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Scientific applications are usually described using directed acyclic graphs, where nodes

represent tasks and edges represent dependencies between tasks. For some applications,
this graph is a tree: each task produces a single result used solely by its parent. The

temporary results of each task have to be stored between their production and their use.

We focus on the case when the data manipulated are very large. Then, during an
execution, all data may not fit together in memory. In such a case, some data have to

be temporarily written to disk and evicted from memory. These data are later read from

disk when they are needed for computation.
These Input/Output operations are very expensive; hence, our goal is to minimize

their total volume. The order in which the tasks are processed considerably influences

the amount of such Input/Output operations. Finding the schedule which minimizes this
amount is an open problem that we revisit in this paper.

We first formalize and generalize known results, and prove that existing solutions

can be arbitrarily worse than the optimal. We then present an Integer Linear Program
to solve it optimally. Finally, we propose a novel heuristic algorithm. We demonstrate its

good performance through simulations on both synthetic and realistic trees built from

actual scientific applications.

Keywords: scheduling, task tree, out-of-core, I/O minimization.

1. Introduction

Scientific applications are often modeled by directed task graphs, where nodes rep-

resent tasks and edges represent the dependencies between tasks. There is an abun-

dant literature on task graph scheduling when the objective is to minimize the total
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completion time, or makespan. However, with the increase of the size of the data to

be processed, the memory footprint of the application can have a dramatic impact

on the algorithm execution time, and thus needs to be optimized. When handling

very large data, the available main memory may be too small to simultaneously

handle all data needed by the computation. In this case, we have to resort to using

disk as a secondary storage, which is sometimes known as out-of-core execution.

The cost of the Input/Output (I/O) operations to transfer data from and to the

disk is known to be several orders of magnitude larger than the cost of accessing the

main memory. Thus, in the case of out-of-core execution, it is a natural objective

to minimize the total volume of I/O.

In the present paper, we consider the scheduling of rooted in-trees. Such tree-

shaped task graphs arise in several computational domains, such as the factorization

of sparse matrices [8], or in computational physics code modeling electronic proper-

ties [15]. Dependencies between tasks, modeled by the edges of the tree, represent

the tasks’ input and output data: each task uses all the data produced by its chil-

dren to output new data for its parent. In particular, a task must have enough

available memory to fit the input from all its children.

It is known that the problem of minimizing the peak memory Mpeak of a tree

traversal, that is, the minimum amount of memory needed to process a tree, is

polynomial [13, 19]. However, it may well happen that the available amount of

memory M is smaller than the peak memory Mpeak. In this case, we have to decide

which child’s data, or which part of a child’s data, has to be written to disk. In

a previous study [13], we have focused on the case when a child’s data cannot be

partially written to disk, and we proved that this variant of the problem was NP-

complete. However, it is usually possible to split data that resides in memory, and

write only part of it to the disk if needed. This is for instance what is done by

operating systems using paging : all data is divided into same-size pages, which can

be moved from main memory to secondary storage when needed. Since all modern

computer systems implement paging, we consider here that data can be split into

parts (corresponding to system pages), each of which can be written to disk.

Note that the present study focuses on sequential scheduling for task trees. Even

if parallel processing is necessary for most large-scale scientific applications, we claim

that such a sequential study is needed: (i) for memory-constrained applications, a

sequential traversal of the task tree is preferred, as it lowers the memory pressure,

but each task is performed in parallel on multiple cores; (ii) if the ultimate goal is to

obtain a parallel schedule of the tree, it is important to first investigate the sequen-

tial problem before moving to its more complex, bi-criteria (I/O and makespan)

parallel variant. The present paper is therefore a step towards understanding the

sequential version of this problem.

The main contributions of this work are:

• A formalization, in a common framework, of previous results from the lit-

erature.
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• A proof of optimality of post-order traversals when trees are homogeneous

(all output data has the same size). An algorithm to compute the best post-

order traversal was previously proposed by E. Agullo [1]; our proof shows

that this algorithm is optimal for homogeneous trees.

• A proof that neither the best post-order traversal nor the memory-peak

minimization algorithms are approximation algorithms for minimizing the

I/O volume.

• An Integer Linear Programming (ILP) formulation of the considered prob-

lem that allows us to compute an optimal solution for small scale problems.

• The design of a new heuristic that takes advantage of peak-memory-

optimizing algorithms.

• An extensive experimental comparison of all available strategies (including

the ILP for small test cases) through simulations on both synthetic and

realistic trees built from actual sparse matrices. These simulations show

the very good performance of the proposed solution.

The rest of this paper is organized as follows. We give an overview of the related

work in Section 2. Then in Section 3 we formalize our model and present elementary

results. Existing solutions are studied in Section 4. An optimal ILP is presented in

Section 5. We introduce a new heuristic in Section 6 and evaluate its performance

through simulations in Section 7. We finally conclude and present future directions

in Section 8.

2. Related work

As stated above, rooted trees are commonly used to represent task dependencies for

scientific applications. This is, for example, the case for some computational physics

codes modeling the electronic properties of semiconductors and metals [15, 17, 22],

and for the accurate modeling of the electronic structure of atoms and molecules in

quantum chemistry [5, 12]. In the domain of sparse linear algebra, Liu [18] gives a

detailed description of the construction of the elimination tree, its use for Cholesky

and LU (Lower-Upper) factorizations, and its role in multifrontal direct methods:

during the factorization, the computations are organized as a task tree, and the

huge size of the data involved makes it absolutely necessary to reduce the memory

requirement of the factorization. Note that peak memory minimization is still a

crucial question for direct solvers, as highlighted by Agullo et al. [2], who study the

effect of processor mapping on memory consumption for multifrontal methods.

Memory and storage have always been a limited parameter for large computa-

tions, as outlined by the pioneering work of Sethi and Ullman [25] on register alloca-

tion for task trees. In the realm of sparse direct solvers, the problem of scheduling

a tree so as to minimize peak memory has first been investigated by Liu [20] in

the sequential case: he proposed an algorithm to find a peak-memory-minimizing

traversal of a task tree when the traversal is required to correspond to a postorder

traversal of the tree. A postorder traversal requires that each subtree of a given
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node must be fully processed before the processing of another subtree can begin. A

follow-up study [19] presented an optimal algorithm to solve the general problem,

without the postorder constraint on the traversal. Postorder traversals are known

to be arbitrarily worse than optimal traversals for memory minimization [13]. How-

ever, they are very natural and straightforward solutions to this problem, as they

allow us to fully process one subtree before starting a new one. Therefore, they

are widely used in sparse matrix software like MUMPS [3, 4] (MUltifrontal Massively

Parallel sparse direct Solver), and achieve good performance on actual elimination

trees [13].

The problem of minimizing I/Os—and not only peak memory—has been formal-

ized as the so-called red-blue Pebble Game [14], where pebbles have to be placed on

the computation DAG and colors respectively represent the small and fast memory.

This model is adapted to unit-size data and several hardness and inapproximation

results have been developed for several variants, see [23] among the recent work.

Our problem restricted to unit-size data falls under the oneshot model in the

terminology adopted in [23]. On general task graphs (i.e., directed acyclic graphs),

this problem is shown to be NP-hard and impossible to approximate within a fac-

tor less than 2 unless the Unique Games Conjecture is invalid. Note that the fact

that we show an optimal algorithm for unit-size data (Section 4) directly implies a

polynomial-time solution for the red-blue pebble game on trees.

As mentioned in the introduction, the problem of minimizing the I/O volume

when traversing a tree has been studied in [13] with the constraint that each node’s

data either stays in the memory or has to be written wholly to disk. Here we

study the case when we have the option to store part of the data, which is also

the topic of E. Agullo’s PhD. thesis [1]. In his thesis, Agullo exhibited the best

postorder traversal for minimizing I/O volume, which we adapt to our model in

Section 4.1. He also studied numerous variants of the model that are important for

direct solvers, as well as other memory management issues—both for sequential and

parallel processing. Based on these preliminaries, he finally presented an out-of-core

version of the MUMPS solver.

Finally, out-of-core execution is a well-known approach for computing on large

data, especially (but not exclusively) in linear algebra [24,26].

3. Problem modeling and basic results

3.1. Model and notation

As introduced above, we assume that we have an available memory (or primary

storage) of limited size M , and a disk (or secondary storage) of unlimited size.

