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Abstract

Offshore wind turbines (OWT) are subject to uncertain environmental conditions (wind and tidal),
making long-term investment decisions riskier. To study the impact of the environmental uncer-
tainties on output variables of interest, we propagate them through costly multi-physics numerical
models, simulating the OWT. Two main frameworks are possible to retrieve the random variables
of interest. First, an efficient sampling method can improve the Monte Carlo reference convergence
rate. Second, a regression model can be fitted over a few samples before using it as inexpensive ap-
proximation of the numerical model. Some advanced methods offer a sequential improvement of this
strategy by iteratively adding samples enhancing the regression model. In this work, our aim is to per-
form a numerical comparison between various propagation methods to estimate the expected value
of the mechanical loads of an OWT over environmental random variables. Additionally, theoretical
equivalences between Bayesian quadrature and Kernel herding using maximum mean discrepancy
shall be verified on an industrial use-case.

1 Introduction

Offshore wind turbine (OWT) new technologies tend to reach for more difficult and uncertain environ-
mental conditions. This industry needs probabilistic tools to manage risks associated with OWT opera-
tion and maintenance. For this paper, the OWT behavior is computed by a costly multi-physics numerical
simulation code developed by EDF R&D (Milano et al. 2019) and deployed on a high-performance com-
puter facility.

To propagate the various sources of uncertainties through such numerical models, sampling methods
such as low-discrepancy sequences (e.g., Sobol’ sequences) were proven to improve the Monte Carlo ref-
erence convergence rate. An alternative strategy is to emulate the costly function by a regression model.
For instance, using a Gaussian process regression model provides an estimation of the regression error
represented by the variance of the Gaussian process conditioned to the learning sample. This property
is extensively exploited by adaptive methods for optimization, rare event, and quadrature estimation to
iteratively pick samples with respect to a specific goal.

Uncertainty propagation techniques have been widely applied to OWT simulation codes to study
the mechanical fatigue damage of the structure in a central tendency study (Müller & Cheng 2018,
Van den Bos 2020), a sensitivity analysis (Velarde et al. 2019), a static reliability analysis (Zwick &
Muskulus 2015, Teixeira, O’Connor, Nogal, Nandakumar, & Nichols 2017, Huchet 2019, Slot, Sørensen,
Sudret, Svenningsen, & Thøgersen 2020, Wilkie & Galasso 2021) or a time-dependent reliability analysis
(Abdallah, Lataniotis, & Sudret 2019, Lataniotis 2019). Since the environmental conditions are one of
the main sources of uncertainty, properly quantifying the site-specific environmental joint distribution is
essential to ensure a relevant uncertainty propagation (Dimitrov et al. 2018). Dealing with a sequence
of numerical approximations, specific approaches can be used to refine the mechanical model in a smart
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Table 1: List of abbreviations.
BQ Bayesian quadrature
DoE design of experiments
GP Gaussian process
KH Kernel herding
MMD maximum mean discrepancy
OWT offshore wind turbine
QoI quantity of interest
RKHS reproducing kernel Hilbert space
SP Support points

way (Mell et al. 2021). Probabilistic designs of OWT also show a large industrial interest applying
the so-called reliability-based design optimization method (Cousin 2021, Stieng & Muskulus 2020). As
a remark, note that, from the OWT asset management viewpoint, another important output variable of
interest might be the annual energy production.

This work presents a numerical comparison of different methods to estimate the expected value of
the mechanical loads of an OWT over environmental random variables. Then, theoretical equivalences
between Bayesian Quadrature (Briol et al. 2019) and kernel-based sampling methods are studied.

This paper will first give an overview of the industrial problem; then introduce kernel-based sampling
methods and adaptive sampling methods for central tendency estimation; before presenting a numerical
study comparing their performance on two analytical toy-cases and one industrial use-case.

