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Abstract

The petrologic and geochemical diversity of meteorites is a function of the bulk composition of their parent bodies,
but also the result of how and when internal differentiation took place. Here we focus on this second aspect considering
the two principal parameters involved: size and accretion time of the body. We discuss the interplay of the various time
scales related to heating, cooling and drainage of silicate liquids. Based on two phase flow modelling in 1-D spherical
geometry, we show that drainage time is proportional to two independent parameters: µm/R

2, the ratio of the matrix
viscosity to the square of the body radius and µf/a

2, the ratio of the liquid viscosity to the square of the matrix grain size.
We review the dependence of these properties on temperature, thermal history and degree of melting, demonstrating
that they vary by several orders of magnitude during thermal evolution. These variations call into question the results
of two phase flow modelling of small body differentiation that assume constant properties. For example, the idea that
liquid migration was efficient enough to remove 26Al heat sources from the interior of bodies and dampen their melting
(e.g. Moskovitz and Gaidos, 2011; Neumann et al., 2012) relies on percolation rates of silicate liquids overestimated
by six to eight orders of magnitude. In bodies accreted during the first few million years of solar-system history, we
conclude that drainage cannot prevent the occurrence of a global magma ocean. These conditions seem ideal to explain
the generation of the parent-bodies of iron meteorites. A map of the different evolutionary scenarios of small bodies as
a function of size and accretion time is proposed.

Keywords: Asteroid, differentiation, thermal history, melt migration

1. Introduction

The meteoritic record constitutes a well-preserved se-
lection of samples that allow us to shed light on the dif-
ferentiation processes that occurred on small rocky bod-
ies that accreted early in solar-system history. From the
suite of specimens available, there is an obvious link be-
tween the overall degree of melting of the parent bodies
and the degree of differentiation. Unlike larger planets,
the main heat source of these small bodies is the energy
produced by the decay of short-lived radionuclides such as
26Al: the earlier a body accreted, the greater the heating
potential and melting degree. The parent bodies of the
iron meteorites accreted very early (< 0.3 Myr after CAIs
—CAI stands for Calcium Aluminum Inclusions, the most
refractory objects whose condensation defines the age of
the solar system— Kruijer et al., 2014), with the poten-
tial to produce large-scale magma oceans that ensured an
efficient metal-silicate differentiation through an iron-rain
scenario (e.g. Rubie et al., 2003). Conversely, chondritic
parent bodies accreted much later (> 2 Myr after CAIs
Sugiura and Fujiya, 2014) such that peak temperatures
were not high enough to reach the iron-sulfur or silicate
solidi, preventing any differentiation. In between these
two differentiation endmembers are the primitive achon-
drites that accreted early enough ≈1.3 Myr after CAIs to

be able to cross the silicate solidus but late enough so that
their degrees of partial melting did not exceed 20 vol%
(Sugiura and Fujiya, 2014). Under these conditions, these
samples experienced partial differentiation, with the loss
of basaltic and sulfur-rich metallic melts.

At first sight, a difference in accretion dates thus pro-
vides a satisfactory explanation for the different degrees
of differentiation found in the meteoritic record. However,
body size will play an important role too. Indeed, for
the same accretion time, a smaller body will dissipate its
heat with greater efficiency than a larger one, thus yield-
ing a different heating potential and a lower peak tem-
perature for the former. Attempts to take this effect into
account are scarce and restrained to a handful of samples
for which precise anchor-points in the cooling history have
been determined (e.g. Breton et al., 2015 for Tafassas-
set and Neumann et al., 2018 for the acapulcoite-lodranite
parent body). The present paper aims at describing the
general pattern of evolution and differentiation that allows
the fate of a parent body to be predicted as a function of
its size and accretion time.

An early attempt in this direction was made by Moskovitz
and Gaidos (2011) who used simple considerations of the
time scales involved to study the consequences of silicate
melt migration on the thermal evolution of small bodies.
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In particular, they popularised the idea that low viscos-
ity melt (< 1 Pas) can transport 26Al heat sources to the
surface on time scales shorter than their mean half-live of
radioactive decay. They stressed the role of melt viscos-
ity in controlling the degree of melting, mentioning that,
above 1 Pas, melt content in bodies accreted before 1.5 Myr
should exceed the 50% threshold capable of triggering the
generation of a magma ocean — above about 50% liquid,
the rigid silicate framework dissociates and the matrix be-
comes a dense suspension of crystals in a liquid; the vis-
cosity of the solid-liquid mixture changes from that of a
solid to that of a liquid (e.g. Solomatov, 2015). Using the
more complex approach offered by two-phase flow numer-
ical modelling, Lichtenberg et al. (2019) found a comple-
mentary result. They emphasised the role of grain size,
indicating inefficient liquid migration with a matrix grain
size below one millimeter (conclusion drawn making the
assumption of a melt viscosity of the order of 1 Pas). In
fact, the percolation rate is partially controlled by the ratio
µf/a

2 where µf is the melt viscosity and a is the grain size,
such that efficient drainage is conditioned to µf/a

2 > 106,
another way of expressing the result found by Lichtenberg
et al. (2019). For their diagram on small body evolution,
Moskovitz and Gaidos (2011) adopted 1 Pas for the melt
viscosity and an ad hoc relationship between grain size
and partial melting degree that inevitably boosts the melt
migration: they considered an initial grain size of 100µm
with an additional 90µm per percent of partial melting,
such that the grain size reaches the millimeter scale at 10%
of partial melting. In this respect it is of note that the vis-
cosity of a melt resulting from 10% of partial melting of an
H-chondrite material is in fact close to 1000 Pas (Dingwell
et al., 2004) and decreases to 1 Pas for 50% of partial melt-
ing, the tipping point toward the magma ocean. In this
respect, we note that the grain size in natural samples such
as lodranites for which the degree of melting reached 20%
is around 500µm (Keil and McCoy, 2018). While the ap-
proach developed by Moskovitz and Gaidos (2011) remains
not only correct but also elegant, their evolutionary dia-
gram should be reconsidered in the light of more recent
knowledge on material properties such as grain growth
laws and compositional and temperature effects on melt
viscosity.

Lichtenberg et al. (2019) have also sketched the possi-
ble evolution of small bodies as a function of two param-
eters: the accretion time, and not their size but a dimen-
sionless number, Rseg, which depends on almost all the
parameters that control the physics of the differentiation
except the body radius (fixed to 60 km in their numerical
models). Rseg is a function of the ratio of two time scales,
one related to the rate of heating by short-lived elements
and the other corresponding to melt migration, or more
precisely the Darcy flow rate of silicate liquid through the
porous matrix that constitutes the unmelted residual rock.
At least two other time scales, both explicitly dependent
on the radius, are involved in this problem: the first is
the time during which the molten silicate persists, which

is controlled by the cooling rate of the body, and the sec-
ond is related to compaction of the matrix. Generally,
the latter is considered to be non-limiting and therefore
neglected, as in the model developed by Neumann et al.
(2012), because it is assumed to be too fast compared to
the Darcy flow, except for very small bodies as we shall see.
The two time scales governing fluid migration, Darcy-flow
and compaction, are affected, not only by temperature,
but also by the thermal history itself via the size of the
matrix grains whose growth over time is thermally acti-
vated. Therefore, although the Darcy time scale is not
explicitly expressed in terms of the size of the body, it also
depends on it.

To describe the broad possible differentiation pathways
for small bodies as a function of their time of accretion
and size, we have chosen not to resort to a complete mod-
elling of the thermochemical evolution as in Mizzon (2015)
or Lichtenberg et al. (2019), but rather to follow the ap-
proach of Moskovitz and Gaidos (2011) and to treat the
thermal aspect and the migration of the fluids separately
in order to extract the characteristic time scales from sim-
ple modeling.

2. Thermal time scales

Various time scales can be defined to characterize the
thermal evolution of small bodies, but some are more rele-
vant than others for the present problem. Basically, three
of them are of paramount importance: i) related to the
heating rate, ii) related to the cooling rate, and iii) related
to the life time of the heating sources, i.e. the short-lived
radionuclides.