We consider a workflow of tasks whose precedence constraints are modeled by

a tree of tasks G = (V,E). Its nodes v ∈ V represent tasks and its edges e ∈ E

represent dependencies. All dependencies are directed toward the root (denoted by

root): a node can only be executed after the termination of all its children. The

output data of a node i occupies a size wi in the main memory. This data may be
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written totally or partially to the disk after task i produces it. In order for a node

to be executed, the output data of all its children must be entirely stored in the

main memory. An amount of memory m can be moved between the memory and

the disk at a cost of m I/O operations, regardless of which data it corresponds to.

We assume that all memory values (M , wi) are given in an appropriate unit (such

as kilobytes) and are integers. We divide the main memory into slots, where each

slot holds one such unit of memory.

At the beginning of the computation of a task i, the output data of i’s children

must be in memory, while at the end of its computation, its own output data must

be in memory. The amount of memory needed in order to execute node i is thus

w̄i = max

wi,
∑

(j,i)∈E

wj

 .

We assume that M is at least as large as every w̄i, as otherwise the tree cannot be

processed.

Our objective is to find a solution minimizing the total I/O volume. A solution

needs to give the order in which nodes should be executed, and how much of each

node should be written out during I/O operations. In particular, for a tree of n

tasks, we define a solution to our problem as a permutation σ of [1 . . . n] and a

function τ . We call such a solution a traversal. The permutation σ represents the

schedule of the nodes, that is, σ(i) = t means that task i is the t-th task computed.

The function τ represents the amount of I/Os for each task: τ(i) = m means that

m units of the output data of task i are written to disk (see below). Note that

we do not need to clarify which part of the data is written to disk, as our cost

function only depends on the volume. We assume without loss of generality that

when τ(i) ̸= 0, the write operation on the output data of task i is performed right

after task i completes (and produces the data), and the read operation is performed

just before the use of this data by task i’s parent. Finally, since there are exactly

the same number of read and write operations, we only count the write operations.

In order for a traversal to be valid, it must respect the following conditions:

• Tasks are processed in topological order:

∀(i, j) ∈ E, σ(i) < σ(j).

We say that a node i of parent j is considered active at step t under the

schedule σ if σ(i) < t < σ(j). This means that its output data is either

partially in memory and/or partially written to disk at time t.

• The amount of data written to disk never exceeds the size of the data:

∀i ∈ V, 0 ≤ τ(i) ≤ wi.
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• Enough memory remains available for the processing of each task (taking

into account active nodes):

∀i ∈ V,
∑

(k,p)∈E
σ(k)<σ(i)<σ(p)

(wk − τ(k)) ≤M − w̄i. (1)

The problem we are considering in this paper, called MinIO, is to find a valid

traversal that minimizes the total amount of I/Os, given by
∑

i∈G τ(i).

We formally define a postorder traversal as a traversal σ such that, for any

node i and for any node k outside the subtree Ti rooted at i, we have either ∀j ∈
Ti, σ(k) < σ(j) or ∀j ∈ Ti, σ(j) < σ(k).

3.2. Towards a compact solution

Although a traversal is described by both the schedule σ and the I/O function τ ,

the following results show that one can be deduced from the other. The first result

is adapted from [1, Property 2.1], which has the same result limited to postorder

traversals (see Section 2). It states that given a schedule σ, it is easy to derive an

I/O scheme τ which minimizes the I/O volume of the traversal (σ, τ).

Theorem 1. We consider a tree G, a memory bound M , and a schedule σ. The I/O

function τ following the Furthest in the Future policy achieves the best performance

under σ.

The I/O function τ following the Furthest in the Future (FiF) policy is defined

as follows: during the execution of σ, whenever the memory exceeds the limit M ,

I/O operations are performed on the active nodes which will remain active the

furthest in the future, i.e., whose execution come last in the schedule σ. This result

is similar to Belady’s rule which states that the offline cache replacement policy

MIN is optimal [6, 16]. MIN evicts from the cache the data which will be used the

latest.

Proof. Given a tree G, a memory bound M , a schedule σ, and an I/O function

τ that does not respect the FiF policy, it is straightforward to transform τ into

another I/O function τ ′ following the rule. Consider the first step when an I/O is

performed on data i that is not the last to be used among active data. Let j denote

the last-used among active data (so FiF would evict j). We can safely increase τ ′(j)

and decrease τ ′(i) until either τ ′(j) = wj or τ ′(i) = 0. As j is active longer than i

is, the memory freed by τ ′ is available for a longer time than the one freed by τ ,

which keeps the traversal valid. Repeating this transformation, we produce an I/O

function which respects the FiF policy.

On the other hand, if we have an I/O function τ describing how much of each

node is written to disk, we can compute a schedule σ such that (σ, τ) is a valid

traversal (if such a schedule exists).
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Theorem 2. We consider a tree G, a memory bound M , and an I/O function τ for

which there exists a valid schedule. Such a schedule can be computed in polynomial

time.

The proof of this result is delegated to Section 6 where we use a similar method

to derive a heuristic: once we know where the I/O operations take place, we may

transform the tree by expanding some nodes to make these I/O operations explicit

within the tree structure. If a valid traversal using τ exists, the resulting tree may

be completely scheduled without any additional I/Os, and such a schedule can be

computed using an optimal scheduling algorithm for memory minimization.

Both previous results allow us to describe solutions in a more compact format

(as either a schedule or an I/O function). However, this does not make the problem

less combinatorial: there are n! possible schedules and already 2n functions τ if we

restrict only to functions such that τ(i) = 0 or wi.

3.3. Related algorithms

As mentioned in Section 2, the problem of minimizing peak memory, denoted Min-

Mem, is closely related to our problem, and has been extensively studied. In this

problem, the available memory is unbounded (which means no I/Os are required)

and we look for a schedule that minimizes the peak memory, i.e., the maximum

amount of memory used at any time during the execution. There are at least two

important algorithms for this problem, which we use in the present paper:

• It is possible to compute a schedule minimizing the peak-memory in poly-

nomial time, as proven by Liu [19]. We refer to this algorithm as OptMin-

Mem.

• The best postorder traversal for peak-memory minimization can also be

computed in polynomial time [20]. We refer to this algorithm as PostOr-

derMinMem.

4. Existing solutions are not satisfactory for heterogeneous data

We now detail two existing solutions for the MinIO problem. The first one is the

best postorder traversal for MinIO proposed by Agullo [1]. We show that it is op-

timal if all data have unit size. The second uses the optimal traversal for MinMem

proposed by Liu [19], and then applies Theorem 1 to obtain a valid traversal. Af-

ter presenting these algorithms, we prove that neither of them is constant-factor

competitive compared to the optimal traversal.

4.1. Computing the best postorder traversal

For the sake of completeness, we present the algorithm computing the best postorder

traversal for MinIO from [1] and adapt it to our model. Recall that in a postorder

traversal, when a node is processed, its whole subtree must be processed before any
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other external node may be started. Given a node i and a postorder schedule σ, we

first recursively define Si as the storage requirement of the subtree Ti rooted at i.

Let Chil(i) be the children of i. Then:

Si = max

wi, max
j∈Chil(i)

Sj +
∑

k∈Chil(i)
σ(k)<σ(j)

wk


 .

This expression represents the maximum memory peak reached during the execu-

tion. If the peak is obtained at the end of the execution, it is then equal to wi.

Otherwise, it appears during the execution of the subtree of some child j. In this

case, the peak is composed of the weights of the children already processed, plus

the peak Sj of Tj .

We may now consider Ai = min(M,Si), which represents the amount of main

memory used for the out-of-core execution of the subtree Ti by σ. We recursively

define Vi as the volume of I/Os performed by σ during the execution of Ti when

I/O operations are chosen using the FiF policy:

Vi = max

0, max
j∈Chil(i)

Aj +

σ(k)<σ(j)∑
k∈Chil(i)

wk

−M

+
∑

j∈Chil(i)

Vj .

The expression of Vi has a similar structure to the expression of Si. No I/Os can

be incurred when only the root i is in memory, hence wi has no effect here. The

second term accounts for the I/Os incurred on the children of i. Indeed, during

the execution of node j, some parts of children of i must be written to disk if the

memory peak exceeds M , and this quantity is at least Aj +
∑σ(k)<σ(j)

k∈Chil(i) wk −M .

The last term accounts for the I/Os occurring inside the subtrees. Note that such

I/Os can only happen if the memory peak of the subtree exceeds M .

It remains to determine which postorder traversal minimizes the quantity Vroot .

Note that the only term sensitive to the ordering of the children of i in the expression

of Vi is:

max
j∈Chil(i)

Aj +

σ(k)<σ(j)∑
k∈Chil(i)

wk

 .