2 Wind turbine fatigue damage estimation

The first variable of interest studied is the damage, a physical measure of the effects of material fatigue
accumulated during the OWT operation. Resulting from a large number of stress cycles of magnitude
smaller than the elastic limit, it can lead to a material fracture and crack growth. Standards give recom-
mendations for OWT design regarding the fatigue phenomenon (DNV-GL 2016a), also called “fatigue
limit states”. More precisely, the damage studied is a scalar quantity, computed by post-processing the
output of a 10-minutes simulation using the Rainflow Counting method associated with Miner’s rule
(Dowling 1972). The 10-minutes damage is then extrapolated to the OWT’s life span using a simple
cross-multiplication rule.

2.1 Wind turbine numerical simulation model

EDF R&D has developed a computer simulation chain composed of two simulation tools: the first one,
called TurbSim (developed by NREL (Jonkman 2009)) is a stochastic wind generator; the second one,
called DIEGO (for “Dynamique Intégrée des Éoliennes et Génératrices Offshore”, developed by EDF
R&D (Milano et al. 2019)), is a multi-physics code describing the hydro-aero-servo-elastic behavior of
an OWT. As the wind generator is a stochastic code (i.e., two realizations from the same input sample give
two different output values), the standards suggest repeating each simulation a finite number of times and
averaging the realizations (Slot et al. 2020). For the sake of simplicity, our study will first consider the
numerical simulation code to be deterministic by fixing the pseudo-random seed. Since 𝑔 is composed
of two chained models, the input variables can be divided into two independent groups: environmental
random vector X ∈ DX ⊂ R𝑝 and system random vector Z ∈ DZ ⊂ R𝑞. The block diagram in Figure 1
describes the chain of numerical models implicated to assess the damage on the OWT structure (standards
recommend to simulate over a period of 10 minutes).

Practically, the OWT modeled is an operating bottom fixed 2.3MW from an EDF wind field. This
work is part of the HIPERWIND European projet for which this OWT model leads to successful results
between three independent simulation codes (Capaldo et al. 2021). Obviously, the uncertainty quantifi-

2



Figure 1: Chained simulation model for OWT damage assessment.

Table 2: Marginals of the environmental joint distribution.

Mean wind speed 𝑈 Weibull 10-min. average horizontal wind speed at 10m
Turbulence 𝜎𝑠 Log-normal 10-min. standard deviation of the wind speed
Significant wave height 𝐻𝑠 Weibull Significant wave height per hour
Peak wave period 𝑇𝑝 Log-normal Peak 1-hour spectral wave period
Wind-wave misalignment 𝛽 von Mises Difference between wind and wave directions

cation of the input variables is also a critical step. As this model is somehow costly to evaluate (about 15
minutes per run), for a given simulation budget, the uncertainty propagation quality relies on the selected
design of numerical experiments to represent the input uncertainty.

2.2 Input variables uncertainty quantification

The inputs are grouped into two random vectors X and Z considered independent, respectively with the
joint probability density functions 𝑓X(·) and 𝑓Z(·). In order to quantify this uncertainty, onsite environ-
mental data over several years of operation is available. This uncertainty quantification step should be as
much as possible site-specific. However, the proximity to the shore of this site makes the definition of
the dependency structure within the environmental random vector X challenging. Ultimately, using the
marginal distributions described in Table 2, one should be able to define a parametric model of the joint
environmental distribution as a product of conditional distributions:

𝑓𝑈,𝜎𝑠 ,𝐻𝑠 ,𝑇𝑝 ,𝛽 (𝑈,𝜎𝑠, 𝐻𝑠,𝑇𝑝, 𝛽) = 𝑓𝑈 (𝑈) 𝑓𝜎𝑠 |𝑈 (𝜎𝑠 |𝑈) 𝑓𝐻𝑠 |𝑈 (𝐻𝑠 |𝑈) 𝑓𝑇𝑝 |𝐻𝑠
(𝑇𝑝 |𝐻𝑠) 𝑓𝛽 |𝑈 (𝛽 |𝑈) .

