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Abstract 

Speed/accuracy trade-off is a ubiquitous phenomenon in motor behavior, which has been 

ascribed to the presence of signal-dependent noise in motor commands. Although this 

explanation can provide a quantitative account of many aspects of motor variability, including 

Fitts’ law, the fact that this law is frequently violated, e.g. during the acquisition of new motor 

skills, remains unexplained. Here, we describe a principled approach to the influence of noise 

on motor behavior, in which motor variability results from the interplay between sensory and 

motor execution noises in an optimal feedback-controlled system. In this framework, we first 

show that Fitts’ law arises due to signal-dependent motor noise when sensory (proprioceptive) 

noise is low, e.g. under visual feedback. Then we show that the terminal variability of 

nonvisually guided movement can be explained by the presence of signal-dependent 

proprioceptive noise. Finally, we show that movement accuracy can be controlled by opposite 

changes in signal-dependent sensory and motor noise, a phenomenon which could be ascribed 

to muscular cocontraction. As the model also explains kinematics, kinetics, muscular, and 

neural characteristics of reaching movements, it provides a unified framework to address motor 

variability. 

 



Variability in performance is an ubiquitous phenomenon in motor behaviors (Woodworth, 

1899; Fitts, 1954). It reflects the corruption of movement planning and execution processes by 

noise in sensory feedback and motor commands (Schmidt et al., 1979; Meyer et al., 1988; Hoff 

& Arbib, 1993; Harris & Wolpert, 1998; Todorov & Jordan, 2002; van Beers et al., 2002, 2004; 

Todorov, 2005). Both types of noise influence the accuracy of motor acts, but in a seemingly 

different way. On the one hand, uncertainty in sensory signals directly translates into 

performance variability (van Beers et al., 2002). Noise in sensory inputs is the main determinant 

of precision in smooth pursuit eye movements (Osborne et al., 2005). Furthermore, statistics of 

sensory noise are taken into account in motor planning (Baddeley et al., 2003). On the other 

hand, the effect of noisy motor commands is more versatile. The presence of signal-dependent 

motor noise (i.e. noise whose variance increases with the size of the commands) results in a 

speed/accuracy trade-off: faster movements require larger commands, and thus endure more 

noise and more variability (Meyer et al., 1988; Harris & Wolpert, 1998). Yet, increased 

muscular cocontraction during movement results in more variable command signals 

(electromyograms, joint torques; Osu et al., 2004) as expected from the presence of signal-

dependent noise, but also improved movement accuracy (Laursen et al., 1998; Seidler-Dobrin 

et al., 1998; Gribble et al., 2003; Osu et al., 2004; Visser et al., 2004; Sandfeld & Jensen, 2005; 

van Roon et al., 2005). 

 This “speed/accuracy” paradox is a central, but unexplained issue. The role of cocontraction 

and the fact that improved accuracy can be observed in the absence of visual feedback (Seidler-

Dobrin et al., 1998; Osu et al., 2004) suggest that proprioceptive feedback could play a role in 

the control of movement accuracy. In this article, we show in a model that the influence of noise 

in proprioceptive feedback could be a key factor to explain the “speed/accuracy” paradox in 

human motor behavior. 
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Materials and Methods 

General principle 

We considered the dynamical systems approach to the description of motor control (Wolpert & 

Ghahramani, 2000; Todorov & Jordan, 2002; Saunders & Knill, 2004; Guigon et al., 2007, 

2008). In this framework, motor control is viewed as the mastering of a state-dependent 

dynamics in the presence of state- and control-dependent noise (Todorov, 2005). We used the 

structure of noise-induced variability to probe the nature and influence of noise on motor 

control. 

 To illustrate, we consider a simple example: an inertial point which can move along a line, 

actuated by a force generator (Fig. 1A). The force generator transmits a control input u(t) (in 

fact a force), which is translated into a displacement x(t). The goal is to find the control which 

displaces the mass from position x0 at time t0 to position xf at time tf, with two constraints: 1. the 

control is noisy (presence of motor noise); 2. the state of the inertial point (position x(t), 

velocity) is not known, but can only be observed (y(t)) through a noisy sensor (presence of 

sensory noise), and estimated (estimation is denoted x^(t)). At each time t, the control is 

calculated as a function of the estimated distance to the goal xf - x^(t). Over repeated trials, the 

resulting trajectory will be each time different (Fig. 1B), reflecting the structure and strength of 

sensory and motor noises. The set of trajectories xi(t) (t  [t0;tf], i = 1 … N; N number of trials) 

can be analyzed to reveal the structure of variability (e.g. time course of variance, final 

variability, …) in order to compare with experimental data (Gordon et al., 1994a; van Beers et 

al., 2004). This example contains basic components for the study of motor variability. 

 A classical solution to this problem can be obtained using a stochastic optimal feedback 

controller (Todorov & Jordan, 2002), i.e. a controller which simultaneously minimizes the size 
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of the control (effort) and the distance to the goal (error), taking into account the statistics of 

sensory and motor noise, coupled with an optimal state estimator (a Kalman filter, which 

provides an optimal state estimate based on efference copy of motor commands and sensory 

feedback). The rationale for this choice has been thoroughly elaborated in recent publications 

(Todorov & Jordan, 2002; Scott, 2004; Todorov, 2004). Briefly, optimality provides an efficient 

solution to kinematic and muscular redundancy, and stochastic feedback control guarantees 

flexible and versatile compensations for internal and external perturbations (noise, target 

displacement, …; Todorov & Jordan, 2002). A drawback of this approach arises from the 

minimization of a mixed error/effort cost function. Such a minimization requires the setting of 

parameters which weight the contribution of state errors (position, velocity, force, ...) and effort 

in the cost function. Since different settings lead to different behaviors, such a model cannot 

provide a univocal description of motor control. To circumvent this difficulty, we used a slightly 

different model which treats error and effort separately (Guigon et al., 2007a, 2008). We have 

shown previously that this model can properly address redundancy (Guigon et al., 2007a), and 

motor variability (Guigon et al., 2008). 

Central idea 

The goal of our work is to address speed/accuracy trade-off in motor behavior. But it has not 

yet been shown that optimal feedback control can address Fitts’ law. Previous studies have 

shown that Fitts’ law can arise from a minimum variance model (Harris & Wolpert, 1998; 

Tanaka et al., 2006), i.e. an open-loop model which constrains the size of terminal variance in 

the presence of motor noise (signal-dependent motor noise, SDNm). There are two ways to 

consider the relationship between minimum variance and optimal feedback control models. On 

the one hand, as the former model is open-loop, we could consider an “open-loop” version of 

optimal feedback control, i.e. when the optimal state estimator does not receive sensory 
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feedback (where sensory feedback is defined as visual and proprioceptive feedback from the 

moving apparatus). Yet such a model can hardly be considered as a model of normal motor 

control (it could be considered as a model of deafferentation). On the other hand, the minimum 

variance model could be considered as an optimal way to compensate for SDNm in the absence 

of other perturbations. As sensory noise decreases toward zero, optimal feedback control could 

also be considered as an optimal way to compensate for SDNm in the absence of other 

perturbations. Yet the zero-noise case (i.e. perfect sensory feedback) should lead to 

instantaneous compensation of motor noise and zero variability (the gain of the Kalman filter 

becomes infinite). This case is not realistic as sensory delays preclude instantaneous 

corrections. To approach the condition of “perfect sensory feedback”, we used a small signal-

independent sensory noise (see definition below) which precluded instantaneous corrections 

(the Kalman gain remains bounded), but produced little variability. In the following, we used 

the term “perfect sensory feedback” to refer to this condition. In this framework, the 

equivalence between minimum variance and optimal feedback control could be related to the 

fact the two models attempt to find the smallest motor commands in order to reduce the quantity 

of SDNm. 

