Nicolas Bordes

Paolo Maistri

Electromagnetic Leakage Assessment of a Proven Higher-Order Masking of AES S-Box

Keywords: Masking, Side channel, Leakage Assessment. 12 I. INTRODUCTION 13

Many digital systems need to provide cryptographic 1 capabilities. A large part of these devices is easily accessible 2 by the malicious user, and may be vulnerable to side channel 3 attacks such as power or electromagnetic analysis. From one 4 side, the designer has to protect the architecture with proven 5 countermeasures; on the other, the actual implementation must 6 be validated in order to prove the absence of undesired leakages. 7 In this paper, we present an implementation of two optimized 8 and proven masking schemes of order 3 and 7 for an embedded 9 software AES, and prove its robustness by showing the absence 10 of significant leakage in the nonlinear layer.

11

1 OMITTED FOR BLIND REVIEW devices and they must be taken into account when designing and choosing countermeasures.

Most countermeasures against side-channel attacks aim at limiting the exploitability of the hypothetical signal an attacker could be able to measure from the device and to increase the cost (in time, technical expertise, hardware measurement tool, . . .) of the attack. A first approach is the more obvious one: by reducing the signal strength, it is harder for an attacker to get useful information for it. To do so in practice turns out to be hard: in a context where the attacker has physical access to the device, this countermeasure can often be defeated by a direct intervention of the attacker. Most importantly, this countermeasure is specific for a given side channel: protecting against a wide range of side-channels can be very costly without any guarantee that the attacker will not find a new side-channel to exploit.

Another approach is based on lowering measure reproducibility. In practice, the attacker often must gather several traces in order to reduce measurement noise and improve signal quality. However, these traces must be synchronized: the attacker must be able to know which measurement points in the traces correspond to the same computation. Adding dummy code at random location during runtime makes this synchronization difficult [5], [6], [7]. This approach has its limits: if only one trace is enough to attack the device [8], desynchronization does not help; also, using signal processing and pattern recognition techniques, the points of leakages can be nonetheless identified and one may be able to counteract desynchronization attempts [9], [10].

For this reason, there is a strong need to provide countermeasures that are at the same time efficient, cost-effective, and formally proven to guarantee the absence of vulnerabilities in the actual implementation. The current trend is to use masking schemes of order (i.e., the degrees of random variability) larger than one, as simple masking can still be easily broken. Our goal is therefore to improve the efficiency of masked implementations (in our case, of the Advanced Encryption Standard -AES), especially at higher orders, in the hope that it will help moving from ad hoc and specialized countermeasures against side-channel attacks toward formally secure and generic ones. In this paper, we present an implementation of two optimized and proven masking schemes of order 3 and 7 (in order to compare with similar state of the art) for an embedded software AES, and prove its robustness by showing the absence of significant leakage in the nonlinear layer.

1
The paper is organised as follows. In the next section, some In the 2000's, many attempts have been made to design ad hoc masked implementations and "provably secure" ones.

However, many were found to be vulnerable to side-channel attacks a few years after their publication. In the light of those attempts, we will use the more recent compositional security models introduced by Barthe et al. [START_REF] Barthe | Strong non-interference and type-directed higher-order masking[END_REF]. As shown before, these models's goal is specifically turned toward the design of complex masked circuits given only elementary gadgets (i.e., operations).

Since the ultimate goal of masking is to amplify noise during the critical computations by introducing random values, the effect of masking in practice will be demonstrated by comparing the leakages when random gates in the masked circuit are leveraging an embedded TRNG, or rather when they use deterministic values.

A. That's too much to (m)ask: the masking order

The choice of the masking order at which these gates are instantiated is crucial for both security and performance since it has a quadratic impact on both. As recalled in the introduction, however, simple low-order masking is not enough against a skilled attacker.