(1)

To avoid an intricate parametric fit of the environmental random vector, this paper will explore sampling
methods based on empirical distributions (e.g., a large i.i.d. sample coming from measured data). Fur-
thermore, various system parameters may also present uncertainties. When studying the damage output
variable, most sensitivity analysis studies (Huebler et al. 2017) outline the soil properties over material
properties. However, according to Drexler & Muskulus (2021), fatigue computation parameters (such as
the Wöhler curve parameters) are also important.

2.3 Output quantity of interest

The damage at specific nodes of the structural mesh (over the intended OWT life span) is our variable
of interest. On this random variable, many statistics can be estimated such as moments, quantiles, and
threshold exceedance probabilities. The standards suggest averaging this damage over the environmental
conditions leading to the so-called “global mean damage”. Since the two random vectors X and Z are
considered as independent, the transfer theorem can be written over X conditionally to Z:

E[𝑌 |Z = z] = E[𝑔(X,Z) |Z = z]

=

∫
DX

𝑔(x, z) 𝑓X(x) dx = 𝜙(z) .
(2)
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The standards recommend estimating the global mean damage by computing realizations of the dam-
age for a set of inputs discretized over a regular grid (see, e.g., the design load cases defined in Section
4.4 in (DNV-GL 2016b). Yet, regular grids are known to provide poor probabilistic design of experi-
ments for any input dimension higher than one. Once this quantity is estimated over the domain DX, one
could define a reliability analysis problem, which consists of estimating the exceedance probability of a
given threshold over the domain DZ.

3 Sampling methods for design of experiments and uncertainty propaga-
tion

Let us denote by X𝑛 =
{
x(1) , . . . ,x(𝑛)} ∈ DX ⊂ R𝑝 the 𝑛-sample of input realizations, also called input

“design of experiments” (DoE) or simply design. Considering a costly function 𝑔 : DX → R, a first goal
of the following DoE methods is to explore the input space in a space-filling way (Franco 2008) (e.g., to
build a generic metamodel of 𝑔). However, this work will exploit these methods with a specific purpose
in mind: to numerically integrate 𝑔 against the probability density function 𝑓X which relates to a central
tendency estimation of an output random variable 𝑌 = 𝑔(X), resulting from an uncertainty propagation
step.

In the recent literature, (Van den Bos 2020) applies a first family of numerical integration methods
based on tensor products of quadrature rules to a similar industrial OWT use case. These quadrature
rules directly generate a set of pairs of nodes (i.e., points) and associated weights. The weighted sum
of the observations at the nodes gives an approximation of the integral. Unfortunately, some of these
techniques are limited to inputs without any strong dependency structure and will not be studied in this
paper.

Alternatively, sampling methods rely on generating a set of points and approximating the integral
by the arithmetic mean of the output realizations (uniform weights). Among them, low-discrepancy se-
quences (e.g., Sobol’ or Halton sequences) are known to improve the reference Monte Carlo convergence
rate and will be used as a deterministic reference method in the upcoming numerical experiments.

Recently, other sampling methods based on the notions of discrepancy between distributions in a
kernel-based functional space were used to approximate integrals Pronzato & Zhigljavsky (2020). More
precisely, one can mention the use of the distance called the maximum mean discrepancy (MMD) as a
core ingredient of advanced sampling methods such as the Support points by Mak & Joseph (2018) and
the Kernel herding by Chen et al. (2010). The MMD is convenient to manipulate since it can simply
be expressed using the underlying kernel arbitrarily arbitrary chosen (note that it can be also used for an
advanced sensitivity analysis such as shown in Da Veiga (2015)). Let us setup the introduction of the
Kernel herding and Support points methods by briefly defining a few mathematical concepts.

Reproducing kernel Hilbert space. Assuming that 𝑘 is a symmetric and positive definite function
𝑘 : DX × DX → R, latter called a “reproducing kernel” or simply a “kernel”. A reproducing kernel
Hilbert space (RKHS) is an inner product space H(𝑘) of functions 𝑔 : DX → R with the following
properties:

• ⟨𝑔, 𝑘 (·,x)⟩H(𝑘) = 𝑔(x), ∀x ∈ DX,∀𝑔 ∈ H (𝑘)

• 𝑘 (·,x) ∈ H (𝑘), ∀x ∈ DX.

