at different hours of the day in the case of electricity) have distinct characteristics and can be thought of as different commodities. To reflect this in the model, we utilize the T-dependent volatility q and drop the tdependent volatility p. The model reduces to:

𝑑𝐹 𝑇 (𝑡) 𝐹 𝑇 (𝑡) = 𝑞 𝑆 (𝑇)𝑒 -𝛽(𝑇-𝑡) 𝑑𝑊 𝑆 (𝑡) + 𝑞 𝐿 (𝑇)𝑑𝑊 𝐿 (𝑡)

For financial derivatives such as futures, it mostly suffices to use a two-factor model. For physical natural gas or power (or financial contracts that closely track physical price such as gas daily index), sometimes we need to add a "super"-fast factor to model the weather induced shocks. For example, in an extremely hot day, the air-conditioning usage may lead to a demand peak in power and the power price can suddenly jump by many folds. The usual two-factor model will not be able to capture this risk occurring only at the time scale of the delivery day or hour.

A three-factor model may also be useful to value the time spread options, particularly a portfolio of time spread options, such as natural gas storage contract. In the two-factor model, the two principal modes of motion are the parallel curve shift and the curve rotation. Time spread options are not sensitive to the primary mode of curve shift. They are sensitive to curve rotation and other curve shape changes beyond the first two principal components. Substituting T=t into the equation above gives the formula for the spot price of a commodity: 

Multi-factor Model

𝑆(𝑡) = 𝑆(0)𝑒 ∑ 𝑞 𝑖 (𝑡)𝑌 𝑖 𝑁 𝑖=1 (𝑡)+⋯
𝑑𝐹 1 𝑇 (𝑡) 𝐹 1 𝑇 (𝑡) = ∑ 𝑝 𝑖,1 (𝑡)𝑞 𝑖,1 (𝑇)𝑒 -𝛽 𝑖,1 (𝑇-𝑡) 𝑑𝑊 𝑖,1 𝑁 1 𝑖=1 (𝑡) 𝑑𝐹 2 𝑇 (𝑡) 𝐹 2 𝑇 (𝑡) = ∑ 𝑝 𝑗,2 (𝑡)𝑞 𝑗,2 (𝑇)𝑒 -𝛽 𝑗,2 (𝑇-𝑡) 𝑑𝑊 𝑗,2 𝑁 2 𝑗=1 (𝑡) 〈log 𝐹 1 𝑇 1 , log 𝐹 2 𝑇 2 〉 𝑡 1 𝑡 2 = ∑ ∑ 𝑞 𝑖,1 (𝑇 1 )𝑞 𝑗,2 (𝑇 2 ) ∫ 𝑝 𝑖,1 (𝑠)𝑝 𝑗,2 (𝑠) 𝑡 2 𝑡 1 𝑁 2 𝑗=1 𝑒 -𝛽 𝑖,1 (𝑇 1 -𝑠)-𝛽 𝑗,2 (𝑇 2 -𝑠) 𝜌 𝑖,𝑗 1,2 𝑑𝑠 𝑁 1 𝑖=1
Here, 𝜌 𝑖,𝑗 1,2 is the instantaneous correlation between the i'th factor of the first asset and the j'th factor of the second asset, i.e.

𝜌 𝑖,𝑗 1,2 𝑑𝑡 = 〈𝑑𝑊 𝑖,1 (𝑡), 𝑑𝑊 𝑗,2 (𝑡)〉

The cross-asset log covariance is useful in pricing basket option or foreign currency denominated options.

The standard multi-factor model specifies a log-normal process for the futures price, and therefore does not incorporate volatility smile directly. The model needs to be adjusted to handle the volatility smile.

There are several sophisticated approaches to do this.

The most convenient "moneyness" metric is the so-called Quick Delta (QD). QD measures how many standard deviations away the forward price is relative to the strike of the option, in the lognormal space. QD is an approximation to the Black-Scholes (put) delta. But it is more convenient than Black-Scholes delta for the purpose of parameterizing the volatility surface because QD for ATM option is exactly 50% and it is easy to convert QD to a dollar strike or the other way around.

Mathematically, QD is defined as

QD = 𝑁(log Strike Forward /𝜎√𝑇)
Here, N is the cumulative normal density function, 𝜎 is the ATM volatility, and T is the option expiration. The cumulative normal density function is applied to transform the moneyness to a number between 0 and 1.

Model Calibration

The goals of the model calibration are to achieve: i) the market prices of vanilla options need to be perfectly matched by the model; ii) the model prices for non-vanilla options are in good agreement with the market prices; and iii) the implied model dynamics are in good agreement with the characteristics of the historical data series.

In this section, we show how the two-factor model parameters are determined in the offline step of the calibration. The purpose of the offline step is to back out the mean reversion rate (𝛽), the volatility ratio (𝑝 𝑆 /𝑝 𝐿 for non-seasonal model and 𝑞 𝑆 /𝑞 𝐿 for seasonal model), and the correlation (𝜌) between the long and short factors from the historical time series. There are of course many ways of studying the historical data and it is clearly beneficial to benchmark the model dynamics against history in multiple ways. I'll show 3 different methods here.

The first method is Principal Component Analysis. PCA is a mathematical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called Principal Components. The number of principal components is less than or equal to the number of original variables.

We apply PCA to the historical daily returns of the futures curve and compare the first two principal components with those implied by the two-factor model. The mean reversion rate, volatility ratio and correlation are chosen to achieve the best fit to the historical PCA in the least squared sense.