Lichtenberg et al. (2019) introduced the heating time
scale as the ratio ρCp∆T/Q, where ρ is the density, Cp the
heat capacity, Q the decay power per unit volume deliv-
ered by the short lived elements like 26Al and 60Fe which
thus depends on the body accretion time (All notations
and symbols used are listed in Table A.1). ∆T is the tem-
perature difference between the solidus and the accretion
temperature, so that this time scale represents the time
necessary to reach the solidus. This does not depend on
the size of the body, despite the fact that a cooling rate
that varies as the inverse square of the body radius is also
involved. At equilibrium, the temperature of a body of
radius R heated by constant internal sources Q reaches a
maximum at its centre: QR2/6kT , with kT the thermal
conductivity. For instance, at the time of the formation
of the solar system, Q is of the order of 6 × 10−4W/m3

for H-type chondritic material, which implies a maximum
temperature of 800 K and 8 K for bodies of 10 km and 1 km
in diameter, respectively. This explains, for example, why
dust, too small to retain heat, cannot be heated by the
short-lived elements, and also why the elements 235,238U
and 40K can heat planets, but not small bodies. Of course,
these latter elements also heat planets because of their long
lifespan. The life time of heat sources thus also plays a
critical role.
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However, rather than using these three time scales (heat-
ing time, cooling time and radionuclide lifetime), we prefer
to consider two time scales deduced from small body ther-
mal evolution: a) the time necessary to reach the max-
imum melting degree from the onset of melting, and b)
the time span of the existence of melt (i.e. the time in-
terval spent above the solidus). Both of these time-spans
are affected by melt migration resulting in the fact that:
1) they cannot be determined analytically and 2) an ap-
proach based on dimensionless numbers (e.g. Lichtenberg
et al. (2019)) cannot be used. Despite these limitations,
relevant time-scales may be deduced from numerical sim-
ulations, and it is that approach that is taken here.

2.1. Thermal evolution modelling
The time necessary to reach the maximum melting de-

gree from the beginning of melting and the time span of
melt are derived from thermal evolutions of small bod-
ies calculated from a model of pure conduction taking into
account a realistic thermodynamic description of the melt-
ing of chondritic material. The model, previously used in a
study devoted to the determination of the characteristics of
the H chondrite parent body (see Monnereau et al., 2013,
for numerical details), is a classical 1D spherical model
based on the resolution of the conservation of heat. The
latter can be written as:

∑
i=s,m

ρi
∂Hi

∂t
=

 ∑
i=s,m

ρi
dHi

dT

 ∂T
∂t

=∇∇∇·(kT∇∇∇T )+ρQ, (1)

with H the enthalpy, kT the thermal conductivity and
Q the heat production by radioactive decay, subscipts s
and m referring to the silicate and metallic components
of the material that has been supposed to have a H chon-
drite composition (Wasson and Kallemeyn, 1988). The
enthalpy of the silicate component is computed using a
1 bar equilibrium melting simulation along the iron-wüstite
(IW) buffer on the “Rhyolite-Melts” software (Asimow and
Ghiorso, 1998; Ghiorso and Sack, 1995; Gualda et al., 2012;
Ghiorso and Gualda, 2015). For small bodies with a radius
less than a thousand kilometers, the energy is essentially
provided by the decay of short-lived radionuclides such
as 26Al. 60Fe is another short-lived radionuclide, with
a comparable decay energy, but a half-life almost four
times longer (Castillo-Rogez et al., 2009). Quitté et al.
(2010) showed that there were probably important hetero-
geneities of iron isotopes in the early solar nebula. The
initial 60Fe/56Fe ratio of the reservoir from which angrites
and eucrites originated could be as low as ∼ 10−8 (Quitté
et al., 2011; Tang and Dauphas, 2012). For some chon-
drites, it could be in the range of 4−7×10−7 (e.g. Mishra
and Chaussidon, 2014), which remains two orders of mag-
nitude lower than the initial 26Al/27Al ratio, so that we
chose to neglect this radiogenic heat source. The heating
power supplied by 26Al content is:

Q(t) = XAlQ0 exp [−λ26Al(t+ tacc)] , (2)

where Q0 is the heating rate per mass unit of pure alu-
minium at CAI condensation, tacc the accretion time, λ26Al

the 26Al decay constant and XAl the aluminium mass frac-
tion of the material.

2.2. Melting time scale and melt lifetime

The two thermal time scales relevant to melt migration,
i.e. the melting rate time scale and the melt persistence
time scale, are presented on Figure 1 as a function of the
radius and accretion time of the body.

The first of these time-scales is related to heating power.
Rather than considering the time required to reach the
onset of silicate melting as in Lichtenberg et al. (2019),
the choice is made here to focus on the time span be-
tween the onset of melting and the maximum degree of
melting. This choice is the result of the fact that we con-
centrate on the comparison of time intervals during which
melt is present. From a practical point of view, given that
the temperature evolution at the centre is marked by a
plateau before its maximum, we considered the time to
reach Tmax − 5K. The temperature to reach 50% partial
melting is another upper bound. As mentioned earlier, it
marks the dissociation of the solid matrix and is accompa-
nied by a drop in viscosity of several orders of magnitude.
This is the tipping point for the melt migration to the
magma ocean. Therefore, Figure 1.a shows the time re-
quired to reach min(Tmax − 5K,T50%) since the onset of
melting.

In this representation, we note that size only plays a
role for bodies with a radius of less than 50 km, showing
that the cooling time appears to be a limiting factor for
melt production only for the smallest bodies. Above this
size, the melting time is only a function of the age of ac-
cretion. Figure 1.b displays the time during which at least
1% of melting is present. As expected, this time increases
as the square of the radius. It is also marked by a decrease
when the accretion time increases. It should be noted that
these times are deduced from the maximum temperatures
reached at the centre of the body. They are therefore only
representative of the main part of a body larger than 50
km, and only of a very restricted central part of smaller
bodies.

3. Melt drainage time scale

The two thermal time scales presented above should
be compared with a time scale related to the mobility of
silicate liquids. For this purpose, we have chosen to calcu-
late the time required for the separation of the fluid from
the solid in an initial homogeneous mixture. These dy-
namics are described by the compaction equations, first
introduced in geosciences by McKenzie (1984). Here, we
used the formalism developed by Bercovici et al. (2001)
and Bercovici and Ricard (2003) that treats both phases
as equivalent. This formalism is summarized in Appendix
A.
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Figure 1: The two time scales of thermal evolution of small bodies as
a function of their accretion time and radius. (a) The melting time
corresponds to the time elapsed between the beginning and the max-
imum of melting, or 50% of melting. The time at the maximum of
melting considered here is actually the time at the maximum of tem-
perature minus 5 degree ; this choice permits to avoid the plateau
characterizing the temperature evolution at the center of a body.
Then, the 50% melting threshold corresponds to the transition to-
wards the development of a magma ocean beyond which silicate melt
migration loses its relevance. (b) The melt time is the time during
which at least 1 percent melt is present inside the body. These maps
have been built from 101×101 numerical models of thermal evolution
computed with 300 radial levels.

3.1. Drainage time for small bodies

The rate of fluid-matrix separation depends on the abil-
ity of the matrix to deform and the fluid to flow through
the matrix. The two processes have different character-

istic times. The former, the compaction time τC , can be
defined as the ratio of matrix viscosity µm divided by the
fluid-matrix difference pressure scale, δρgsR:

τC =
µm

δρgsR
∝ µm

R2
, (3)

with δρ = ρm−ρf , the density contrast between the matrix
and the fluid, R the radius of the body and gs the gravity
at its surface. As gs is proportional to R, τC is inversely
proportional to R2.

The second characteristic time, the Darcy time τD, is
the ratio of the body radius R to the filtration velocity:

τD =
Rµf

δρgsk0
∝ µf

a2
. (4)

The filtration velocity is proportional to the fluid-matrix
difference pressure, to the matrix permeability k0 —the
permeability at the reference porosity φ0— and inversely
proportional to the fluid viscosity µf . As a consequence,
this time scale does not depend on the body size. Instead,
the relevant length that appears here is the grain size, a.
Indeed, the permeability is proportional to the square or
the cube of the matrix grain size, depending on the pore
geometry. Here, we adopted the classic permeability law
considered for connected melt tubes : k(φ) = a2φ2/(72π)
(Maaløe and Scheie, 1982). Other geometries may be con-
sidered. For instance, in case of connected films, the per-
meability law becomes a3φ3/648 (Schmeling, 2000).