Theorem 3 states that sorting the children of i in decreasing order of Aj − wj

achieves the minimum Vi.

Theorem 3 (Lemma 3.1 in [20]) Given a set of values (xi, yi)1≤i≤n, the mini-

mum value of max1≤i≤n

(
xi +

∑i−1
j=1 yj

)
is obtained by sorting the sequence (xi, yi)

in decreasing order of xi − yi.

Therefore, the postorder traversal that processes the children nodes by decreas-

ing order of Ai − wi minimizes the I/O cost among all postorder traversals. This

traversal is described in Algorithm 1, initially called with r = root , and will be
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referred to as PostOrderMinIO. Note that in the algorithm ⊕ refers to the con-

catenation operation on lists.

Algorithm 1: PostOrderMinIO (G, r)

Input: a tree G and a node r in G

Output: an ordered list ℓr of the nodes in the subtree rooted at r,

corresponding to a postorder

1 for each i child of r do

2 ℓi ← PostOrderMinIO(G, i)

3 Compute the Ai value using postorder ℓi

4 ℓr ← ∅
5 for i child of r in decreasing order of Ai − wi do

6 ℓr ← ℓr ⊕ ℓi

7 ℓr ← ℓr ⊕ {r}
8 return ℓr

4.2. PostOrderMinIO is optimal on homogeneous trees

In this section we focus on homogeneous trees—that is, on trees where all nodes

have output data of size one. We show that PostOrderMinIO is optimal on these

homogeneous trees, i.e., that it performs the minimum number of I/Os. This gener-

alizes a result of Sethi and Ullman [25], which considers binary trees from arithmetic

expressions and aims to minimize the number of store/load operations when evalu-

ating these expressions with a limited number of registers. They considered different

variants, and the one with commutative operators closely resembles our problem,

where the registers are replaced by memory slots and load/store by read/write.

However, in our work, we do not limit the model to binary trees, but consider any

tree with homogeneous data sizes. In the case that the heterogeneity in data sizes

is limited, our result provides a good strategy of minimizing the number of I/O

operations.

Theorem 4. PostOrderMinIO is optimal for homogeneous trees.

In order to prove this theorem, we need first to define labels on the nodes of the

tree. Let T be any homogeneous tree (wv = 1 for all nodes v of T ). In the following

definitions, whenever v is a node of T with k children, v1, . . . , vk will be its children.

Memory bound l(v). For each node v of T , we recursively define a label l(v)

which represents the minimum amount of memory necessary to execute the
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subtree T (v) rooted at v without performing any I/Os:

l(v) =


0 if v is a leaf

max1≤i≤k (l(vi) + i− 1) otherwise

when ordering the children such that

l(vi) ≥ l(vi+1) for 1 ≤ i ≤ k − 1

Let Postorder be a postorder schedule that executes the children of any

node by non-increasing l-labels (ties being arbitrarily broken). Intuitively,

under Postorder, while computing the i-th child, we have i − 1 extra

nodes in memory, each of size one, so we need l(vi) + (i− 1) memory slots

in total.

I/O indicator c(v). If vi is a child of v, intuitively, c(vi) represents the number of

children of v written to disk by Postorder during the execution of T (vi).

This number can be either 0 or 1. We set c(v1) = 0 and

c(vi) =

{
0 if l(vi) +

∑
1≤j<i(1− c(vj)) ≤M

1 otherwise.

We set c(root) = 0. To ease the writing of some proofs, we use the notation

m(vi) =
∑

1≤j<i

(1− c(vj)).

Thus m(vi) represents the number of children of v in memory right before

vi is executed. Note that m(v1) = 0 and m(vi) = (1− c(v1)) +
∑

2≤j<i(1−
c(vj)) ≥ (1− c(v1)) = 1 for 2 ≤ i ≤ k.

I/O volumes w(v) and W (T (v)). w(v) represents the total number of children

of v stored by Postorder:

w(v) =

k∑
i=1

c(vi) =

k∑
i=2

c(vi).

Finally, for a given node v, we define W (T (v)) on the subtree rooted at

v:

W (T (v)) = c(v) +
∑

µ∈T (v)

w(µ).

Intuitively, W (T (v)) represents the total volume of communications per-

formed during the execution of the tree T (v) by Postorder.

We first state the correctness of the l-labels and the optimality of Postorder

for the MinMem problem.

Lemma 5. With infinite memory, Postorder uses l(n) slots to compute the sub-

tree rooted at node n.

Proof. The result follows from the definition of l(v).
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Lemma 6. With infinite memory, any schedule uses at least l(v) slots to compute

the subtree rooted at v.

Proof. We prove this result by induction on the size of T (v). If v is a leaf, the

result holds (l(v) = 1).

Otherwise, we assume the lemma to be true for the subtrees rooted at the chil-

dren v1, . . . , vk of v. We consider the schedule returned by MinMem. The memory

peak inherent to the execution of a subtree T (vi) is equal to l(vi) by the induction

hypothesis. Assume without loss of generality that the children of v are ordered such

that MinMem first computes a node of T (v1), then the next executed node not in

T (v1) is in T (v2), then the next executed node neither in T (v1) nor in T (v2) is in

T (v3), and so on. Then, the memory peak reached during the execution of T (vi) is

at least l(vi)+(i−1) because, in addition to T (vi), at least i−1 subtrees have been

partially executed: T (v1), ..., T (vi−1). Finally, the total memory peak is at least

equal to max1≤i≤k(l(vi) + i − 1). By Theorem 3, this quantity is minimized when

the nodes are ordered by non-increasing values of l(vi). Hence, the total memory

peak is at least l(v).

We now state the performance of Postorder for the MinIO problem (I/Os

are performed using the FiF policy).

Lemma 7. With bounded memory M , Postorder computes a given tree T using

at most W (T ) I/Os.

Proof.

We prove this result by induction on the size of T . We introduce new notation:

for any node v of T we define W(v) as W(v) = W (T (v)) − c(v). In other words,

W(v) intuitively represents the total volume of communications performed during

the execution of the tree T (v) if we had nothing to execute but T (v) (in practice

T (v) may be a strict sub-tree of T and, therefore, the execution of T (v) in the midst

of the execution of T can induce more communications). Note thatW(v) = W (T (v))

if v is the root of T . We prove by induction on the size of T (v) that at most W(v)

I/Os are performed during the execution of T (v).

Let us assume that v is a leaf. Then W(v) = 0. Because we have assumed (in

Section 3.1) that M was large enough for a single node to be processed without

I/Os, c(v) = 0 and thus W (T (v)) =W(v) = c(v) = 0.

Now assume that v is not a leaf. By the induction hypothesis, for any i ∈ [1; k],

Postorder executes the tree T (vi) alone using at mostW(vi) I/Os. We prove that

to process the tree T (vi), after the trees T (v1) through T (vi−1) were processed, we

need to perform at most W (T (vi)) =W(vi) + c(vi) I/Os.

Let us consider the (i + 1)-th child of v. If c(vi+1) = 0, then l(vi+1) +∑
1≤j<i+1(1 − c(vj)) ≤ M . Then, according to Lemma 5, no I/Os are required

to execute T (vi+1) under Postorder even after the processing of T (v1) through



Lemma 9.

12 L. Marchal, S. McCauley, B. Simon, F. Vivien

T (vi). Indeed, before the start of the processing of T (vi+1) the memory contains ex-

actly
∑

1≤j<i+1(1− c(vj)) nodes. Therefore W(vi+1) = c(vi+1) = W (T (vi+1)) = 0.

We are now in the case c(vi+1) = 1; thus l(vi+1) +
∑

1≤j<i+1(1 − c(vj)) >

M . Recall that for l ∈ [1; i], l(vl) ≥ l(vi+1). Thus, if l(vi+1) ≥ M , then for l ∈
[2; i], l(vl) ≥ M and c(vl) = 1 (because m(vl) ≥ (1 − c(v1)) = 1). Therefore,

after the completion of T (vi) there is only one node remaining in the memory:

vi. Then with a single I/O Postorder writes vi to disk, the memory is empty

and T (vi+1) can then be processed with at most W(vi+1) I/Os, giving a total of

at most W(vi+1) + c(vi+1) = W (T (vi+1)) I/Os. The only remaining case is the

case l(vi+1) < M . The processing of T (vi) requires at least l(vi+1) empty memory

slots because l(vi) ≥ l(vi+1). Hence, after the completion of T (vi) there are at

least l(vi+1) − 1 empty memory slots (the memory including the node vi itself).

