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Speed/accuracy trade-off is a ubiquitous phenomenon in motor behavior, which has been ascribed to the presence of signal-dependent noise in motor commands. Although this explanation can provide a quantitative account of many aspects of motor variability, including Fitts' law, the fact that this law is frequently violated, e.g. during the acquisition of new motor skills, remains unexplained. Here, we describe a principled approach to the influence of noise on motor behavior, in which motor variability results from the interplay between sensory and motor execution noises in an optimal feedback-controlled system. In this framework, we first show that Fitts' law arises due to signal-dependent motor noise when sensory (proprioceptive) noise is low, e.g. under visual feedback. Then we show that the terminal variability of nonvisually guided movement can be explained by the presence of signal-dependent proprioceptive noise. Finally, we show that movement accuracy can be controlled by opposite changes in signal-dependent sensory and motor noise, a phenomenon which could be ascribed to muscular cocontraction. As the model also explains kinematics, kinetics, muscular, and neural characteristics of reaching movements, it provides a unified framework to address motor variability.

. It reflects the corruption of movement planning and execution processes by noise in sensory feedback and motor commands (

Materials and Methods

General principle

We considered the dynamical systems approach to the description of motor control [START_REF] Wolpert | Computational principles of movement neuroscience[END_REF][START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Saunders | Visual feedback control of hand movements[END_REF]Guigon et al., 2007[START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF]. In this framework, motor control is viewed as the mastering of a state-dependent dynamics in the presence of state-and control-dependent noise [START_REF] Todorov | Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system[END_REF]. We used the structure of noise-induced variability to probe the nature and influence of noise on motor control.

To illustrate, we consider a simple example: an inertial point which can move along a line, actuated by a force generator (Fig. 1A). The force generator transmits a control input u(t) (in fact a force), which is translated into a displacement x(t). The goal is to find the control which displaces the mass from position x0 at time t0 to position xf at time tf, with two constraints: 1. the control is noisy (presence of motor noise); 2. the state of the inertial point (position x(t), velocity) is not known, but can only be observed (y(t)) through a noisy sensor (presence of sensory noise), and estimated (estimation is denoted x ^(t)). At each time t, the control is calculated as a function of the estimated distance to the goal xfx ^(t). Over repeated trials, the resulting trajectory will be each time different (Fig. 1B), reflecting the structure and strength of sensory and motor noises. The set of trajectories x i (t) (t  [t0;tf], i = 1 … N; N number of trials) can be analyzed to reveal the structure of variability (e.g. time course of variance, final variability, …) in order to compare with experimental data (Gordon et al., 1994a;[START_REF] Van Beers | The role of execution noise in movement variability[END_REF]. This example contains basic components for the study of motor variability.

A classical solution to this problem can be obtained using a stochastic optimal feedback controller [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF], i.e. a controller which simultaneously minimizes the size of the control (effort) and the distance to the goal (error), taking into account the statistics of sensory and motor noise, coupled with an optimal state estimator (a Kalman filter, which provides an optimal state estimate based on efference copy of motor commands and sensory feedback). The rationale for this choice has been thoroughly elaborated in recent publications [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Scott | Optimal feedback control and the neural basis of volitional motor control[END_REF][START_REF] Todorov | Optimality principles in sensorimotor controls[END_REF]. Briefly, optimality provides an efficient solution to kinematic and muscular redundancy, and stochastic feedback control guarantees flexible and versatile compensations for internal and external perturbations (noise, target displacement, …; [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF]. A drawback of this approach arises from the minimization of a mixed error/effort cost function. Such a minimization requires the setting of parameters which weight the contribution of state errors (position, velocity, force, ...) and effort in the cost function. Since different settings lead to different behaviors, such a model cannot provide a univocal description of motor control. To circumvent this difficulty, we used a slightly different model which treats error and effort separately (Guigon et al., 2007a[START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF]. We have shown previously that this model can properly address redundancy (Guigon et al., 2007a), and motor variability [START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF].

Central idea

The goal of our work is to address speed/accuracy trade-off in motor behavior. But it has not yet been shown that optimal feedback control can address Fitts' law. Previous studies have shown that Fitts' law can arise from a minimum variance model [START_REF] Harris | Signal-dependent noise determines motor planning[END_REF]Tanaka et al., 2006), i.e. an open-loop model which constrains the size of terminal variance in the presence of motor noise (signal-dependent motor noise, SDNm). There are two ways to consider the relationship between minimum variance and optimal feedback control models. On the one hand, as the former model is open-loop, we could consider an "open-loop" version of optimal feedback control, i.e. when the optimal state estimator does not receive sensory feedback (where sensory feedback is defined as visual and proprioceptive feedback from the moving apparatus). Yet such a model can hardly be considered as a model of normal motor control (it could be considered as a model of deafferentation). On the other hand, the minimum variance model could be considered as an optimal way to compensate for SDNm in the absence of other perturbations. As sensory noise decreases toward zero, optimal feedback control could also be considered as an optimal way to compensate for SDNm in the absence of other perturbations. Yet the zero-noise case (i.e. perfect sensory feedback) should lead to instantaneous compensation of motor noise and zero variability (the gain of the Kalman filter becomes infinite). This case is not realistic as sensory delays preclude instantaneous corrections. To approach the condition of "perfect sensory feedback", we used a small signalindependent sensory noise (see definition below) which precluded instantaneous corrections (the Kalman gain remains bounded), but produced little variability. In the following, we used the term "perfect sensory feedback" to refer to this condition. In this framework, the equivalence between minimum variance and optimal feedback control could be related to the fact the two models attempt to find the smallest motor commands in order to reduce the quantity of SDNm.

Hypotheses and simplifications

Origin of variability

A central issue in the study of motor variability is the origin of this variability. Several studies have ascribed variability to the movement planning process (Gordon et al., 1994a;[START_REF] Mcintyre | Viewer-centered frame of reference for pointing to memorized targets in three-dimensional space[END_REF][START_REF] Vindras | Frames of reference and control parameters in visuomanual pointing[END_REF]. However, no authoritative demonstration has been provided to support this idea. Furthermore, computational studies have shown that characteristic features of motor variability (e.g. shape of terminal variability ellipses, time course of variability along a trajectory, …) can be quantitatively explained by a noisy execution process [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Van Beers | The role of execution noise in movement variability[END_REF]. In fact, it seems that, in many conditions, planning-related variability is much smaller than execution-related variability (discussion in [START_REF] Van Beers | The role of execution noise in movement variability[END_REF]but see Churchland et al., 2006). Here, we retained this idea, and focused on the influence of execution noise.