The 

Second Principle Component

Model History

The second method is to directly compare certain statistical metrics between the historical data and the model. As far as the most liquid non-vanilla options are concerned, the most important statistics are the relative volatilities of different futures and the correlations between these futures. The figures below illustrate the quality of fitting in terms of these two metrics. The historical data and two-factor model parameters are the same as above.

FIGURE 2 illustrates the relative volatilities of different futures for West Texas Intermediate (WTI).

More specifically, the graph plots the ratio of the instantaneous volatility of the nearby number in the xaxis versus the instantaneous volatility of the 12 th nearby. The third method is so-called relative value analysis. Both the first and second methods are purely historical analysis. The strength of the relative value analysis is that it combines information from historical analysis and information from market implied volatilities of the vanilla options.

Note that the two-factor model parameters we backed out from historical analysis are not used directly to price new deals or manage our risks. Historical analysis is backward looking, while derivatives pricing should reflect our forward-looking view. Therefore, we use the introspective step to complement the historical analysis with the information embedded in the market non-vanilla option prices about how the future will hold.

Once the mean reversion rates, the volatility ratio and the correlations are fixed, the only thing left is to impute the overall level of the factor volatilities. The purpose of the online step of the calibration is to solve for the factor volatilities such that the model prices vanilla options at exactly their market prices. We now return to the general multi-factor model setting to lay out the procedure of the online calibration.

With the fixed volatility ratio, we can express the t-dependent factor volatilities in terms of the constant volatilities vector and a t-dependent scaling factor 𝛼(𝑡), i.e.

𝑝 𝑖 (𝑡) = 𝑝 𝑖 𝛼(𝑡)

We assume the scalar function 𝛼(𝑡) is a piecewise constant function, with the time knots being the standard option expiration dates 𝑡 1 , 𝑡 2 , 𝑡 3 , …. Namely, 𝛼(𝑡) = 𝛼 𝑘 , for 𝑡 𝑘-1 ≤ 𝑡 < 𝑡 𝑘 (where 𝑡 0 = 0)

The log variance of a futures contract with maturity 𝑇 𝑀 up to its standard option expiry 𝑡 𝑀 reduces to 𝑒 (𝛽 𝑖 +𝛽 𝑗 )𝑡 𝑘 -𝑒 (𝛽 𝑖 +𝛽 𝑗 )𝑡 𝑘-1 𝛽 𝑖 +𝛽 𝑗

We now use a bootstrapping procedure to solve for 𝛼 𝑘 for k=1, 2 … .The price of the first option (with the nearest expiration) depends only on 𝛼 1 , and so 𝛼 1 can be backed out from the option price. The price of the second option depends on both 𝛼 1 and 𝛼 2 . Since 𝛼 1 is already determined, we just need to solve for 𝛼 2 to match the second option. We continue this procedure to solve for the values for all 𝛼 𝑘 .

The instruments used in this calibration are vanilla options on futures, i.e., vanilla options expiring in 𝑡 𝑀 on the futures expiring on 𝑇 𝑀 . The vanilla option volatilities used in the calibration are marked by the trading desk.

The difference with the seasonal model is to use T-dependent volatility functions. Analogous to the nonseasonal model, the factor volatility functions can be expressed as a constant vector multiplied by a Tdependent scalar, namely:

𝑞 𝑖 (𝑇) = 𝑞 𝑖 𝜆(𝑇)
The log variance of a futures contract with maturity 𝑇 𝑀 up to the its standard option expiry 𝑡 𝑀 is equal to

〈log 𝐹 𝑇 𝑀 〉 0 𝑡 𝑀 = ∑ ∫ 𝑞 𝑖 (𝑇 𝑀 )𝑞 𝑗 (𝑇 𝑀 ) 𝑡 𝑀 0 𝑁 𝑖,𝑗=1 𝑒 -(𝛽 𝑖 +𝛽 𝑗 )(𝑇 𝑀 -𝑠) 𝜌 𝑖,𝑗 𝑑𝑠 = 𝜆 2 (𝑇 𝑀 ) ∑ 𝑞 𝑖 𝑞 𝑗 𝜌 𝑖,𝑗 𝑒 -(𝛽 𝑖 +𝛽 𝑗 )𝑇 𝑀 𝑁 𝑖,𝑗=1 𝑒 (𝛽 𝑖 +𝛽 𝑗 )𝑡 𝑀 -1 𝛽 𝑖 +𝛽 𝑗
This is easier to solve than the non-seasonal model and no bootstrapping procedure is required.

The instruments used in this calibration are vanilla options on futures, i.e., vanilla options expiring in 𝑡 𝑀 on the futures expiring on 𝑇 𝑀 . The vanilla option volatilities used in the calibration are marked by the trading desk.

As mentioned earlier, the model parameters backed out from the historical analysis are not directly used to value our book and manage the risks. Option pricing needs to be forward looking. The historical analysis is useful in that it gives us a sense of "value" (are we stepping into an overheated market?), but no amount of historical analysis is going to tell us for sure what is going to happen in the future. So we will have to adjust the model parameters such that the swaption prices are close to the market prices. This section describes how this last step of the calibration works.

There are two main sources of swaption market prices that we use to gauge how other deals are valuing the swaptions. The first source is the inter-dealer broker market. The second source is the monthly Totem swaption valuation service that provides a consensus (average) price among the participants of this service. Both sources are valuable, and neither is perfect. The broker quotes are typically spotty, i.e., we may get a quote once in a few days or sometimes weeks. And the broker quotes only reflect the view of one dealer who is quoting. The third problem with deal quotes is that dealers tend to skew the bids lower since the market flow is essentially one way (dealers are buying swaption from clients).