Hypotheses and simplifications 

Origin of variability 

A central issue in the study of motor variability is the origin of this variability. Several studies 

have ascribed variability to the movement planning process (Gordon et al., 1994a; McIntyre et 

al., 1997; Vindras & Viviani, 1998). However, no authoritative demonstration has been 

provided to support this idea. Furthermore, computational studies have shown that 

characteristic features of motor variability (e.g. shape of terminal variability ellipses, time 
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course of variability along a trajectory, …) can be quantitatively explained by a noisy execution 

process (Todorov & Jordan, 2002; van Beers et al., 2004). In fact, it seems that, in many 

conditions, planning-related variability is much smaller than execution-related variability 

(discussion in van Beers et al., 2004; but see Churchland et al., 2006). Here, we retained this 

idea, and focused on the influence of execution noise. 

Nature of noise 

Since neither the origin nor the nature of noise can be precisely determined, a principled 

approach to the structure of noise was used (Saunders & Knill, 2004; Todorov, 2005): 1. Noise 

corrupts both motor commands and sensory feedback signals; 2. Noise has additive (signal-

independent, SIN), and multiplicative (signal-dependent, SDN) effects. SDN is described by its 

variance 

2 = k  u p, 

where u is the signal, and k and p are constants. An open question is the value of the exponent 

p. In modeling studies (Harris & Wolpert, 1998; Todorov & Jordan, 2002; Tanaka et al., 2004, 

2006), it is in general assumed that p = 2 in agreement with some experimental observations 

(Jones et al., 2002; Todorov, 2002). Yet, other studies have reported a lower p (Laidlaw et al., 

2000; Christou & Carlton, 2002; see discussion in Stein et al., 2005). Interestingly, Iguchi et 

al. (2005) have shown that predictions of the minimum variance model (Harris & Wolpert, 

1998) depend on p. In particular, Fitts’ law was found only for p = 2. Here, we used p = 2, but 

we explored consequences of this choice for the reported results. 

Nature of feedback 

Control of limb movements involves both visual and proprioceptive feedback. Movement 
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accuracy depends on noise characteristics and time delays in each feedback modality. Here, we 

were interested in the role of proprioceptive feedback. Thus, we built a model of noisy 

proprioception to explore variability of movements of the unseen limb (e.g. Gordon et al., 

1994a; van Beers et al., 2004). To compare visually-guided and nonvisually-guided movements 

(in the study of Fitts’ law), we assumed that visual feedback can be represented by a perfect 

sensory feedback (as defined above). The rationale for this hypothesis is related to the 

equivalence (for the study of Fitts’ law) between optimal feedback control and a minimum 

variance model in the presence of perfect sensory feedback (see above). 

 In this way, we considered a single source of feedback, and we varied the strength of noise 

to simulate different configurations: 1. Zero signal-dependent sensory noise for movement with 

visual feedback. This simplification is based on the fact that the state estimator weights 

feedback modalities according to their precision. Thus the state estimator would nearly ignore 

proprioceptive feedback in the presence of vision; 2. Nonzero signal-dependent sensory noise 

for movement without visual feedback. Below, we use either the generic term “sensory 

feedback”, or proprioceptive (resp. visual) feedback to indicate noisy (resp. perfect) sensory 

feedback. 

Nature of the model 

In this article, we considered two control problems: 1. an inertial point in two-dimensional 

space actuated by two linear muscles (linear model). This model has proven adequate to address 

motor variability in various conditions (Todorov & Jordan, 2002). Furthermore, it can be solved 

analytically (Guigon et al., 2008), and is thus appropriate for in-depth evaluations, e.g. to study 

the influence of parameters; 2. a planar articulated arm actuated by two pairs of nonlinear 

antagonist muscles (nonlinear model). When the spatial structure of variability is addressed, 

the use of the linear model is not easy to justify, and the more realistic, nonlinear model was 
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used to confirm the results obtained with the linear model. 

Notations 

In the following, dx/dt and d2x/dt2 denote the first and second derivative of x(t) relative to t. 

Vectors are indicated by bold letters (x), and matrices by uppercase underlined letters (A). 

Diag() denotes a diagonal matrix built from the numbers between the parentheses. We define 

In as the n-dimensional identity matrix. We also define J2 as 

0 1 

-1 0 

 

and L1, L2, L3, L4 as 

1 1 1 -1 

1 1 1 -1 

1 1 1 -1 

1 1 1 -1 

 

1 1 -1 1 

1 1 -1 1 

1 1 -1 1 

1 1 -1 1 

 

1 -1 1 1 

1 -1 1 1 

1 -1 1 1 

1 -1 1 1 

 

-1 1 1 1 

-1 1 1 1 

-1 1 1 1 

-1 1 1 1 
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Mathematical formulation: optimal feedback control 

The dynamics of the moving apparatus was described by a continuous noisy system 

dx/dt = f (x(t),u(t)) + noisedyn(t), (Eq. 1) 

where x is a n-dimensional state vector, u a m-dimensional control vector, noisedyn a 

n-dimensional noise on the dynamics (see below). State was not directly observable, but was 

obtained through noisy observation 

y(t) = Hx(t) + noiseobs(t), (Eq. 2) 

where y is a p-dimensional observation vector (sensory feedback), H a pn observation matrix, 

and noiseobs a p-dimensional noise on the observation (see below). A state estimate x^ was built 

through optimal estimation (Kalman filtering) 

dx^/dt = f (x^(t),u(t)) + K(t) [y(t) - Hx^(t)], (Eq. 3) 

where K is the np Kalman gain matrix (Guigon et al., 2008). The meaning of Eq. 3 is the 

following. The next estimated state can be obtained from: 1. an internal simulation of the 

dynamics, i.e. a forward model (first term in the right-hand side of Eq. 3); 2. sensory inputs 

(second term term in the right-hand side of Eq. 3). For optimal estimation, the two terms are 

combined according the maximum likelihood principle, i.e. each term has a weight which is 

inversely proportional to its variance. The weighting is represented here by K. 

 Delayed feedback () was introduced in the linear model (see below) as described by 

Todorov & Jordan (2002) (their Supplementary Information). Since simulations with 

reasonable delays (e.g.,  = 100 ms) were highly time consuming [~3 h to calculate variability 

statistics (N = 500 trials) of a single movement; ~1,600 movements were simulated to build 

Fig. 2], full results were first obtained without delay, and then confirmed with nonzero delay in 
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a subset of cases. 

 Both dynamics and observation were corrupted by noise (Todorov, 2005). We had 

noisedyn(t) = (t) + i=1..c i(t) Ci u(t), (Eq. 4) 

where  is a n-dimensional zero-mean Gaussian random vector with covariance matrix , 

 = [1 … c] a zero-mean Gaussian random vector with covariance matrix , and [C1 … Cc] 

a set of nm matrices. The former type of noise is called SINm (signal-independent motor 

noise). The latter is known as SDNm (signal-dependent motor noise). In the same way, 

noiseobs(t) = (t) + I=1..d i(t) Di x(t), (Eq. 5) 

where  is a p-dimensional zero-mean Gaussian random vector with covariance matrix , 

 = [1 … d] a zero-mean Gaussian random vector with covariance matrix , and [D1 … Dd] 

a set of mn matrices. The former type of noise is called SINs (signal-independent sensory 

noise). The latter is termed SDNs (signal-dependent sensory noise). 