Then with a single I/O Postorder can write vi to disk and there are then enough

empty memory slots to process T (vi+1) without any additional I/Os. Therefore

W (T (vi+1)) = 1 =W(vi+1) + c(vi+1). This concludes the proof.

Lemma 9 relies on the following intermediate result.

Lemma 8. Consider a node v of a tree T with a child, a, whose label l(a) satisfies

l(a) > M . Now, consider any tree T ′ identical to T , except that the subtree rooted

at a has been replaced by any tree whose new label l′(a) satisfies l′(a) ≤ l(a) and

l′(a) ≥M . Then w′(v) = w(v).

Proof. Let v1, . . . , vk be the children of v, ordered so that l(v1) ≥ · · · ≥ l(vk). Let

j be the index of a: a = vj . As the label of a in T ′, l′(a), is not larger than l(a), we

can have l′(a) < l′(vj+1). Therefore, we define another ordering of the children of

v denoted by v′1, . . . , v
′
k such that l′(v′1) ≥ · · · ≥ l′(v′k). Let j′ be the index of a in

this ordering: v′j′ = a = vj .

Note that j′ ≥ j. For i ∈ [j + 1; j′], we have vi = v′i−1; at j, we have vj = v′j′ ;

and for i /∈ [j; j′], we have vi = v′i.

If j′ = 1 then j = 1. This case means that a remains the node with the largest

label. The labels of the other children of v remain unchanged. Because c(v1) =

c′(v1) = 0 by definition, then c′(vi) = c(vi) for any child vi of v and, thus, w(v) is

equal to w′(v).

Let us now consider the case j′ > 1. From what precedes, v′j′−1 = vj′ . Then

l(vj′) = l′(v′j′−1) ≥ l′(v′j′) = l′(a) ≥ M . However, for any i ∈ [1; j′], l′(v′i) ≥
l′(v′j′) ≥M and l(vi) ≥ l(vj′) ≥M . Therefore, for any i ∈ [2; j′], l′(v′i)+m′(v′i) > M

(because m′(v′i) ≥ 1− c′(v′1) = 1 ) and, thus, c′(v′i) = 1. Similarly, for any i ∈ [2; j′],

l(vi) + m(vi) > M (because m(vi) ≥ m(v1) = 1) and, thus, c(vi) = 1. Therefore,

for i ∈ [1; j′], c(vi) = c′(v′i). Then, for i ∈ [j′ + 1; k], vi = v′i, m(vi) = m′(v′i),

and c(vi) = c′(v′i) by an obvious induction. Finally, we have w′(v) =
∑k

i=2 c
′(v′i) =∑k

i=2 c(vi) = w(v).

The following lemma gives a lower bound on the I/Os performed by any schedule.
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No schedule can compute a tree T performing strictly less than W (T ) I/Os.

Here is a short summary of the proof, which is given in full detail in Appendix

A. The result is proven by induction on the size of the tree. The case where no I/Os

are required can be deduced from Lemma 6.

We then consider a tree T for which any schedule performs at least one I/O,

and an optimal schedule P on this tree. We focus on the first node s to be stored

under this schedule, and define the tree T ′ in which T (s) is replaced by s. Using the

induction hypothesis, we know that any schedule on T ′, including the restriction of

P on T ′, performs at least W (T ′) I/Os. Therefore, we deduce that P performs at

least W (T ′) + 1 I/Os on T . Thus, it remains to prove that W (T ′) ≥W (T )− 1.

To do so, we focus on the closest ancestor of s to have a label l larger than M ,

and denote it as µ. We first prove that in the new tree T ′, we have l(µ) ≥M . This

means, by Theorem 8, that the w labels of the ancestors of µ are unchanged in T ′.

Then, we prove through an extensive case study that w(µ) in T ′ cannot be smaller

than w(µ) in T minus one. Finally, we conclude that all the other w labels are equal

in T and in T ′; therefore, W (T ′) ≥W (T )− 1.

We are now ready to prove Theorem 4.

Proof of Theorem 4. From Lemmas 7 and 9, Postorder is optimal for ho-

mogeneous trees. Moreover, PostOrderMinIO is a post-order that minimizes the

volume of I/O operations. Hence, it is also optimal for homogeneous trees.

The Postorder algorithm designed in this proof is actually equivalent to Pos-

tOrderMinMem, the postorder algorithm minimizing the peak memory, when

applied to homogeneous trees. The only difference with PostOrderMinIO is that

the latter sorts the children by non-increasing Ai = min(M, li) whereas Postorder

sorts them by non-increasing li. PostOrderMinIO is then less specific, as it does

not specify the order among subtrees with li ≥ M : there are more ties that can

be arbitrarily broken. This difference also implies that the schedule given by Pos-

torder does not depend on the value of M . It is thus cache-oblivious [11] and

optimal (on homogeneous trees) for any memory size. Therefore, if we consider sev-

eral levels of memory (e.g., a cache memory connected to a Random-Access Memory,

itself connected to a disk), Postorder minimizes the memory transfers between

every level (e.g., both cache-RAM and RAM-disk transfers). Note that with hetero-

geneous trees, this result does not hold anymore, as the optimal traversal depends

on the memory size. Therefore, no algorithm can simultaneously minimize transfer

between all levels of the memory hierarchy.

4.3. Postorder traversals are not competitive

Previous research has shown that the best postorder traversal for the MinMem

problem is arbitrarily far from the optimal traversal [13]. We prove here that pos-

torder traversals may also have bad performance for the MinIO problem. More
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specifically, we prove that there exist problem instances on which PostOrder-

MinIO performs arbitrarily more I/Os than the optimal amount. We could exhibit

an example where the optimal traversal does not perform any I/Os and PostOr-

derMinIO performs some I/Os, but we rather present a more general example

where the optimal traversal does perform some I/Os: in the following example, the

optimal traversal requires 1 I/O, when PostOrderMinIO requires Ω(nM) I/Os.

The tree used in this instance is depicted on Figure 1(a).

root15

M/214

111

M/210

17

M/26

12

M1

M/25

14

M3

M/29

M − 18

M/213

M − 112

(a) Example of a tree showing that

PostOrderMinIO is not an ap-

proximation algorithm.

root

36

55

24

63

38

57

22

61

(b) Example of a

tree where OptMin-

Mem is not optimal
for MinIO (M = 6).

root

2k4k + 4

3k4k + 3

2k − 14k − 2

3k + 14k − 3

· · ·
k4

4k3

2k 4k + 2

3k 4k + 1

2k − 1 4k

3k + 1 4k − 1

· · ·
k 2

4k 1

(c) Example of a tree showing

that OptMinMem is not an ap-

proximation algorithm (M = 4k).

Figure 1. The black label inside node i represents wi. The red label next to the nodes indicates in
(a) the optimal schedule, and in (b) and (c) the OptMinMem schedule.

It is possible to traverse the tree of Figure 1(a) with a memory of size M using

only a single I/O, by executing the nodes in increasing order of the (red) labels

next to the nodes. After processing the minimal subtree including the two leftmost

leaves, our strategy is to process leaves from left to right. Before processing a new

leaf, we complete the previous subtree up to a node of weight 1; this way the leaf

and the actives nodes can both fit in memory.

On the other hand, the best postorder traversal must perform a volume of I/O

equal to M/2−1 before processing any leaf, except for the very first processed leaf.

This is because the least common ancestor of any two leaf nodes has two children

of size M/2, and all leaves have size at least M − 1. Thus, any postorder traversal

performs at least M/2−1 I/Os for all but one leaf node, leading to at least 3M/2−3
I/Os for the tree in Figure 1(a) (a best postorder starts from any of the two M

leaves and performs 3M/2− 2 I/Os). We can extend this tree as follows: we replace



Minimizing I/Os in Out-of-Core Task Tree Scheduling 15

root by a node of size 1, add to it a parent of size M/2 which is the left child of the

new root; the right child of the new root is then a chain containing a leaf of size

M−1 and its parent of size M/2. Doing this repeatedly until n nodes are used gives

the lower bound of Ω(nM). Therefore, PostOrderMinIO is not constant-factor

competitive.

4.4. OptMinMem is not competitive

Minimizing the amount of I/Os in an out-of-core execution seems similar to mini-

mizing the peak memory when the memory is unbounded. Thus, in order to derive

a good solution for MinIO, it seems reasonable to use an optimal algorithm for

MinMem, such as the OptMinMem algorithm presented by Liu [19], to compute

a schedule σ and then to perform I/Os using the FiF policy. In the following, we

also use OptMinMem to denote this strategy for MinIO. We prove here that there

exist problem instances on which this strategy will also perform arbitrarily more

I/Os than the optimal traversal.