The value of broker quotes however is that they are transact-able. On the other hand, Totem consensus gives us a way to regularly check our valuation against a group of dealers. But it is not perfect because some of the participants may not be active dealers in the swaption market, and their prices can be less reliable than other dealers. Another problem with Totem is that the prices are only those which dealer use to mark their book, but not necessarily transact-able.

In commodities, our current profit and loss (PnL) policy on swaptions is to use Totem as the official MTM for each month end. This is implemented by comparing the model price and Totem consensus at each month end and adjusting the official PnL by the difference. As a result, we would like to mark the model to be "close" to Totem prices. We use quotation mark on "close" because we do not want to match the Totem prices exactly, given the limitations of the Totem data noted earlier. It is better for us to also use broker quotes as a supplement. If broker quotes are noticeably lower than Totem, we should in general mark the model conservative to Totem. If the broker quotes are noticeably higher than Totem, it is OK to mark the model slightly aggressive to Totem.

In practice, we would like to hold the mean reversion, volatility ratio and correlation parameters as steady as possible. Changing these parameters will change the Greeks, and requires re-balancing of the futures and options hedges, hence incurring costs. Therefore, we will only change these parameters when they noticeably deviate from both Totem and broker quotes. More specifically, we consider re-calibration if the model price is more aggressive than both Totem and broker offers. We also consider re-calibration if the model price is more conservative than Totem and broker bids.

Finally, if the model needs to be recalibrated, we tune the model parameters (mean reversion, vol ratio, and correlation) to put the swaption prices back in the acceptable (as determined by the procedure above) range again. Please refer to the following table for the sensitivity to the model parameters. Tweaking the mean reversion higher has an impact of reducing the swaption price in the front tenors, and increasing the swaption price in the back tenors.

Tweaking the vol ratio higher has an impact of lowering the swaption price across the board. Tweaking the correlation higher reduces the swaption value across all tenors, but the impact is higher for the swaptions in the back. One can use the 3 parameters to achieve different "shape" changes. For example, if one wants to lower the swaption values by similar amount across tenor. The most effective tool is to increase the vol ratio. Mean reversion and correlation provide further flexibility for tuning the "shape". 

Pricing Commodity Derivatives via Multi-Factor Model

We discuss some most commonly traded commodity products here. Asian option settles on the average of the futures price over a sampling period. Typically, the prompt future is used as the sampling contract.

Since the arithmetic average of the lognormal variables is no longer lognormal, one typically utilizes some approximation to price Asian options. The most common method is to assume that the arithmetic average is still a lognormal variable and to use moment matching to determine the variance of this average.

Suppose the Asian option has M sampling dates 𝑡 1 , 𝑡 2 , . . . , 𝑡 𝑀 , with sampling weights 𝑤 1 , 𝑤 2 , . . . , 𝑤 𝑀 .

The average price for which we need to calculate the log variance is the following:

𝐹 = ∑ 𝑤 𝑘 𝐹 𝑇 𝑘 (𝑡 𝑘 ) 𝑀 𝑘=1
By the moment matching approximation, the log variance of F can be solved as

𝕍[log 𝐹] = log 𝔼[𝐹 2 ] 𝔼 2 [𝐹]
The expected value in the numerator can be further expanded as follows

𝔼[𝐹 2 ] = ∑ 𝑤 𝑗 𝑤 𝑘 𝔼[𝐹 𝑇 𝑗 (𝑡 𝑗 )𝐹 𝑇 𝑘 (𝑡 𝑘 )] 𝑀 𝑗,𝑘=1 = ∑ 𝑤 𝑗 𝑤 𝑘 𝔼[𝐹 𝑇 𝑗 (𝑡 𝑗 )]𝔼[𝐹 𝑇 𝑘 (𝑡 𝑘 )] 𝑀 𝑗,𝑘=1
𝑒 〈log 𝐹 𝑇 𝑗 ,log 𝐹 𝑇 𝑘〉 0

Min(𝑡 𝑗 ,𝑡 𝑘 )

Finally, the log variance is plugged into the Black-Scholes equation to arrive at the Asian option price.

Another example is commodity swaption. A swaption is similar to Asian option as it is also an option on the average of futures prices. The difference is that a swaption expires before the averaging period starts.

The formula to price a swaption using the multi-factor model is very similar to the Asian option formula above, except that the sampling dates 𝑡 1 , 𝑡 2 , . . . , 𝑡 𝑀 are all the same and equal to the swaption expiration date.

Moreover, for OTC swaptions, the discount factors from the swap settlement dates to the swaption So far, we have covered the pricing formula for a native denominated (USD typically) Asian option or Swaption. We now discuss how to price Asian or Swaption denominated in a foreign currency. To this end, we first review the stochastic calculus associated with a foreign currency.

Let's denote by d the domestic economy (typically USD), and by f the foreign economy. Let's use 𝑃 to stand for the domestic risk-free measure, and 𝑃 ̃ for the foreign measure. X(t) is the spot FX rate at time t to converts 1 unit of foreign currency into the domestic currency. Y(t) = 1/X(t) is the spot FX rate that converts 1 unit of the domestic currency to the foreign currency. As usual, 𝐹 𝑇 (𝑡) denotes the futures price in the domestic currency, and we define 𝐺 𝑇 (𝑡) = 𝐹 𝑇 (𝑡)𝑌(𝑡) to be the futures price in the foreign currency.