 An optimal feedback control problem for the system defined by Eqs. 1-5 is to find a control 

vector u at time t  [t0;tf] to minimize a performance index (E, effort) 

E2 =  i=1..m [t ; tf] ui
2(w) dw 

subject to Eq. 1, with boundary conditions xt and xf. Initial boundary condition is xt = x^(t), i.e. 

estimated state at time t, for movement planning, and xt = x(t), i.e. actual state at t, for execution. 

A complete movement is obtained as a solution to this problem for each time t in [t0;tf] 

(discretization step ). 

 The functioning of the model is summarized in Fig. 2. The model contains a controller (an 
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optimal feedback controller as explained above), a state estimator (Eqs. 2,3), and a controlled 

object (the moving apparatus). At each time step, the controller elaborates a control signal based 

on the target state and the estimated state of the controlled object. The control signal is 

transmitted to the controlled object which evolves according to its dynamics (Eq. 1). State 

estimation results from a weighted combination of a control-based estimation (forward model) 

and a sensory-based correction (Kalman filter). 

Linear case 

The moving apparatus was an inertial point in two-dimensional space actuated by two muscles 

(n = 8, m = 2). The dynamics was 

M d2q/dt2 = F, 

where q = [q1 q2]T is the position of the point, M = [m1 0; 0 m2] the inertia matrix, and 

F = [F1 F2]T contains the forces exerted by the muscles. Each muscle i was modeled as a 

second-order linear filter which transforms a neural control signal (ui) into a muscular force (Fi) 

according to 

 dei /dt = - ei + ui (excitation) 

 dai /dt = - ai + ei (activation) (Eq. 6) 

Fi = (ai) 

where  is a time constant, and (z) = z. The state vector was 

x = [q1(t);q2(t);dq1(t)/dt;dq2(t)/dt;a1(t);a2(t);e1(t);e2(t)]. 

Thus 
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f (x(t),u(t)) = Ax(t) + Bu(t), 

where the matrix A was 

0 0 1 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1/m1 0 0 0 

0 0 0 0 0 1/m2 0 0 

0 0 0 0 -1/ 0 1/ 0 

0 0 0 0 0 -1/ 0 1/ 

0 0 0 0 0 0 -1/ 0 

0 0 0 0 0 0 0 -1/ 

 

and B was 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1/ 0 

0 1/ 

 

The optimal feedback control problem was solved analytically as explained in Guigon et al. 

(2008), and simulated numerically. 

General parameters 

We used  = 40 ms,  = 1 ms. To represent the inertial anisotropy of a real arm (Hogan, 1985), 

we used m1 = 2 kg and m2 = 1 kg. 

Motor noise 

Signal-dependent motor noise (Eq. 4). We chose c = 2, 

C1 = B I2      C2 = B J2, 

and 
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 = SDNm I2, 

where SDNm is the s.d. of noise (see Todorov & Jordan, 2002). The rationale for this choice 

(circular covariance) is to obtain independent noise of similar variance on the two dimensions. 

Signal-independent motor noise (Eq. 4). To assess the specific role of SDNm, signal-

independent motor noise (SINm) was used with 

 = SINm Diag(0,0,0,0,0,0,1,1), 

where SINm is the s.d. of noise. 

Simulation of nonvisually guided movements 

Observation matrix (Eq. 2). The structure of the observation process should reflect the nature 

of biological sensors which provide measures of state-related quantities. In physiological terms, 

the observation matrix corresponds to the integrated contribution of proprioceptive and 

cutaneous receptors (muscle spindles, Golgi tendon organs, articular receptors, …; Burgess et 

al., 1982) to kinesthetic movement detection. However, this process is distributed, complex, 

nonlinear, and cannot be exactly represented in a linear framework. Here, the main simplifying 

assumption is that state can be directly and exactly measured from the sensors (in the absence 

of noise). Although this assumption is not easy to justify on physiological ground, it is well 

demonstrated that human subjects can measure and manipulate states (e.g. positions, velocities, 

forces; Ghahramani et al., 1996; Kerr & Worringham, 2002; Todorov, 2002). The simplest 

structure for H is 

Diag(1,1,1,1,1,1,1,1), 

corresponding to p = n = 8, i.e. the full state is observable. To assess the influence of the 

structure of the observation matrix on the results, we considered cases where some parts of the 



15 

state vector were not observable (see Results). In particular, it is unclear whether excitation 

(roughly the derivative of force) is measured by sensors. Since the model is a highly simplified, 

linear representation of complex processes (e.g. Hasan, 1983), our goal is not to draw firm 

conclusions on the nature of feedback information, but to address conditions in which our 

results remain valid. 

Signal-dependent sensory noise (Eq. 5). There are many possible configurations for SDNs, 

and all configurations cannot be systematically tested. In fact, there are two extreme 

configurations. The first corresponds to the less favorable case for a structured variability to 

emerge, i.e. each state is a source of noise, and all the sources of noise are independent. In this 

case, d = 8, and 

D1 = Diag(1,0,0,0,0,0,0,0) … D8 = Diag(0,0,0,0,0,0,0,1). 

In the second configuration, there is a single source of noise for all states. In this case, d = 1, 

and 

D1 = Diag(1,1,1,1,1,1,1,1). 

The true configuration (in the framework of our simplified model) is somewhere between these 

extremes. As an intermediate configuration, we considered the case where there is a single 

source of noise for each type of state (position, velocity, activation, excitation), i.e. d = 4, and 

D1 = Diag(1,1,0,0,0,0,0,0) … D4 = Diag(0,0,0,0,0,0,1,1). 

In the three cases, 

 = SDNs Id, 

where SDNs is the s.d. of noise. The intermediate configuration was used as the default 

configuration, and the two extreme configurations were used to assess the influence of the 
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structure of noise on the results. The highly simplified nature of the model does not authorize a 

more thorough analysis of the structure of noise. 

Signal-independent sensory noise (Eq. 5). To assess the specific role of SDNs, signal-

independent sensory noise (SINs) was used with 

 = SINs Diag(0.1,0.1,1,1,10,10,100,100), 

where SINs is the s.d. of noise. 

Simulation of visually guided movements 

We set SDNs to 0. 

Nonlinear case 

The moving apparatus was a two-joint planar arm (shoulder/elbow) actuated by two pairs of 

antagonist muscles (n = 12, m = 4). The dynamics was 

In(q) d2q/dt2 + Cor (q,dq/dt) = T, (Eq. 7) 

where q = [q1 q2]T are the joint angles, In the position-dependent inertia matrix, Cor the matrix 

of Coriolis and centripetal forces, and T the torques generated by muscle forces (Guigon et al., 

2007a). The muscles were modeled as described by Eq. 6 with (z) = [z]+. The state vector was 

x(t) = [q1(t),q2(t),dq1(t)/dt,dq2(t)/dt,a1(t),a2(t),a3(t),a4(t),e1(t),e2(t),e3(t),e4(t)], 

and function f (x(t),u(t)) was obtained from Eq. 6 and Eq. 7. The optimal feedback control was 

derived analytically as explained in Guigon et al. (2008), and then simulated numerically as 

explained in Guigon et al. (2007a). 