The most recent and optimized implementations using the same generic approach as ours [START_REF] Journault | Very high order masking: Efficient implementation and security evaluation[END_REF], [START_REF] Goudarzi | Secure multiplication for bitslice higher-order masking: Optimisation and comparison[END_REF] chose an order such that the number of shares is a power of two. Their choice was made because they are based on a specific implementation approach that provides the best performance when the size of the registers (expressed in bits) is a multiple of the number of shares. For a fair comparison, we chose to also use an order where the number of shares is a power of two. Additionally, we chose to use gadgets that give better performance while still being proved secure [START_REF] Bordes | Fast verification of masking schemes in characteristic two[END_REF]. With these constraints in mind, we provide two masked implementations: one at order 3 (four shares) and one at order 7 (eight shares).

Even if recent symmetric block cipher proposals were made that were specifically designed to be masked, they are not yet widely used in concrete applications as of today. We therefore focus on AES, which is used in a wide range of applications, most commonly as a building block of symmetric encryption schemes. Implementations of the AES has been the target of heavy optimization efforts, which are often made to decrease its running time or its memory footprint. This is perfectly acceptable where the physical access to the device is near impossible; for embedded devices, however, the threat model is different and side-channel attacks must not be overlooked. In this section, we present our proposal for a secured embedded implementation of AES against high-order attacks.

B. Masking the AES S-Box

Every step other than SubBytes in the AES being linear and easily masked, the biggest differences between masked implementations are often found in the computation of the S-Box. There are mainly four popular approaches.

Table lookups is a popular way to implement the AES S-1 box, even in implementations that are not masked. This method 2 consists in pre-computing tables to be used during the actual 3 computation. During the actual computation of the S-Box, the implementation just has to fetch the value at the offset 5 corresponding to the byte for which we want to compute the 6 S-Box. However, it may lead to cache-timing attacks when the 7 implementation is running on a processor where a data cache 8 is available [START_REF] Tromer | Efficient cache attacks on AES, and countermeasures[END_REF]. Thus, the precomputed tables must be built 9 depending on the value of the first d -1 masks of the masked 10 byte. However, doing so is very memory consuming when 11 trying to protect against high-order attacks, as it requires to 12 pre-compute and store tables for every possible different value 13 for each mask. The second approach is to consider the original description 15 using an inversion in F 2 8 and designing a masked implemen-16 tation of this operation using multiplication and squaring. 17

The third approach is based on bitslicing. Instead of apply-18 ing a (potentially complex) operation on one of the 16 bytes at

32

IV. MAKING CHOICES: OUR IMPLEMENTATION

33

We first considered both shareslicing and bitslicing to im-34 plement the nonlinear layer of the AES. However, the security 35 of shareslicing heavily relies on the assumption that there is no 36 interaction between the bits of a register during the execution.

37

In light of the work of Gao et al. [START_REF] Gao | Share-slicing: Friend or foe?[END_REF], since our target uses a 38 Cortex-M4 processor and to avoid relying on this assumption, 39 we choose to not use this techniques for our implementation. 44 Hence, our implementation uses the bitsliced approach to 45 implement all 16 S-boxes in parallel as in [START_REF] Goudarzi | How fast can higher-order masking be in software?[END_REF] Nonetheless, since our target is a microprocessor with 32-bit registers, we still want to maximize the use of our registers. To do so, we exploit the same technique shown in [START_REF] Goudarzi | How fast can higher-order masking be in software?[END_REF], where the authors proposed to group the 32 AND gates by pairs allowing to replace each pair by a masked AND gadget working on 32 masked bits in parallel such that each share is 32-bit wide.

The transformations of the linear layer can be applied share-wise which introduces much less overhead than for the nonlinear layers. Since we are using a bitsliced approach to the computation of the AES S-Box, the inputs and outputs of the nonlinear layers are in a bitsliced representation. To avoid having to pay costly bit manipulations that are needed to go from and into a more standard representation where each byte of the block state is stored in a single byte in memory, the linear components (MixColumns, ShiftRows and AddRound-Key) are implemented using the same bitsliced representation.