The dynamics of X(t) is governed by the following SDE, where the Brownian motion W is in the

domestic measure 𝑃, 𝑑𝑋(𝑡) 𝑋(𝑡) = (𝑟 𝑑 (𝑡) -𝑟 𝑓 (𝑡)) 𝑑𝑡 + 𝜎 𝑋 (𝑡)𝑑𝑊(𝑡)
Here, 𝑟 𝑑 (𝑡) and 𝑟 𝑓 (𝑡) are the deterministic interest rates for the domestic and foreign currencies respectively. By Ito lemma,

𝑑𝑌(𝑡) = - 𝑑𝑋 𝑋 2 + 〈𝑑𝑋〉 𝑋 3 = 𝑌(𝑡) [(𝑟 𝑓 (𝑡) -𝑟 𝑑 (𝑡)) 𝑑𝑡 -𝜎 𝑋 (𝑡)(𝑑𝑊(𝑡) -𝜎 𝑋 (𝑡)𝑑𝑡)]
By the Girsanov theorem, we can rewrite this SDE in the foreign measure 𝑃 ̃, where 𝑑𝑊 ̃(𝑡) = 𝑑𝑊(𝑡) -𝜎 𝑋 (𝑡)𝑑𝑡 is a Brownian motion in the foreign measure,

𝑑𝑌(𝑡) 𝑌(𝑡) = (𝑟 𝑓 (𝑡) -𝑟 𝑑 (𝑡)) 𝑑𝑡 -𝜎 𝑋 (𝑡)𝑑𝑊 ̃(𝑡)
Therefore, Y and X have the same volatility and covariance.

Consider an Asian option that settles on the average price in the foreign currency:

𝐺 = ∑ 𝑤 𝑘 𝐺 𝑇 𝑘 (𝑡 𝑘 ) 𝑀 𝑘=1 = ∑ 𝑤 𝑘 𝐹 𝑇 𝑘 (𝑡 𝑘 )𝑌( 𝑀 𝑘=1 𝑡 𝑘 )
It is convenient to price the foreign option in the foreign measure 𝑃 ̃, and we use the same moment matching method as the native option,

𝕍[log 𝐺] = log 𝔼 𝑃 ̃[𝐺 2 ] 𝔼 𝑃 ̃2[𝐺]
The first moment is easy to compute

𝔼 𝑃 ̃[𝐺] = ∑ 𝑤 𝑘 𝔼 𝑃 [𝐹 𝑇 𝑘 (𝑡 𝑘 )]𝔼 𝑃 ̃[𝑌(𝑡 𝑘 )] 𝑀 𝑘=1
The first expectation in the right-hand side of the equation is simply today's futures price, and the second expectation is today's forward FX rate.

The second moment can be expanded as

𝔼 𝑃 ̃[𝐺 2 ] = ∑ 𝑤 𝑗 𝑤 𝑘 𝔼 𝑃 ̃[𝐺 𝑇 𝑗 (𝑡 𝑗 )𝐺 𝑇 𝑘 (𝑡 𝑘 )] 𝑀 𝑗,𝑘=1 = ∑ 𝑤 𝑗 𝑤 𝑘 𝔼 𝑃 ̃[𝐺 𝑇 𝑗 (𝑡 𝑗 )] 𝑀 𝑗,𝑘=1 𝔼 𝑃 ̃[𝐺 𝑇 𝑘 (𝑡 𝑘 )]𝑒 〈log 𝐺 𝑇 𝑗 ,log 𝐺 𝑇 𝑘〉 0 Min(𝑡 𝑗 ,𝑡 𝑘 )
The expected values are computed the same way as in the first moment. What remains is to calculate the log-covariance term:

〈log 𝐺 𝑇 𝑗 , log 𝐺 𝑇 𝑘 〉 0 Min(𝑡 𝑗 ,𝑡 𝑘 )

= 〈log 𝐹 𝑇 𝑗 , log 𝐹 𝑇 𝑘 〉 0 Min(𝑡 𝑗 ,𝑡 𝑘 ) + 〈log 𝐹 𝑇 𝑗 , log 𝑌〉 0 Min(𝑡 𝑗 ,𝑡 𝑘 ) + 〈log 𝑌 , log 𝐹 𝑇 𝑘 〉 0 Min(𝑡 𝑗 ,𝑡 𝑘 )

+ 〈log 𝑌 , log 𝑌〉 0

Min(𝑡 𝑗 ,𝑡 𝑘 )
The formula to price a foreign denominated swaption using the multi-factor model is very similar to the Asian option formula above, except that the sampling dates 𝑡 1 , 𝑡 2 , . . . , 𝑡 𝑀 are all the same and equal to the swaption expiration date. Moreover, for OTC swaptions, the discount factors (for the foreign currency since we are pricing in the foreign measure) from the swap settlement dates to the swaption expiration date are baked into the sampling weights (𝑤 1 , 𝑤 2 , . . . , 𝑤 𝑀 ).

Multi-Factor Model Simulation

We have already seen in the multi-factor model, the task of simulating the entire forward curve boils down to that of simulating N mean reverting factors Y. In this section, we describe the details of the numerical algorithm to generate paths for these N mean reverting factors. With these mean reverting factors, the futures prices can be recovered easily using the algebraic formula above.

