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Abstract—Many digital systems need to provide cryptographic1

capabilities. A large part of these devices is easily accessible2

by the malicious user, and may be vulnerable to side channel3

attacks such as power or electromagnetic analysis. From one4

side, the designer has to protect the architecture with proven5

countermeasures; on the other, the actual implementation must6

be validated in order to prove the absence of undesired leakages.7

In this paper, we present an implementation of two optimized8

and proven masking schemes of order 3 and 7 for an embedded9

software AES, and prove its robustness by showing the absence10

of significant leakage in the nonlinear layer.11

Index Terms—Masking, Side channel, Leakage Assessment.12

I. INTRODUCTION13

Digital systems often support cryptographic operations and14

protocols in order to protect sensitive data or communications.15

As well-designed as a cryptographic algorithm may be, vulner-16

abilities may appear during its implementation and execution.17

Side-channel attacks aim to exploit physical variations during18

the program execution. These physical variations are called19

side-channels and can be, for example, the time it takes for20

the program to execute [1], or the power consumption of the21

circuit [2] but also the electromagnetic radiations [3] emitted22

during the computations. When these fluctuations depend23

on secret internal data, an attacker may be able to extract24

information that would be not available in a model where25

they only have a ”black box” access to the cryptographic26

function. Even a partial knowledge of the intermediate values27

of a program implementing cryptographic primitives can be28

devastating for its security. A recent example is given in [4]29

where the authors published a practical side-channel attack30

against Titan security keys: they exploited electromagnetic31

leakage during the computation of an ECDSA (Elliptic Curve32

Digital Signature Algorithm) signature to retrieve the full33

private key, allowing to generate new valid signatures and thus34

clone the security key.35

The attacker usually needs to have physical access to the36

device in order to do measurements: thus, embedded devices37

are the most targeted. Additionally, measurements in these38

devices are often with very little noise, which makes the attack39

easier on embedded devices than on any other setup.40

Embedded devices are the most susceptible to be targeted41

by side-channel attacks, but they also have hard efficiency and42

production constraints. These are even stronger than for other43
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devices and they must be taken into account when designing 1