 This model is a simplified model which does not take into account the complex nonlinear 

behavior of muscles and the presence of biarticular muscles (see Guigon et al., 2007b for a 
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more general model). Yet, it was deemed sufficient for the present purpose (see Guigon et al., 

2007a for a discussion). 

General parameters 

They can be found in Guigon et al. (2007a). 

Motor noise 

Signal-dependent motor noise (Eq. 4). We chose c = 4, 

C1 = B L1     C2 = B L2     C3 = B L3     C4 = B L4, 

where B = f/u, to obtain independent noise of similar variance on the four dimensions. 

Signal-independent motor noise (Eq. 4). We used 

 = SINm Diag(0,0,0,0,0,0,0,0,1,1,1,1). 

Simulation of nonvisually-guided movements 

Observation matrix (Eq. 2). The nonlinear model was only used to simulate nonvisually-

guided movements. The observation matrix was 

Diag(1,1,1,1,1,1,1,1,1,1,1,1), 

corresponding to p = n = 12. 

Signal-dependent sensory noise (Eq. 5). We used d = 4, and 

D1 = Diag(1,1,0,0,0,0,0,0,0,0,0,0)     D2 = Diag(0,0,1,1,0,0,0,0,0,0,0,0) 

D3 = Diag(0,0,0,0,1,1,1,1,0,0,0,0)     D4 = Diag(0,0,0,0,0,0,0,0,1,1,1,1). 

Signal-independent sensory noise (Eq. 5). We used 
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 = SINs Diag(0.01,0.01,0.1,0.1,1,1,1,1,10,10,10,10). 

Quantitative description of variability 

Behavioral variability is in general described by a systematic error (bias), and a random error. 

Ideally, these errors should be referred to as accuracy and precision, respectively (Bevington, 

1969). Yet these terms have been used interchangeably in the literature (e.g. speed/accuracy 

trade-off). Here, we are interested only with random errors, and we will use the terms variability 

and accuracy for their description. 

 Terminal variability was described by characteristics of the 95% equal frequency ellipse (i.e. 

the ellipse which contains, on average, 95% of endpoints, calculated over N trials; Sokal & 

Rohlf, 1995; see Fig. 3B, inset): 1. its surface area (in cm2), and the square root of its surface 

area (, in cm); 2. its orientation (, in deg): the angle of the major axis of the ellipse relative 

to movement direction; 3. its aspect ratio (ellipse elongation): the ratio 1/2, where the 

quantities 1 and 2 (1≥2) are the square root of the eigenvalues of the covariance matrix of 

endpoint distribution. 

Results 

Unless otherwise mentioned, the results were obtained using the linear model with p = 2 

(exponent of signal-dependent noise). 

General properties of the model 

We first note that the model reproduces basic expected characteristics of motor behavior. 

Simulated trajectories were straight with a bell-shaped velocity profile (Fig. 3A,B). A typical 

control signal had an early phasic component followed by a depression (Fig. 3C), and resembled 

the discharge pattern of EMG-like neurons found in primate motor cortex (Sergio & Kalaska, 
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1998; see Guigon et al., 2007b). A typical excitation signal had a triphasic agonist/antagonist 

pattern (Fig. 3D; the agonist and antagonist bursts are found on the same trace since there is a 

single control per Cartesian direction), similar to EMG patterns of fast reaching movements. In 

fact, we have shown elsewhere that the model can accurately account for kinematics, kinetics, 

muscular, and neural characteristics of reaching movements (Guigon et al., 2007a,b). 

What is the origin of Fitts’ law? 

The starting point of our reasoning is Fitts’ law. This law writes 

MT = a + b log2(2A/W), (Eq. 8) 

where MT is movement duration (in ms), A movement amplitude (in cm), and W target width 

(in cm). This relationship contains two parts: a scaling law (between amplitude and duration) 

and a speed/accuracy trade-off (between duration and target width). Although each part is easy 

to explain on its own, models show that the coordination in a single rule is probably a complex, 

emergent property of neural motor control (Meyer et al., 1988; Harris & Wolpert, 1998; Tanaka 

et al., 2006). The central idea of these models is that the nervous system acts as a stochastically 

optimal controller, i.e. a controller which plans optimal movements taking the statistics of noise 

(SDNm) into account (review in Todorov, 2004). The scaling law results from time 

minimization while attempting to reach a target area: due to noise, for each amplitude, there is 

a unique (minimum) movement duration which guarantees that movement endpoint is bounded 

to a given spatial region. Speed/accuracy trade-off is a consequence of SDNm: faster movements 

require larger control signals, and thus endure more noise. On this basis, the models predict that 

movement duration is not simply a function of amplitude and target width, but especially of the 

ratio between amplitude and target width (Eq. 8). 

 The weakness of these models is the absence of online feedback control which is necessary 
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for the continuous updating of motor commands by internal and external feedback loops 

(Desmurget & Grafton, 2000; Todorov & Jordan, 2002; Saunders & Knill, 2004; Guigon et al., 

2008). Thus we tried to reproduce Fitts’ law in the framework of optimal feedback control. We 

simulated visually-guided movements (see Materials and Methods) of different amplitudes 

and durations under SDNm, and we measured the terminal variability (). Then we searched 

for pairs (A,MT) which lead to a given W (i.e.  = W). We repeated this operation for different 

values of W, and we plotted MT as a function of log2(2A/W) (Fig. 4A). It appears clearly that 

MT is a function of A/W as required by Eq. 8. Similar results were obtained in the presence of 

delay in sensory feedback ( = 100 ms; Fig. 4A, gray lines). We reproduced similar simulations 

for nonvisually guided-movements (see Materials and Methods). The data obviously deviated 

from Fitts’ law (Fig. 4B). 

 We addressed the influence of the exponent of noise for SDNm. We reproduced the 

simulations of Fig. 4A for p = 1.5 (Fig. 4A, dashed lines). Clearly, the data deviated from Fitts’ 

law. A similar result was reported by Iguichi et al. (2005) with the minimim variance model 

(their Fig. 9). 

 For Fitts’ law, amplitude/duration scaling can arise as a consequence of a constant variability 

criterion (see Harris & Wolpert, 1998; Tanaka et al., 2006; and above). However, scaling is 

also found in the absence of Fitts’ law, e.g. when subjects reach for visual targets with no 

constraints of accuracy. In this case, scaling is associated with a pattern of amplitude-dependent 

variability (Gordon et al., 1994a; Messier & Kalaska, 1997, 1999; van Beers et al., 2004). We 

have shown previously that scaling can result from a constant effort criterion (Guigon et al., 

2007, 2008). Interestingly, in the absence of sensory noise (visual feedback condition), effort 

and variability are univocally related (Fig. 4C). Thus Fitts’ law could ensue from a constant 

effort criterion. In the presence of proprioceptive noise (nonvisual feedback condition), there is 
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no longer a one-to-one relationship between effort and variability (Fig. 2D), and scaling based 

on constant effort can be associated with non constant variability (see below). The question 

turns to the nature of noise in proprioceptive feedback. 