Suppose we want to simulate the mean reverting factors on M sampling dates 𝑡 1 , 𝑡 2 , . . . , 𝑡 𝑀 , and we have already generated the paths up to time 𝑡 𝑘-1 . To simulate the next time step, we note that

𝑌 𝑖 (𝑡 𝑘 ) = 𝑒 -𝛽 𝑖 (𝑡 𝑘 -𝑡 𝑘-1 ) 𝑌 𝑖 (𝑡 𝑘-1 ) + ∫ 𝑒 -𝛽 𝑖 (𝑡 𝑘 -𝑠) 𝑡 𝑘 𝑡 𝑘-1 𝑝 𝑖 (𝑠)𝑑𝑊 𝑖 (𝑠)
The N-by-N covariance matrix of the integral term is easily derivable from the Ito isometry:

〈∫ 𝑒 -𝛽 𝑖 (𝑡 𝑘 -𝑠) 𝑡 𝑘 𝑡 𝑘-1 𝑝 𝑖 (𝑠)𝑑𝑊 𝑖 (𝑠), ∫ 𝑒 -𝛽 𝑗 (𝑡 𝑘 -𝑠) 𝑡 𝑘 𝑡 𝑘-1 𝑝 𝑗 (𝑠)𝑑𝑊 𝑗 (𝑠)〉 = ∫ 𝑒 -(𝛽 𝑖 +𝛽 𝑗 )(𝑡 𝑘 -𝑠) 𝑡 𝑘 𝑡 𝑘-1
𝑝 𝑖 (𝑠)𝑝 𝑗 (𝑠)𝜌 𝑖,𝑗 𝑑𝑠

We then calculate the Cholesky decomposition of the covariance matrix. Equipped with a random number generator capable of drawing N independent Gaussian random numbers, we can simulate the integral term and hence generate the paths for the mean reverting factors at the next time step 𝑡 𝑘 .

We may follow the recipe above in a multi-asset simulation (such as in CVA). It works theoretically, however in practice this requires calculating the full covariance matrix and its Cholesky decomposition across all assets and all factors at every time step.

To make the multi-asset algorithm complete, we need to discuss how to determine the pairwise correlation 𝜌 𝑖,𝑗 𝑎,𝑏 between the i'th factor of the asset and the j'th factor of the b asset (where a could be equal to b, in which case the correlation is between different factors of the same asset). Obviously, one cannot hope to assign arbitrary values to these correlations and still get a semi-positive-definite (SPD) matrix that can be Cholesky decomposed. The simplest way to ensure SPD is to compute the correlation matrix directly from historical data.

But where do we get historical data on the factors? The factors are a model construct and are not directly observable from the historical data. What we observe is the historical futures prices, and we need to somehow "transform" them into factors. Here's a simple way to do this.

Take the two-factor model for WTI as an example. We pick two nearby contracts, one from the front end of the curve, say the 3 rd nearby, i.e., 𝑇 1 = 𝑡 + 3/12, and other from the back end of the curve, say the 36 th nearby, i.e., 𝑇 2 = 𝑡 + 36/12. According to the model,

𝑑𝐹 𝑇 1 (𝑡) 𝐹 𝑇 1 (𝑡) = 𝜎(𝑡)[𝑝 𝑆 𝑒 -𝛽(𝑇 1 -𝑡) 𝑑𝑊 𝑆 (𝑡) + 𝑝 𝐿 𝑑𝑊 𝐿 (𝑡)] 𝑑𝐹 𝑇 2 (𝑡) 𝐹 𝑇 2 (𝑡) = 𝜎(𝑡)[𝑝 𝑆 𝑒 -𝛽(𝑇 2 -𝑡) 𝑑𝑊 𝑆 (𝑡) + 𝑝 𝐿 𝑑𝑊 𝐿 (𝑡)]
The left-hand sides of the equations, the log returns of the two futures, are directly observable from the historical time series. We can solve for the factors as follows:

decreased, to balance the increase of the volatility in its earlier period so that the average volatility for the whole lifetime is still the same.

Which interpretation is correct? Both satisfy the requirement of matching the model to the market implied volatilities for vanilla options. But both are only approximations to what's happening in the real world, and neither is absolutely correct under all circumstances. The truth often lies in between. So, we're interested in seeking a hybrid model that combines the seasonal and non-seasonal calibration strategy.

Equipped with this extra flexibility, we will be more capable of capturing the responsive behavior of the market swaption prices, when the term structure of implied volatilities changes.

Below are details on how to calibrate a hybrid model. Let's assume that the volatility ratio is given by the constant vector 𝑝 𝑖 = 𝑞 𝑖 , and we use the symbol 𝜀 to denote the degree to which we want the hybrid model to be more like the seasonal or non-seasonal model. This "non-fungibility" parameter is a number between 0 and 1, and the hybrid model reduces to the seasonal model when 𝜀 = 1 and it becomes the non-seasonal model when 𝜀 = 0. Let's also denote the implied volatility, the option expiration and futures expiration of the M'th contract as 𝜎 𝑀 , 𝑡 𝑀 , 𝑇 𝑀 respectively.

The first step is to calibrate a fully seasonal model, and then assign the result "partially" to the Tdependent local volatility function q(T). For this purpose, we recall that in a seasonal model, the scalar 𝜆 satisfies the equation 𝑞 𝑖 (𝑇 𝑀 )𝑞 𝑗 (𝑇 𝑀 )𝑒 -(𝛽 𝑖 +𝛽 𝑗 )(𝑇 𝑀 -𝑠) 𝜌 𝑖,𝑗 𝑑𝑠 When 𝜀 = 0, the model is equivalent to the fully non-seasonal model, and when 𝜀 = 1, the model is equivalent to the fully seasonal model. For the early expiration option example earlier, when 𝜀 = 1/2, we will have about half of the vega attributed to December 2014 contract and half to the December 2015 contract.

Finally, how do we calibrate the non-fungibility parameter 𝜀 in the model? Since the main impact of the parameter is to the Vega attribution, we can monitor market swaption prices over a period of time where the term structure of implied volatilities goes through significant changes, and choose 𝜀 such that the responsive behavior of the model matches the market prices the best. This can be tricky though since there could be other factors affecting the changes in swaption prices, especially over an extended period of time.