Interestingly, the ratio of the two characteristic times
corresponds to the square of the ratio of the two natu-
ral length scales of the problem, the body radius R and
the compaction length Lc: τD/τC = R2/L2

c . The com-
paction length is the length beyond which the compaction
of a constant porosity matrix occurs (McKenzie, 1984) and
only depends on the properties of the matrix and the fluid:

Lc =

√
µmk0
µf

. (5)

As mentioned above, since the surface gravity of a small
body is proportional to its radius, it is also worth not-
ing that the Darcy time does not depend on the size of
the body, whereas the compaction time decreases as its
square. As a consequence, in the case of porous flow dom-
inated regimes, the radius of the body will not control
the drainage characteristic time. On the contrary, when
matrix deformation is the slower mechanism, the drainage
time will be much longer for smaller bodies than for larger
ones.

3.2. Drainage experiments

Drainage experiments consist in solving the flow equa-
tions (A.2) & (A.13) with no source term, but from an
initial constant porosity profile. They were performed for
various values of φ0 and R/Lc ratios. Figure 2 reports the
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dependence of the drainage time τ as a function of both
parameters. τ is arbitrarily defined as the time necessary
to reach 90% of segregation between the fluid and the solid.
The segregation is evaluated through the function s(φ):

s(φ) = 1− 1

V φ0(1− φ0)

∫
φ(1− φ)dv, (6)

where V =
∫
dv is the volume of the body. s(φ) is also the

second central moment of the fluid distribution:

s(φ) =
1

V φ0(1− φ0)

∫
(φ− φ0)2dv. (7)

When the fluid is homogeneously distributed within the
solid, its volume fraction is constant and equal to φ0 ev-
erywhere, s(φ0) is then zero, while s(φ) is maximum and
equal to 1 when the separation is complete, i.e. when φ is
equal to 0 or 1.

Figure 2 shows that the drainage time is proportional
to the compaction time for smaller bodies and to the Darcy
time for larger ones. As explained above, in small bodies,
the migration of fluid is controlled by the ability of gravi-
tational forces to deform the matrix, whereas in large ones
the limiting factor is the friction between the fluid and
the matrix. Compaction waves develop in the latter case,
while, in the former, the radial distribution of the liquid
remains a monotonically increasing function of the radius.
We observe the transition between both regimes around
φ0R/Lc ∼ 4. An eye-fitting gives φ0τ/τC ' 63φ0.10 +
3.25φ20R

2/L2
c . Since φ0.10 varies little for the range of

porosity considered, the quantity φ0τ/τC essentially de-
pends on the characteristic dimensionless number φ0R/Lc.
This is well illustrated by Figure 2b.

The drainage time is found to be τ ' 63φ−0.9
0 τC +

3.25φ0τD and varies as function of three independent quan-
tities φ0, µm/R

2 and µf/a
2 :

φ0τ '
3

4πδρρ̄G

[
63φ0.10

µm

R2
+ 3.25× 72π

µf

a2

]
≈ 4.3× 104

µm

R2
+ 6.3× 105

µf

a2
,

(8)

with τ , lengths and viscosities in SI. A graphical repre-
sentation of this relationship is given in Figure 2c. The
line φ0R/Lc = 4 separating the two regimes is an axis of
symmetry for the quantity φ0τ . From any point located
on this line, a decrease of µm/R

2 or µf/a
2 does not affect

the drainage time, whilst an increase by a given factor in-
creases the drainage time by the same factor. The blue
arrow on Figure 2.c depicts what could be the trajectory
of a body during its progressive melting, both matrix and
fluid viscosity decreases and grains grow. A more precise
description of such a trajectory is given in section 3.4 and
the possible extent of the path in the parameter space is
explained in the next section.

∝

∝
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b

c
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10-6
10-510-410-310-2

104 105 106 107 108 109 1010 1011 1012
104

105

106

107

108

109

1010

1011

1012

Figure 2: Drainage time, τ , i.e. the time required to reach 90%
of separation of the fluid from the matrix (see definition (6) & (7))
Four initial fractions of melt φ0 were tested, 2% (cyan), 5% (green),
10% (yellow) and 20% (red). (a) τ , non-dimensionalized by the com-
paction time τc (3), is plotted as a function of the non dimensional
number R2/L2

c where Lc is the compaction length (5). The solid
lines correspond to the empirical fit τ = 63 φ−0.9

0 τC + 3.25 φ0τD.
This plot highlights the dependence of the drainage time on the ini-
tial fluid content φ0. (b) the quantity φ0τ/τc plotted as a function of
(φ0R/Lc)2 appears almost independent on φ0. It is proportional to
τc below φ0R/Lc ' 4 and to τD above. (c) Plot of φ0τ as a function
of two independent parameters µm/R2 and µf/a

2, φ0τ being de-
rived from the empirical relationship φ0τ = 63 φ0.10 τC + 3.25φ20τD.
The dash line, whose equation is φ0R/Lc = 4, separates regimes
controlled by the compaction of the matrix (white) from regimes
controlled by the Darcy flow (grey region). The latter is the one
where compaction waves take place. The blue arrow describes the
possible trajectory of a body in this parameter space due to progres-
sive partial melting, which goes along with grain growth and decrease
of both liquid and solid viscosities.
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3.3. The parameters of the drainage time

Lichtenberg et al. (2019) emphasize the key role played
by grain size in the differentiation of small bodies, point-
ing to inefficient percolation below a millimetre grain size.
Here, we demonstrated that melt drainage is in fact con-
trolled by two independent quantities, µm/R

2 and µf/a
2,

in which the radius of the body, and the viscosities of the
liquid and solid silicate are also involved.

3.3.1. Grain size

During the thermal evolution of a body, the quantity
µf/a

2 is likely to experience a drop by six to seven orders
of magnitude, jointly due to a decrease in liquid viscosity
and an increase in grain size. First, the thermally acti-
vated silicate grain growth will promote a significant in-
crease in grain size. As a matter of fact, the size of the
silicate grains observed in meteorites increases with the
maximum temperature they have experienced. It ranges
from 10 to 100µm in chondrites depending on their meta-
morphic grade, goes up to 500-700µm in some achondrites
like lodranites (Krot et al., 2014) where the melting degree
reached 20%, and even to one centimeter for olivines in
pallasites for which the melting degree has exceeded the
threshold of the matrix disaggregation.

As grains grow more or less quickly depending on the
temperature, their size can be computed by integration
of the growth law along their thermal history. In general
terms, normal grain growth is commonly described by an
equation of the form:

an − an0 = At, (9)

where a is the grain size at time t, a0 the initial grain size.
A is a thermally activated rate constant (Atkinson, 1988):

A = A0 e
−Ea/RgT , (10)

with Ea an activation energy, Rg the gas constant and
A0 a constant. The exponent, n, theoretically an integer,
may adopt various values from 2 to 5 depending on the
mechanism controlling the grain coarsening (e.g. Brook,
1976; Atkinson, 1988; Evans et al., 2001).

For the implementation of grain size evolution in their
numerical model of small body differentiation, Neumann
et al. (2012, 2013, 2014, 2018) adopted a purely theo-
retical expression of relation (10). They followed Taylor
et al. (1993) who used the Lifshitz-Slyozov-Wagner rela-
tionship established for diffusion-controlled coarsening of
particles in dilute solutions (e.g. Greenwood, 1969). In
this case the exponent is n = 3 and the rate constant
A = 8V2γcD/9RgT , with V the molar volume of the sili-
cate, γ the surface free energy of the crystal-liquid inter-
face, c the equilibrium concentration of solute and D the
diffusion coefficient. Beyond the fact that all these pa-
rameters are considered as constant in Taylor et al. (1993)
and Neumann et al. (2012), which yields a growth rate

inversely proportional to temperature contrary to experi-
mental observations, the assigned values (the same in both
studies) lead to a rate constant A = 1.6 × 10−13m3/yr at
1500K. This predicts a grain size of 0.55 mm after 103 yr,
1.2 mm after 104 yr, 2.5 mm after 105 yr and 5.4 mm after
106 yr; this latter value is higher by one order of magni-
tude than the size of the most evolved crystals measured
in achondrites, whose thermal history is well over a mil-
lion years. The overestimation of crystal growth places
the Neumann et al.’s model well above the percolation
efficiency threshold identified by Lichtenberg et al. (2019)
and may affect the conclusions drawn in their papers. This
will be discussed later.