Our implementation reuses already existing bitsliced version of MixColumns [START_REF] Schwabe | All the AES you need on cortex-m3 and M4[END_REF], [START_REF] Käsper | Faster and timing-attack resistant AES-GCM[END_REF] and Shiftrows.

During the design of the masked nonlinear layer, Tight-PROVE [START_REF] Belaïd | Tight private circuits: Achieving probing security with the least refreshing[END_REF] is used to ensure that the circuit for the S-Box is secure at order d. However, this is not sufficient for the composition of rounds to secure as well at the same order. For this reason, in this paper only the security of the nonlinear layer circuit is formally proven. We conjecture that the composition is nonetheless secure and it can be done, for example, by using TightPROVE on the circuit that includes every linear operations after the output of the last AND gates of the previous nonlinear layer and the circuit of the S-box itself. The validation of the full implementation is thus left for future work.

A. Randomness Generation

Each gadget for the masked AND gate at order 3 (respectively 7) requires the generation of 5 (respectively 20) random masks. In our implementation, the masked functions for text encryption and key scheduler take as parameter a function pointer to rng_fill, a function that is used to fill a buffer of arbitrary size with random values. For our specific environment, rng_fill is implemented using the Random Number Generator (RNG) embedded in the STM32L432. This RNG is based on ring oscillators and allows to generate 32bit words. A specific control register in memory is updated by the RNG module to tell whether or not the random value is ready to be read for the data register in memory. It takes approximately 64 cycles to generate each 32-bit word. The performance impact of the RNG on the overall implementation is discussed in Section IV-B.

The embedded RNG is working asynchronously with the rest of the chip and thus it may induce unexpected and nondeterministic delays while waiting for new random values to be drawn. Thus, during the leakage assessment presented in Section V-B, all needed random values are drawn beforehand and stored in a buffer. This buffer contains as many random values as needed by the function on which the assessment is conducted. This impacts negatively on the memory footprint of implementations [START_REF] Schwabe | All the AES you need on cortex-m3 and M4[END_REF], [START_REF] Journault | Very high order masking: Efficient implementation and security evaluation[END_REF], [START_REF] Goudarzi | Secure multiplication for bitslice higher-order masking: Optimisation and comparison[END_REF], [START_REF] Goudarzi | How fast can higher-order masking be in software?[END_REF], the performance of 40 the RNG itself is crucial to be taken into account. In fact, 41 in our implementation the cost of randomness generation is 42 taking around 53% (respectively 62%) of the total number of cycles needed for a block encryption at order 3 (respectively order 7). Indeed, this impact strongly depends on the efficiency of the RNG used. Thus, to achieve a fair comparison, we approximate the cost of generating the needed random values as a function of the parameter n RN G , which represents the number of clock cycles taken by the RNG to output a 32-bit random word.

At order 3, each S-Box is using 32 AND gates and each bitsliced AND gate on 16-bit operands uses 16×5 random bits; at order 7, each bitsliced AND gate on 16-bit operands uses 16 × 20 random bits. For each nonlinear layer of the AES, 32 AND gates on 16-bit operands are computed. Thus, the overall randomness usage of an S-Box computation is 32 × 16 × 5 bits, that is 80 32-bit words at order 3 and 32 × 16 × 20 bits, that is 320 32-bit words at order 7. In AES-128, there are 10 nonlinear layers to apply to the state, which means that at order 3 (respectively 7) our implementation needs 80 × 10 = 800 (respectively 320 × 10 = 3200) 32-bit words of randomness. Then, the cost of randomness generation for a full block encryption takes approximately 800n RN G at order 3 and 3200n RN G at order 7.

The implementation of Schwabe and Stoffelen [START_REF] Schwabe | All the AES you need on cortex-m3 and M4[END_REF] at order 1 is using n RN G = 40. With the same value for n RN G , our implementation would take approximately 48203 + 800n RN G = 80203 cycles to run at order 3 and 124343 + 3200n RN G = 252343 at order 7.