We first exhibit in Figure 1(b) a tree showing thatOptMinMem does not always

lead to minimum I/Os in our model. Let M = 6. The tree of Figure 1(b) can be

completed with 3 I/Os, by doing one chain after the other. This corresponds to a

peak memory of 9. But OptMinMem achieves a peak memory of 8 at the cost of

4 I/Os by executing the nodes in increasing order of the labels next to the nodes.

This example can be extended to show that OptMinMem may perform arbi-

trarily more I/Os than the optimal strategy. The extended tree is illustrated on

Figure 1(c). It contains two identical chains of length 2k+2, for a given parameter

k, and the memory size is set to 4k. The weights of the tasks in each chain (in order

from root to leaf) are defined by interleaving two sequences: {2k, 2k−1, . . . , k} and
{3k, 3k+1, . . . , 4k}. As above, it is possible to schedule this tree with only 2k I/Os,

but with a memory peak of 6k, by computing one entire chain, then the other. How-

ever, OptMinMem achieves a memory peak of 5k by alternating between chains,

each time processing the chain until reaching a node with a weight smaller than 2k,

as represented by the labels besides the nodes. OptMinMem performs k I/Os on

each of the k+1 smallest nodes, leading to a cost of k(k+1) I/Os. The competitive

ratio is then larger than k/2, and OptMinMem is not constant-factor competitive

for the MinIO problem.

4.5. Unknown complexity

As shown above, polynomial-time approaches based on similar problems fail to even

give a constant-competitive ratio. The main issue facing a polynomial approach is

the highly nonlocal aspect of the optimal solution. For example, since postorder

traversals are not optimal, it may be highly useful to stop at intermediate points of

a subtree’s execution in order to process entirely different subtrees.

We conjecture that this problem is NP-hard due to these difficult dependencies.

As mentioned above, if we require entire nodes to be written to disk, the problem has
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been shown to be NP-hard by reduction to Partition [13]. However, this proof highly

depends on indivisible nodes, rather than on the recursive structure of trees. Taking

advantage of the structure of our problem to give an NP-hardness result could lead

to an interesting understanding of optimal solutions, and possibly further heuristics.

We leave this as an open problem.

5. ILP formulation of the problem

We now present an Integer Linear Program solving the MinIO problem.

The linear program relies on the boolean variables δij to express the schedule

constraints. δij is equal to 1 if node i precedes node j in the corresponding schedule

and 0 otherwise, as used previously in [7] for instance. All the variables considered

in this linear program are nonnegative. The first constraints represent the antisym-

metric (Equation (2)), acyclic (Equation (3)) and reflexive (Equation (4)) properties

of the order, and the consistency with the precedence constraints (Equation (5)).

∀i, j ∈ G, δij + δji = 1 (2)

∀i, j, k ∈ G, δij + δjk + δki ≥ 1 (3)

∀i ∈ G, δii = 1 (4)

∀(i, j) ∈ E, δij = 1 (5)

∀i, j ∈ G, δij ∈ {0, 1} (6)

We introduce the variable αi ∈ [0, 1] which represents the fraction of node i

written to disk.

∀i ∈ G, 0 ≤ αi ≤ 1 (7)

The memory constraint is then equivalent to the following nonlinear inequality

(that will be linearized ultimately). Indeed, Equation (8) is the transposition of the

memory constraint defined as Equation (1) in Section 3.1, noting that δkiδip = 1 if

and only if node k is active during the execution of node i.

∀i ∈ G, max

wi,
∑

(j,i)∈E

wj

+
∑

(k,p)∈E,
k ̸=i,p ̸=i

δkiδip(1− αk)wk ≤M (8)

Finally, the objective function is to minimize the I/O cost:

Minimize
∑
i∈G

αiwi (9)

We have now formalized the MinIO problem described in Section 3.1 through

a quadratic program Pquad composed of Equations (2) to (8). It then remains to

linearize Equation (8).
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We define the variables xik and yik. They are constrained to satisfy the following:

if node k is active during the execution of node i, then xik is equal to 1 and yik is

not larger than αk; otherwise they are both null. Note that in the special case when

i is either k or its parent, both variables are forced to be 0.

∀(k, p) ∈ E, i /∈ {k, p}, xik = δki + δip − 1 (10)

∀(k, p) ∈ E, i /∈ {k, p}, 0 ≤ yik ≤ min (δki, δip, αk) (11)

∀(k, p) ∈ E, xpk = ypk = xkk = ykk = 0 (12)

∀i ∈ G, max

wi,
∑

(j,i)∈E

wj

+
∑

(k,p)∈E

xikwk −
∑

(k,p)∈E

yikwk ≤M (13)

The final integer linear program Plin is then composed of Equations (2) to (7)

and (10) to (13), with the objective function described by Equation (9). It requires

O(n2) variables and O(n3) constraints. We now prove that the linearization is cor-

rect: for any value X of the objective function, there exists a solution to Plin of

objective value X if and only if there exists a solution to Pquad of objective value

X.

First, as an intermediate step, we show that if there exists a valuation of variables

that satisfies Equations (2) to (7) and (10) to (12), then for (k, p) ∈ E and i ∈ G

with i /∈ {k, p}, we have xik − yik ≥ δkiδip(1−αk). We consider such a valuation of

the variables. By the precedence constraint (5), we have δkp = 1. Hence, thanks to

the antisymmetric (2) and acyclic (3) constraints, we deduce that we cannot have

both δki = 0 and δip = 0. Therefore thanks to Equation (10), we have xik = δkiδip.

From Equation (11), we deduce yik ≤ αk and yik = 0 if δkiδip = 0. Thus, we have

yik ≤ δkiδipαk and finally xik − yik ≥ δkiδip(1− αk).

Assume that Plin allows a feasible valuation of variables V. V respects the con-

ditions of the above paragraph, so that xik−yik ≥ δkiδip(1−αk). Therefore, the left

hand side of Equation (13) is not smaller than the left hand side of Equation (8).

As Equation (13) is satisfied as part of Plin , Equation (8) is satisfied. V (restricted

to the δ and α variables) is then a solution of Pquad .

On the contrary, let us assume now that Pquad allows a feasible valuation of

variables V. Then, we complete V by setting, for (k, p) ∈ E and i ∈ G with i /∈ {k, p},
xik = δkiδip, yik = δkiδipαk, and for i ∈ {k, p}, xik = yik = 0. Let V ′ be the

completed valuation. In V ′, Equation (13) is then equivalent to Equation (8), which

is thus also satisfied. We now show that V ′ satisfies Equations (10) and (11). Let

(k, p) ∈ E and i ∈ G with i /∈ {k, p}. By the precedence constraint (5), we have

δkp = 1. Hence, thanks to the antisymmetric (2) and acyclic (3) constraints, we

deduce that we cannot have both δki = 0 and δip = 0. Therefore, xik = δkiδip =

δki + δip − 1, so Equation (10) is satisfied. Then, yik = δkiδipαk is equal to 0 if δki
or δip is null, and to αk otherwise, so Equation (11) is satisfied. Therefore, V ′ is a

solution of Plin , achieving the same objective value as V in Pquad .
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6. Heuristic

We now move to the design of a novel heuristic, FullRecExpand, whose goal is to

improve the performance of OptMinMem for the MinIO problem. The main idea

of this heuristic is to run OptMinMem several times: when we detect that an I/O

is needed on some node, we force this I/O by transforming the tree. This way, the

following iterations of OptMinMem will benefit from the knowledge of this I/O.

We continue transforming the tree until no more I/Os are necessary.

In order to enforce I/Os, we use the technique of expanding a node (illustrated

on Figure 2). Under an I/O function τ , we define the expansion of a node i as

the substitution of this node with a chain of three nodes i1, i2, i3 of respective

weights wi, wi − τ(i), and wi. The expansion of a node actually mimics the action

of executing I/Os: the weight of the three tasks represent which amount of main

memory is occupied by this node 1) when it is first completed (wi1 = wi), 2)

when part of it is moved to disk (wi2 = wi − τ(i)), and 3) when the whole data is

transferred back to main memory (wi3 = wi).

This technique first allows us to prove Theorem 2, which states that given an

I/O function τ , we can find a schedule σ such that (σ, τ) is a valid traversal if there

exists one.