Nature of noise

Since neither the origin nor the nature of noise can be precisely determined, a principled approach to the structure of noise was used [START_REF] Saunders | Visual feedback control of hand movements[END_REF][START_REF] Todorov | Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system[END_REF]: 1. Noise corrupts both motor commands and sensory feedback signals; 2. Noise has additive (signalindependent, SIN), and multiplicative (signal-dependent, SDN) effects. SDN is described by its variance

 2 = k  u  p ,
where u is the signal, and k and p are constants. An open question is the value of the exponent p. In modeling studies [START_REF] Harris | Signal-dependent noise determines motor planning[END_REF][START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Tanaka | Different predictions by the minimum variance and minimum torque-change models on the skewness of movement velocity profiles[END_REF][START_REF] Tanaka | An optimization principle for determining movement duration[END_REF], it is in general assumed that p = 2 in agreement with some experimental observations [START_REF] Jones | Sources of signal-dependent noise during isometric force production[END_REF][START_REF] Todorov | Cosine tuning minimizes motor errors[END_REF]. Yet, other studies have reported a lower p [START_REF] Laidlaw | Steadiness is reduced and motor unit discharge is more variable in old adults[END_REF][START_REF] Christou | Age and contraction type influence motor output variability in rapid discrete tasks[END_REF]; see discussion in [START_REF] Stein | Neuronal variability: Noise or part of the signal?[END_REF]. Interestingly, [START_REF] Iguchi | The minimum endpoint variance trajectory depends on the profile of the signal-dependent noise[END_REF] have shown that predictions of the minimum variance model [START_REF] Harris | Signal-dependent noise determines motor planning[END_REF] depend on p. In particular, Fitts' law was found only for p = 2. Here, we used p = 2, but we explored consequences of this choice for the reported results.

Nature of feedback

Control of limb movements involves both visual and proprioceptive feedback. Movement accuracy depends on noise characteristics and time delays in each feedback modality. Here, we were interested in the role of proprioceptive feedback. Thus, we built a model of noisy proprioception to explore variability of movements of the unseen limb (e.g. Gordon et al., 1994a;[START_REF] Van Beers | The role of execution noise in movement variability[END_REF]. To compare visually-guided and nonvisually-guided movements (in the study of Fitts' law), we assumed that visual feedback can be represented by a perfect sensory feedback (as defined above). The rationale for this hypothesis is related to the equivalence (for the study of Fitts' law) between optimal feedback control and a minimum variance model in the presence of perfect sensory feedback (see above).

In this way, we considered a single source of feedback, and we varied the strength of noise to simulate different configurations: 1. Zero signal-dependent sensory noise for movement with visual feedback. This simplification is based on the fact that the state estimator weights feedback modalities according to their precision. Thus the state estimator would nearly ignore proprioceptive feedback in the presence of vision; 2. Nonzero signal-dependent sensory noise for movement without visual feedback. Below, we use either the generic term "sensory feedback", or proprioceptive (resp. visual) feedback to indicate noisy (resp. perfect) sensory feedback.

Nature of the model

In this article, we considered two control problems: 1. an inertial point in two-dimensional space actuated by two linear muscles (linear model). This model has proven adequate to address motor variability in various conditions [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF]. Furthermore, it can be solved analytically [START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF], and is thus appropriate for in-depth evaluations, e.g. to study the influence of parameters; 2. a planar articulated arm actuated by two pairs of nonlinear antagonist muscles (nonlinear model). When the spatial structure of variability is addressed, the use of the linear model is not easy to justify, and the more realistic, nonlinear model was used to confirm the results obtained with the linear model.

Notations

In the following, dx/dt and d 2 x/dt 2 denote the first and second derivative of x(t) relative to t.

Vectors are indicated by bold letters (x), and matrices by uppercase underlined letters (A).

Diag() denotes a diagonal matrix built from the numbers between the parentheses. We define In as the n-dimensional identity matrix. We also define J2 as 0 1 -1 0 and L1, L2, L3, L4 as

1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1 -1 1 1 1

Mathematical formulation: optimal feedback control

The dynamics of the moving apparatus was described by a continuous noisy system dx/dt = f (x(t),u(t)) + noisedyn(t), (Eq. 1)

where x is a n-dimensional state vector, u a m-dimensional control vector, noisedyn a n-dimensional noise on the dynamics (see below where K is the np Kalman gain matrix [START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF]. The meaning of Eq. 3 is the following. The next estimated state can be obtained from: 1. an internal simulation of the dynamics, i.e. a forward model (first term in the right-hand side of Eq. 3); 2. sensory inputs (second term term in the right-hand side of Eq. 3). For optimal estimation, the two terms are combined according the maximum likelihood principle, i.e. each term has a weight which is inversely proportional to its variance. The weighting is represented here by K.

Delayed feedback () was introduced in the linear model (see below) as described by [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF] (their Supplementary Information). Since simulations with reasonable delays (e.g.,  = 100 ms) were highly time consuming [~3 h to calculate variability statistics (N = 500 trials) of a single movement; ~1,600 movements were simulated to build Fig. 2], full results were first obtained without delay, and then confirmed with nonzero delay in a subset of cases.

Both dynamics and observation were corrupted by noise [START_REF] Todorov | Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system[END_REF]. We had

noisedyn(t) = (t) + i =1..c i(t) Ci u(t), (Eq. 4)
where  is a n-dimensional zero-mean Gaussian random vector with covariance matrix   ,  = [1 … c] a zero-mean Gaussian random vector with covariance matrix   , and [C1 … Cc] a set of nm matrices. The former type of noise is called SINm (signal-independent motor noise). The latter is known as SDNm (signal-dependent motor noise). In the same way,

noiseobs(t) = (t) + I=1..d i(t) Di x(t), (Eq. 5)
where  is a p-dimensional zero-mean Gaussian random vector with covariance matrix   ,  = [1 … d] a zero-mean Gaussian random vector with covariance matrix   , and [D1 … Dd] a set of mn matrices. The former type of noise is called SINs (signal-independent sensory noise). The latter is termed SDNs (signal-dependent sensory noise).

An optimal feedback control problem for the system defined by Eqs. 1-5 is to find a control vector u at time t  [t0;tf] to minimize a performance index (E, effort) The functioning of the model is summarized in Fig. 2. The model contains a controller (an optimal feedback controller as explained above), a state estimator (Eqs. 2,3), and a controlled object (the moving apparatus). At each time step, the controller elaborates a control signal based on the target state and the estimated state of the controlled object. The control signal is transmitted to the controlled object which evolves according to its dynamics (Eq. 1). State estimation results from a weighted combination of a control-based estimation (forward model) and a sensory-based correction (Kalman filter).

E 2 =  i=1..m [t ; tf] ui 2 (

Linear case

The moving apparatus was an inertial point in two-dimensional space actuated by two muscles (n = 8, m = 2). The dynamics was

M d 2 q/dt 2 = F,
where q = [q1 q2] T is the position of the point, M = [m1 0; 0 m2] the inertia matrix, and

F = [F1 F2]
T contains the forces exerted by the muscles. Each muscle i was modeled as a second-order linear filter which transforms a neural control signal (ui) into a muscular force (Fi)

according to

 dei /dt = -ei + ui (excitation)  dai /dt = -ai + ei (activation) (Eq. 6) Fi = (ai)
where  is a time constant, and (z) = z. The state vector was

x = [q1(t);q2(t);dq1(t)/dt;dq2(t)/dt;a1(t);a2(t);e1(t);e2(t)].