Notice that for a defined reproducing kernel, a unique RKHS exists and vice versa.

Potential. For any target distribution 𝜇, its potential (also called “kernel mean embedding”) associated
with the kernel 𝑘 is defined as:

𝑃𝜇 (x) :=
∫
DX

𝑘 (x,x′)d𝜇(x′). (3)
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Let us also define the potential of a discrete distribution 𝜁𝑛 =
∑𝑛

𝑖=1 𝑤𝑖𝛿(x(𝑖) ), 𝑤𝑖 ∈ R (weighted sum of
Dirac distributions at the design points X𝑛) associated with the kernel 𝑘 as:

𝑃𝜁𝑛 (x) =
𝑛∑︁
𝑖=1

𝑤𝑖𝑘 (x,x(𝑖) ). (4)

A possible interpretation is that the closer theses potentials gets, the more the design X𝑛 brings in average
a relevant information to represent the target distribution 𝜇 (and therefore to compute a quantity such as
Eq. (2)). The following scalar product can be used to bound the quadrature error committed by using the
design X𝑛 by writing the Cauchy-Schwarz inequality (see in Briol et al. (2019)):

𝑛∑︁
𝑖=1

𝑤𝑖𝑔(x(𝑖) ) −
∫
DX

𝑔(x)d𝜇(x) =
〈
𝑔,

(
𝑃𝜁𝑛 (x) − 𝑃𝜇 (x)

)〉
H(𝑘) . (5)

Maximum mean discrepancy. A recent metric of discrepancy and quadrature error is offered by the
MMD. This distance between two distributions 𝜇 and 𝜁 is given by the maximal quadrature error com-
mitted for any function within a defined RKHS:

MMD𝑘 (𝜇, 𝜁) := sup
∥𝑔 ∥H(𝑘) ≤1

����∫
DX

𝑔(x)d𝜇(x) −
∫
DX

𝑔(x)d𝜁 (x)
���� . (6)

Using the Cauchy-Schwartz inequality, one can demonstrate that MMD𝑘 (𝜇, 𝜁) =


𝑃𝜇 (x) − 𝑃𝜁 (x)




H(𝑘) .

Moreover, kernels are called characteristic when the following implication is true , MMD𝑘 (𝜇, 𝜁) = 0 ⇒
𝜇 = 𝜁 .

3.1 Kernel herding

In this section we introduce the Kernel herding (KH) (Chen et al. 2010), a sampling method which
intends to minimize a squared MMD by adding points iteratively. Considering a design X𝑛 and its
corresponding discrete distribution 𝜁𝑛 = 1

𝑛

∑𝑛
𝑖=1 𝛿(x(𝑖) ), a KH iteration can be written as an optimization

over the point x(𝑛+1) ∈ DX of the following criterion:

x(𝑛+1) ∈ argmin
x∈S

(
𝑃𝜁𝑛 (x) − 𝑃𝜇 (x)

)
(7)

considering a kernel 𝑘 and a given set S ⊆ DX of candidate points (e.g., a fairly dense finite subset with
size 𝑁 ≫ 𝑛 that emulates the target distribution). This compact criterion derives from the expression of
a descent algorithm with respect to x𝑛+1 (see Pronzato & Rendas (2021) for the full proof).

In practice, 𝑃𝜇 (x) can be expressed analytically in the specific cases of input distribution and kernel
(e.g., for independent uniform or normal inputs and a Matérn 5/2 kernel (Fekhari et al. 2022)), making
the computation very fast. Alternatively, the potential can be evaluated on an empirical measure 𝜇𝑁 ,
substituting 𝜇, formed by a dense and large-size sample of 𝜇 (e.g., the candidate set S). 𝑃𝜇 (x) is then
approached by 𝑃𝜇𝑁