and choosing countermeasures. 2

Most countermeasures against side-channel attacks aim at 3

limiting the exploitability of the hypothetical signal an attacker 4

could be able to measure from the device and to increase the 5

cost (in time, technical expertise, hardware measurement tool, 6

. . . ) of the attack. A first approach is the more obvious one: 7

by reducing the signal strength, it is harder for an attacker 8

to get useful information for it. To do so in practice turns 9

out to be hard: in a context where the attacker has physical 10

access to the device, this countermeasure can often be defeated 11

by a direct intervention of the attacker. Most importantly, this 12

countermeasure is specific for a given side channel: protecting 13

against a wide range of side-channels can be very costly 14

without any guarantee that the attacker will not find a new 15

side-channel to exploit. 16

Another approach is based on lowering measure repro- 17

ducibility. In practice, the attacker often must gather several 18

traces in order to reduce measurement noise and improve 19

signal quality. However, these traces must be synchronized: 20

the attacker must be able to know which measurement points 21

in the traces correspond to the same computation. Adding 22

dummy code at random location during runtime makes this 23

synchronization difficult [5], [6], [7]. This approach has its 24

limits: if only one trace is enough to attack the device [8], 25

desynchronization does not help; also, using signal processing 26

and pattern recognition techniques, the points of leakages can 27

be nonetheless identified and one may be able to counteract 28

desynchronization attempts [9], [10]. 29

For this reason, there is a strong need to provide counter- 30

measures that are at the same time efficient, cost-effective, and 31

formally proven to guarantee the absence of vulnerabilities in 32

the actual implementation. The current trend is to use masking 33

schemes of order (i.e., the degrees of random variability) 34

larger than one, as simple masking can still be easily broken. 35

Our goal is therefore to improve the efficiency of masked 36

implementations (in our case, of the Advanced Encryption 37

Standard – AES), especially at higher orders, in the hope that 38

it will help moving from ad hoc and specialized countermea- 39

sures against side-channel attacks toward formally secure and 40

generic ones. In this paper, we present an implementation of 41

two optimized and proven masking schemes of order 3 and 42

7 (in order to compare with similar state of the art) for an 43

embedded software AES, and prove its robustness by showing 44



the absence of significant leakage in the nonlinear layer.1

The paper is organised as follows. In the next section, some2

theoretical concepts about masking are recalled. Section III3

deals with the way masking can be actually implemented in4

embedded software. Section IV describes our implementations5

choices and the resulting raw performance, while the exper-6

imental security assessment against side channel attacks are7

discussed in Section V. Finally, Section VI concludes the8

paper.9

II. HIGH-ORDER MASKING10

The concept at the root of masking is to use a secret11

sharing algorithm to split the sensitive data into multiple shares12

that are individually statistically independent from the original13

data. All computations are done on those shares such that14

what an attacker is observing looks like noise and does not15

directly depend on the sensitive data. This approach has been16

introduced simultaneously by Goubin et al. [11] and Chari et17

al. [12] in 1999.18

Masking is said to be at order d when the number of shares19

is equal to d + 1. When using an additive secret sharing20

scheme, an order d masking is achieved by drawing uniformly21

at random the first d shares x0; ...;xd−1 and computing the last22

share xd such that x = ⊕d
i=0xi. This way, every subset made23

by less than d shares is uniformly distributed.24

There is a strong need for formal security models, which25

are needed to adopt a generic and modular approach to the26

design of masked implementations based on the composition27

of smaller secure masked circuits. In particular, these models28

apply to the implementation, as well as to the capabilities of29

an attacker. The d-probing model is an attack model where the30

attacker is given access to up to d probes on the target. An31

attacker is often not strictly limited by the number of probes,32

especially on a software implementation where the sequential33

execution can lead an attacker to observe the leakage of each34

operations over a whole period of time. On the other hand, an35

attacker observation always embeds measurement noise.36

Additionally, the masking order d plays an important role37

in the security because, for equivalent noise level, the number38

of measurements needed for a successful attack increases39

exponentially in d. Unfortunately, generic high-order schemes40

also come with a significant overhead as shown in Section V.41

A detailed and formal analysis of secure compositional models42

goes beyond the scope of this paper. The interested reader can43

find more details in [13], [14].44

III. MASKING IN PRACTICE45

As explained in Section I, the devices that are the most46

vulnerable against side-channel attacks are embedded ones. In47

this context, the processor used often implements the ARM48

architecture. It is thus natural to consider implementing a49

masking scheme specifically for this architecture. Following50

Schwabe and Stoffelen’s work [15], we will further focus on51

one of the most popular modern microprocessor family in this52

context: the ARM Cortex-M41. This family of microprocessors53

1https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4

implements the ARMv7E-M architecture which provides all 1

the Thumb-1, Thumb-2 and Digital Signal Processing (DSP) 2

instructions. 3

In the 2000’s, many attempts have been made to design 4

ad hoc masked implementations and “provably secure” ones. 5

However, many were found to be vulnerable to side-channel 6

attacks a few years after their publication. In the light of those 7

attempts, we will use the more recent compositional security 8

models introduced by Barthe et al. [13]. As shown before, 9

these models’s goal is specifically turned toward the design of 10

complex masked circuits given only elementary gadgets (i.e., 11

operations). 12

Since the ultimate goal of masking is to amplify noise 13

during the critical computations by introducing random values, 14

the effect of masking in practice will be demonstrated by 15

comparing the leakages when random gates in the masked 16

circuit are leveraging an embedded TRNG, or rather when 17

they use deterministic values. 18