Proof of Theorem 2. Consider the tree G′ obtained from G by expanding all

the nodes for which τ is not null. Then, consider the schedule σ′ obtained by Opt-

MinMem on G′, and let σ be the corresponding schedule on G. Then, the memory

used by σ on G during the execution of a node i is the same as the one used by

σ′ on G′ during the execution of the same node i, or of i1 if i is expanded. Then,

as OptMinMem achieves the optimal memory peak on G′, we know that σ uses

as little main memory as possible under the I/O function τ . Then, (σ, τ) is a valid

traversal of G.

The heuristic FullRecExpand is described in Algorithm 2. The main idea of

the heuristic is to expand nodes in order to obtain a tree that can be scheduled

without any I/O, which is equivalent to building an I/O function.

First, the heuristic recursively calls itself on the subtrees rooted at the children

of the root, so that each subtree can be scheduled without any I/O (but using

expansions). Then, the algorithm computes OptMinMem on this new tree, and

if I/Os are necessary, it determines which node should be expanded next. This

selection is the only part where FullRecExpand can deviate from an optimal

strategy. Our choice is to select a node on which the FiF policy would perform

I/Os; if there are several such nodes, we choose the one whose parent is scheduled

wi 7→ wi wi − τ(i) wi

Figure 2. Example of node expansion.



Minimizing I/Os in Out-of-Core Task Tree Scheduling 19

the latest. After the expansion, the algorithm recomputes OptMinMem on the

modified tree, and proceeds until no more I/Os are necessary.

At the end of the computation, the returned schedule is obtained by running

OptMinMem on the final tree computed by FullRecExpand, and by transposing

it on the original tree. The I/O performance of this schedule is then equal to the

sum of the expansions.

FullRecExpand is only a heuristic: it may give suboptimal results but also

may achieve better performance than OptMinMem, as illustrated in several exam-

ples in Appendix B.

Unfortunately, the complexity of FullRecExpand is not polynomial, as the

number of iterations of the while loop at Line 4 cannot be bounded by the number of

nodes, but may depend also on their weights. We therefore propose a simpler variant,

named RecExpand, where the while loop at Line 4 is exited after 2 iterations. In

this variant, the resulting tree G might need I/Os to be executed. The final schedule

is computed as in FullRecExpand, by running OptMinMem on this tree G. We

show in the next section that this variant gives results which are very similar to the

original version.

7. Numerical results

In this section, we compare the performance of the two existing strategies,OptMin-

Mem and PostOrderMinIO, and the two proposed heuristics, FullRecExpand

and RecExpand. All algorithms are compared through simulations on two datasets

described below. Because of its high computational complexity, FullRecExpand

is only tested on the first smaller dataset.

Algorithm 2: FullRecExpand (G, r,M)

Input: tree G, root of exploration r

Output: Return a tree Gr which can be executed without any I/O,

obtained from G by expanding several nodes

1 for each child i of r do

2 Gi ← FullRecExpand(G, i,M)

3 Gr ← tree formed by the root r and the Gi subtrees

4 while OptMinMem(Gr, r) needs more than a memory M do

5 τ ← I/O function obtained from OptMinMem(Gr, r) using the FiF

policy

6 i← node for which τ(i) > 0 whose parent is scheduled the latest in

OptMinMem(Gr, r)

7 modify Gr by expanding node i according to τ(i)

8 return Gr
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7.1. Datasets

The first dataset, named Synth, is composed of 330 instances of synthetic binary

trees of 3000 nodes, generated uniformly at random among all binary trees. As

we considered small trees, we used half-Catalan numbers in order to draw a tree,

similarly to the method described at the beginning of [21]. The memory weight of

each task is uniformly drawn from [1; 100].

The second dataset, named SmallSynth, is composed of 30,000 synthetic bi-

nary trees of 30 nodes, generated with the same method as the trees of Synth.

This dataset contains trees small enough to allow the determination of the optimal

solution by solving the ILP directly.

The last dataset, named Trees, is composed of 329 elimination trees of actual

sparse matrices from the University of Florida Sparse Matrix Collectiona (see [13]

for more details on elimination trees and the data set). Our dataset corresponds to

the 329 smallest of the 640 trees presented in [13], with trees ranging from 2000 to

40000 nodes.

For each tree of each dataset, we first computed the minimal memory size neces-

sary to process the tree nodes: LB = maxi w̄i. We also computed the minimal peak

memory for an incore execution Peak incore (using OptMinMem). We eliminated

all trees from the Trees dataset where Peak incore = LB (i.e., trees for which out-

of-core execution is useless whatever the memory bound M), leaving us with 133

remaining trees in this dataset. In all other cases, note that the possible range for

the memory bound M such that some I/Os are necessary is [LB ,Peak incore − 1].

The main memory bound we use in our simulation is the middle of this inter-

val Mmid = (LB + Peak incore − 1)/2. For a more complete analysis, we also per-

form the same simulations with the two extreme memory bounds Mmin = LB and

Mmax = Peak incore − 1.

7.2. Results

Our objective in this study is to minimize the total amount of I/Os needed to

process the tree. In order to summarize and compare the performance of the different

strategies we choose here to consider the number of I/Os and the memory bound

M : performing 10 I/Os when the optimal only needs 1 does not have the same

significance if the main memory consists of M = 10 slots vs. M = 1000 slots.

Therefore, in this section, if a schedule performs k I/Os, we define its relative I/O

volume as (M + k)/M . Then, a schedule with no I/O operations has a relative I/O

volume of 1 while a schedule needing M I/Os has a relative I/O volume of 2.

In order to compare the performance of these algorithms, we use a generic tool

called a performance profile [9]. For a given dataset, we compute the relative I/O

volume of each algorithm on each tree and for each memory limit. Then, rather

than computing an average across all the cases, a performance profile reports a

ahttp://www.cise.ufl.edu/research/sparse/matrices/
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cumulative distribution function. We define the deviation of a heuristic on a given

instance as the relative I/O volume of this heuristic divided by the best relative I/O

volume achieved for this instance. We then use the deviation to the best heuristic

for the datasets Synth and Trees, and the deviation to the optimal solution for

the dataset SmallSynth, which is computed with the ILP. Given a heuristic and a

deviation τ expressed in percentage, we compute the fraction of test cases for which

the heuristic has a deviation not larger than τ , and plot these results. Therefore, the

higher the curve, the better the method: for instance, for a deviation τ = 5%, the

performance profile shows how often a given method lies within 5% of the smallest

relative I/O volume obtained.
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Figure 3. Performance profiles of FullRecExpand, RecExpand, OptMinMem and PostOrder-
MinIO on the Synth dataset with the Mmid memory bound (right: same performance profiles

without PostOrderMinIO).
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Figure 4. Performance profiles for the SmallSynth dataset with the Mmid memory bound (right:
same performance profiles without PostOrderMinIO; note that we zoom in on the top part of
the y-axis to better display instances where the heuristics are non-optimal).

The left plot of Figure 3 presents the performance profile of the four heuristics

for the complete dataset Synth using the memory bound Mmid . The first result

is the poor performance of PostOrderMinIO in this dataset: it almost always
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has a deviation of at least 50%, and even of 100% in 75% of the cases. Thus, the

right plot of the figure presents the performance profiles of exclusively OptMin-

Mem, RecExpand, and FullRecExpand. RecExpand performs far better than

OptMinMem: it produces strictly fewer I/Os than OptMinMem on 90% of the

instances, and on half of them, OptMinMem has a deviation of at least 4%. We can

also note that FullRecExpand performs only slightly better than RecExpand,

but both heuristics are far ahead of OptMinMem, so the gain in the complexity of

the algorithm is only balanced by a small loss of performance. For instance, Rec-

Expand has a deviation larger than 2% over FullRecExpand on only 3% of the

instances.

We present the performance profiles for the dataset SmallSynth and the mem-

ory bound Mmid on Figure 4. In this figure, the deviation is computed using the

optimal solution obtained via the ILP, which allows us to analyze the quality of the

solutions returned by FullRecExpand and RecExpand. As the left graph shows,

the heuristics observe the same hierarchy as in the Synth dataset with larger trees,

but as one could expect, the differences of performance are less significant: PostOr-

derMinIO has a deviation of less than 10% over the optimal solution in 75% of the

instances. OptMinMem is non-optimal in 3% of the instances. FullRecExpand

and RecExpand achieve better performance as they are non-optimal in respec-

tively 0.72% and 0.74% on the instances. The performance profile on the subset of

trees where at least one of these heuristics is non-optimal is presented on the right

graph.
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Figure 5. Performance profiles for the complete Trees dataset with the Mmid memory bound (left)
and zoom on the top part corresponding to instances where the heuristic results differ (right).