As an illustration, we pick four month-end dates in 2013, and calculate the IPV (difference between model price and Totem consensus) for our existing WTI swaption positions, using 3 different models:

fully non-seasonal, fully seasonal and hybrid with 50% non-fungibility parameter. The model parameters are chosen such that the swaption NPV as of October 8, 2013 are about the same for the 3 models. One can see that for this 4-month period, the hybrid model is more stable than the non-seasonal model, but it is hard to judge between the seasonal and hybrid models. But for oil assets, the hybrid model is naturally preferred over the fully seasonal model. There's no way to offset this curve risk effectively with vanilla options. Of course, the most effective way to "hedge" this is to sell the swaptions we bought. But it's quite often that we cannot do this without incurring big costs. Another lesser effective way is to use time spread options as a hedge. But time spread options are as illiquid as swaptions.

The manifestation of this in the model is that the risks to the model parameters, including volatility ratio, mean reversion and correlations are, to the most part, un-hedgable (unless one sells the swaptions he bought). These parameters are not directly observable from the market either. So how to mark these parameters and manage the uncertainty with these parameters presents a challenge to the model. But there are at least 3 types of mitigation to this challenge.

First, MR imposes a hard limit on how much swaption Vega traders can warehouse. This limits our exposure to the un-hedgable swaption risks.

Second, VCG verifies the model valuation at least monthly through the IPV process. This ensures that we mark the model to the market expectation of how the "curve" dynamics will actualize.

Finally, we review the historical analysis periodically to ensure we are not stepping into an overheated market. But typically mark-to-market is the rule rather than exception. No amount of historical analysis can tell us for sure what is going to happen in the future.

Conclusions

The article presents a multi-factor model for pricing commodity derivatives. A primary application is to price commodity swaptions. Swaptions are a relatively illiquid product in commodities market, and the natural flow tends to be one-sided. As a result, dealers typically warehouse long swaption risks. Delta and Vega of these swaptions can be effectively hedged with liquid vanilla options and futures.

Earlier, we have categorized the model calibration strategy into seasonal and non-seasonal. Intuitively, the futures contracts for a seasonal asset (such as power or gas) are less fungible than futures contracts for a non-seasonal asset (such as oil). Hence, we use a boot-strapping strategy to calibrate local volatilities for non-seasonal assets, but for seasonal assets we calibrate the local volatilities of each contract separately.

The current form of the multi-factor model is presented in a way that the volatility ratio and mean reversions do not have a term structure. But the model is easily extendable to include a t dependency of volatility ration and mean reversions. This "term structure" model will make it easier to fit market prices of swaptions across different tenors.

Figure 5 .

 5 Figure 5. Month-end term structure of implied volatilities.

  Figure 6. The plots of month-end swaption IPVs

  𝑝 𝑖 is the local time dependent volatility of the i'th factor, 𝑞 𝑖 is the expiry time dependent volatility of the i'th factor, 𝛽 𝑖 is the mean reversion rate of the i'th factor, and 𝑊 𝑖 is a standard Brownian motion that is the random driver for the i'th factor. The Brown motions are correlated with the correlation matrix with element 𝜌 𝑖,𝑗 , i.e. 〈𝑑𝑊 𝑖 , 𝑑𝑊 𝑗 〉 = 𝜌 𝑖,𝑗 𝑑𝑡.