Thus

f (x(t),u(t)) = Ax(t) + Bu(t),
where the matrix A was

0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1/m1 0 0 0 0 0 0 0 0 1/m2 0 0 0 0 0 0 -1/ 0 1/ 0 0 0 0 0 0 -1/ 0 1/ 0 0 0 0 0 0 -1/ 0 0 0 0 0 0 0 0 -1/ and B was 0 0 0 0 0 0 0 0 0 0 0 0 1/ 0 0 1/
The optimal feedback control problem was solved analytically as explained in [START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF], and simulated numerically.

General parameters

We used  = 40 ms,  = 1 ms. To represent the inertial anisotropy of a real arm [START_REF] Hogan | The mechanics of multi-joints postures and movement[END_REF],

we used m1 = 2 kg and m2 = 1 kg.

Motor noise

Signal-dependent motor noise (Eq. 4). We chose c = 2,

C1 = B I2 C2 = B J2,
and

  = SDNm I2,
where SDNm is the s.d. of noise (see [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF]. The rationale for this choice (circular covariance) is to obtain independent noise of similar variance on the two dimensions.

Signal-independent motor noise (Eq. 4). To assess the specific role of SDNm, signalindependent motor noise (SINm) was used with

  = SINm Diag(0,0,0,0,0,0,1,1),
where SINm is the s.d. of noise.

Simulation of nonvisually guided movements

Observation matrix (Eq. 2). The structure of the observation process should reflect the nature of biological sensors which provide measures of state-related quantities. In physiological terms, the observation matrix corresponds to the integrated contribution of proprioceptive and cutaneous receptors (muscle spindles, Golgi tendon organs, articular receptors, …; Burgess et al., 1982) to kinesthetic movement detection. However, this process is distributed, complex, nonlinear, and cannot be exactly represented in a linear framework. Here, the main simplifying assumption is that state can be directly and exactly measured from the sensors (in the absence of noise). Although this assumption is not easy to justify on physiological ground, it is well demonstrated that human subjects can measure and manipulate states (e.g. positions, velocities, forces; [START_REF] Ghahramani | Generalization to local remappings of the visuomotor coordinate transformation[END_REF][START_REF] Kerr | Velocity perception and proprioception[END_REF][START_REF] Todorov | Cosine tuning minimizes motor errors[END_REF]. The simplest structure for H is

Diag(1,1,1,1,1,1,1,1),
corresponding to p = n = 8, i.e. the full state is observable. To assess the influence of the structure of the observation matrix on the results, we considered cases where some parts of the state vector were not observable (see Results). In particular, it is unclear whether excitation (roughly the derivative of force) is measured by sensors. Since the model is a highly simplified, linear representation of complex processes (e.g. Hasan, 1983), our goal is not to draw firm conclusions on the nature of feedback information, but to address conditions in which our results remain valid.

Signal-dependent sensory noise (Eq. 5). There are many possible configurations for SDNs, and all configurations cannot be systematically tested. In fact, there are two extreme configurations. The first corresponds to the less favorable case for a structured variability to emerge, i.e. each state is a source of noise, and all the sources of noise are independent. In this case, d = 8, and D1 = Diag(1,0,0,0,0,0,0,0) … D8 = Diag(0,0,0,0,0,0,0,1).

In the second configuration, there is a single source of noise for all states. In this case, d = 1, and

D1 = Diag(1,1,1,1,1,1,1,1).
The true configuration (in the framework of our simplified model) is somewhere between these extremes. As an intermediate configuration, we considered the case where there is a single source of noise for each type of state (position, velocity, activation, excitation), i.e. d = 4, and D1 = Diag(1,1,0,0,0,0,0,0) … D4 = Diag(0,0,0,0,0,0,1,1).

In the three cases,

  = SDNs Id,
where SDNs is the s.d. of noise. The intermediate configuration was used as the default configuration, and the two extreme configurations were used to assess the influence of the structure of noise on the results. The highly simplified nature of the model does not authorize a more thorough analysis of the structure of noise.

Signal-independent sensory noise (Eq. 5). To assess the specific role of SDNs, signalindependent sensory noise (SINs) was used with

  = SINs Diag(0.1,0.1,1,1,10,10,100,100),
where SINs is the s.d. of noise.

Simulation of visually guided movements

We set SDNs to 0.

Nonlinear case

The moving apparatus was a two-joint planar arm (shoulder/elbow) actuated by two pairs of antagonist muscles (n = 12, m = 4). The dynamics was

In(q) d 2 q/dt 2 + Cor (q,dq/dt) = T, (Eq. 7)

where q = [q1 q2] T are the joint angles, In the position-dependent inertia matrix, Cor the matrix of Coriolis and centripetal forces, and T the torques generated by muscle forces (Guigon et al., 2007a). The muscles were modeled as described by Eq. 6 with (z) = [z] + . The state vector was

x(t) = [q1(t),q2(t),dq1(t)/dt,dq2(t)/dt,a1(t),a2(t),a3(t),a4(t),e1(t),e2(t),e3(t),e4(t)],
and function f (x(t),u(t)) was obtained from Eq. 6 and Eq. 7. The optimal feedback control was derived analytically as explained in [START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF], and then simulated numerically as explained in Guigon et al. (2007a).

This model is a simplified model which does not take into account the complex nonlinear behavior of muscles and the presence of biarticular muscles (see Guigon et al., 2007b for a more general model). Yet, it was deemed sufficient for the present purpose (see Guigon et al., 2007a for a discussion).

General parameters

They can be found in Guigon et al. (2007a).

Motor noise

Signal-dependent motor noise (Eq. 4). We chose c = 4,

C1 = B L1 C2 = B L2 C3 = B L3 C4 = B L4,
where B = f/u, to obtain independent noise of similar variance on the four dimensions.

Signal-independent motor noise (Eq. 4). We used   = SINm Diag(0,0,0,0,0,0,0,0,1,1,1,1).

Simulation of nonvisually-guided movements

Observation matrix (Eq. 2). The nonlinear model was only used to simulate nonvisuallyguided movements. The observation matrix was

Diag(1,1,1,1,1,1,1,1,1,1,1,1), corresponding to p = n = 12.
Signal-dependent sensory noise (Eq. 5). We used d = 4, and D1 = Diag(1,1,0,0,0,0,0,0,0,0,0,0) D2 = Diag(0,0,1,1,0,0,0,0,0,0,0,0) D3 = Diag(0,0,0,0,1,1,1,1,0,0,0,0) D4 = Diag(0,0,0,0,0,0,0,0,1,1,1,1).