The left plot of Figure 5 presents the performance profiles of the three heuris-

tics PostOrderMinIO, RecExpand and OptMinMem for the complete dataset

Trees using the memory bound Mmid . The first remark is that the three heuristics

are equal on more than 90% of the 329 instances. Therefore, we now focus on the

right plot, which presents the top part of the same performance profile, correspond-

ing to the 25 cases where the heuristics do not all give equal performance. We can see

that the hierarchy is the same as in the previous dataset (RecExpand is never out-



Minimizing I/Os in Out-of-Core Task Tree Scheduling 23

performed, and OptMinMem performs better than PostOrderMinIO) but with

smaller discrepancies between the heuristics. We observe a deviation larger than 5%

on only 3% of the instances for PostOrderMinIO and 1% of the instances for

OptMinMem.
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Figure 6. Performance profiles of FullRecExpand, RecExpand, OptMinMem and PostOrder-

MinIO on the Synth dataset with the Mmin memory bound (right: same performance profiles
without PostOrderMinIO).
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Figure 7. Performance profiles for the SmallSynth dataset with the Mmin memory bound (right:

same performance profiles without PostOrderMinIO, zoom on the top part corresponding to

instances where the heuristic results differ).

We now consider the memory boundMmin = LB , which represents the minimum

memory bound for which it is possible to compute a given tree. We plot the corre-

sponding performance profiles for the Synth dataset in Figure 6, the SmallSynth

dataset in Figure 7, and the Trees dataset in Figure 8. The main conclusion that

can be made in comparison to the previous results is that the difference between

OptMinMem and RecExpand is significantly larger with this memory bound. In-

deed, in the Synth dataset, there is a deviation of 10% for OptMinMem in 90%

of the cases whereas such a deviation was reached in only 15% of the cases previ-

ously. This can be explained by the fact that the memory bound considered here is
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Figure 8. Performance profiles for the complete Trees dataset with the Mmin memory bound (left)

and zoom on the top part corresponding to instances where the heuristic results differ (right).

further from the memory required by MinMem. On the other hand, the difference

between PostOrderMinIO and RecExpand is smaller in this case: there is a

deviation of 100% for PostOrderMinIO in half of the cases whereas we had this

property in 75% of the cases with a higher memory bound. The same tendency can

be observed for the Trees dataset in Figure 8, even if it is less significant. For

the SmallSynth dataset, the proportion of non-optimal cases is around 3.5 times

larger than with the previous memory bound for the three heuristics FullRecEx-

pand, RecExpand, and MinMem, so they are also further from the optimal, but

the modification of the memory bound did not significantly modify the behavior of

PostOrderMinIO.

For the sake of completeness, we have also considered the memory bound

Mmax = Peak incore − 1, which is the opposite case: the largest memory bound

for which I/Os are required in order to compute a tree. With this memory bound,

OptMinMem, RecExpand, and FullRecExpand are always equal (and even op-

timal for the SmallSynth dataset), and only PostOrderMinIO achieves worse

performance. This can be explained by the fact that Mmax is right below the mem-

ory required by OptMinMem to compute a tree without I/Os. Therefore, we can

argue that it is closer to the optimal algorithm and FullRecExpand does not

improve the few I/Os performed by MinMem. Nevertheless, the deviation of Pos-

tOrderMinIO is smaller than with the other memory bounds.

8. Conclusion

In this paper, we revisited the problem of minimizing I/O operations in the out-of-

core execution of task trees. We proved that existing solutions allow us to optimally

solve the problem when all output data have identical size, but that, in the general

case, none of them has a constant competitive factor compared to the optimal solu-

tion. In addition to an ILP formulation of the problem, which allows us to compute

an optimal solution for small trees, we proposed a novel heuristic solution. Through

simulations, we show that this new heuristic is very efficient in practice, achieves
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better performance than existing solutions, and achieves near optimal performance

on small trees. Despite our efforts, the complexity of the problem remains open. De-

termining this complexity would definitely be a major step, although our findings

already lay the basis for more advanced studies. These include moving to parallel

out-of-core execution (as was already done for parallel incore execution [10]) as well

as designing competitive algorithms for the sequential problem.

Acknowledgment

This material is based upon research supported by the SOLHAR project operated

by the French National Research Agency (ANR) and the Chateaubriand Fellowship

of the Office for Science and Technology of the Embassy of France in the United

States.

Bibliography

[1] E. Agullo, On the out-of-core factorization of large sparse matrices, PhD thesis, École
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task-based middleware for data-intensive scientific computing, Handbook on Data
Centers, eds. S. U. Khan and A. Y. Zomaya (Springer, New York, NY, 2015), pp.
647–667.

[25] R. Sethi and J. Ullman, The generation of optimal code for arithmetic expressions,
J. ACM 17(4) (1970) 715–728.

[26] S. Toledo, A survey of out-of-core algorithms in numerical linear algebra, External
Memory Algorithms, Proceedings of a DIMACS Workshop, New Brunswick, New Jer-
sey, USA, May 20-22, 1998 , (American Mathematical Society, 1998), pp. 161–180.

Appendix A. Omitted proof from Section 4.2

Proof of Theorem 9. We proceed by induction on the number of nodes of T .

The base case consists of a tree T that can be scheduled without any I/O. For

contradiction, assume that W (T ) > 0. Then there exists a node v of T such that

w(v) > 0 and a child vi of v such that c(vi) = 1. Then, by definition of c(vi) and of

l(v), l(v) > M . However, according to Theorem 6, “any schedule uses at least l(v)

slots to compute T (v)”, so T (v), and thus T , cannot be scheduled without I/Os.

Hence, a contradiction; thus W (T ) = 0.

Consider a tree T that cannot be scheduled without I/Os, and a schedule P on

T that minimizes the total volume of I/Os.
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First, by Theorem 5, there exists a node v such that l(v) > M . Otherwise,

Postorder would be able to schedule T without I/Os, which would violate our

assumption on T . Then, the label of the root r of T also satisfies l(r) > M .

Let s be the first node to be stored under P . Then, the subtree T (s) has been

scheduled without I/Os so, by Theorem 6, we have l(s) ≤ M and, hence, no node

of T (s) has a label larger than M . Let µ be the closest ancestor of s to have a label

larger than M . µ exists as l(r) > M and l(s) ≤ M . Let µ1, . . . , µk be the children

of µ, ordered such that l(µi) ≥ l(µi+1). Let j be such that µj is either s or one

of its ancestors. Let t = min{i ∈ [1; k] | l(µi) + i − 1 > M} (t exists because, by

definition, l(µ) > M). See Figure 9 for an illustration of the tree.

s

r

µ
T

T (s)

µ1 µkµj

Figure 9. Scheme of the composition of the tree T .

Let T ′ be the tree obtained from T by replacing s by a leaf, therefore replacing

the subtree T (s) by a single node s. As T (s) cannot be empty, T ′ contains fewer

nodes than T . Consider a schedule P ′ on T ′ that executes the same operations as

P on T and in the same order, except for the ones concerning T (s).

We use the following notation: as above, l,m, c, w are defined on nodes of the

tree T , whereas l′,m′, c′, w′ refer to the same values on the tree T ′. The nodes in

T ′ share the same names as their equivalents in T .

We define, as in the proof of Theorem 8, an ordering µ′
1, . . . , µ

′
k on the children

of µ, l′(µ′
i) ≥ l′(µ′

i+1). Furthermore, we assume that this order is consistent with

the original one, which means the following. Let j′ be such that µj = µ′
j′ . Note that

j′ ≥ j. For i ∈ [j + 1; j′], we have µi = µ′
i−1; at j, µj = µ′

j′ ; for i /∈ [j; j′], we have

µi = µ′
i. In particular, we have µj′ = µ′

j′−1 if j′ > j and µj′ = µ′
j′ if j

′ = j.

Note that, except s and its ancestors, every node v of T ′ satisfies l(v) = l′(v)

and w(v) = w′(v). Our objective is to prove that W (T ′) ≥W (T )−1. We first prove

that l′(µ) ≥M . We split into cases based on the value of t defined above:
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(1) t < j. The labels of µ1, . . . , µt are left unchanged so l′(µ) ≥ l′(µt)+ t− 1 >

M .

(2) t = j. By definition of µ, we have l(µj) ≤M , so we cannot have t = j = 1.

The labels of µ1, . . . , µt−1 are left unchanged, and l(µt−1) ≥ l(µt), so

l′(µ) ≥ l′(µt−1) + t− 2 ≥ l(µt) + t− 1− 1 > M − 1.