The implementation of Goudarzi and Rivain [START_REF] Goudarzi | How fast can higher-order masking be in software?[END_REF] is using n RN G = 10 and takes 83937 cycles to run at order 3 and 271437 cycles at order 7. With the same value for n RN G , our implementation would take approximately 48203 + 800n RN G = 56203 cycles (vs 83937) at order 3 and 124343 + 3200n RN G = 156343 (vs 271437) at order 7. This is an improvement of around 33% at order 3 and around 42% at order 7.

V. SECURE EVALUATION

A. Experimental Setup

Our implementation's test target is an STM32L432 Nucleo development board2 that embeds an ARM Cortex-M4 processor, 256 kilobytes of flash memory and 64 kilobytes of SRAM. The processor has an embedded Random Number Generator (RNG) using ring oscillators to generate 32-bit random output.

We monitor the target board and acquire traces using a ChipWhisperer Lite Capture board3 . To do so, we configure and connect six of the 30 pins available on the STM32L432 to establish a synchronization protocol between the target board and the capture board.

Since masking is a generic counter-measure that is sidechannel agnostic, we chose to measure leakages from the processor using an electromagnetic directional probe from Langer EMV-Technik4 . The probe is then connected to a pre-

39

This can be seen as a necessary condition to potential attacks against the implementation, but the number of total traces analysed is crucial in experimental evaluation. It is not uncommon to start observing significant differences between the two datasets only after several hundred thousands traces measured if the environmental measurement noise is significant or when some counter-measures are implemented.

The underlying statistical test commonly used is a Welch's t-test done for each point in time. The common approach to aggregate every trace inside each dataset is to compute their mean and to try to distinguish this mean from the mean of the other dataset. The Welch's t-test is producing a statistic t:

t = µ 1 -µ 2 s1 2 n1 + s2 2 n2
, with µ i the mean of the i-th dataset, s i its variance and n i its size. The greater the absolute value of t, the more statistically significant the difference.

In the original proposal of the TVLA, the two datasets are compared using a common threshold directly on the value of t. This threshold is fixed to ±4.5 for every point in time. This means that the device under test is said to successfully pass the test (i.e., no leakage is found) if the maximum absolute value of t over all points in time is lower than 4.5. In [START_REF] Moradi | Statistical tools flavor side-channel collision attacks[END_REF], the authors proposed to try to distinguish these datasets by using moments of higher order (variance, skewness, kurtosis, . . .) instead of the variances.

Replacing the Welch's t-test by Pearson's χ 2 -test has been proposed in 2015 as a complementary approach [START_REF] Moradi | Leakage detection with the x2-test[END_REF]. As for the t-test, this test aims at trying to distinguish the two datasets. However, it does not consists in comparing the means (or higher-order moments) of the observations but instead it works directly on the whole distribution. Nonetheless, this test also work at the granularity level of a single point in time.

In the χ 2 -test setting, there is no concept of moment of higher order as for the t-test since it does not use moments. In some case the χ 2 -test can directly detect leakages that otherwise would need a higher-order analysis in the case of the t-test. We use this test as it was intended and described in the work of Moradi et al. [START_REF] Moradi | Leakage detection with the x2-test[END_REF], that is as a complementary approach to the t-test. The results are visible in Figure 2: on the left for order 3, and on the right for order 7. The latter looks more leaking than the former, which is a likely artifact created by more complex code. From top to bottom, the reader can se the TVLA analysis for the deterministic (i.e., unprotected) and random masks using Welch's t-test, and the χ 2 -test using random masks. The latter has also been performed on deterministic masks: it shows obvious leakages and the result is thus not shown for brevity.

C. Multivariate analysis

In the TVLA methodology, both the t-test and the χ 2test are conducted on each point in time independently. This is sometimes called a univariate (or vertical) analysis, in opposition with a multivariate (or horizontal) analysis where n > 1 points in time are considered simultaneously. In a Implementation masked at order 3 (a) t-test on 2 × 100 000 traces with deterministic masks.

Implementation masked at order 7 (b) t-test on 2 × 100 000 traces with deterministic masks.