Signal-independent sensory noise (Eq. 5). We used   = SINs Diag(0.01,0.01,0.1,0.1,1,1,1,1,10,10,10,10).

Quantitative description of variability

Behavioral variability is in general described by a systematic error (bias), and a random error.

Ideally, these errors should be referred to as accuracy and precision, respectively [START_REF] Bevington | Data reduction and error analysis for the physical sciences[END_REF]. Yet these terms have been used interchangeably in the literature (e.g. speed/accuracy trade-off). Here, we are interested only with random errors, and we will use the terms variability and accuracy for their description.

Terminal variability was described by characteristics of the 95% equal frequency ellipse (i.e.

the ellipse which contains, on average, 95% of endpoints, calculated over N trials; Sokal & Rohlf, 1995; see Fig. 3B, inset): 1. its surface area (in cm 2 ), and the square root of its surface area (, in cm); 2. its orientation (, in deg): the angle of the major axis of the ellipse relative to movement direction; 3. its aspect ratio (ellipse elongation): the ratio 1/2, where the quantities 1 and 2 (1≥2) are the square root of the eigenvalues of the covariance matrix of endpoint distribution.

Results

Unless otherwise mentioned, the results were obtained using the linear model with p = 2 (exponent of signal-dependent noise).

General properties of the model

We first note that the model reproduces basic expected characteristics of motor behavior.

Simulated trajectories were straight with a bell-shaped velocity profile (Fig. 3A,B). A typical control signal had an early phasic component followed by a depression (Fig. 3C), and resembled the discharge pattern of EMG-like neurons found in primate motor cortex [START_REF] Sergio | Changes in the temporal pattern of primary motor cortex activity in a directional isometric force versus limb movement task[END_REF]; see Guigon et al., 2007b). A typical excitation signal had a triphasic agonist/antagonist pattern (Fig. 3D; the agonist and antagonist bursts are found on the same trace since there is a single control per Cartesian direction), similar to EMG patterns of fast reaching movements. In fact, we have shown elsewhere that the model can accurately account for kinematics, kinetics, muscular, and neural characteristics of reaching movements (Guigon et al., 2007a,b).

What is the origin of Fitts' law?

The starting point of our reasoning is Fitts' law. This law writes

MT = a + b log2(2A/W), (Eq. 8)
where MT is movement duration (in ms), A movement amplitude (in cm), and W target width (in cm). This relationship contains two parts: a scaling law (between amplitude and duration) and a speed/accuracy trade-off (between duration and target width). Although each part is easy to explain on its own, models show that the coordination in a single rule is probably a complex, emergent property of neural motor control [START_REF] Meyer | Optimality in human motor performance: Ideal control of rapid aimed movement[END_REF][START_REF] Harris | Signal-dependent noise determines motor planning[END_REF][START_REF] Tanaka | An optimization principle for determining movement duration[END_REF]. The central idea of these models is that the nervous system acts as a stochastically optimal controller, i.e. a controller which plans optimal movements taking the statistics of noise (SDNm) into account (review in [START_REF] Todorov | Optimality principles in sensorimotor controls[END_REF]. The scaling law results from time minimization while attempting to reach a target area: due to noise, for each amplitude, there is a unique (minimum) movement duration which guarantees that movement endpoint is bounded to a given spatial region. Speed/accuracy trade-off is a consequence of SDNm: faster movements require larger control signals, and thus endure more noise. On this basis, the models predict that movement duration is not simply a function of amplitude and target width, but especially of the ratio between amplitude and target width (Eq. 8).

The weakness of these models is the absence of online feedback control which is necessary for the continuous updating of motor commands by internal and external feedback loops [START_REF] Desmurget | Forward modeling allows feedback control for fast reaching movements[END_REF][START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Saunders | Visual feedback control of hand movements[END_REF][START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF]. Thus we tried to reproduce Fitts' law in the framework of optimal feedback control. We simulated visually-guided movements (see Materials and Methods) of different amplitudes and durations under SDNm, and we measured the terminal variability (). Then we searched for pairs (A,MT) which lead to a given W (i.e.  = W). We repeated this operation for different values of W, and we plotted MT as a function of log2(2A/W) (Fig. 4A). It appears clearly that

MT is a function of A/W as required by Eq. 8. Similar results were obtained in the presence of delay in sensory feedback ( = 100 ms; Fig. 4A, gray lines). We reproduced similar simulations for nonvisually guided-movements (see Materials and Methods). The data obviously deviated from Fitts' law (Fig. 4B).

We addressed the influence of the exponent of noise for SDNm. We reproduced the simulations of Fig. 4A for p = 1.5 (Fig. 4A, dashed lines). Clearly, the data deviated from Fitts' law. A similar result was reported by Iguichi et al. (2005) with the minimim variance model (their Fig. 9).

For Fitts' law, amplitude/duration scaling can arise as a consequence of a constant variability criterion (see [START_REF] Harris | Signal-dependent noise determines motor planning[END_REF][START_REF] Tanaka | An optimization principle for determining movement duration[END_REF]and above). However, scaling is also found in the absence of Fitts' law, e.g. when subjects reach for visual targets with no constraints of accuracy. In this case, scaling is associated with a pattern of amplitude-dependent variability (Gordon et al., 1994a;[START_REF] Messier | Differential effect of task conditions on errors of direction and extent of reaching movements[END_REF], 1999;[START_REF] Van Beers | The role of execution noise in movement variability[END_REF]. We have shown previously that scaling can result from a constant effort criterion (Guigon et al., 2007[START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF]. Interestingly, in the absence of sensory noise (visual feedback condition), effort and variability are univocally related (Fig. 4C). Thus Fitts' law could ensue from a constant effort criterion. In the presence of proprioceptive noise (nonvisual feedback condition), there is no longer a one-to-one relationship between effort and variability (Fig. 2D), and scaling based on constant effort can be associated with non constant variability (see below). The question turns to the nature of noise in proprioceptive feedback.

Evidence for noise in proprioceptive feedback

The structure of motor variability (i.e. how variability changes in time and space along a movement) reveals critical information on motor control processes and the nature of noises that corrupt these processes [START_REF] Harris | Signal-dependent noise determines motor planning[END_REF][START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Van Beers | The role of execution noise in movement variability[END_REF][START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF]. For instance, the variability of radially pointing movements has revealed that several types of noise, not only SDNm, are present in the motor system [START_REF] Van Beers | The role of execution noise in movement variability[END_REF]. This conclusion was reached using an open-loop model which is not appropriate to evaluate the influence of feedback noise. Thus we assessed the influence of sensory and motor noise on the variability of radially pointing movements using optimal feedback control.

We were interested in the shape and orientation of endpoint distributions for movements of the unseen limb (variability ellipses; Fig. 3B, inset; Gordon et al., 1994a;[START_REF] Messier | Differential effect of task conditions on errors of direction and extent of reaching movements[END_REF], 1999;[START_REF] Van Beers | The role of execution noise in movement variability[END_REF]. As the shape and orientation of variability ellipses appear to depend on limb inertia [START_REF] Van Beers | The role of execution noise in movement variability[END_REF], we simulated an inertial point in twodimensional space with different masses in two orthogonal directions (see Materials and

Methods).