Evidence for noise in proprioceptive feedback 

The structure of motor variability (i.e. how variability changes in time and space along a 

movement) reveals critical information on motor control processes and the nature of noises that 

corrupt these processes (Harris & Wolpert, 1998; Todorov & Jordan, 2002; van Beers et al., 

2004; Guigon et al., 2008). For instance, the variability of radially pointing movements has 

revealed that several types of noise, not only SDNm, are present in the motor system (van Beers 

et al., 2004). This conclusion was reached using an open-loop model which is not appropriate 

to evaluate the influence of feedback noise. Thus we assessed the influence of sensory and 

motor noise on the variability of radially pointing movements using optimal feedback control. 

We were interested in the shape and orientation of endpoint distributions for movements of the 

unseen limb (variability ellipses; Fig. 3B, inset; Gordon et al., 1994a; Messier & Kalaska, 1997, 

1999; van Beers et al., 2004). As the shape and orientation of variability ellipses appear to 

depend on limb inertia (van Beers et al., 2004), we simulated an inertial point in two-

dimensional space with different masses in two orthogonal directions (see Materials and 

Methods). 

 We first simulated nonvisually-guided movements in a single direction (45 deg) to explore 

the influence of different types of noise in a systematic fashion. We observed that the surface 

area, shape, and orientation of ellipses were mostly determined by signal-dependent sensory 

noise (SDNs) while signal-independent sensory noise (SINs) contributed basically to their 

surface area (Fig. 5A,B). Motor noise (SDNm, SINm) had little influence. We found that 

variability ellipse was elongated for both SDNm and SDNs (Fig. 3A,B), but aligned along 
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movement direction only for SDNs (Fig. 5B). This result was confirmed by a quantitative 

analysis (Fig. 5A,B). On the one hand, ellipse orientation was almost constant under SDNm and 

deviated from movement direction by >45° (Fig. 5A). On the other hand, orientation tended to 

be closer to movement direction as SDNs increased (orientation effect; Fig. 5B). 

 Then, we simulated movements in 5 directions in the first quadrant (because system 

dynamics is invariant by horizontal and vertical symmetry). Under SDNm, the variability 

ellipses had an almost constant orientation, irrespective of movement direction (Fig. 6A). In 

contrast, the ellipses were closely aligned on movement direction under SDNs (Fig. 6B). These 

results are confirmed by a polar plot (left in Fig. 6C,D). We further observed that the aspect 

ratio varies with movement direction under SDNs, but less under SDNm (center in Fig. 6C,D). 

Ellipse surface area was constant across directions under SDNm, but varied with direction under 

SDNs (right in Fig. 6C,D). The results in Fig. 6D closely match experimental observations 

reported in van Beers et al. (2004) (see also Desmurget et al., 1997; Gepshtein et al., 2007). A 

main effect was the variation of aspect ratio with movement direction. In the model, the ratio 

was higher in directions of smaller inertia, i.e. 90/270°. In van Beers et al. (2004), the directions 

were ~60/250° (their Fig. 4A). Although initial arm posture is not known exactly for the data of 

van Beers et al. (2004), these directions likely correspond to movements obtained by forearm 

rotations, i.e. movements against smaller inertial loads (Gordon et al., 1994b). 

 Influence of feedback delay was assessed separately (Fig. 7). We observed that the delay 

had a weak influence on the shape of variability ellipses (Fig. 7A), but a strong influence on 

their size (Fig. 7B). The orientation effect decreased with the delay, but remained visible even 

at the longer delay (Fig. 7C). 

 Although these results are consistent with experimental observations, it is not easy to justify 

that the behavior of an articulated arm can be adequately represented by the behavior of an 
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inertial point. Thus we addressed the results obtained with the simple linear model (Fig. 6) using 

an optimal feedback control model for a planar two-joint arm (see Materials and Methods). 

The results are shown in Fig. 8A,B, in the same format as in Fig. 6C,D. Although the results are 

less striking than in the linear case, we observed a similar trend as with the linear model, i.e. 

ellipse orientation became aligned with movement direction in the presence of SDNs. Two 

interesting characteristics are the anisotropic variations of aspect ratio and surface area with 

movement direction (Fig. 8B, center and right). Using principal component analysis, we 

calculated the orientation of the main axis of these variations (61° for aspect ratio, 23° for 

surface area; gray lines in Fig. 8B). For comparison, we estimated these quantities for the 

experimental results of van Beers et al. (2004) (their Fig. 4A,C): we found 60° and 28° for the 

aspect ratio and the surface area, respectively (dashed lines in Fig. 8B). Although the nonlinear 

model reproduces quantitative features of experimental data, it does not reproduce the actual 

size of variability ellipses. With our parameters (size of noises), maximum surface area was 2.2 

cm2 (we observed that larger noises lead to unrealistic trajectories and velocity profiles), 

whereas it could be 5-10 cm2 for real movements (Fig. 3 in van Beers et al., 2004). A possible 

reason for this discrepancy is the absence of feedback delay in the nonlinear model. We have 

shown in the linear model that the delay increases the size of variability ellipses, but has little 

influence on their shape and orientation (Fig. 7). This property could be true for the nonlinear 

model, but to prove it is a challenging problem of computing power (see Materials and 

Methods). 

 Since nonlinear modeling is a complex problem, these simulations should be considered with 

caution. Yet they point to a critical contribution of signal-dependent noise in proprioceptive 

feedback to motor variability when subjects do not receive specific instruction regarding 

movement accuracy. This case is complementary to the condition of Fitts’ law which requires 
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perfect sensory feedback (see above). 

 These results suggest that the structure of variability of reaching movements can be 

quantitatively explained by the interplay between signal-dependent proprioceptive and motor 

noises in an optimal feedback controller. We now address the control of movement accuracy. 

Control of accuracy 

Experimental studies have shown that subjects can be trained to produce a desired kinematic 

pattern (velocity profile) while modulating terminal accuracy (Gribble et al., 2003; Osu et al., 

2004). A central observation was that movement accuracy covaried positively with the level of 

muscular cocontraction despite the fact that the variability of motor patterns (EMGs and 

torques) increased with cocontraction. We explored this paradox with the model. On the one 

hand, we have shown that movement variability related to control of accuracy can be explained 

by a reduced influence of proprioceptive noise. On the other hand, cocontraction should 

increase motor noise. Thus we assessed the effect of opposite variations in proprioceptive and 

motor noises (nonvisually-guided movements) as a simplified way to address the influence of 

cocontraction. We compared two conditions: 1. “normal cocontraction” (SDNm = 0.7 and 

SDNs = 0.2); 2. “high cocontraction” (SDNm = 0.8 and SDNs = 0.1). We observed that, for this 

particular choice of noise, movement was more accurate in the high cocontraction condition 

(Fig. 9A,B), although the forces and EMGs were more variable in this condition (Fig. 9D,E; see 

Fig. 5 in Osu et al., 2004). We also note that higher cocontraction lead to larger variability over 

~3/4 of the trajectory (Fig. 9C; see Fig. 5G in Osu et al., 2004, Fig. 5C in Selen et al., 2006). 