In addition to the many processes that may govern
grain growth, various parameters can also be involved,
such as the presence of impurities, secondary phases or
melt. Therefore, only an experimental approach can iden-
tify those really at work. Several studies have been per-
formed aimed at determining the values of the growth
exponent n and the activation energy Ea on peridotitic
material. For the first one devoted to olivine, the theo-
retical growth exponent derived for a pure single phase,
n=2 or 3, (Ea = 520, 600 kJ/mol, respectively) has been
satisfactorily fitted by experimental data run with San
Carlos olivine at 0.1 MPa and 300 MPa in dry and wet
condition (Karato, 1989). However, in experiments con-
ducted at 0.1 MPa on dry aggregates of synthetic olivine
Fo91, Nichols and Mackwell (1991) determined a value
in the range of n = 4 to 5 (with Ea = 290 kJ/mol and
345 kJ/mol, respectively). They attribute this high value
to the control of grain growth by coalescence through sur-
face diffusion of a second phase, the residual porosity,
∼ 5%. In sintered samples, porosity is inevitable in sam-
ples synthesized at 1 atm but almost disappears at high
pressure, which may explain the low value of the exponent
in the Karato (1989) experiments at 300 MPa, but not
those at 0.1MPa. Nichols and Mackwell (1991) noticed
this disagreement without being able to explain it. Poros-
ity has been measured in H-chondrites at equivalent levels
and should have the same effect. Metallic grains, present
in the chondritic material, also play the role of a secondary
phase. Guignard et al. (2012, 2016) studied a mixture of
nickel and forsterite in proportions representative of the
metal content of chondrites. In this case, the growth of
forsterite grains is limited by that of the metallic particles
whose growth process is controlled by diffusion along one
dimensional paths due to their location at triple junctions,
for which n = 5. The activation energy was found to be
close to 400 kJ/mol. Moreover, these experimental data
were found to be consistent with the size of metal par-
ticles measured in H-chondrites at various metamorphic
grades (Guignard et al., 2016), indicating that the param-
eters of this growth law are supported by natural points
resulting from growth over several million years. Lastly,
in experiments on partially molten olivine aggregates con-
ducted by Faul and Scott (2006), porosity cannot account
for a pinning effect. However, the growth exponent n is
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again measured above 3, close to 4 with an activation en-
ergy E=390kJ/mol similar to that measured for forsterite
in the absence of melt. Thus, in a single-mineral medium
without impurities, the appearance of silicate liquid seems
to reduce grain growth, while in poly-mineral or impurity-
bearing medium, it has a promoting effect compared to
conditions below the melting point.

For the present study, we used the relations (9) and
(10) with the parameters determined by Guignard et al.
(2016) below the melting point and Faul and Scott (2006)
above, i.e. n = 5, Ea = 400 kJ/mol, A0 = 10−19.04 m5/s
and n = 4, Ea = 400 kJ/mol, A0 = 10−12.02 m4/s, re-
spectively. The initial grain size a0 has been set in our
calculations to 1 micron, a characteristic grain size of the
matrix in primitive chondrites.

Figure 3 displays the time integration of these growth
laws along the thermal history of small bodies. Figure 3a
describes the time evolution of grain size located at the
center of a 100km radius body accreted at various times.
A kink marks the appearance of the liquid silicate and
its influence on the growth of the grains, when the size
increases from a few tens to a hundred microns with the
first percent of liquid. After that point in time growth is
significant at high temperature, notably during the long
temperature plateau that follows the extinction of heat
sources.

Figure 3b shows a map, as a function of accretion time
and body radius, of grain size reached just before this
temperature plateau or before the tipping point to the
magma ocean that occurs at 50% of partial melting, i.e.
at min(Tmax − 5K,T50%) (see section 2.2 for more detail
on this threshold). On this map, the grain size reaches
a maximum of 2 mm for those bodies accreted at around
1.3 million years, reaching a maximum of 50% partial melt-
ing. For bodies formed earlier, the 50% partial melting
degree threshold is reached more quickly. This faster evo-
lution does not allow the grain to grow as much, reduc-
ing the ability of the liquid to migrate during the melting
phase.

In summary, grain growth can account for a decrease of
three or four orders of magnitude in the µf/a

2 parameter.

3.3.2. Viscosity of silicate liquid

The viscosity of liquid silicates varies strongly at the
beginning of melting due to a dependence on the content
of lattice elements, Si and Al, and notably Al that is only
present in plagioclase, one of the earliest phases to melt-
out of the matrix, with clinopyroxene. The first percent-
ages of liquid have a viscosity of about 104 Pas (Collinet
and Grove, 2020), which decreases to about 100 Pas be-
tween 10% and 15% melt (basaltic liquids) and to about
1 Pas above 40% melt (picritic liquids) (Dingwell et al.,
2004). Figure 4 shows as an example the viscosity of a
silicate liquid produced by melting of a H-chondrite com-
position as a function of temperature. This figure also
shows the composition of the residual solid. Composi-
tion and viscosity of the liquid have been computed with

meltno melt

a

b

Figure 3: Predicted size of silicate grains in the centre of a small
body (a) over time for a body of 100km radius and different accretion
times, (b) at min(Tmax − 5K,T50%). Grain growth laws used are
from Guignard et al. (2016) below the melting point and from Faul
and Scott (2006) above. On panel (a), we note the increase in growth
rate during melting, then the increase in size at constant temperature
corresponding to the temperature plateau of the thermal evolution.
The size reached at the end of this temperature plateau does not
change during cooling, which corresponds to the horizontal part of
each track. The curves have not been extended beyond T50%. On
panel (b), we observe that the maximum grain size at min(Tmax −
5K,T50%) is reached for bodies that experience a maximum melting
degree (red contour lines) of 50%. In bodies accreted earlier, T50% is
reached more quickly, leaving less time for grain coarsening. In later
accreted bodies, temperature is less important.

the ”Rhyolite-Melts” thermodynamic calculator (Ghiorso
and Sack, 1995; Asimow and Ghiorso, 1998; Gualda et al.,
2012; Ghiorso and Gualda, 2015). We note that the refer-
ence value taken for the liquid viscosity by Moskovitz and
Gaidos (2011), Neumann et al. (2012, and the following
papers) and then Lichtenberg et al. (2019) corresponds to
a liquid produced by about 50% of partial melting (dashed
line on Figure 4).
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orthopyroxene

clinopyroxene
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feldspar

Figure 4: Viscosity of the silicate melt and composition of the resid-
ual solid as a function of temperature and melting degree (red curve).
Composition and viscosity have been computed with the ”Rhyolite-
Melts” thermodynamical software (Ghiorso and Gualda, 2015, and
references therein) from a H-type composition.

3.3.3. The parameter µf/a
2

During melting, the variations of the different param-
eters can lead to a drop of seven to eight orders of mag-
nitude in the µf/a

2 ratio, which has a significant impact
on the drainage time. For example, the blue arrow in
Fig. 2c, shows the hypothetical trajectory of a body of ra-
dius 100 km for which the drainage time is almost infinite
at the beginning of the fusion (a = 10µm, µm = 1019

Pas and the viscosity of the first liquids µf = 104 Pas), to
reach a state (a = 10−3 m, µm = 1017 Pas and µf = 1 Pas)
corresponding to a draining time lower than 100 kyr. In-
terestingly, the decrease of the µf/a

2 ratio can lead to the
region where the drainage is controlled by the compaction
(white area on Figure 2c) and where its characteristic time
then only depends on the viscosity of the matrix, whatever
the grain growth or the melt viscosity decrease.