We first simulated nonvisually-guided movements in a single direction (45 deg) to explore the influence of different types of noise in a systematic fashion. We observed that the surface area, shape, and orientation of ellipses were mostly determined by signal-dependent sensory noise (SDNs) while signal-independent sensory noise (SINs) contributed basically to their surface area (Fig. 5A,B). Motor noise (SDNm, SINm) had little influence. We found that variability ellipse was elongated for both SDNm and SDNs (Fig. 3A,B), but aligned along movement direction only for SDNs (Fig. 5B). This result was confirmed by a quantitative analysis (Fig. 5A,B). On the one hand, ellipse orientation was almost constant under SDNm and deviated from movement direction by >45° (Fig. 5A). On the other hand, orientation tended to be closer to movement direction as SDNs increased (orientation effect; Fig. 5B).

Then, we simulated movements in 5 directions in the first quadrant (because system dynamics is invariant by horizontal and vertical symmetry). Under SDNm, the variability ellipses had an almost constant orientation, irrespective of movement direction (Fig. 6A). In contrast, the ellipses were closely aligned on movement direction under SDNs (Fig. 6B). These results are confirmed by a polar plot (left in Fig. 6C,D). We further observed that the aspect ratio varies with movement direction under SDNs, but less under SDNm (center in Fig. 6C,D).

Ellipse surface area was constant across directions under SDNm, but varied with direction under SDNs (right in Fig. 6C,D). The results in Fig. 6D closely match experimental observations reported in van Beers et al. (2004) (see also [START_REF] Desmurget | Constrained and unconstrained movements involve different control strategies[END_REF][START_REF] Gepshtein | Optimality of human movement under natural variations of visual-motor uncertainty[END_REF]. A main effect was the variation of aspect ratio with movement direction. In the model, the ratio was higher in directions of smaller inertia, i.e. 90/270°. In van [START_REF] Van Beers | The role of execution noise in movement variability[END_REF], the directions were ~60/250° (their Fig. 4A). Although initial arm posture is not known exactly for the data of [START_REF] Van Beers | The role of execution noise in movement variability[END_REF], these directions likely correspond to movements obtained by forearm rotations, i.e. movements against smaller inertial loads (Gordon et al., 1994b).

Influence of feedback delay was assessed separately (Fig. 7). We observed that the delay had a weak influence on the shape of variability ellipses (Fig. 7A), but a strong influence on their size (Fig. 7B). The orientation effect decreased with the delay, but remained visible even at the longer delay (Fig. 7C).

Although these results are consistent with experimental observations, it is not easy to justify that the behavior of an articulated arm can be adequately represented by the behavior of an inertial point. Thus we addressed the results obtained with the simple linear model (Fig. 6) using an optimal feedback control model for a planar two-joint arm (see Materials and Methods).

The results are shown in Fig. 8A,B, in the same format as in Fig. 6C,D. Although the results are less striking than in the linear case, we observed a similar trend as with the linear model, i.e.

ellipse orientation became aligned with movement direction in the presence of SDNs. Two interesting characteristics are the anisotropic variations of aspect ratio and surface area with movement direction (Fig. 8B, center and right). Using principal component analysis, we calculated the orientation of the main axis of these variations (61° for aspect ratio, 23° for surface area; gray lines in Fig. 8B). For comparison, we estimated these quantities for the experimental results of van Beers et al. (2004) (their Fig. 4A,C): we found 60° and 28° for the aspect ratio and the surface area, respectively (dashed lines in Fig. 8B). Although the nonlinear model reproduces quantitative features of experimental data, it does not reproduce the actual size of variability ellipses. With our parameters (size of noises), maximum surface area was 2.2 cm 2 (we observed that larger noises lead to unrealistic trajectories and velocity profiles), whereas it could be 5-10 cm 2 for real movements (Fig. 3 in [START_REF] Van Beers | The role of execution noise in movement variability[END_REF]. A possible reason for this discrepancy is the absence of feedback delay in the nonlinear model. We have shown in the linear model that the delay increases the size of variability ellipses, but has little influence on their shape and orientation (Fig. 7). This property could be true for the nonlinear model, but to prove it is a challenging problem of computing power (see Materials and

Methods).

Since nonlinear modeling is a complex problem, these simulations should be considered with caution. Yet they point to a critical contribution of signal-dependent noise in proprioceptive feedback to motor variability when subjects do not receive specific instruction regarding movement accuracy. This case is complementary to the condition of Fitts' law which requires perfect sensory feedback (see above).

These results suggest that the structure of variability of reaching movements can be quantitatively explained by the interplay between signal-dependent proprioceptive and motor noises in an optimal feedback controller. We now address the control of movement accuracy.

Control of accuracy

Experimental studies have shown that subjects can be trained to produce a desired kinematic pattern (velocity profile) while modulating terminal accuracy [START_REF] Gribble | Role of cocontraction in arm movement accuracy[END_REF][START_REF] Osu | Optimal impedance control for task achievement in the presence of signal-dependent noise[END_REF]. A central observation was that movement accuracy covaried positively with the level of muscular cocontraction despite the fact that the variability of motor patterns (EMGs and torques) increased with cocontraction. We explored this paradox with the model. On the one hand, we have shown that movement variability related to control of accuracy can be explained by a reduced influence of proprioceptive noise. On the other hand, cocontraction should increase motor noise. Thus we assessed the effect of opposite variations in proprioceptive and motor noises (nonvisually-guided movements) as a simplified way to address the influence of cocontraction. We compared two conditions: 1. "normal cocontraction" (SDNm = 0.7 and SDNs = 0.2); 2. "high cocontraction" (SDNm = 0.8 and SDNs = 0.1). We observed that, for this particular choice of noise, movement was more accurate in the high cocontraction condition (Fig. 9A,B), although the forces and EMGs were more variable in this condition (Fig. 9D,E; see Fig. 5 in [START_REF] Osu | Optimal impedance control for task achievement in the presence of signal-dependent noise[END_REF]. We also note that higher cocontraction lead to larger variability over ~3/4 of the trajectory (Fig. 9C; see Fig. 5G in [START_REF] Osu | Optimal impedance control for task achievement in the presence of signal-dependent noise[END_REF], Fig. 5C in Selen et al., 2006).