(x) = (1/𝑁) ∑𝑁
𝑗=1 𝑘 (x,x′( 𝑗) ), which can be injected in Eq. (7) to solve the following

optimization:

x(𝑛+1) ∈ argmin
x∈S

©­«1
𝑛

𝑛∑︁
𝑖=1

𝑘 (x,x(𝑖) ) − 1
𝑁

𝑁∑︁
𝑗=1

𝑘 (x,x′( 𝑗) )ª®¬ . (8)

When no observation is available, which is the common situation at the design stage, the kernel
hyperparameters (e.g., correlation lengths) have to be set to heuristic values. MMD minimization is
quite versatile and was explored in more details by Teymur et al. (2021) or Pronzato (2022), however the
method is very sensitive to the kernel chosen and its tuning. Support points is a closely related method
with a more rigid mathematical structure but interesting performances.
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3.2 Greedy support points

Support points (SP) Mak & Joseph (2018) are such that their associated empirical distribution 𝜁𝑛 has
minimum energy distance with respect to a target distribution 𝜇. This criterion can be seen as a particular
case of the MMD for the characteristic “energy-distance” kernel Székely & Rizzo (2013) given by:

𝑘𝐸 (x,x′) = 1
2
(∥x∥ + ∥x′∥ − ∥x − x′∥) . (9)

Compared to more heuristic methods for solving quantization problems, Support points benefit from
the theoretical guarantees of MMD minimization in terms of convergence of 𝜁𝑛 to 𝜇 as 𝑛 → ∞. At first
sight, this optimization problem seems intractable, although Mak & Joseph (2018) propose to rewrite
the function as a difference of convex functions in X𝑛, which yields a difference-of-convex program. To
simplify the algorithm and keep an iterative design, a different approach will be used here. At iteration
𝑛 + 1, the algorithm solves greedily the MMD minimization between 𝜁𝑛 and 𝜇 for the candidate set S:

x(𝑛+1) ∈ argmin
x∈S

(
1
𝑁

𝑁∑︁
𝑗=1

∥x − x′( 𝑗) ∥ − 1
𝑛 + 1

𝑛∑︁
𝑖=1

∥x − x(𝑖) ∥
)
. (10)

For this criterion, one can notice that it is almost identical to the KH one in Eq. (7) when taking as kernel
the energy-distance kernel given in Eq. (9). These two iterative methods were exploited in Fekhari et al.
(2022) to study new ways to construct a validation set for machine learning models by conveniently
selecting a test set for a better model performance estimation.

So far, the methods previously mentioned generate an input DoE which is used to approximate the
integral given in Eq. (2) by an arithmetic mean of the function observation on this DoE (i.e., uniformly
weighted observations). One can notice that the DoE construction can be done without using any output
observation (i.e., without any call to the function 𝑔). Other approaches can take advantage of the pro-
gressive knowledge acquired sequentially on 𝑔 to select the following points in the DoE. These methods
are sometimes called “active learning” or “adaptive strategies” and, for a large panel of them, rely on a
Gaussian process (or Kriging) metamodel sequentially updated.

4 Bayesian quadrature

Before introducing active strategies, let us define the framework around Bayesian Quadrature (BQ)
Huszár & Duvenaud (2012). For the sake of clarity, a few supplementary notations are introduced here-
after. The objective is to estimate the following quantity of interest, denoted by 𝑎𝜇 (𝑔), integrating a
costly function with scalar output 𝑔 : DX → R over a probability measure 𝜇:

𝑎𝜇 (𝑔) =
∫
DX

𝑔(x)d𝜇(x) . (11)

Note that, from a general point of view, this quantity can be different than an expected value by compos-
ing 𝑔 with another function (e.g., other moments, quantiles, exceedance probabilities).