These results were obtained for a specific combination of proprioceptive and motor noise, but 

remain similar for many different combinations. As we varied SDNm and SDNs in the range 

0.1-0.7 , we observed that for a 20% increase in SDNm, a 50% decrease in SDNs was in general 
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appropriate to produce a “cocontraction effect” (i.e. the movement was more precise while the 

forces and EMG were more variable). The main significance of these results is that we were 

able to account quantitatively for the influence of cocontraction using the same components as 

used to explain the characteristics of variability ellipses. The model illustrates the possible 

effect of opposite modulation of sensory and motor noises, but does not reveal a principle for 

their coordinated variations. We also calculated the spatial variability of distance to kinematic 

landmarks (peak acceleration, velocity and deceleration; Fig. 9F). We observed that the 

variability increased until peak deceleration and then plateaued in the first condition. The 

variability decreased after peak deceleration in the second condition (lower SDNs). This result 

was still more marked for SDNs = 0, corresponding to the case of a visually guided movement. 

This observation is consistent with experimental observations (Fig. 9 in Proteau & Isabelle, 

2002; Fig. 4 in Khan & Franks, 2003; Fig. 1 in Khan et al., 2003). Similar results were obtained 

for nonzero feedback delay. 

Analysis of parameters (linear model) 

A central emerging effect of the model is the influence of SDNs on the orientation of variability 

ellipses (Fig. 6D). Here, we address the influence of different parameters on this effect. 

Observation matrix 

We assessed how the structure of the observation matrix influenced the orientation effect. 

Accordingly we selectively removed the position (P), velocity (V), activation (A) and excitation 

(E) information from the observation matrix (e.g. the combination PV means that only position 

and velocity were observable). We found that the orientation effect was present for a majority 

of combinations of observable states although no simple rule could be drawn. Exceptions were 

the following combinations of observable states: PVE, PE, VE, E. 
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Structure of signal-dependent sensory noise 

The orientation effect was completely suppressed in the case of independent sources of noise 

(d = 8), but was not improved by the presence of a unique source of noise (d = 1). It is possible 

that the orientation effect could emerge under weaker hypotheses on the structure of noise. 

However, a finer analysis of this issue would not be necessarily meaningful in the framework 

of our simplified model. 

Discussion 

There are three main results in this study. First, we have shown that the structure of variability 

of nonvisually-guided reaching movements can be quantitatively explained by the interplay 

between signal-dependent proprioceptive and motor noises in an optimal feedback controller. 

Second, the variability of movement performed under a constraint of accuracy (e.g. condition 

of Fitts’ law) reflects optimal feedback control in the presence of perfect sensory feedback. 

Third, the surplus of motor noise and the resulting increase in motor output variability related 

to increased muscular cocontraction is not incompatible with improved terminal accuracy. 

Nature of the model 

The present model was cast in the framework of linear dynamical systems (for a similar 

approach, see Todorov & Jordan, 2002; Saunders & Knill, 2004). This simplification lead to an 

analytically tractable problem which can be easily solved in the presence of noise. Such a linear 

model was found appropriate to address general characteristics of motor variability (Harris & 

Wolpert, 1998; Todorov & Jordan, 2002; Saunders & Knill, 2004; Tanaka et al., 2006; present 

results). For instance, Fitts’ law has been observed in a wide range of conditions (Plamondon 

& Alimi, 1997), including mentally simulated movements (Decety & Jeannerod, 1995). A 
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linear approach can be suitable in this case. However, it was unclear whether the linear 

framework is also suitable to address aspects of variability which likely depend on 

nonlinearities in motor behavior, e.g. direction-dependent changes in the shape of terminal 

variability ellipses in reaching movements (Gordon et al., 1994a; van Beers et al., 2004). Thus, 

we also simulated a more realistic nonlinear model (a planar articulated arm actuated by two 

pairs of antagonist muscles) to address this issue. 

 The proposed model is a computational approach to motor control and variability. It is not a 

model of physiological mechanisms involved in motor control. Thus we considered the general 

case of noise in sensory and motor pathways, and as an approximation, we considered signal-

independent and signal-dependent noises (Todorov, 2005). We found that a computational 

description of terminal variability can be obtained by the presence of signal-dependent noise in 

sensory pathways. Yet, we do not claim that there is SDN at the level of muscle spindles or 

Golgi tendon organs, but the model predicts that there is some form a SDN in sensory pathways 

(somewhere between the sensors and the state estimator). 

Structure of motor variability for reaching movements 

Although it is well recognized that variability of goal-directed movements derives in part from 

the presence of noise in the execution process (Hoff & Arbib, 1993; Harris & Wolpert, 1998; 

Messier & Kalaska, 1999; Todorov & Jordan, 2002; van Beers et al., 2004), the nature of noise 

remains poorly understood. Theoretical studies have shown that part of the noise is signal-

dependent motor noise, as this type of noise appears necessary for the emergence of raw aspects 

of structured variability, e.g. uncontrolled manifolds which are found in line-pointing and via-

point tasks (Todorov & Jordan, 2002; Guigon et al., 2008). Yet, SDNm is not sufficient to 

account for the spatio-temporal variability of reaching movements (van Beers et al., 2004; 

present results). For instance, the ubiquitous finding that directional errors are smaller than 



28 

errors in amplitude (Gordon et al., 1994a; Messier & Kalaska, 1997, 1999; van Beers et al., 

2004) cannot be reproduced with SDNm. van Beers et al. (2004) proposed that execution is 

corrupted by a mixture of constant noise, temporal noise and SDNm. However, their account of 

experimental data was not fully conclusive since they used an open-loop control model. 

 Our model suggests that noise in proprioceptive feedback is an important determinant of the 

variability of nonvisually-guided reaching movements. It should be noted that this noise is not 

of a different nature than motor noise. In fact, both types of noise are signal-dependent, which 

means that their variance increases proportionally to the magnitude of the signal. The sole 

difference is the nature of the neural pathway (sensory or motor) in which the signal flows. 

Fitts’ law 

Although there is no consensus on the origin of Fitts’ law (e.g. Plamondon & Alimi, 1997), the 

idea has grown that it could ensue from the attempt to control movement accuracy in the 

presence of SDNm (Meyer et al., 1988; Harris & Wolpert, 1998; Tanaka et al., 2006). This idea 

is especially interesting as it also provides a principled approach to the emergence of motor 

behaviors (Harris & Wolpert, 1998). However, there are three main limitations of the minimum 

variance model. First it is an open loop model which fails to exploit feedback processing 

(Todorov & Jordan, 2002; Guigon et al., 2008). Second, it is bound to exhibit speed/accuracy 

trade-off (i.e. faster movements are necessarily more variable), and thus it cannot account for 

the paradoxical effect of cocontraction (see Control of accuracy below). Third, the choice of 

a terminal variance can be problematic in more than one dimension since the shape of the 

variance area has to be specified. For instance, it has been shown with pointing movements that 

the shape of the variance area is not identical to the shape of the target region (Osu et al., 2004; 

Gepshtein et al., 2007). 

 To circumvent these difficulties, we attempted to extend the results obtained with the 
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minimum variance model in the framework of feedback control. This extension was successful, 

and adds support and sense to the contention of Harris and Wolpert. Fitts’ law holds empirically 

when subjects are instructed to perform accurately, and in the model when sensory feedback is 

perfect. This situation corresponds to the case where the influence of proprioception is reduced 

in the presence of vision due their relative variabilities and the functioning of the Kalman filter. 

We can make the reasonable proposal that accuracy can be better controlled if the influence of 

proprioceptive feedback is reduced in the presence of visual feedback. This view is consistent 

with experimental observations. The fact that movements are more accurate in the presence 

than in the absence of visual feedback of the moving limb (Woodworth, 1899) can be related 

to the generally greater precision of vision over proprioception. In the absence of vision, 

subjects do not scale their variability to the size of the target (Chua & Elliott, 1993). 