These results were obtained for a specific combination of proprioceptive and motor noise, but remain similar for many different combinations. As we varied SDNm and SDNs in the range 0.1-0.7 , we observed that for a 20% increase in SDNm, a 50% decrease in SDNs was in general appropriate to produce a "cocontraction effect" (i.e. the movement was more precise while the forces and EMG were more variable). The main significance of these results is that we were able to account quantitatively for the influence of cocontraction using the same components as used to explain the characteristics of variability ellipses. The model illustrates the possible effect of opposite modulation of sensory and motor noises, but does not reveal a principle for their coordinated variations. We also calculated the spatial variability of distance to kinematic landmarks (peak acceleration, velocity and deceleration; Fig. 9F). We observed that the variability increased until peak deceleration and then plateaued in the first condition. The variability decreased after peak deceleration in the second condition (lower SDNs). This result was still more marked for SDNs = 0, corresponding to the case of a visually guided movement.

This observation is consistent with experimental observations (Fig. 9 in [START_REF] Proteau | On the role of visual afferent information for the control of aiming movements toward targets of different sizes[END_REF]Fig. 4 in Khan & Franks, 2003;Fig. 1 in Khan et al., 2003). Similar results were obtained for nonzero feedback delay.

Analysis of parameters (linear model)

A central emerging effect of the model is the influence of SDNs on the orientation of variability ellipses (Fig. 6D). Here, we address the influence of different parameters on this effect.

Observation matrix

We assessed how the structure of the observation matrix influenced the orientation effect.

Accordingly we selectively removed the position (P), velocity (V), activation (A) and excitation (E) information from the observation matrix (e.g. the combination PV means that only position and velocity were observable). We found that the orientation effect was present for a majority of combinations of observable states although no simple rule could be drawn. Exceptions were the following combinations of observable states: PVE, PE, VE, E.

Structure of signal-dependent sensory noise

The orientation effect was completely suppressed in the case of independent sources of noise (d = 8), but was not improved by the presence of a unique source of noise (d = 1). It is possible that the orientation effect could emerge under weaker hypotheses on the structure of noise.

However, a finer analysis of this issue would not be necessarily meaningful in the framework of our simplified model.

Discussion

There are three main results in this study. First, we have shown that the structure of variability of nonvisually-guided reaching movements can be quantitatively explained by the interplay between signal-dependent proprioceptive and motor noises in an optimal feedback controller.

Second, the variability of movement performed under a constraint of accuracy (e.g. condition of Fitts' law) reflects optimal feedback control in the presence of perfect sensory feedback.

Third, the surplus of motor noise and the resulting increase in motor output variability related to increased muscular cocontraction is not incompatible with improved terminal accuracy.

Nature of the model

The present model was cast in the framework of linear dynamical systems (for a similar approach, see [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Saunders | Visual feedback control of hand movements[END_REF]. This simplification lead to an analytically tractable problem which can be easily solved in the presence of noise. Such a linear model was found appropriate to address general characteristics of motor variability [START_REF] Harris | Signal-dependent noise determines motor planning[END_REF][START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Saunders | Visual feedback control of hand movements[END_REF][START_REF] Tanaka | An optimization principle for determining movement duration[END_REF]present results). For instance, Fitts' law has been observed in a wide range of conditions [START_REF] Plamondon | Speed/accuracy trade-offs in target-directed movements[END_REF], including mentally simulated movements (Decety & Jeannerod, 1995). A linear approach can be suitable in this case. However, it was unclear whether the linear framework is also suitable to address aspects of variability which likely depend on nonlinearities in motor behavior, e.g. direction-dependent changes in the shape of terminal variability ellipses in reaching movements (Gordon et al., 1994a;[START_REF] Van Beers | The role of execution noise in movement variability[END_REF]. Thus, we also simulated a more realistic nonlinear model (a planar articulated arm actuated by two pairs of antagonist muscles) to address this issue.

The proposed model is a computational approach to motor control and variability. It is not a model of physiological mechanisms involved in motor control. Thus we considered the general case of noise in sensory and motor pathways, and as an approximation, we considered signalindependent and signal-dependent noises [START_REF] Todorov | Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system[END_REF]. We found that a computational description of terminal variability can be obtained by the presence of signal-dependent noise in sensory pathways. Yet, we do not claim that there is SDN at the level of muscle spindles or Golgi tendon organs, but the model predicts that there is some form a SDN in sensory pathways (somewhere between the sensors and the state estimator).

Structure of motor variability for reaching movements

Although it is well recognized that variability of goal-directed movements derives in part from the presence of noise in the execution process [START_REF] Hoff | Models of trajectory formation and temporal interaction of reach and grasp[END_REF][START_REF] Harris | Signal-dependent noise determines motor planning[END_REF][START_REF] Messier | Comparison of variability of initial kinematics and endpoints of reaching movements[END_REF][START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Van Beers | The role of execution noise in movement variability[END_REF], the nature of noise remains poorly understood. Theoretical studies have shown that part of the noise is signaldependent motor noise, as this type of noise appears necessary for the emergence of raw aspects of structured variability, e.g. uncontrolled manifolds which are found in line-pointing and viapoint tasks [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF]. Yet, SDNm is not sufficient to account for the spatio-temporal variability of reaching movements [START_REF] Van Beers | The role of execution noise in movement variability[END_REF] present results). For instance, the ubiquitous finding that directional errors are smaller than errors in amplitude (Gordon et al., 1994a;[START_REF] Messier | Differential effect of task conditions on errors of direction and extent of reaching movements[END_REF], 1999;[START_REF] Van Beers | The role of execution noise in movement variability[END_REF]) cannot be reproduced with SDNm. [START_REF] Van Beers | The role of execution noise in movement variability[END_REF] proposed that execution is corrupted by a mixture of constant noise, temporal noise and SDNm. However, their account of experimental data was not fully conclusive since they used an open-loop control model.

Our model suggests that noise in proprioceptive feedback is an important determinant of the variability of nonvisually-guided reaching movements. It should be noted that this noise is not of a different nature than motor noise. In fact, both types of noise are signal-dependent, which means that their variance increases proportionally to the magnitude of the signal. The sole difference is the nature of the neural pathway (sensory or motor) in which the signal flows.

Fitts' law

Although there is no consensus on the origin of Fitts' law (e.g. [START_REF] Plamondon | Speed/accuracy trade-offs in target-directed movements[END_REF], the idea has grown that it could ensue from the attempt to control movement accuracy in the presence of SDNm [START_REF] Meyer | Optimality in human motor performance: Ideal control of rapid aimed movement[END_REF][START_REF] Harris | Signal-dependent noise determines motor planning[END_REF][START_REF] Tanaka | An optimization principle for determining movement duration[END_REF]. This idea is especially interesting as it also provides a principled approach to the emergence of motor behaviors [START_REF] Harris | Signal-dependent noise determines motor planning[END_REF]. However, there are three main limitations of the minimum variance model. First it is an open loop model which fails to exploit feedback processing [START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF]. Second, it is bound to exhibit speed/accuracy trade-off (i.e. faster movements are necessarily more variable), and thus it cannot account for the paradoxical effect of cocontraction (see Control of accuracy below). Third, the choice of a terminal variance can be problematic in more than one dimension since the shape of the variance area has to be specified. For instance, it has been shown with pointing movements that the shape of the variance area is not identical to the shape of the target region [START_REF] Osu | Optimal impedance control for task achievement in the presence of signal-dependent noise[END_REF][START_REF] Gepshtein | Optimality of human movement under natural variations of visual-motor uncertainty[END_REF].