Figure 5 presents the µf/a
2 variations at the centre of

a 100 km radius body during its thermal evolution, com-
puted following the grain growth and melt viscosity laws
presented in Figures 3 and 4 respectively. It highlights
this decrease of seven to eight orders of magnitude dur-
ing melting for bodies accreted before 1.5 million years,
and of lesser magnitude for later accretions. Lichtenberg
et al. (2019) have shown that melt migration is inefficient
for a grain size of less than 1 mm. Since their calculations
were performed with a constant melt viscosity of 1 Pas,
this grain size threshold corresponds to a µf/a

2 threshold
of 106 Pas/m2. Importantly enough, figure 5 shows that,
except in some cases and for partial melt degrees above

This study

Moskovitz & Gaidos (2011)
Neumann et al. (2012)

tacc= 0.1Myr
tacc= 1.2Myr
tacc= 1.4Myr
tacc= 1.6Myr
tacc= 1.8Myr

E�ective melt migration zone
(after Licthenberg et al., 2019)

Figure 5: The parameter µf/a
2 calculated for the thermal evolution

of a 100 km radius body accreted at different times, with the grain
size and melt viscosity obtained from the laws chosen in this study
(colored solid lines) and from grain growth laws used by Neumann
et al. (2012) (colored dashed lines) and by Moskovitz and Gaidos
(2011) (grey dotted line), the melt viscosity being constant and fixed
at 1 Pas in these last two studies. The grey shaded area corresponds
to the domain where melt migration is effective, i.e. where the grain
size is larger than 1 mm (after Lichtenberg et al., 2019, since the
melt viscosity is also set to 1 Pas in this study). In the latter two
cases, the drainage time is 6 to 7 orders of magnitude lower than with
realistic grain growth and melt viscosity laws, leading to an artificial
drainage efficiency of silicate liquids and of heat sources well before
their extinction

40%, the parameter µf/a
2 remains above this value of 106

Pas/m2, i.e. in a range where melt migration is inefficient.
For comparison, the µf/a

2 parameter was also calcu-
lated with the grain growth laws used by Moskovitz and
Gaidos (2011) (grey dotted line) and by Neumann et al.
(2012) (dashed lines), the melt viscosity being constant
and fixed at 1 Pas in both studies. Since the compaction of
the matrix was neglected there, the drainage time is simply
equal to the Darcy time and thus only proportional to the
parameter µf/a

2. For both studies, the effective migration
threshold of 106 Pas/m2 is crossed for the first percent of
liquid, up to 10% of liquid in the case of Moskovitz and
Gaidos (2011). It is thus of no surprise that these stud-
ies have popularised the idea that silicate liquids extract
rapidly to the surface taking the 26Al with them, leading
to no further melting at depth. As an example, Moskovitz
and Gaidos (2011) showed that the percentage of liquid in
the centre of a body formed at 1 Myr would not exceed
27%.

However, the grain growth laws used in these two stud-
ies remain highly questionable. In Moskovitz and Gaidos
(2011), it is an ad hoc dependence on the melt fraction,
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while the one used in Neumann et al. (2012), if theo-
retically correct, adopts inappropriate parameters as dis-
cussed in paragraph 3.3.1. This, combined with the very
low value chosen for the melt viscosity which does not
correspond to the viscosity of the migrating melt, makes
their conclusion about the high mobility of silicate liquids
in small bodies questionable. On the other hand, the use
of realistic laws for both grain growth and melt viscosity
tends to show that liquids only start to migrate at melt
fractions of several tens of percent, or even do not have
time to extract before the rheological limit of a magma
ocean is reached.

3.3.4. Matrix viscosity

The drainage time is dependent on a second parame-
ter, µm/R

2, solely proportional to the matrix viscosity for
a given body. In this respect it is of note that the vis-
cosity of solids depends on the creep mechanism at work.
Lichtenberg et al. (2019) assume that the matrix defor-
mation remains in the diffusion creep regime, but it could
also be in the dislocation or grain boundary sliding (GBS)
regimes, especially when the grain size is large and the
stress is low. Here we will consider all of these possibili-
ties, taking the most efficient one at each time step.

Whatever the creep mechanism, the rheological behav-
ior of rocks is described by a general power law dependance
of strain rate, ε̇, on differential stress, σ (Hirth and Kohlst-
edt, 2004), which rewritten here in term of viscosity reads:

µm =
σ

ε̇
=

1

A
σ1−qan exp(Ea/RgT − αφ), (11)

where A is a constant, q the stress exponent, n the grain
size exponent, Ea the activation energy and a the grain
size. α is a constant corresponding to the dependence
on the melt content φ. The presence of melt within an
aggregate plays a well identified role on their deforma-
tion by favoring the sliding mechanism at grain boundary.
Hirth and Kohlstedt (2004) reported a link between the
effective viscosity and the melt fraction that can be ap-
proximated to first order by an exponential relationship
up to liquid fraction of 12%. It is not obvious that this
law can be extended beyond that. Indeed, the viscosity
measured in these experiments is the effective viscosity of
the liquid-solid mixture. In the formalism we use, µm is
the viscosity of the solid. The value of this parameter is
subject to change due to the presence of liquid, notably
because the presence of liquid promotes dislocations by
accommodation at grain boundaries, resulting in a relax-
ation of the von Mises criterion. It nevertheless remains
possible that this effect does not increase with increas-
ing liquid fraction. For this reason, we will restrict the
application of this law to the first 12 percent of liquid (
µm ∝ exp(−αmin(φ, 0.12))), the range over which it has
been determined experimentally. This choice has no inci-
dence on our conclusions, as discussed in the next section.

The coefficient α depends on the creep mechanism,
estimated for lherzolitic material around 20 for diffusion
creep and 25 for dislocation and GBS creeps. The other
constants or exponents depend on the creep mechanism
too. For instance, the stress dependence is linear for dif-
fusion creep (q = 1), but not for dislocation or GBS creep
(q = 3.5). In addition, there is no dependence on the grain
size for dislocation creep, but it is nonlinear for diffusion
(n = 3) and for GBS (n = 2) (Hirth and Kohlstedt, 2004).

The temperature, the liquid fraction and the grain size
are calculated throughout the thermal history of the body,
but here the stress can only be estimated a priori. An
upper estimate is the pressure difference at the centre of
the body between the fluid and the matrix:

σ =
2π

3
ρmδρGR

2, (12)

Hence, σ ≈ 1.41 × 10−3R2 Pa, ranging from 0.5 MPa to
50 MPa for body radii from 30 km to 300 km, respectively.

The variation of all these parameters during the melt-
ing of silicates is likely to result in a variation of the matrix
viscosity of six orders of magnitude, a range that is itself
likely to shift by six orders of magnitude as a function of
the size of the body, mainly because µm is proportional to
σ2.5 and finally to R5.

3.4. Drainage time variation during melting

Figure 6a displays the time trajectories for bodies of
various sizes and accretion times on the φ0τ map shown
on Figure 2c. These tracks highlight the magnitude of the
variation of µm/R

2 and µf/a
2, the two independent pa-

rameters of the drainage time, and thus underline the im-
portance of not considering material properties as constant
in the study of small body differentiation.

With the first percent of liquid, the trajectories begin
with an increase in matrix viscosity and a decrease in the
µf/a

2 parameter, both due to the noticeable grain growth
boosted by the appearance of silicate liquid, as shown in
Figure 3a. Then, both parameters decrease while keep-
ing the trajectories in the Darcy domain, such that the
drainage time during melting is not very sensitive to vari-
ations in the viscosity of the matrix. This is particularly
apparent for 100 km and 300 km radius bodies for which
the variation in matrix viscosity differs greatly without
affecting the drainage time. For the 30 km bodies, this be-
comes less exact, their evolution pathways progressing into
the compaction domain, where the variations in matrix vis-
cosity regain their influence, i.e. where drainage time in-
creases proportionally to the matrix viscosity. Recall here
that melt content has been limited to 12% in the viscosity
law. Otherwise, we would observe a greater decrease in
the matrix viscosity as melt content increases above this
limit. However, this has no effect on the drainage time as
long as the evolution remains in the Darcy domain. This
would only affect the evolution corresponding to a 30 km
body accreted at 1.4 Myr in its red part which could have
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Figure 6: (a) Time trajectories for three body radii and various accretion times drawn in µm/R2 and µf/a
2 parameter space and on the

corresponding φτ map. The color indicates the time since the onset of melting, tracks progressing from blue to grey. The black dots mark the
transitions to 10%, 20%, 30%, 40% and 50% of partial melting. (b) Drainage time as a function of the time from the onset of melting. Color
indicate the melting degree. On both series of diagrams, trajectories are not plotted beyond the critical threshold of 50% partial melting.

progressed into the Darcy domain. This remains a sec-
ondary issue. For each body size, the three trajectories
corresponding to the earliest accretions reach the thresh-
old of 50% degree of fusion —and have not been extended
beyond that for this reason— indicating a possible evolu-
tion into a global magma ocean. However, this end-point is
not certain if the drainage time becomes shorter than the
remaining time before reaching the threshold. This may
be appreciated on Figure 6.b that shows the time evolution
of the drainage time since the onset of melting. In the case
of very early accretion, within the first million years after
CAIs and whatever the size of the body, the drainage time
never becomes short enough to allow a significant drainage
before reaching the threshold. In contrast, the trajecto-
ries at 1.3 Myr show that the time required to reach the
threshold remains greater than the drainage time after it
falls below 1 Myr. Thus, despite an accretion time that
potentially allows the threshold to a magma ocean regime
to be reached, migration of the liquid and heat sources to
the surface is very likely, interrupting melting in the centre
of the body and leading to shallower liquid accumulation
that could itself develop into a shallow magma ocean. This
scenario may also concern later accretion as in the case,
for example, for 100 km radius bodies formed between 1.3
and 1.5 Myr, for which the drainage would be completed
before the extinction of heat sources that occurs before
5 Myr after CAIs. In that case, the concentration of heat

sources may induce an overheating of the shallow liquid
layer and a fusion of the overlying part (Neumann et al.,
2014; Lichtenberg et al., 2019).