 An ubiquitous property of motor control is amplitude/duration scaling, i.e. movements of 

larger amplitude last longer. According to the model, this property arises from a constant effort 

principle (Guigon et al., 2007, 2008): if movements of different amplitudes are realized with 

the same level of effort, their duration should increase with their amplitude. This principle 

provides a general account of scaling. In the absence of sensory noise, effort and variability 

covary and the constant effort principle generates a scaling which conforms to Fitts’ law. In the 

presence of sensory noise, scaling also occurs, but the pattern of variability is dictated by the 

structure of noise. Thus, the present model relieves the three difficulties of the minimum 

variance model (see also Control of accuracy below). 

 An interesting issue is the kinematic characteristics of aiming trajectories under Fitts’ law. 

Amplitude and target width exert different effects on movement kinematics (Soechting, 1984; 

MacKenzie et al., 1987; Marteniuk et al., 1987). Although the two parameters influence 

movement time, amplitude primarily determines acceleration duration and peak velocity while 
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target width has almost no effect on acceleration duration and peak velocity, but affects the 

duration of the deceleration phase. The classical interpretation of these observations is based 

on Woodworth’s initial adjustment and current control phases, i.e. an initial quick (“ballistic”) 

transport toward target location followed by a slower feedback-driven homing phase. In its 

current form, the model does not provide a direct explanation of these results. In fact, the central 

issue is how target size is exploited by the controller. Target size could be used to specify 

boundary conditions, e.g. where the controlled system should land within the target area. 

However, in the presence of noise, there is no guarantee that the actual landing point will be 

within the required region. A more efficient solution would consist in matching target size and 

“effective target width”, i.e. searching for a control law which, taking into account the expected 

characteristics of noise and feedback, would produce an actual endpoint dispersion 

corresponding to the target region. The constant effort principle could be modified to 

encompass this idea. Reprogramming at each time would lead to adjust remaining duration not 

only as a function of remaining amplitude and remaining effort, but also as a function of a 

desired final variability. The scenario could be the following. Before the arrival of sensory 

feedback, the controller is driven by target distance and a level of effort. Once feedback is 

available, the controller can exploit characteristics of the feedback to improve the motor plan. 

For instance, feedback of visual origin could allow accuracy control. At this stage, target size 

can be introduced in the plan: remaining movement duration is updated in such a way that 

predictable final variability matches target size. This updating is rather simple since variability 

and effort are univocally related. A consequence is that the duration of the later part of the 

movement should scale with target size. It should be noted that the movement was divided in 

two parts for simplicity, but in fact no real division exists since feedback is continuous. 
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Control of accuracy 

Motor variability has been generally ascribed to the presence of signal-dependent noise in motor 

signals (Meyer et al., 1988; Harris & Wolpert, 1998; Todorov & Jordan, 2002; van Beers et al., 

2004). This hypothesis lead ineluctably to speed/accuracy trade-off. However, it is widely 

recognized that not all motor behaviors conform to such a trade-off. The process of learning a 

new motor task results in movements which are both faster and less variable (Darling et al., 

1988; Corcos et al., 1993; Jaric et al., 1994; Ilic et al., 1996; Jaric & Latash, 1999; Gabriel, 

2002; Domkin, 2005). For instance, subjects can be trained to modulate terminal accuracy while 

preserving a common kinematic pattern (Gribble et al., 2003; Osu et al., 2004). The model 

shows that these paradoxical observations can be assigned to the functioning of the state 

estimator. It is logical that a more precise estimate should allow a better programming and a 

more consistent performance. However, a less intuitive aspect is that improved performance is 

not a simple consequence of a global reduction of uncertainty in the motor system, but can 

coincide with a greater variability in motor commands. In fact, feedback control can exploit 

covariation among motor outputs to reduce task variability (Müller & Sternad, 2004). 

Accordingly, there is no fundamental contradiction between cocontraction, which likely 

increases motor variability (Osu et al., 2004), and accuracy (van Galen & Schomaker, 1992; 

van Gemmert & van Galen, 1997; Laursen et al., 1998; van Galen & van Huygevoort, 2000; 

Gribble et al., 2003; Osu et al., 2004; Sandfeld & Jensen, 2005; van Roon et al., 2005). 

 Yet the question remains of the mechanism, which links cocontraction and accuracy. A 

possible mechanism is based on modulation of impedance. Muscle cocontraction can increase 

joint stiffness (Hogan, 1984; Al-Falahe & Vallbo, 1988; De Serres & Milner, 1991; Osu & 

Gomi, 1999), and allows the limb to counteract disturbances and instabilities (De Serres & 

Milner, 1991; Burdet et al., 2001; Franklin et al., 2004; Milner, 2004), which could be liable 
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for a better accuracy (Burdet et al., 2001; Shiller et al., 2002). For this scenario to be applicable, 

it should be hypothesized that there exists at each time an “operating” point which corresponds 

to the unperturbed trajectory, and which is used to measure and apply elastic restoring forces. 

This hypothesis is in theory applicable to models which exploit the tracking of a reference 

trajectory, e.g. equilibrium-point models (Flanagan et al., 1993; Gribble et al., 1998) and 

models based on combined inverse dynamics and impedance control (Franklin et al., 2003; Osu 

et al., 2003). Two models have addressed this issue. van Galen & de Jong (1995) have shown 

that a mass attached to a spring is more accurately controlled in the presence of motor noise 

when the level of static forces is higher. However, control of accuracy in this model results 

from a restoring force toward a fixed point, which makes little functional sense. Selen et al. 

(2005) reached a similar conclusion for the control around an equilibrium point, but it is unclear 

whether the model can be extended to movements governed by a moving equilibrium point. In 

our model, there is no reference trajectory, but the operating point could be the currently 

estimated position of the limb since this point is maintained as the equilibrium point of static 

forces applied to the limb (separation principle; see Guigon et al., 2007a for a discussion). In 

this case, modulation of impedance could contribute to stability, but not directly to accuracy 

since impedance has no direct influence on the efficiency of the state estimator, i.e. it will not 

compensate for a wrong operating point. 

 An alternative hypothesis to relate cocontraction and accuracy is based on the notion of 

fusimotor control, i.e. the central modulation of the sensitivity of muscles spindles. It is well 

documented that fusimotor activity is stronger for tasks requiring greater attention or precision 

(Prochazka, 1989; Hulliger, 1993; Kakuda et al., 1996; Nafati et al., 2004). Since co-activation 

of skeletomotor and fusimotor systems seems to be the rule in humans (Vallbo et al., 1979; 

Kakuda et al., 1996; Gandevia et al., 1997), a likely consequence of increased fusimotor control 
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is increased muscular cocontraction. The question remains of the mechanism by which 

fusimotor activity contributes to accuracy of movement. A general proposal is that fusimotor 

control would act to optimize the transmission of sensory feedback information (Loeb & Marks, 

1985; Loeb et al., 1985; Loeb et al., 1999). In particular, there is evidence that the gamma 

system can enhance information transmission from populations of muscle spindles (Milgram & 

Inbar, 1976; Inbar et al., 1979; Bergenheim et al., 1995, 1996; Tock et al., 2005). This is true 

despite the fact that signal from individual spindles are more variable under  stimulation 

(Bergenheim et al., 1995). We note that this variability is consistent with the presence of signal-

dependent noise in sensory feedback since a basic effect of fusimotor input is to increase the 

mean discharge rate of spindles (Hulliger et al., 1977). 