To circumvent these difficulties, we attempted to extend the results obtained with the target width has almost no effect on acceleration duration and peak velocity, but affects the duration of the deceleration phase. The classical interpretation of these observations is based on Woodworth's initial adjustment and current control phases, i.e. an initial quick ("ballistic") transport toward target location followed by a slower feedback-driven homing phase. In its current form, the model does not provide a direct explanation of these results. In fact, the central issue is how target size is exploited by the controller. Target size could be used to specify boundary conditions, e.g. where the controlled system should land within the target area.

However, in the presence of noise, there is no guarantee that the actual landing point will be within the required region. A more efficient solution would consist in matching target size and "effective target width", i.e. searching for a control law which, taking into account the expected characteristics of noise and feedback, would produce an actual endpoint dispersion corresponding to the target region. The constant effort principle could be modified to encompass this idea. Reprogramming at each time would lead to adjust remaining duration not only as a function of remaining amplitude and remaining effort, but also as a function of a desired final variability. The scenario could be the following. Before the arrival of sensory feedback, the controller is driven by target distance and a level of effort. Once feedback is available, the controller can exploit characteristics of the feedback to improve the motor plan.

For instance, feedback of visual origin could allow accuracy control. At this stage, target size can be introduced in the plan: remaining movement duration is updated in such a way that predictable final variability matches target size. This updating is rather simple since variability and effort are univocally related. A consequence is that the duration of the later part of the movement should scale with target size. It should be noted that the movement was divided in two parts for simplicity, but in fact no real division exists since feedback is continuous.

Control of accuracy

Motor variability has been generally ascribed to the presence of signal-dependent noise in motor signals [START_REF] Meyer | Optimality in human motor performance: Ideal control of rapid aimed movement[END_REF][START_REF] Harris | Signal-dependent noise determines motor planning[END_REF][START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF][START_REF] Van Beers | The role of execution noise in movement variability[END_REF]. This hypothesis lead ineluctably to speed/accuracy trade-off. However, it is widely recognized that not all motor behaviors conform to such a trade-off. The process of learning a new motor task results in movements which are both faster and less variable [START_REF] Darling | Kinematic variability of grasp movements as a function of practice and movement speed[END_REF][START_REF] Corcos | Principles for learning singlejoint movements. I. Enhanced performance by practice[END_REF][START_REF] Jaric | The effects of practice on movement distance and final position reproduction: Implications for the equilibriumpoint control of movements[END_REF][START_REF] Ilic | The effects of practice on movement reproduction: Implications for models of motor control[END_REF][START_REF] Jaric | Learning a pointing task with a kinematically redundant limb: Emerging synergies and patterns of final position variability[END_REF][START_REF] Gabriel | Changes in kinematic and EMG variability while practicing a maximal performance task[END_REF][START_REF] Domkin | Perception and control of upper limb movement: Insights gained by analysis of sensory and motor variability[END_REF]. For instance, subjects can be trained to modulate terminal accuracy while preserving a common kinematic pattern [START_REF] Gribble | Role of cocontraction in arm movement accuracy[END_REF][START_REF] Osu | Optimal impedance control for task achievement in the presence of signal-dependent noise[END_REF]. The model shows that these paradoxical observations can be assigned to the functioning of the state estimator. It is logical that a more precise estimate should allow a better programming and a more consistent performance. However, a less intuitive aspect is that improved performance is not a simple consequence of a global reduction of uncertainty in the motor system, but can coincide with a greater variability in motor commands. In fact, feedback control can exploit covariation among motor outputs to reduce task variability [START_REF] Müller | Decomposition of variability in the execution of goal-oriented tasks: Three components of skill improvement[END_REF].

Accordingly, there is no fundamental contradiction between cocontraction, which likely increases motor variability [START_REF] Osu | Optimal impedance control for task achievement in the presence of signal-dependent noise[END_REF]accuracy (van Galen &[START_REF] Van Galen | Fitts' law as a low-pass filter effect of muscle stiffness[END_REF][START_REF] Van Gemmert | Stress, neuromotor noise, and human performance: A theoretical perspective[END_REF][START_REF] Laursen | Effect of speed and precision demands on human shoulder muscle electromyography during a repetitive task[END_REF][START_REF] Van Galen | Error, stress and the role of neuromotor noise in space oriented behaviour[END_REF][START_REF] Gribble | Role of cocontraction in arm movement accuracy[END_REF][START_REF] Osu | Optimal impedance control for task achievement in the presence of signal-dependent noise[END_REF][START_REF] Sandfeld | Effect of computer mouse gain and visual demand on mouse clicking performance and muscle activation in a young and elderly group of experienced computer users[END_REF][START_REF] Van Roon | Trunk use and co-contraction in cerebral palsy as regulatory mechanisms for accuracy control[END_REF].

Yet the question remains of the mechanism, which links cocontraction and accuracy. A possible mechanism is based on modulation of impedance. Muscle cocontraction can increase joint stiffness [START_REF] Hogan | Adaptive control of mechanical impedance by coactivation of antagonist muscles[END_REF][START_REF] Al-Falahe | Role of the human fusimotor system in a motor adaptation task[END_REF][START_REF] De Serres | Wrist muscle activation patterns and stiffness associated with stable and unstable mechanical loads[END_REF][START_REF] Osu | Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals[END_REF], and allows the limb to counteract disturbances and instabilities [START_REF] De Serres | Wrist muscle activation patterns and stiffness associated with stable and unstable mechanical loads[END_REF][START_REF] Burdet | The central nervous system stabilizes unstable dynamics by learning optimal impedance[END_REF][START_REF] Franklin | Impedance control balances stability with metabolically costly muscle activation[END_REF][START_REF] Milner | Accuracy of internal dynamics models in limb movements depends on stability[END_REF], which could be liable for a better accuracy [START_REF] Burdet | The central nervous system stabilizes unstable dynamics by learning optimal impedance[END_REF][START_REF] Shiller | Relationship between jaw stiffness and kinematic variability in speech[END_REF]. For this scenario to be applicable, it should be hypothesized that there exists at each time an "operating" point which corresponds to the unperturbed trajectory, and which is used to measure and apply elastic restoring forces.

This hypothesis is in theory applicable to models which exploit the tracking of a reference trajectory, e.g. equilibrium-point models [START_REF] Flanagan | Control of trajectory modifications in target-directed reaching[END_REF][START_REF] Gribble | Are complex control signals required for human arm movement?[END_REF] and models based on combined inverse dynamics and impedance control [START_REF] Franklin | Adaptation to stable and unstable dynamics achieved by combined impedance control and inverse dynamics model[END_REF][START_REF] Osu | Different mechanisms involved in adaptation to stable and unstable dynamics[END_REF]. Two models have addressed this issue. van Galen & de Jong (1995) have shown that a mass attached to a spring is more accurately controlled in the presence of motor noise when the level of static forces is higher. However, control of accuracy in this model results from a restoring force toward a fixed point, which makes little functional sense. Selen et al.