A common approach is to first approximate the costly function 𝑔 by a cheap-to-run metamodel (or
surrogate model) 𝜉 before computing a fine estimation of the quantity. Thus, approximating the true
function introduces a metamodeling error, carried out when using the metamodel to estimate the quantity
𝑎𝜇 (𝑔). Let us assume, adopting a Bayesian point of view, that 𝜉 is a stochastic process describing our
uncertain knowledge about the true function 𝑔. Let 𝜉 be a Gaussian process (GP) prior with mean 0
(to ease the calculation) and covariance kernel 𝑘 . The posterior 𝜉𝑛 = (𝜉 |y𝑛) ∼ GP(𝜂𝑛, 𝑠2

𝑛) has been
conditioned on the observations y𝑛 =

[
𝑔
(
x(1) ) , . . . , 𝑔 (

x(𝑛) ) ]⊤ at the input design X𝑛 and is fully defined
by the so-called Kriging equations (see, e.g., Dubourg (2011)):

𝜉𝑛 :
{
𝜂𝑛 (x) = k⊤

𝑛 (x)K−1
𝑛 y𝑛

𝑠2
𝑛 (x) = 𝑘𝑛 (x,x) − k⊤

𝑛 (x)K−1
𝑛 k𝑛 (x)

(12)
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Figure 2: Bayesian quadrature on a one-dimensional case.

where k𝑛 (x) designates the column vector gathering the covariance kernel evaluations [𝑘𝑛 (x,x(1) ), . . . ,
𝑘𝑛 (x,x(𝑛) )] and K𝑛 is the (𝑛 × 𝑛) variance-covariance matrix such as the (𝑖, 𝑗)-element is given by
{K𝑛}𝑖, 𝑗 = 𝑘𝑛 (x(𝑖) ,x( 𝑗) ).

Bayesian quadrature, sometimes referred to as “probabilistic integration” (Briol et al. 2019) is a
family of numerical integration methods well adapted to costly integrand. It does not only provide an
estimator, but a full posterior distribution on the integral value which can be either used to optimize
weights on the current observations or to iteratively decide where one needs to add points to a given
design. Then, the quantity of interest in Eq. (11) expressed on 𝜉𝑛 becomes a random variable (a.k.a., the
posterior distribution):

𝑎𝜇 (𝜉𝑛) =
∫
DX

(𝜉 (x) |y𝑛)d𝜇(x) . (13)

Figure 2 provides a one-dimensional illustration of the Bayesian quadrature of an unknown function
(dashed black curve) against a given input distribution (grey histogram of a normal distribution). For
an arbitrary DoE, one can fit a GP model, interpolating the function observations (black crosses). Then,
multiple trajectories of this conditioned GP are drawn (orange curves) whilst its mean function, also
called “predictor”, is represented by the red curve. Therefore, the input distribution is propagated through
the conditioned GP to obtain the posterior distribution represented on the right plot (brown curve). Still
on the right plot, remark how the mean of the posterior distribution (brown line) is closer to the reference
output expected value (dashed black line) than the arithmetic mean of the observations (black line).

4.1 Optimal weights for quadrature

As exposed in Huszár & Duvenaud (2012), the expected value of the posterior distribution minimizes a
Bayes risk with a squared loss (see Bect et al. (2012)).

Working with GP conveniently allows us to express in a closed form the first moments of the posterior
distribution (in brown in Figure 2). For instance, its expected value can be written using the expression
of the Kriging predictor given in Eq. (12) and the Fubini-Lebesgue theorem:

E
[
𝑎𝜇 (𝜉𝑛)

]
=

∫
DX

𝜂𝑛 (x)d𝜇(x) =

[∫
DX

k⊤
𝑛 (x)d𝜇(x)

]
K−1

𝑛 y𝑛

= 𝑃𝜇 (X𝑛)K−1
𝑛 y𝑛,

(14)
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where 𝑃𝜇 (X𝑛) is given by the row vector of potentials
[∫

𝑘𝑛 (x,x(1) )d𝜇(x), . . . ,
∫
𝑘𝑛 (x,x(𝑛) )d𝜇(x)

]
.

Immediately, the so-called Bayesian quadrature estimator appears to be as a simple linear combination
of the observations by taking the row vector wBQ = 𝑃𝜇 (X𝑛)K−1

𝑛 , designated as “optimal weights” for the
quadrature.

Another way to recover this result is to minimize the MMD between a target distribution 𝜇 and a
discrete distribution 𝜁𝑛 w.r.t. the weights associated with 𝜁𝑛 (Briol et al. 2019).