(c) t-test on 2 × 1 000 000 traces with random masks.

(d) t-test on 2 × 1 000 000 traces with random masks.

(e) χ 2 -test on 2 × 1 000 000 traces with random masks. (f) χ 2 -test on 2 × 1 000 000 traces with random masks. We conduct a bivariate analysis using the χ 2 -test on our implementation by following the methodology of Moradi et (c) Random masks at order 3 (2 × 1 000 000 traces).

(d) Random masks at order 7 (2 × 1 000 000 traces). al. [START_REF] Moradi | Leakage detection with the x2-test[END_REF]. In order to limit the time and memory complexity of a 1 bivariate analysis, we keep only the points in time that actually 2 carry information. We do so by filtering out the ones that do The diagonal thus corresponds to the univariate analysis.

12 Since our bivariate analysis relies on a symmetric combination 13 function of each point, the resulting graph is also symmetric. dataset are sufficient to detect clear differences between the 18 two datasets whereas after 1 000 000 traces for each dataset, no bivariate leakage has been found for the implementation at both order 3 and 7 when the embedded RNG is used to generate the masks.

VI. CONCLUSION AND PERSPECTIVES

In this paper, we presented a secure implementation of the AES and conducted an experimental assessment of the leakage that occurs when executing it giving more confidence in its security. We have shown that performance is largely affected by the RNG production rate, and that our implementation [START_REF] Bordes | Masked AES-128 for Cortex M -Implementation and evaluation[END_REF] improves comparable implementations by 30 to 40%. We have shown the effectiveness of the masking scheme, formally proven, against univariate and bivariate statistical analysis to prove the actual absence of leakages. It must be pointed out, however, that only the nonlinear layer of this implementation is formally proven to be d-order secure, and that only this step has been assessed against leakage due to limitations of our experimental platform. In the future, the analysis will be extended to the whole AES implementation, by formally 1 proving the complete code, assessing the leakage through

2

 theoretical concepts about masking are recalled. Section III 3 deals with the way masking can be actually implemented in 4 embedded software. Section IV describes our implementations 5 choices and the resulting raw performance, while the exper-6 imental security assessment against side channel attacks are 7 discussed in Section V. Finally, Section VI concludes the 8 paper. 9 II. HIGH-ORDER MASKING 10 The concept at the root of masking is to use a secret 11 sharing algorithm to split the sensitive data into multiple shares 12 that are individually statistically independent from the original 13 data. All computations are done on those shares such that 14 what an attacker is observing looks like noise and does not 15 directly depend on the sensitive data. This approach has been 16 introduced simultaneously by Goubin et al. [11] and Chari et 17 al. [12] in 1999.

18

 scheme, an order d masking is achieved by drawing uniformly 21

14

 14

19 a

 19 time, the idea is to slice each byte and see them as eight 16-20 bit words instead of sixteen 8-bit words, by gathering all the 21 i-th bits in the i-th 16-bit word. For a masked implementation 22 of the AES, instead of using a masked circuit for the inversion 23 in F 2 8 and applying it to the 16 bytes of the state, masking 24 gadgets for the binary AND are used to build the full circuit of 25 the S-Box from Boyar and Peralta [20] which will be executed 26 on the 16 bytes in parallel thanks to bitslicing. 27 Another approach, called shareslicing, consists in regroup-28 ing the shares of the same value inside the same register. 29 As in the case of bitslicing, this allows to parallelize the 30 computation of the masked gadget by using only the most 31 common instructions.

40

 Additionally, to avoid unwanted effects due to bit interactions 41 inside registers, we make sure that the shares of a given value are always stored in different registers throughout the 43 execution.

Fig. 1 :

 1 Fig. 1: The hardware bench.

26 B. Leakage Assessment 27 The

 2627 Test Vector Leakage Assessment (TVLA) is a proce-28 dure that consists in trying to detect statistically meaningful 29 differences between two datasets containing traces measured 30 during the computation on the device under test and differ-31 ing with respect to a specific parameter: for instance, one 32 containing the traces measured during the encryption of a 33 constant plaintext with a constant key, whereas the second 34 dataset contains the traces measured during the encryption of a 35 random plaintext with the same key. Being able to statistically 36 distinguish the two sets of traces would mean that what is 37 leaked during the execution depends on the plaintext on which 38 the encryption is performed.