Figure 6 also shows that differentiation may take place
later, over the long cooling time of the body. This corre-
sponds to accretions occurring between 1.5 and 1.7 Myr,
for bodies of 100 km radius. Later accretions may lead to
moderate partial melting but not to differentiation. The
accretion time window for this regime is wider the smaller
the body, as smaller bodies experience lower temperatures
and faster cooling: between 1.5 and 1.8 Myr for 30 km ra-
dius against 1.7 to 1.8 Myr for 300 km radius.

4. Types of evolution of small bodies

In summary, both representations of Figure 6 help to
distinguish various melt migration regimes. Three have al-
ready been described by Lichtenberg et al. (2019): magma
ocean, shallow sills and undifferentiated bodies. We add
two more domains here by separating differentiation dur-
ing melting with heat source transport from differentiation
during cooling, and by subdividing undifferentiated bod-
ies into those that have melted and those that have not.
These 5 regimes correspond to conditions for which:

I) the drainage is unable to prevent the melt fraction
from reaching the 50% rheological threshold and thus
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Figure 7: Possible evolution for small bodies. I)(yellow) Magma
ocean: The internal heating is intense enough to push the interior
of the body above the 50% partial melting rheological threshold at
which a magma ocean forms, before any liquid-solid segregation takes
place; II) (orange) Upward migration of the 26Al heat source: liquid-
solid segregation is sufficiently efficient to drain the liquid before the
extinction of the heat sources, leaving a 60% to 70% residual harzbur-
gitic core; III) (green) differentiation occurs after the extinction of
heat sources, leaving a 70% to 80% harzburgitic core; IV) (blue) in-
terior partially melts up to 25% without significant differentiation;
V) (grey) chondrite parent body domain. Red contour lines indicate
the maximum possible degree of partial melting. Black contour lines
within the orange area indicate the degree of partial melting at which
liquids become highly mobile and thus the degree actually reached
after the heat sources have been removed. The dashed contour lines
on the green and blue areas indicate the ratio of the melt lifetime
to the drainage time. For instance, where this ratio is higher than 1
(green area), liquids have enough time to migrate and yield differen-
tiation. Conversely, where it is lower than 1 (blue area) there is no
migration and no differentiation.

the development of a global magma ocean before
differentiation;

II) the drainage is efficient enough to allow extraction
and subsurface accumulation of the melt and the
heat sources it contains before their extinction, which
may evolve into a shallow magma ocean above a
residual harzburgitic or dunitic core;

III) the drainage is not efficient enough to extract the
melt before the heat source is extinguished, but effi-
cient enough to allow a moderate differentiation
of the body during its cooling;

IV) no differentiation occurs despite moderate partial
melting;

V) there is no melting, just thermal metamorphism.

Figure 7 displays a global view of the different possi-
ble evolution pathways according to the radius and ac-

cretion time of the body. Criteria have been defined to
delimit the five types. Type I (in yellow) corresponds to
the appearance of a magma ocean. This must satisfy two
criteria. Firstly, the maximum possible degree of partial
melting, indicated by the red contours, must exceed the
50% threshold. Secondly, this threshold must actually be
reached. This second criterion defines the limit with type
II. Type II corresponds to conditions that allow an effi-
cient drainage before the end of melting or before reaching
the 50% melting degree threshold. To define this domain,
the moment when the drainage time becomes smaller than
the time remaining before reaching Tmax − 5K or 50% of
partial melting is inferred for each radius and accretion
time based on Figure 6. The orange region of Figure 7 rep-
resents the area where this criterion is satisfied. Inside,
the contour lines indicate the melting degree at which the
criterion is satisfied, showing that drainage only becomes
effective from about 30% of fusion. This percentage is
not a threshold in itself, but results from several factors
such as the viscosity of the liquid and the matrix, or the
grain size. The migration of liquids certainly starts be-
fore this value, which is more indicative of the degree to
which partial melting stops in the center of the body due
to the drainage of heat sources. This value also constrains
the composition of the unmelted residue remaining in the
centre of the body.

Outside the type II region, the 50% partial melting
threshold line separates type I, ending into a magma ocean,
from types III (green) and IV (blue). The distinction be-
tween the latter two types is based on the ratio of melt
lifetime, as defined in Figure 1b, to the drainage time at
its minimum value. On Figure 7, the dashed contour lines
plot the value of this ratio. Values less than one indicate an
inefficient drainage at the time scale of the body cooling.
To these four regions, we have added a fifth one (grey) cor-
responding to the conditions leading to non-melted bodies,
i.e. the parent bodies of chondrites.

Naturally, these boundaries between regimes are more
progressive than simple lines drawn in Fig.7, for two main
reasons. On the one hand, as mentioned earlier, the drainage
time is an average quantity of an active process depending
strongly on evolving conditions. On the other hand, the
criterion used to distinguish these types has been applied
to conditions in the centre of the body that differs from
those close to the surface. While these conditions may be
representative of a large part of a body, a greater fraction
as radius increases, the fact remains that its outer parts
may have harbored conditions corresponding to another
type. This is obvious for the parent bodies of chondrites,
which may correspond to the outer parts of bodies of type
III or IV.

This point is even more striking for very small bodies,
those for which the radius is comparable to the thickness of
the cooling boundary layer, thus those for which the cen-
tral temperature is not representative of the body interior.
For example, the parent body proposed for the primitive
achondrite Tafassasset, whose composition is compatible
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with a lost of basaltic content, has a radius possibly in the
range of 15 km to 30 km with an accretion time between
0.5 Myr and 1.2 Myr (Breton et al., 2015). This falls in
type I region, near the type III border. Details of the ra-
dial temperature profile derived from the thermal history
modelling to satisfy isotopic dating shows a peak melting
degree of 80% in the center, while the overall composition
of the meteorite —olivine and pyroxene rich with plagio-
clase traces— corresponds to a residue from 20% of partial
melting achieved at mid-radius, the outer 40% of the ra-
dius remaining unmelted. Of course, such a description
suffers from the lack of deep magma ocean and melt mi-
gration modelings and cannot be fully representative of the
final evolution of a body accreted under such conditions.

4.1. Did global magma oceans exist on small bodies?

The occurrence of a global magma ocean in the early
evolution of small bodies is not an idea that is unanimously
accepted. Among the arguments against this hypothesis
is the idea that liquid silicates drain efficiently towards
the surface as soon as melting begins, either by filtration
through the porous matrix resulting from partial melting
(e.g. Moskovitz and Gaidos, 2011; Neumann et al., 2012),
or by percolation through a hierarchic network of small and
large veins and dikes (e.g. Wilson and Keil, 2012, 2017).
However, this efficiency was deduced from a matrix perme-
ability based on overestimated grain sizes and an under-
estimated viscosity of percolating liquids (see paragraphs
3.3.1 and 3.3.2 for a detailed discussion), both leading to
an overestimation of the percolation velocity by six to eight
orders of magnitude compared to a calculation using real-
istic laws of crystalline growth or melt viscosity (see para-
graph 3.3.3).

In this respect, the theoretical arguments developed by
Wilson and Keil (2012, 2017) deserve more detailed discus-
sion. Briefly, these ideas are largely inspired by the con-
text of mid-oceanic ridges. The formation of the veins and
dikes network is conjectured from the matrix-liquid inter-
play described by the compaction formalism of McKenzie
(1984), on which those exposed in Lichtenberg et al. (2019)
or here in Appendix A also rely (see Wilson et al., 2008,
for a detailed argumention of the vein network develop-
ment). To put numbers on his analytical developments,
McKenzie uses a grain size of 1 mm and a liquid viscosity
of 1 Pas. Interestingly, these values are those also em-
ployed by the other work supporting the ideas of efficient
melt extraction (Moskovitz and Gaidos, 2011; Neumann
et al., 2012; Wilson and Keil, 2012, 2017), but they do not
correspond to the conditions occurring at the beginning of
melting on rocky-bodies in the early solar-system, where
the grain size is closer to 100µm and the viscosity ranges
around 104 Pas. As noted above, the values used in the
literature are more relevant to conditions already close to
the onset of a magma ocean, with the value of viscosity
corresponding to a liquid produced by more than 40% of
partial melting.