As a remark, note that theses weights can be computed for any arbitrary kernel 𝑘 , without needing
any output observation. To illustrate this result, Figures 3 and 4 represent a bivariate random mixture
with a nonlinear dependency structure (iso-probability contours of its probability density function in dark
grey). On Figure 3 are plotted two samples: first, a regular grid in [0,1]2 (red dots); second, a Kernel
herding sample of the target distribution (blue crosses). Unsurprisingly, the regular grid is not suited for
sampling any non-uniform distribution. On Figure 4, the only difference is that the markers sizes are
proportionate to the optimal weights wBQ computed for both samples (for an isotropic Matérn kernel
with regularity parameter 5/2). After all, for the regular grid, the weights of some points are so small
that they disappeared. Meanwhile, most of the total weight spreads between six points among twenty-
five. This extreme example highlights the limits of regular grids when trying to sample a non-uniform
distribution and how the optimal weights aim at enhancing the representativity of any DoE.
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Figure 3: Two samples of a random mixture (grey contours) before applying weights, built by regular
grid (red dots) and Kernel herding (blue crosses).

4.2 Sequential Bayesian quadrature criterion

An alternative way to building the most relevant input sample for quadrature is to exploit the output
observations so as to iteratively select the next design points. Usually, this smart selection procedure
relies on a sequentially updated GP conditioned to the observations coupled with a dedicated “acquisition
function” (or “learning criterion”) outlining the following point to be added to the design. This section
mentions adaptive strategies to estimate the central tendency of an output random variable.

Assuming that (X𝑛,y𝑛) is an initial design representative of the input distribution (e.g., generated by
a low discrepancy sequence), various criteria can be imagined to select the next point x𝑛+1 to be added to
the design using the conditioned GP 𝜉𝑛. Considering a learning function A, each point selection can be
done by a greedy optimization on a fairly dense finite sample S ⊂ DX with size 𝑁 ≫ 𝑛 that represents
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Figure 4: The same samples as Figure 3 with markers’ sizes proportional to optimal weights wBQ.

the distribution 𝜇 as follows:

x𝑛+1 ∈ argmax
x∈S

A (x| (X𝑛,y𝑛)) . (15)

To do so, various learning functions can be considered. Most of them rely on minimizing the posterior
variance (Osborne, Garnett, Ghahramani, Duvenaud, Roberts, & Rasmussen 2012, Huchet 2019), which
can be addressed as a Sequential Bayesian quadrature (SBQ). The posterior variance writes:

Var
[
𝑎𝜇 (𝜉𝑛)

]
=

∫
DX

∫
DX

𝑘𝑛 (x,x′)d𝜇(x)d𝜇(x′). (16)

Ultimately, note that this posterior variance does not depend on the output observations, but only on
the location of the design points. Then, this adaptive method offers an iterative design without taking
into account any output observation, which can be a desirable property in practice. Therefore, one could
then argue that these methods are not properly adaptive, however, updating the kernel’s hyper-parameters
tailors the GP to the unknown function by using observations. Finally, Huszár & Duvenaud (2012) also
show that SBQ is equivalent to applying the optimal weights obtained previously for a Kernel kerding
design.

5 Numerical results

This section presents numerical results computed on two different analytical toy-cases, respectively in
dimension 2 (toy-case 1) and dimension 5 (toy-case 2), with easy to evaluate functions 𝑔(x) and associ-
ated input distributions. Therefore, we could precisely compute reference values for each toy-case with a
large Monte Carlo sample (𝑀 = 107). To estimate the expected values of both toy-cases, designs built by
Sobol’ sequences, Support points and Kernel herding were used. We compared the performances of each
methods for both uniform and optimally weighted estimators. All numerical experiments were computed
with the Python package OpenTURNS for uncertainty quantification (Baudin et al. 2017), while the two
kernel-based methods were implemented in an open-source Python package named otkerneldesign1.
Finally, the Kernel herding and Support points were applied to the industrial use-case in the last para-
graph.