			𝑡
		𝑌 𝑖 (𝑡) = ∫ 𝑒 -𝛽 𝑖 (𝑡-𝑠)	𝑝 𝑖 (𝑠)𝑑𝑊 𝑖 (𝑠)
			0
	The futures price can be expressed in terms of the mean reverting factor as follows:
		𝑑𝐹 𝑇 (𝑡) 𝐹 𝑇 (𝑡)	𝑁 𝑖=1 = ∑ 𝑞 𝑖 (𝑇)𝑒 -𝛽 𝑖 𝑇 𝑑[𝑒 𝛽 𝑖 𝑡 𝑌 𝑖	(𝑡)]
	Commodity derivatives typically trade by futures/forwards and there's a need to model the dynamics of 𝐹 𝑇 (𝑡) = 𝐹 𝑇 (0)𝑒 ∑ 𝑞 𝑖 (𝑇)𝑒 -𝛽 𝑖 (𝑇-𝑡) 𝑌 𝑖 𝑁 𝑖=1 (𝑡)-1 2 〈log 𝐹 𝑇 〉 0 𝑡
	the entire forward curve. The application of such a model includes (semi-)analytical pricing of non-vanilla
	options, Monte-Carlo simulation, risk management, etc. The Multi-factor model presented in this guide is Here, 〈log 𝐹 𝑇 〉 0 𝑡 is the quadratic variation of the log futures price from time 0 to time t. The significance
	capable of modeling a wide range of commodity assets, as well as FX and equities. of the formula above is that the futures price can be explicitly put in a simple algebraic formula involving
	the N mean reverting factors which do not depend on T. This means that, in a Monte-Carlo setting, the
	The model assumes that the forward curve is driven by N random factors, characterized by different time task of simulating the entire forward curve boils down to that of simulating just the N mean reverting
	scales. Mathematically, the over-arching formula for the futures price 𝐹 𝑇 reads factors.
	𝑁 = ∑ 𝑝 𝑖 (𝑡)𝑞 𝑖 (𝑇)𝑒 -𝛽 𝑖 (𝑇-𝑡) 𝑑𝑊 𝑖 The quadratic variation is a specific case of a very useful quantity: Log Covariance. We define the log 𝑑𝐹 𝑇 (𝑡) (𝑡) 𝐹 𝑇 (𝑡) 𝑖=1 covariance of two futures contracts, 𝐹 𝑇 1 and 𝐹 𝑇 2 , integrating from 𝑡 1 to 𝑡 2 as
		𝑁	𝑡 2
	Here, t is the current time, T is the futures expiration time, i is the index of the i'th factor, N is the total 𝑡 2 = ∑ 𝑞 𝑖 (𝑇 1 )𝑞 𝑗 (𝑇 2 ) ∫ 𝑝 𝑖 (𝑠)𝑝 𝑗 (𝑠) 𝑒 -𝛽 𝑖 (𝑇 1 -𝑠)-𝛽 𝑗 (𝑇 2 -𝑠) 𝜌 𝑖,𝑗 𝑑𝑠 〈log 𝐹 𝑇 1 , log 𝐹 𝑇 2 〉 𝑡 1 𝑡 1 𝑖,𝑗=1 In particular, 𝑡 0 𝑁 𝑖,𝑗=1 number of factors, Here are several particular examples of the generic formulation above, from which the intuition of the 〈log 𝐹 𝑇 〉 0 𝑡 = ∑ 𝑞 𝑖 (𝑇)𝑞 𝑗 (𝑇) ∫ 𝑝 𝑖 (𝑠)𝑝 𝑗 (𝑠) 𝑒 -(𝛽 𝑖 +𝛽 𝑗 )(𝑇-𝑠) 𝜌 𝑖,𝑗 𝑑𝑠
	model should come alive. But for now, let's expand certain properties of the generic model a bit more. First, we define the i'th Mean Reverting Factor 𝑌 𝑖 by the following OU process The value of a vanilla option is computed by substituting the volatility √ 𝑡 〈log 𝐹 𝑇 〉 0 𝑡 into the Black-Scholes
	formula.	𝑑𝑌 𝑖 (𝑡) = -𝛽 𝑖 𝑌 𝑖 (𝑡)𝑑𝑡 + 𝑝 𝑖 (𝑡)𝑑𝑊 𝑖 (𝑡)
	We assume that the process starts from 0, i.e. 𝑌 𝑖 (0) = 0. The solution to this SDE is easily derivable:
		𝑑[𝑒 𝛽 𝑖 𝑡 𝑌 𝑖 (𝑡)] = 𝑒 𝛽 𝑖 𝑡 𝑝 𝑖 (𝑡)𝑑𝑊 𝑖 (𝑡)

  This equation most clearly illustrates the essence of the multi-factor model. The model describes the (log) commodity price as a sum of mean reverting factors. Factors with low mean reversion rate are called Slow/Long Factors, and represent uncertainties on long-term fundamentals. Factors with high mean reversion rate are called Fast/Short Factors, and are used to model short term risk factors such as weather, middle-east unrest, economic slowdown, central-bank policy changes, etc.Finally, if we have two assets that are modeled by the multi-factor model, with potentially different number of factors, we can calculate the Cross-Asset Log Covariance as follows.

  following graphs illustrate the quality of fitting for West Texas Intermediate (WTI). The historical period is between July 24, 2011 and July 24, 2013, with more recent data given higher importance. The weighting of the data follows an exponential formula with the decay rate corresponding to a half-life of 125 business days. The two-factor model parameters are 0.35 for mean reversion rate, 1.6 for volatility ratio and -20% for correlation.
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FIGURE 1 illustrates the quality of fitting for West Texas Intermediate (WTI).

  the correlation between different futures for West Texas Intermediate (WTI). More specifically, the graph plots the instantaneous correlation of the nearby number in the x-axis and the 12 th nearby.
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  〈log 𝐹 𝑇 𝑀 〉 0 𝑡 𝑀 = ∑ ∫ 𝑝 𝑖 (𝑠)𝑝 𝑗 (𝑠) 𝛽 𝑖 +𝛽 𝑗 )(𝑇 𝑀 -𝑠) 𝜌 𝑖,𝑗 𝑑𝑠 = ∑ 𝑝 𝑖 𝑝 𝑗 𝜌 𝑖,𝑗 𝑒 -(𝛽 𝑖 +𝛽 𝑗 )𝑇 𝑀 ∑ 𝛼 𝑘

	𝑁	𝑡 𝑀
	0 𝑁 𝑖,𝑗=1	𝑒 -(2 𝑀
	𝑖,𝑗=1	𝑘=1

Table 1 :

 1 The impact of parameters on prices

  expiration date are baked into the sampling weights. More specifically, if the undiscounted sampling weights for the underlying futures are (𝑢 1 , 𝑢 2 , . . . , 𝑢 𝑀 ), and the discount factors from the swaption expiration date to the settlement dates of each underlying swaplet are (𝑑 1 , 𝑑 2 , . . . , 𝑑 𝑀 ) , then the discounted sampling weights which are used in swaption pricing are (𝑤 1 , 𝑤 2 , . . . , 𝑤 𝑀 ) = (𝑢 1 * 𝑑 1 , 𝑢 2 * 𝑑 2 , . . . , 𝑢 𝑀 * 𝑑 𝑀 )

  The "residual" fungible implied volatilities 𝜎 𝑀 /𝜆 𝜀 (𝑇 𝑀 ) are then to be matched using a boot-strapping approach., the same way as in the non-seasonal model. Recall that the equations to solve for are 𝜎 𝑀 2 𝑡 𝑀 /𝜆 2𝜀 (𝑇 𝑀 ) = ∑ ∫ 𝑝 𝑖 (𝑠)𝑝 𝑗 (𝑠)