Hence, the work presented here indicates that extrac-
tion of a silicate melt from the interior of a small body is
not as effective as believed up to now, and that the devel-
opment of a global magma ocean is probable for a wide
range of early accreted bodies. Indeed, most of the bod-
ies accreted within the first 1.1 Myr of CAI condensation
probably experienced a global magma ocean stage.

4.2. The fate of magma ocean: pallasites, irons and eu-
crites

Taylor et al. (1993) stated that “the lack of pyrox-
ene in pallasites suggests that core formation in asteroids
was accompanied by > 40% melting of the associated sil-
icate”. Indeed, pallasites provide simple but compelling
evidence of a past magma ocean experienced by their par-
ent body(ies). Aluminum is only present in feldspars, that
have been completely removed from the solid residue after
a partial melting degree of 15%. If the silicate liquids are
highly mobile and drain heat sources with them, melting
cannot continue much further. Alternatively, if the liq-
uids remain in the matrix, nothing can prevent the melting
from reaching the rheological threshold, which incidentally
corresponds to the disappearance of pyroxenes.

With the onset of a magma ocean regime, thermal
exchange switches to effective convective cooling. The
temperature probably remains buffered at the rheological
threshold, with the heat supplied by sources being used to
melt and thin the layer above the ocean, up to the surface
if sufficient, and then being dissipated outwards. While
the demonstration of this point goes beyond the scope of
the present study, metal-silicate separation in this context
deserves discussion.

First, metal is still present in the magma ocean even
if it is sometimes assumed to be able to percolate through
the silicate matrix as soon as it melts (e.g. Ghosh and Mc-
Sween, 1998; Sahijpal et al., 2007; Neumann et al., 2012;
Šrámek et al., 2012). To segregate, it should form a con-
nected network along the silicate grain boundaries. Due to
the high surface tension between the solid silicates and the
liquid metal, this only occurs at a metal content of 20 vol%
(Bagdassarov et al., 2009; Néri et al., 2020; Solferino et al.,
2020), well above the 10 vol% present in chondrites. Thus,
magma oceans inside planetesimals are a mixture of liq-
uid silicate (∼ 45 vol%), olivine crystals (∼ 45 vol%) and
liquid metal droplets (∼ 10 vol%). This context differs
from the that envisaged after giants impacts in which the
metal-silicate separation is usually considered under the
paradigm of iron rain in a fully liquid bath (Rubie et al.,
2003; Ichikawa et al., 2010). Here, crystals are a significant
component of the mixture and interact with the metal liq-
uid. Néri et al. (2021) discussed this situation and showed
that metallic drops remain attached to olivine crystals and
probably sink as metal-olivine aggregates. The separation
finally occurs with the extraction of the interstitial silicate
liquid during compaction of the matrix, leading to core
formation. This process is similar to the scenario of pal-
lasites formation where olivine crystals issued from 50%
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of partial melting float in between the liquid core and the
liquid silicate.

Iron meteorites are issued from parent bodies larger
than 20km and accreted less than 1 Ma after the conden-
sation of CAIs. They are the products of a high degree
of partial melting and a complete metal-silicate differen-
tiation; according to Figure 7, their parent bodies indeed
experienced a magma ocean stage.

Regarding asteroid Vesta, as it most likely has a metal-
lic core (Ermakov et al., 2013), it must have formed within
the first million years after the CAI’s condensation. If it
accreted later, the migration of liquids would have inter-
rupted its melting and left a harzburgitic (olivine-pyroxene)
center hampering metal separation. This conclusion issued
from the present model is perfectly in line with cosmo-
chemical data : indeed, based on isotope geochronological
data in eucrites, Vesta is known to have accreted very early
(e.g. Schiller et al., 2011).

4.3. Incipient differentiation in the absence of a magma
ocean

Some other meteorites such as primitive achondrites
(winonaites, acapulcoites, lodranites) are characterized by
a lower degree of partial melting and incipient differen-
tiation. In more detail, winonaites are thought to have
been heated slightly above the Fe-FeS eutectic tempera-
ture and potentially slightly above the silicate solidus (e.g.
Hunt et al., 2017), acapulcoites show signs of extraction of
small amounts of silicate and Fe-Ni-S melts, while lodran-
ites point to a maximum degree of ∼ 20% partial melting
and the removal of both a basaltic and a S-rich metallic
melts (Mccoy et al., 1997). In all these cases, the melt-
ing degree does not reach the threshold required for the
onset of a magma ocean. Even so, winonaites, lodran-
ites and accapulcoites might not be representative of the
center of their parent bodies, but of the outer parts, as
proposed by Neumann et al. (2018). Combining data in-
ferred from different chronometers together with modeling,
they concluded that acapulcoites and lodranites could be
issued from a single parent body 260 km in radius, accreted
at 1.7 Myr after CAIs with burial depth of ≈ 7 to 13 km
for acapulcoites and lodranites respectively. Interestingly,
they noted that their model is unable to fit the thermo-
chronological data with the grain coarsening law and the
1 Pas melt viscosity that they usually adopt, because the
migration of the silicate melt along with the enrichment
of 26Al disturbs the evolution of the temperature. They
found a suitable fit, either by inhibiting the partitioning of
26Al heat sources between matrix and silicate melt, or by
keeping small grain size (0.2µm), or by increasing the melt
viscosity up to 100 Pas. We note that a 260 km radius body
formed at 1.7 Myr lies at the boundary between the green
and blue areas of Fig.7, where silicate melt migration is
possible, but to slow to allow heat sources redistribution.
These regions correspond to regime III and IV, which are
compatible with lodranites and acapulcoites resppectively.

5. Key summary points

Contrary to the idea popularised by Moskovitz and
Gaidos (2011) and the series of articles published in the
following decade, we show here that melt migration is not
a process efficient enough to drain and remove 26Al heat
sources from the interiors of small bodies before their heat
sources are exhausted. This conclusion is drawn from new
considerations regarding grain size and melt viscosity.

In summary, melt percolation rate is proportional to
the ratio of matrix permeability to melt viscosity, i.e. the
ratio of the square of the matrix grain size to the melt vis-
cosity. Literature studies used ad hoc or unsuitable grain
growth laws — that overestimate grain size by more than
one order of magnitude—, associated to the canonical melt
viscosity value, 1 Pas, chosen by McKenzie (1984) to assess
melt migration rates in the context of MORB generation
at mid-oceanic spreading centres. Up to a partial melt-
ing degree of 20%, the relevant values are closer to 100µm
and 103 Pas, corresponding to a migration rate five order
of magnitude lower.

This finding underlines the importance of not assuming
constant values for properties that play a role in magma
migration, when modelling the differentiation of small bod-
ies. Other consequences concerning small body evolution
are:

1. Small bodies accreted within 1.15 million years of
CAIs condensation underwent a magma ocean stage
which permitted the formation of a metallic core.
These bodies are possible parent bodies of pallasites;

2. Melt migration and drainage of 26Al heat sources
influenced the differentiation of bodies larger than
30km radius and accreted between 1.15 and 1.5 Myr
after CAIs, leaving an olivine-pyroxene rich core over-
lain by a shallow magma ocean;

3. The parent bodies of winonaites, accapulcoites, and
lodranites are consistent with expectations for bodies
accreted more than 1.5 Myr after CAIs condensation.
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Appendix A. Two phase flow formalism

To describe the migration of the silicate melt within a
small body, we follow Šrámek et al. (2012) that extended
the two-phase flow formalism of Bercovici et al. (2001)
and Bercovici and Ricard (2003) in spherical geometry.
Here, we just recall the principal steps of this approach.
This formalism consists in averaging on a unit volume the
mass and conservation equations written for the fluid and
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the matrix. This introduces an additional variable that
describes the volume fraction of the fluid φ, which will
require a closure relation to be solved (Drew and Passman,
1998).