Fig. 2 :3

 2 Fig. 2: TVLA (fixed vs. random) on the S-box layer masked at order 3 (left) and 7 (right). Top figures (a,b) use deterministic masks (i.e., no masking).

 (a) Deterministic masks at order 3 (2 × 30 000 traces). (b) Deterministic masks at order 7 (2 × 30 000 traces).

Fig. 3 :

 3 Fig. 3: Bivariate χ 2 -test (fixed vs. random) on the S-box layer masked at order 3 (183 Points of Interest) and 7 (585 POI).

38

 not go above the threshold during the univariate χ 2 analysis 4 on the implementation using deterministic masks. Thanks to 5 this step, we are able to reduce the number of points from 6 4000 to 183 at order 3, and from 11000 to 585 at order 7, 7 corresponding to an improvement by a factor of about 20.The result of the bivariate analysis is shown in Figure3. The 9 colour of each pixel represents the p-value of the combination 10 of the two points in time at the corresponding coordinate.

 11

14 p

 14 -values above the threshold are shown in levels of red and 15 the ones that are below the threshold are in plain white. When 16 deterministic masks are used, only 30 000 traces for each

17

 17

 . In non-

	46	
		masked implementations, bitslicing techniques are often used
	48	together with n-bit registers (with n ≥ 16) to compute the
	49	AES encryption on n 16 blocks in parallel. In our case, n = 32
		on Cortex-M4. However, during the computation of a masked

50 implementation, each one of the eight 16-bit words of the 51 bitsliced state is masked, which means that each word is in 52 fact a masked state of d + 1 16-bit words. Without going too 53 much into the details, our implementation is largely based on 54 each of the 32 AND gates of the circuit must be replaced by 55 a masked AND gadget working on 16 masked bits in parallel.

TABLE I :

 I Number of cycles to compute AES-128 keyschedule, encryption and S-Box, using either the embedded RNG or deterministic values.

		Order d	3		7
			With RNG Without RNG With RNG Without RNG
		AND gate	491	145	1771	497
		S-Box	9353	3929	31025	10721
		Keyschedule 100644	46393	323758	120716
		Encryption	102442	48203	327383	124343
	1	the implementation, but has the major advantage that two con-
	2	secutive runs of the same function are taking exactly the same
	3	number of cycle to execute, allowing the analysis of multiple
	4	traces without risking desynchronization between them. This
	5	approach to random values generation is thus advantageous for
		an attacker and detrimental to its performance (since the RNG
	27				
	28	it is targeted at ARM Cortex-A, a higher end family of
	29	processors with vectorized instructions. Instead, we compare
	30	our implementation to [22] which has the same target (ARM
	31	Cortex-M) and the same range of masking order. They report
	32	that their implementation uses 3280d 2 +14075d+12192 cycles
	33	to compute an AES encryption where d is the masking order,
	34	including the cost of randomness generation. However, they
	35	use a RNG that is even faster than the one used by Schwabe
	36	and Stoffelen: it is able to produce a 32-bit random value every
	37	10 cycles.			
		C. Taking RNG performance into account

6

is a device running parallel to the processor). It is done only 7 for leakage assessment and not in the final implementation.

8

The experimental leakage assessment exploits this RNG 9 (through rng_fill), but also uses a fake alternative function 10 that fills the buffer with deterministic values. This allows to 11 observe almost directly the impact of masking by comparing 12 the effect of the RNG on the detection of leakages. 13 B. Performance 14 The performance of our implementation in the number of 15 cycles by block encryption is presented in Table I. As a com-16 parison with an unprotected AES optimized for the same plat-17 form, Schwabe and Stoffelen report that their implementation 18 is computing a single block encryption in 661.7 cycles [15].