 We note that this article is concerned with temporary improvement in movement accuracy. 

In this framework, the speed/accuracy paradox is explained by the effect of muscular 

cocontraction. This view is consistent with the presence of concontraction during early phases 

of learning of a novel task (Person 1958; Milner & Cloutier, 1993; Thoroughman & Shadmher, 

1999; Osu et al., 2002). We did not address mechanisms involved in long-term changes in 

accuracy. 

Significance of the results 

We have shown that the speed/accuracy paradox for reaching movements can be explained by 

the joint influence exerted by sensory and motor signal-dependent noises during motor 

execution. This result is all the more interesting because the same types of noise appear to shape 

the characteristics of variability ellipses of reaching movements. More generally, the present 

model provides a principled framework to the study of motor variability which is more versatile 

than previous approaches (Harris & Wolpert, 1998; Todorov & Jordan, 2002). 
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Figure captions 

Figure 1. A. An inertial point (black square) is driven by a noisy force u(t). Its true position x(t) 

is measured by a noisy sensor (ruler at the top; y(t)) which is used to define an estimated position 

x^(t) (dashed square). Sources of noise are indicated by an irregular arrow. B. Trajectories of 

the inertial point. A particular trajectory (x(t); thick line) is shown together with its 

corresponding estimated trajectory (x^(t); dashed line). 

 

Figure 2. Functioning of the model. A single time t is used for simplicity, but processing is in 

fact iterative. See Text for notations and details. 

 

Figure 3. A. Simulated movements (N = 500) in direction 45° (10 cm, 400 ms) for SDNm 

(SDNm = 0.5). 20 endpoints and trajectories are shown. The 95% equal frequency ellipse is 

plotted. Ellipse orientation is 55.6°, aspect ratio is 1.38 and surface area is 1.29 cm2 (see Inset 

in B for definitions). Scale bar = 2 cm. Parameters were: SINm = 0, SINs = 0.06, SDNs = 0.0. 

Inset: 10 velocity profiles. B. Same as A for SDNs (SDNs = 0.2). Ellipse orientation is 5.6°, 

aspect ratio is 1.42 and surface area is 1.67 cm2. Parameters: SINm = 0, SDNm = 0.5, 

SINs = 0.05. Inset: ellipse orientation () is the angle of the major axis of the ellipse relative to 

a reference direction (arrow), e.g. movement direction. Aspect ratio (ellipse elongation) is 

1/2. The quantities 1 and 2 (1≥2) are the square root of the eigenvalues of the covariance 

matrix of endpoint distribution. C. Control signal (q1(t)) for a movement in A. The ideal control 

signal (zero noise; black line) and a real control signal (nonzero noise; gray line) are shown. D. 

Excitation signal (e1(t)) for a movement in A. The ideal excitation signal (black line) and a real 

excitation signal (gray line) are shown 
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Figure 4. A. Black lines. Relationship between movement amplitude, duration, and variability 

in the presence of SDNm (SDNm = 0.8; SDNs = 0.0; SINm = 0.0; SINs = 0.02;  = 0). 

Movements of different amplitudes (A = 10-60 cm, step 2 cm) and durations (MT = 200-800 

ms, step 20 ms) were simulated (N = 500 trials). For a given variability W (W2 = 1-9 cm2, step 

1 cm2), the relationship between A and MT was built by interpolation across amplitudes and 

durations. Gray lines. Similar results obtained with feedback delay  = 100 ms (A = 10-60 cm, 

step 5 cm; MT = 200-800 ms, step 50 ms; same noise statistics; N = 100 trials). Dashed lines. 

Similar results obtained with p = 1.5 (exponent of noise). B. Same as A for SDNm and SDNs 

(SDNm = 0.5; SDNs = 0.5; SINm = 0.0; SINs = 0.02;  = 0). C. Relationship between effort 

(arbitrary unit) and variability for data in A (when  = 0). D. Same as C for data in B. 

 

Figure 5. A. Variations in aspect ratio (top), surface area (in cm2, middle), and orientation 

(bottom) with SDNm for different SINs (circle: 0.05; box: 0.1; diamond: 0.15). Other 

parameters: SINm = 0, SDNs = 0. B. Same as A for SDNs. Other parameters: SINm = 0, 

SDNm = 0.5. Feedback delay was  = 0. Movement as in Fig. 3A,B. 

 

Figure 6. A. Variability for movements in 5 directions (10 cm, 400 ms) under SDNm 

(SDNm = 0.5). See Fig. 5A for explanations. Parameters: SINm = 0.0, SINs = 0.1, SDNs = 0.0. 

B. Same as A for SDNs (SDNs = 0.6). Parameters: SINm = 0.0, SDNm = 0.5, SINs = 0.06. C. 

Quantitative description of variability ellipses for data in A. As system dynamics is invariant 

by horizontal and vertical symmetry, results for 16 directions were obtained accordingly. Data 

were presented on a polar plot. 0 deg is on the right. From left to right: orientation, aspect ratio, 

surface area (normalized). The central gray circle corresponds to 0 deg (left), 1 (center), and 

0.5 (right). D. Same as C for data in B. The central gray circle corresponds to 0 deg (left), 2 
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(center), and 0.5 (right). Feedback delay was  = 0. 

 

Figure 7. A. Influence of sensory delay (25-100 ms) on the characteristics of variability ellipses 

(A: aspect ratio; B: surface area; C: orientation) for the movements simulated in Fig. 5. 

Directions are indicated by line’s width (Inset in B). Parameters: SINm = 0.0, SDNm = 0.25, 

SINs = 0.05, SDNs = 0.5. 

 

Figure 8. Quantitative description of variability ellipses for the nonlinear model using 

movements in 16 directions (10 cm, 400 ms, N = 500 trials). Same format as in Fig. 6C,D. 

Initial arm posture was (40°,90°). A. Variability due to SDNm (SDNm = 0.15). Parameters: 

SINm = 0.0, SINs = 0.3, SDNs = 0.2. Surface area was normalized. Maximum surface area was 

0.44 cm2. B. Variability due to SDNs (SDNs = 0.8). Parameters: SINm = 0.0, SDNm = 0.15, 

SINs = 0.3. Maximum surface area was 2.2 cm2. 

 

Figure 9. A. Movement variability for SDNm = 0.7, SDNs = 0.2, SINs = 0.02. 5 trajectories are 

shown. Inset: Enlarged view of endpoint distribution. Circle diameter is 2.5 cm. B. Same as A 

for SDNm = 0.8, SDNs = 0.1, SINs = 0.02. Circle diameter is 1.9 cm. C. Time course of position 

variability for data in A (gray) and B (black). The plotted quantity is the square root of the 

surface area (in cm) of the variability ellipse at each time along the trajectory. Inset: Velocity 

profiles. D. Time course of force variability. E. Time course of EMG variability. F. Spatial 

variability of kinematic landmarks (pka: peak acceleration; pkv: peak velocity, pkna: peak 

negative acceleration). The plotted quantity is the standard deviation (in mm) of the distance to 

the landmark. The same movement was used in all the simulations: 45°, 30 cm, 300 ms. 

Statistics were made over N = 1000 movements. Feedback delay was  = 0. 
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