Appendix A.1. Conservation equations

In absence of phase change, the formulation of the mass
conservation for the fluid and the matrix are standard
(hereinafter, subscripts f and m refers to the fluid and the
matrix phases respectively; all notations are summarized
in TableA.1.):

∂φ

∂t
+∇∇∇ · [φvf ] = 0 (A.1)

and

−∂φ
∂t

+∇∇∇ · [(1− φ)vm] = 0 (A.2)

whose sum shows that the average velocity v̄ = φvf +(1−
φ)vm is solenoid:

∇∇∇ · v̄ = 0. (A.3)

The average and difference quantities of the phases are
defined as q̄ = φqf +(1−φ)qm and ∆q = qm−qf . If surface
tensions are neglected, the conservation of momentum for
the fluid and the matrix phases can be written as (see
Bercovici and Ricard, 2003, for details):

−φ [∇∇∇Pf − ρfg] + c∆v = 0 (A.4)

and

−(1−φ) [∇∇∇Pm − ρmg] +∇∇∇· [(1− φ)σm]− c∆v = 0. (A.5)

P is the pressure. The term ∇∇∇ · [(1− φ)σm] is the viscous
dissipation, where σm, the matrix deviatoric stress tensor,
is:

σm = µm

[
∇∇∇vm + [∇∇∇vm]

ᵀ − 2

3
(∇∇∇ · vm)I

]
, (A.6)

µm being the matrix viscosity. Because of the very low
fluid viscosity compared to the matrix viscosity (µf �
µm), this dissipation term is neglected in the fluid equa-
tion. The term c∆v is the Darcy term where c is the drag
coefficient between both phases that, in case of large vis-
cosity ratio between the matrix and the fluid, reduces to
(Bercovici and Ricard, 2003):

c =
µfφ

2

k(φ)
. (A.7)

k(φ) is the permeability. The term ∆P∇∇∇φ, appearing in
the matrix momentum conservation (A.5), is the inter-
facial pressure force acting between both phases. It ap-
pears in each momentum equation with a weighting coef-
ficient that is zero for the fluid momentum equation when

µf � µm.
The mass conservation equations (A.1) & (A.2) and

momentum conservation equations (A.4) & (A.5) form an
incomplete system to solve the five unknowns (Pf , Pm,vf ,vm

and φ). The conservation of energy and damage allows to
write a closure relation that, under the previous approxi-
mations, is (Bercovici et al., 2001):

∆P = −Kµm

φ
∇∇∇ · vm, (A.8)

where K is a dimensionless factor related to the geometry
of the two-phase mixture, taken equal to 1 in Bercovici
et al. (2001). The combination of momentum equations,
(1− φ)(A.4) - φ (A.5), yields to the action-reaction equa-
tion:

−∇∇∇ [(1− φ)∆P ] + (1− φ)∆ρg

+∇∇∇ · [(1− φ)σm]− c∆v

φ
= 0

(A.9)

that gives an equation for the matrix velocity after substi-
tution of ∆P from (A.8) and of ∆v from (A.3). Equation
(A.3) indicates that the average velocity is constant. In
spherical geometry, it is necessarily null, so that:

vm = φ∆v. (A.10)

In 1D spherical geometry, the equation for the matrix
velocity is thus (the full development of these equations in
spherical geometry can be found in Šrámek et al. (2012)
or in Mizzon (2015)):

k(φ)
∂

∂r

(1− φ)

r2

[
1

φ
+

4

3

]
∂r2vm
∂r

+

[
4k(φ)

r

∂φ

∂r
− µf

µm

]
vm =

k(φ)(ρ̄− ρf )g(r)

µm
.

(A.11)

g(r), the radial gravity profile, is obtain by integration of
the average density profile, ρ̄(r) which is assumed to be
only dependent on the composition —due to the size of
small bodies, the pressure dependency is neglected—:

g(r) =
4πG

r2

∫ r

0

ρ̄(x)x2dx. (A.12)

Solving equations (A.2) and (A.11) allows the calculation
of the liquid and solid fraction as a function of depth and
time. This is achieved through a finite volume discretiza-
tion and a second order Runge-Kutta method. More de-
tails can be found in Mizzon (2015).

Choosing R and τC (cf equation 3) as length and time
scales, the matrix velocity equation (A.11) reads:

∂

∂r

F

r2
∂r2vm
∂r

+

[
4

r

∂φ

∂r
− φ20R

2

φ2L2
c

]
vm = (1− φ)g (A.13)

where F = (1−φ) [1/φ+ 4/3]. r, vm and g are dimension-
less variables. g is the gravity acceleration normalised by
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Table A.1: Notations and parameters.

Symbol Quantity value unit

A Avogadro’s number 6.02214076× 1023 atom/mol
E26Al

26Al decay energya 3.12 MeV/atom
λ26Al

26Al decay constant 3.063× 10−14 s−1

m26Al
26Al molar mass 0.026 kg/mol

XAl Mass fraction of Al in H-type chondritesb 11.3× 10−3

[26Al/27Al]0 initial 26Al/27Al ratioc 5× 10−5

H enthalpy J/kg

kT thermal conductivityd 4
√
Te/T W/m/K

Q0 initial radiogenic heat power per Al kg
[
26Al/27Al

]0Aλ26AlE26Al/m26Al ' 1.77× 10−5 W/kg
Q radiogenic heat power W/kg
T temperature K
Te external temperature temperature 292 K
a grain size m
a0 initial grain sizee 10−6 m
A grain growth rate
A0 growth rate constant
g, gs gravity, surface gravity m/s2

Ea activation energy J/mol
G gravitational constant 6.67430× 10−11 m3/kg/s2

k permeability m2

k0 reference permeability m2

K non dimensional geometrical factor
Lc compaction length m
Pf,m fluid, matrix pressure Pa
r radius m
R surface radius m
Rg gaz constant 8.314 J/mole/K
s(φ) segregation function
t time s
vf,m fluid, matrix velocity m/s

µf,m fluid, matrix viscosityf ,g Pas

ρ average chondritic material densityh 3800 kg/m3

δρ solid-liquid density contrast 1000 kg/m3

σm matrix deviatoric stress tensor Pa
τD Darcy characteristic time
τC compaction characteristic time
φ fluid volume fraction, matrix porosity
aCastillo-Rogez et al. (2009), bWasson and Kallemeyn (1988), cMacpherson et al. (1995), dMonnereau et al. (2013), eKrot et al.
(2014), fDingwell et al. (2004), gHirth and Kohlstedt (2004),hConsolmagno et al. (2008)

the surface gravity gs. A dimensionless number appears in
this equation:

φ20R
2

L2
c

=
72πR2µf

a2µm
. (A.14)

It is worth noting that it does not depend on φ0.

Appendix A.2. Analytical solutions

The validity of the numerical resolution of equation
(A.13) was controlled by comparing it to an analytical so-
lution. This is done in the case of a constant porosity
profile, for which the matrix velocity equation (A.13) re-
duces to:

F
∂

∂r

1

r2
∂r2vm
∂r

− R2

L2
c

vm = (1− φ0)r, (A.15)

whose analytical solution, considering an impermeable sur-
face (vm(R) = 0), is:

vm =
(1− φ0)L2

c

R2

[
(A− r)e r

A − (A+ r)e−
r
A

Br2
− r
]
,

(A.16)

whereA = Lc

√
F/R andB = (A− 1)e1/A − (A+ 1)e−1/A.

Equation (A.15) is solved numerically by a tridiagonal in-
version method and backward Euler finite difference scheme.
As shown in Figure A.1, the numerical solution of the ve-
locity equation is solved to a precision of ∼ 10−6.

Appendix A.3. Benchmark

The numerical solution of liquid transport was bench-
marked against two drainage experiments described in (Ri-
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Figure A.1: a: Analytical solution of the matrix velocity for a con-
stant porosity profile (eqn A.16), with parameters: R = 263 km,
φl = 0.1, ρ = 3260 kg/m3, ρf = 2900 kg/m3, Lc = 17.3 km and
a number of radial levels nr = 1000. b: Relative error between
the analytical solution and the numerical solution computed by a
tridiagonal inversion and a backward Euler finite difference scheme.

card et al., 2001). The separation between a low viscos-
ity fluid and a highly viscous matrix, under the effect of
gravity, is computed for an imposed constant initial liquid
fraction. The authors used a slightly different formalism
to which we adapted our code to allow the comparison
of the experiments (see Mizzon, 2015, for more details).
Figure A.2 shows this comparison. The profiles of liquid
fractions and the time evolution calculated here appear
consistent with the numerical simulation of Ricard et al.
(2001). The dependency of the flow regime on the R/Lc

ratio is reproduced. When the size of the system is large
compared to the compaction length, compaction waves are
observed and when the size of the system is comparable
to the compaction length, the liquid fraction is always a
monotonically decreasing function of depth.
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