(2005) reached a similar conclusion for the control around an equilibrium point, but it is unclear whether the model can be extended to movements governed by a moving equilibrium point. In our model, there is no reference trajectory, but the operating point could be the currently estimated position of the limb since this point is maintained as the equilibrium point of static forces applied to the limb (separation principle; see Guigon et al., 2007a for a discussion). In this case, modulation of impedance could contribute to stability, but not directly to accuracy since impedance has no direct influence on the efficiency of the state estimator, i.e. it will not compensate for a wrong operating point.

An alternative hypothesis to relate cocontraction and accuracy is based on the notion of fusimotor control, i.e. the central modulation of the sensitivity of muscles spindles. It is well documented that fusimotor activity is stronger for tasks requiring greater attention or precision [START_REF] Prochazka | Sensorimotor gain control: A basic strategy of motor systems?[END_REF][START_REF] Hulliger | Fusimotor control of proprioceptive feedback during locomotion and balancing: Can simple lessons be learned for artificial control of gait?[END_REF][START_REF] Kakuda | Fusimotor and skeletomotor activities are increased with precision finger movement in man[END_REF][START_REF] Nafati | Proprioceptive control of human wrist extensor motor units during an attention-demanding task[END_REF]. Since co-activation of skeletomotor and fusimotor systems seems to be the rule in humans [START_REF] Vallbo | Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves[END_REF][START_REF] Kakuda | Fusimotor and skeletomotor activities are increased with precision finger movement in man[END_REF][START_REF] Gandevia | Mental rehearsal of motor tasks recruits alpha-motoneurones but fails to recruit human fusimotor neurones selectively[END_REF], a likely consequence of increased fusimotor control is increased muscular cocontraction. The question remains of the mechanism by which fusimotor activity contributes to accuracy of movement. A general proposal is that fusimotor control would act to optimize the transmission of sensory feedback information (Loeb & Marks, 1985;Loeb et al., 1985;[START_REF] Loeb | A hierarchical foundation for models of sensorimotor control[END_REF]. In particular, there is evidence that the gamma system can enhance information transmission from populations of muscle spindles [START_REF] Milgram | Distortion suppression in neuromuscular information transmission due to interchannel dispersion in muscle spindles firing thresholds[END_REF][START_REF] Inbar | The influence of the gamma system on crosscorrelated activity of Ia spindles and its relation to information transmission[END_REF][START_REF] Bergenheim | The role of the gamma-system for improving information transmission in populations of Ia afferents[END_REF][START_REF] Bergenheim | Ensemble coding of muscle stretches in afferent populations containing different types of muscle afferents[END_REF][START_REF] Tock | Estimation of muscle spindle information rate by pattern matching and the effect of gamma system activity on parallel spindles[END_REF]. This is true despite the fact that signal from individual spindles are more variable under  stimulation [START_REF] Bergenheim | The role of the gamma-system for improving information transmission in populations of Ia afferents[END_REF]. We note that this variability is consistent with the presence of signaldependent noise in sensory feedback since a basic effect of fusimotor input is to increase the mean discharge rate of spindles [START_REF] Hulliger | Static and dynamic fusimotor action on the response of Ia fibres to low frequency sinusoidal stretching of widely ranging amplitude[END_REF].

We note that this article is concerned with temporary improvement in movement accuracy.

In this framework, the speed/accuracy paradox is explained by the effect of muscular cocontraction. This view is consistent with the presence of concontraction during early phases of learning of a novel task [START_REF] Person | Electromyographic investigations of coordination of the antagonistic muscles in development of motor habit[END_REF][START_REF] Milner | Compensation for mechanically unstable loading in voluntary wrist movements[END_REF]Thoroughman & Shadmher, 1999;[START_REF] Osu | Short-and long-term changes in joint co-contraction associated with motor learning as revealed from surface EMG[END_REF]. We did not address mechanisms involved in long-term changes in accuracy.

Significance of the results

We have shown that the speed/accuracy paradox for reaching movements can be explained by the joint influence exerted by sensory and motor signal-dependent noises during motor execution. This result is all the more interesting because the same types of noise appear to shape the characteristics of variability ellipses of reaching movements. More generally, the present model provides a principled framework to the study of motor variability which is more versatile than previous approaches [START_REF] Harris | Signal-dependent noise determines motor planning[END_REF][START_REF] Todorov | Optimal feedback control as a theory of motor coordination[END_REF]. 
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minimum variance model in the framework of feedback control. This extension was successful, and adds support and sense to the contention of Harris and Wolpert. Fitts' law holds empirically when subjects are instructed to perform accurately, and in the model when sensory feedback is perfect. This situation corresponds to the case where the influence of proprioception is reduced in the presence of vision due their relative variabilities and the functioning of the Kalman filter.

We can make the reasonable proposal that accuracy can be better controlled if the influence of proprioceptive feedback is reduced in the presence of visual feedback. This view is consistent with experimental observations. The fact that movements are more accurate in the presence than in the absence of visual feedback of the moving limb [START_REF] Woodworth | The accuracy of voluntary movement[END_REF] can be related to the generally greater precision of vision over proprioception. In the absence of vision, subjects do not scale their variability to the size of the target [START_REF] Chua | Visual regulation of target-directed movements[END_REF]).

An ubiquitous property of motor control is amplitude/duration scaling, i.e. movements of larger amplitude last longer. According to the model, this property arises from a constant effort principle (Guigon et al., 2007[START_REF] Guigon | Optimality, stochasticity, and variability in motor behavior[END_REF]: if movements of different amplitudes are realized with the same level of effort, their duration should increase with their amplitude. This principle provides a general account of scaling. In the absence of sensory noise, effort and variability covary and the constant effort principle generates a scaling which conforms to Fitts' law. In the presence of sensory noise, scaling also occurs, but the pattern of variability is dictated by the structure of noise. Thus, the present model relieves the three difficulties of the minimum variance model (see also Control of accuracy below).

An interesting issue is the kinematic characteristics of aiming trajectories under Fitts' law.

Amplitude and target width exert different effects on movement kinematics [START_REF] Soechting | Effect of target size on spatial and temporal characteristics of a pointing movement in man[END_REF][START_REF] Mackenzie | Three dimensional movement trajectories in Fitts' task: Implications for control[END_REF][START_REF] Marteniuk | Constraints on human arm movement trajectories[END_REF]. Although the two parameters influence movement time, amplitude primarily determines acceleration duration and peak velocity while (center), and 0.5 (right). Feedback delay was  = 0.