		𝜆(𝑇 𝑀 ) = 𝜎 𝑀 √	∑	𝑁 𝑖,𝑗=1	𝑡 𝑀 𝑞 𝑖 𝑞 𝑗 𝜌 𝑖,𝑗 𝑒 -(𝛽 𝑖 +𝛽 𝑗 )𝑇 𝑀	𝑒 (𝛽 𝑖 +𝛽 𝑗 )𝑡 𝑀 -1 𝛽 𝑖 +𝛽 𝑗
	Now we set the T-dependent local volatility to be a fraction (in the log space) of the solution above,
	according to the non-fungibility parameter:
						𝑞 𝑖 (𝑇) = 𝑞 𝑖 𝜀 𝜆 𝜀 (𝑇)
			𝑁	𝑡 𝑀
						𝑒 -(𝛽 𝑖 +𝛽 𝑗 )(𝑇 𝑀 -𝑠) 𝜌 𝑖,𝑗 𝑑𝑠
			𝑖,𝑗=1	0
		2 = ∑ 𝑝 𝑖 𝑝 𝑗 𝜌 𝑖,𝑗 𝑒 -(𝛽 𝑖 +𝛽 𝑗 )𝑇 𝑀 ∑ 𝛼 𝑘 𝑀 𝑁 𝑘=1 𝑖,𝑗=1	𝑒 (𝛽 𝑖 +𝛽 𝑗 )𝑡 𝑘 -𝑒 (𝛽 𝑖 +𝛽 𝑗 )𝑡 𝑘-1 𝛽 𝑖 +𝛽 𝑗
	𝑡 𝑀 We set the t-dependent local volatility to be 𝑁
		𝜎 𝑀 2 𝑡 𝑀 = ∑ ∫ 𝑞 𝑖 (𝑇 𝑀 )𝑞 𝑗 (𝑇 𝑀 )	𝑒 -(𝛽 𝑖 +𝛽 𝑗 )(𝑇 𝑀 -𝑠) 𝜌 𝑖,𝑗 𝑑𝑠
		𝑖,𝑗=1	0			𝑝 𝑖 (𝑡) = 𝑝 𝑖 1-𝜀 𝛼(𝑇)
			𝑁 = 𝜆 2 (𝑇 𝑀 ) ∑ 𝑞 𝑖 𝑞 𝑗 𝜌 𝑖,𝑗 𝑒 -(𝛽 𝑖 +𝛽 𝑗 )𝑇 𝑀 𝑖,𝑗=1	𝑒 (𝛽 𝑖 +𝛽 𝑗 )𝑡 𝑀 -1 𝛽 𝑖 +𝛽 𝑗
	It is easy to verify that such calibrated model always matches the implied volatilities of all vanilla options,
	i.e.				
	So	𝑁	𝑡 𝑀		
		𝜎 𝑀 2 𝑡 𝑀 = ∑ ∫ 𝑝 𝑖 (𝑠)𝑝 𝑗 (𝑠)
		𝑖,𝑗=1	0		

Table 2 .

 2 Calibrated model parameters for seasonal, non-seasonal, or hybrid assumptions

	WTI Swaption IPV Non-Seasonal	Seasonal	Hybrid
	6/28/2013 $	432,064 $	504,492 $	458,317
	7/31/2013 $	444,942 $	695,192 $	561,262
	8/30/2013 $	(25,346) $	635,440 $	300,675
	9/30/2013 $	346,722 $	555,789 $	442,195

𝑝 𝑆 𝜎(𝑡)𝑑𝑊 𝑆 (𝑡) = 𝑑𝐹 𝑇 1 (𝑡)

𝐹 𝑇 1 (𝑡) -𝑑𝐹 𝑇 2 (𝑡) 𝐹 𝑇 2 (𝑡) 𝑒 -𝛽(𝑇 1 -𝑡) -𝑒 -𝛽(𝑇 2 -𝑡) 𝑝 𝐿 𝜎(𝑡)𝑑𝑊 𝐿 (𝑡) = 𝑒 -𝛽(𝑇 2 -𝑇 1 ) 𝑑𝐹 𝑇 1 (𝑡)

𝐹 𝑇 1 (𝑡) -𝑑𝐹 𝑇 2 (𝑡) 𝐹 𝑇 2 (𝑡) 𝑒 -𝛽(𝑇 2 -𝑇 1 ) -1 Note that in this formula, the mean reversion rate is already determined by the procedure in Model Calibration. From this, the historical correlation between any two factors (either from the same asset or different assets) can be calculated.

Empirical and Numerical Study

Let's go through an example to understand the consequence of choosing the calibration strategy. At the time of this writing, we are in October 2013. Suppose we need to price an option on the December 2015 futures contract, while the option expires on the option expiration of the December 2014 contract. This is what we call an Early Expiry Option, which is a mini-swaption. Now let's imagine a market scenario where the implied volatility of the December 2014 contract increased by 2%, while the volatility of the December 2015 stays put. If we use the seasonal model, the Vega PnL under this market scenario would be flat. But if we use the non-seasonal model, the Vega PnL under this market scenario would be positive, if we are long this option.

The intuition is that the seasonal model interprets this scenario as saying that even though the December 2014 contract becomes more volatile, it doesn't say anything about the December 2015 contract. On the other hand, the non-seasonal model interprets the market scenario as saying that not only December 2014 contract becomes more volatile, but December 2015 contract also becomes more volatile, during the period from now to the expiration of the 2014 contract.

How can the implied volatility of the December 2015 contract not change? It must be that the volatility of that contract during the period from the expiration of 2014 contract to its own expiration has Trolle, A. and Schwartz, E. "Unpanned stochastic volatility and the pricing of commodity derivatives." Review of Financial Study, 22 (2009), pp. 4423-4461