(3) t > j. Among µ1, . . . , µt, the only label that changed is µj . Therefore there

are t− 2 nodes that have a label l′ larger than that of µt. Hence,

l′(µ) ≥ l′(µt) + t− 2 > M − 1.

Now, we prove that w′(µ) ≥ w(µ)− 1, by showing that there exists at most one

index i such that c(µi) = 1 and c′(µi) = 0. Let I be the set of such indices. Note

that no index strictly smaller than j can be in I as the relevant labels are identical

in both trees.

The following studies how the labels c and c′ can differ. We consider two cases:

(1) c(µj) = 0. Thus j /∈ I. Let a = min{i ∈ [j + 1, k] | c(µi) = 1}. There are

several cases; in each we show that I contains at most one element.

(a) First, a does not exist. Then I is empty.

(b) Assume a > j′. No index in [1; j] can be in I, and thus no index in

[1; j′]. In particular, c(vl) = 0 for l ∈ [j; j′] by definition of a. Because

node µj appears right after node µj′ in T ′, then m′(µj) = m′(µj′)+ (1−
c(µj′)) = (m(µj′)− (1−c(µj)))+(1−c(µj′)) = m(µj′)+c(µj)−c(µj′) =

m(µj′). Therefore, we have m′(µj) = m(µj′). As l′(µj) ≤ l′(µj′), we get

m′(µj) + l′(µj) ≤ m(µj′) + l′(µj′). Then, because l′(µj′) = l(µj′), and

by the definition of c, we conclude that c′(µj) ≤ c(µj′).

By definition, j′ ≥ j. Because a > j′, if j′ > j, then c(µj′) = 0 by

definition of a. Otherwise j′ = j and we use the assumption c(µj) = 0 to

conclude that in all cases c(µj′) = 0. Combined with c′(µj) ≤ c(µj′) this

gives us c′(µj) = 0.

Recall that the labels in [1; j − 1] are left unchanged, so c(µi) = c′(µi)

for i ∈ [1; j − 1]. From what precedes, c′(µj) = c(µj) = 0. By definition

of a and because j′ < a, c(µi) = 0 for i ∈ [j + 1; j′]. Thus, all these

nodes have the same label l in T ′ and T , and all of them have m′(µi) ≤
m(µi) (by definition of m: they are preceded by the same nodes so their

sums have the same terms, except node µj). Therefore, for all these

nodes c′(µi) = 0 and thus c′(µi) = c(µi). Hence, m(µj′+1) = m′(µj′+1).

Because l(µj′+1) = l′(µj′+1) we conclude that c(µj′+1) = c′(µj′+1). We

then proceed by a simple induction on the nodes with a larger index to

prove that I is empty.

(c) Now, assume a ≤ j′. Once again, because the labels in [1; j − 1] are left

unchanged, and because c(µj) = 0, no index in [1; j] can be in I, and

thus no index in [1; a− 1] can be in I.
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We have two cases to consider, depending on whether a is equal to 2

(recall that by definition a ≥ j + 1 ≥ 2).

(i) a = 2. Then j = 1. Therefore, in T ′, µa is the first child and, by

definition of c, c′(µa) = 0.

(ii) a > 2. By definition of a, c(µa) = 1. Then, either a = j + 1 and then

a− 1 = j and c(µa−1) = c(µj) = 0, or a > j +1 and then c(µa−1) = 0

by definition of a. In all cases, c(µa−1) = 0. Therefore, l(µa−1) +

m(µa−1) ≤ M . Because l(µa−1) ≥ l(µa) and m(µa) = m(µa−1) + 1,

l(µa) +m(µa) ≤M + 1. Because c(µa) = 1 by definition of a, l(µa) =

m(µa) ≤M + 1.

Recall (for the third time) that the labels in [1; j−1] are left unchanged,
so c(µi) = c′(µi) for i ∈ [1; j−1]. Moreover, by definition of a, c(µi) = 0

for all i ∈ [j + 1; a − 1]. Therefore, because c(µj) = 0, for all i ∈
[j + 1; a − 1] m′(µi) = m(µi) − 1 and thus c′(µi) = c(µi) = 0. Also,

m′(µa) = m(µa)− 1. Then l′(µa) +m′(µa) = l(µa) +m(µa)− 1 = M

from what precedes. Therefore, c′(µa) = 0.

Because c′(µa) = 0, m′(µa+1) = m(µa+1). Then, by an immediate in-

duction, m′(µi) = m(µi) for i ∈ [a + 1; j′]. Therefore [a + 1; j′] ∩ I = ∅.
In order to prove that [j′ + 1; k] ∩ I = ∅, we have two cases to consider:

(i) c′(µj) = 1. Here, we have m′(µj′+1) = m(µj′+1). Indeed, the only

nodes with an index not larger than j′ that have different values for

c and c′ are µj and a. Therefore c′(µj′+1) = c(µj′+1). We can then

proceed by induction to show that no index larger than j′ belongs to

I.

(ii) c′(µj) = 0. Here, we have m′(µj′+1) = m(µj′+1) + 1, and therefore

c′(µj′+1) ≥ c(µj′+1). We can then proceed by induction to show that

for any index i larger than j′ we have m′(µi) ≥ m(µi) and c′(µi) ≥
c(µi).

Therefore, we have I = {a}.

(2) c(µj) = 1. Recall that the labels in [1; j−1] are left unchanged, so no index

in [1; j−1] can be in I. We now want to show that no index in [j+1; k] can

be in I. By definition of m and since c(µj) = 1, we have m(µj−1) = m(µj).

Then for all i ∈ [j+1; j′], we have l(µi) = l′(µi), and we get by an immediate

induction that for all i ∈ [j+1; j′], we have c(µi) = c′(µi). In order to prove

the result on the interval [j′ + 1; k], we have two cases to consider:

(a) c′(µj) = 1. Here, we have m′(µj′+1) = m(µj′+1), and therefore

c′(µj′+1) = c(µj′+1). We can then proceed by induction to show that

no index larger than j′ belongs to I.

(b) c′(µj) = 0. Here, we have m′(µj′+1) = m(µj′+1) + 1, and therefore

c′(µj′+1) ≥ c(µj′+1). We can then proceed by induction to show that for

any index i larger than j′ we have m′(µi) ≥ m(µi) and c′(µi) ≥ c(µi).
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Therefore, I ⊆ {j}.

Putting things together, no node of T (s) has a label l larger than M , so none

has a positive label w. Between µ and s, no node had a label l larger than M .

Therefore, except µ and its ancestors, all the nodes satisfy w′(v) = w(v).

As l′(µ) ≥M , all the ancestors v of µ satisfy l′(v) ≥M , so by Theorem 8, they

also satisfy w′(v) = w(v). Then, as w′(µ) ∈ {w(µ) − 1, w(µ)}, we have W (T ′) ≥
W (T )− 1.

By the induction hypothesis, P ′ executes at least W (T ′) = W (T ) − 1 I/Os, so

P executes at least W (T ) I/Os, which proves the lemma.

Appendix B. Illustration of FullRecExpand on some examples

The left-hand side of Figure 10 provides an example where FullRecExpand per-

forms better than OptMinMem. OptMinMem computes the left branch first until

node a, then the right branch until node b, before completing the left branch. The

memory peak reached is 12, but this schedule incurs 4 I/Os with a memory limit of

10: 2 on node a and 2 on node b. On this example, FullRecExpand expands node

b as specified on the middle diagram. With this expansion, OptMinMem schedules

the right branch until b2 first, then the whole left branch, using one more I/O on

b2. This node is expanded a second time on the right diagram, without changing

the schedule obtained by OptMinMem, yielding to 3 I/Os on the original tree, all

on b.

Figure 11 provides an example where FullRecExpand does not improve Opt-

MinMem. On this instance, OptMinMem performs 4 I/Os, 2 on node a then 2

on node b, where PostOrderMinIO executes first the left subtree and consumes

only 3 I/Os on node c. This instance shows an example where no optimal solution

performs an I/O on a node where OptMinMem performs an I/O. So the strategy of

FullRecExpand cannot be optimal, even if we used a different priority at Line 6.
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Figure 10. Example where FullRecExpand is optimal whereas OptMinMem and PostOrder-

MinIO are not. Let M = 10. The left tree is the original one, and the others are obtained during
the execution of FullRecExpand after the expansion of b.
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Figure 11. Example where FullRecExpand and OptMinMem are not optimal whereas PostOr-
derMinIO is. M = 7 in this example.