19

In the same paper, they proposed an implementation masked 20 at order 1 that takes 7422 cycles by using an RNG that outputs 21 a 32-bit every 40 cycles, while the RNG we are using for our 22 implementation is slower (64 cycles for each 32-bit words).

23

For masked implementations at higher orders, we do not 24 directly compare to the one by Journault and Standaert

[START_REF] Journault | Very high order masking: Efficient implementation and security evaluation[END_REF]

25 since they use masking schemes only at order 32. Also, 26 we do not compare to the implementation

[START_REF] Grégoire | Vectorizing higher-order masking[END_REF]

because 38 As seen in Table I and also reported in almost every 39

2

 higher-order statistical tests, or by more extensive experiments 3 on the EM leakage, and porting to RISC-V architectures. Research Agency in the framework of the "Investissements Annual International Cryptology Conference, Proceedings, ser. Lecture 12 Notes in Computer Science, N. Koblitz, Ed., vol. 1109. Springer, 1996,] P. C. Kocher, J. Jaffe, and B. Jun, "Differential power analysis," in sures and counter-measures for smart cards," in Smart Card Program-20 ming and Security, International Conference on Research in Smart 21 Cards, E-smart 2001, Cannes, France, September 19-21, 2001, Pro-22 ceedings, ser. Lecture Notes in Computer Science, I. Attali and T. P. IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 3,

	4	
	5	ACKNOWLEDGMENT
	6	This work has been supported by the French National
	13	
		pp. 104-113.
	42	
		pp. 243-268, 2020.

14 [223 Jensen, Eds., vol. 2140. Springer, 2001, pp. 200-210. 24 [4] V. Lomné and T. Roche, "A side journey to titan," IACR Cryptol. ePrint 25 Arch., p. 28, 2021. [Online]. Available: https://eprint.iacr.org/2021/028 26 [5] C. Clavier, J. Coron, and N. Dabbous, "Differential power analysis in 27 the presence of hardware countermeasures," in Cryptographic Hardware 28 and Embedded Systems -CHES 2000, Second International Workshop, 29 Proceedings, ser. Lecture Notes in Computer Science, C ¸. K. Koc ¸and 30 C. Paar, Eds., vol. 1965. Springer, 2000, pp. 252-263. 31 [6] J. Coron and I. Kizhvatov, "Analysis of the split mask countermeasure 32 for embedded systems," in Proceedings of the 4th Workshop on Embed-33 ded Systems Security, WESS 2009, D. N. Serpanos and W. H. Wolf, Eds. 34 ACM, 2009. 35 [7] --, "Analysis and improvement of the random delay countermeasure 36 of CHES 2009," in Cryptographic Hardware and Embedded Systems, 37 CHES 2010, 12th International Workshop, Proceedings, ser. Lecture 38 Notes in Computer Science, S. Mangard and F. Standaert, Eds., vol. 39 6225. Springer, 2010, pp. 95-109. 40 [8] M. J. Kannwischer, P. Pessl, and R. Primas, "Single-trace attacks on 41 keccak," 43 [9] F. Durvaux, M. Renauld, F. Standaert, L. van Oldeneel tot Oldenzeel, 44 and N. Veyrat-Charvillon, "Efficient removal of random delays from 45 embedded software implementations using hidden markov models," in

https://www.st.com/en/evaluation-tools/nucleo-l432kc.html

https://store.newae.com/chipwhisperer-lite-cw1173-two-part-version/

https://www.langer-emv.de/en/product/lf-passive-100-khz-up-to-50-mhz/ 36/lf-b-3-h-field-probe-100-khz-up-to-50-mhz/3

Advances in Cryptology -CRYPTO '99, 19th Annual International

d'avenir" program (ANR-15-IDEX-02).

Science, M. J. Wiener, Ed., vol. 1666. Springer, 1999, pp. 388-397.

18

[3] J. Quisquater and D. Samyde, "Electromagnetic analysis (EMA): mea-