1https://github.com/efekhari27/otkerneldesign
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5.1 Toy-cases

Toy-case 1. 𝑔1(x) = 10exp
(
−25

∑2
𝑖=1(𝑥𝑖 − 0.5)2

)
also referred to as the “Gaussian peak function2”,

with an input distribution which density is represented by the iso-probability contours in Figure 3.

Toy-case 2. 𝑔2(x) =
∏5

𝑖=1
|4𝑥𝑖−2 |+𝑎𝑖

1+𝑎𝑖 ; a = {1,2,3,4,5} also referred to as “G-Sobol2” function, with a
normal input distribution N(0.5, I5).

5.2 Results and analysis

The toy-cases results obtained in this section are presented in Figure 5 and Figure 6. Each figure illus-
trates the expected value estimation for increasing sample sizes (in log scale), knowing that the reference
values are represented by the black horizontal lines. The two kernel-based methods are compared to a
quasi-Monte Carlo method, widely used for numerical integration (solid lines). Additionally, optimal
weights introduced in Section 4.1 are computed for each numerical experiment (dashed lines). Here-
after, the Support points mostly shows better performances whilst Kernel herding surprisingly suffers
from this high-dimensional toy-case. Remember that the KH requires to choose a kernel, which offers
versatility but reduces its robustness. With a different kernel, KH might perform better but this tuning
is hard to set up without prior information. Undoubtedly, the association the optimal weights with any
sampling method consequently improves the estimation performances. The optimal weights are partic-
ularly relevant for small samples since they have a bigger added value and are easier to compute (the
variance-covariance squared matrix can be ill-conditioned and harder to inverse when its size increases).

For the industrial application, the QoI studied is the expected value of the damage (e.g., at the OWT
mud-line) against the environmental conditions (e.g., empirically modeled by a large i.i.d. sample com-
ing from measured data). Each realization is computed on a 10 minutes TurbSim-DIEGO simulation
then extrapolated to the OWT life span. Figure 7 illustrates the mean damage estimation for increasing
samples sizes (up to 𝑛 = 103). We take as reference a Monte Carlo sample (𝑀 = 2000) on which we
compute a reference mean (horizontal black line). The convergence of the Monte Carlo mean estimator
(in grey) with its corresponding 95% confidence interval (in light grey) is compared with kernel-based
methods introduces earlier. Both Support points (in orange) and Kernel herding (in blue) converge faster
than Monte Carlo in this case. One can notice that the Monte Carlo confidence interval for small sam-
ple sizes is quite large while KH and SP are fully deterministic which guaranties a repeatability of the
estimation. If the optimal weights were very efficient on the toy-cases, their effect on this case is negli-
gible. This might be due to the properties of the function or the complex input distribution. In fact, the
empirical damage distribution is heavily-tailed, making its mean estimation harder than the toy-cases.

6 Conclusion

Wind energy infrastructures are designed to be long-term assets facing various risks. In this work, the
proposed approach relies on physical simulation models of wind turbines and their environment to per-
form the propagation of uncertain inputs. Directly using environmental data as an empirical probabilistic
distribution, the first goal is to quickly estimate the expected value of the output fatigue damage in the
structure.

This work contributes to solving this issue in several ways: the industrial problem definition and the
deployment of a numerical simulation model on a high-performance facility; the study of kernel-based
sampling methods and their implementation in a dedicated Python package, called otkerneldesign;
the illustration of theoretical equivalences between methods of Sections 3 and 4 in analytical toy-cases
and an application on the OWT industrial use-case.

Subsequently, with a method for fast central tendency estimation, this work should focus on the
next steps of the industrial use-case. Among other ideas, our upcoming work could first continue with

2http://www.sfu.ca/ ssurjano/gaussian.html
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Figure 5: Expected value assessment for the toy-case 1 with Sobol’ sequences, Support points and Kernel
herding design.
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a reliability analysis of the system together with intending a reliability-oriented sensitivity analysis by
adapting recent kernel-based sensitivity indices Marrel & Chabridon (2021) to the sensitivity of a failure
probability.
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