A. That’s too much to (m)ask: the masking order 19

The choice of the masking order at which these gates 20

are instantiated is crucial for both security and performance 21

since it has a quadratic impact on both. As recalled in the 22

introduction, however, simple low-order masking is not enough 23

against a skilled attacker. 24

The most recent and optimized implementations using the 25

same generic approach as ours [16], [17] chose an order such 26

that the number of shares is a power of two. Their choice was 27

made because they are based on a specific implementation 28

approach that provides the best performance when the size of 29

the registers (expressed in bits) is a multiple of the number of 30

shares. For a fair comparison, we chose to also use an order 31

where the number of shares is a power of two. Additionally, 32

we chose to use gadgets that give better performance while 33

still being proved secure [18]. With these constraints in mind, 34

we provide two masked implementations: one at order 3 (four 35

shares) and one at order 7 (eight shares). 36

Even if recent symmetric block cipher proposals were made 37

that were specifically designed to be masked, they are not yet 38

widely used in concrete applications as of today. We therefore 39

focus on AES, which is used in a wide range of applications, 40

most commonly as a building block of symmetric encryption 41

schemes. Implementations of the AES has been the target of 42

heavy optimization efforts, which are often made to decrease 43

its running time or its memory footprint. This is perfectly 44

acceptable where the physical access to the device is near 45

impossible; for embedded devices, however, the threat model 46

is different and side-channel attacks must not be overlooked. In 47

this section, we present our proposal for a secured embedded 48

implementation of AES against high-order attacks. 49

B. Masking the AES S-Box 50

Every step other than SubBytes in the AES being linear 51

and easily masked, the biggest differences between masked 52

implementations are often found in the computation of the 53

S-Box. There are mainly four popular approaches. 54

https://developer.arm.com/ip-products/processors/cortex-m/cortex-m4


Table lookups is a popular way to implement the AES S-1

box, even in implementations that are not masked. This method2

consists in pre-computing tables to be used during the actual3

computation. During the actual computation of the S-Box,4

the implementation just has to fetch the value at the offset5

corresponding to the byte for which we want to compute the6

S-Box. However, it may lead to cache-timing attacks when the7

implementation is running on a processor where a data cache8

is available [19]. Thus, the precomputed tables must be built9

depending on the value of the first d−1 masks of the masked10

byte. However, doing so is very memory consuming when11

trying to protect against high-order attacks, as it requires to12

pre-compute and store tables for every possible different value13

for each mask.14

The second approach is to consider the original description15

using an inversion in F28 and designing a masked implemen-16

tation of this operation using multiplication and squaring.17

The third approach is based on bitslicing. Instead of apply-18

ing a (potentially complex) operation on one of the 16 bytes at19

a time, the idea is to slice each byte and see them as eight 16-20

bit words instead of sixteen 8-bit words, by gathering all the21

i-th bits in the i-th 16-bit word. For a masked implementation22

of the AES, instead of using a masked circuit for the inversion23

in F28 and applying it to the 16 bytes of the state, masking24

gadgets for the binary AND are used to build the full circuit of25

the S-Box from Boyar and Peralta [20] which will be executed26

on the 16 bytes in parallel thanks to bitslicing.27

Another approach, called shareslicing, consists in regroup-28

ing the shares of the same value inside the same register.29

As in the case of bitslicing, this allows to parallelize the30

computation of the masked gadget by using only the most31

common instructions.32

IV. MAKING CHOICES: OUR IMPLEMENTATION33

We first considered both shareslicing and bitslicing to im-34

plement the nonlinear layer of the AES. However, the security35

of shareslicing heavily relies on the assumption that there is no36

interaction between the bits of a register during the execution.37

In light of the work of Gao et al. [21], since our target uses a38

Cortex-M4 processor and to avoid relying on this assumption,39

we choose to not use this techniques for our implementation.40

Additionally, to avoid unwanted effects due to bit interactions41

inside registers, we make sure that the shares of a given42

value are always stored in different registers throughout the43

execution.44

Hence, our implementation uses the bitsliced approach to45

implement all 16 S-boxes in parallel as in [22]. In non-46

masked implementations, bitslicing techniques are often used47

together with n-bit registers (with n ≥ 16) to compute the48

AES encryption on n
16 blocks in parallel. In our case, n = 3249

on Cortex-M4. However, during the computation of a masked50

implementation, each one of the eight 16-bit words of the51

bitsliced state is masked, which means that each word is in52

fact a masked state of d+ 1 16-bit words. Without going too53

much into the details, our implementation is largely based on54

each of the 32 AND gates of the circuit must be replaced by55

a masked AND gadget working on 16 masked bits in parallel. 1

Nonetheless, since our target is a microprocessor with 32-bit 2

registers, we still want to maximize the use of our registers. To 3

do so, we exploit the same technique shown in [22], where the 4

authors proposed to group the 32 AND gates by pairs allowing 5

to replace each pair by a masked AND gadget working on 32 6

masked bits in parallel such that each share is 32-bit wide. 7

The transformations of the linear layer can be applied 8

share-wise which introduces much less overhead than for the 9

nonlinear layers. Since we are using a bitsliced approach to 10

the computation of the AES S-Box, the inputs and outputs of 11

the nonlinear layers are in a bitsliced representation. To avoid 12

having to pay costly bit manipulations that are needed to go 13

from and into a more standard representation where each byte 14

of the block state is stored in a single byte in memory, the 15

linear components (MixColumns, ShiftRows and AddRound- 16

Key) are implemented using the same bitsliced representation. 17

Our implementation reuses already existing bitsliced version 18

of MixColumns [15], [23] and Shiftrows. 19

During the design of the masked nonlinear layer, Tight- 20

PROVE [24] is used to ensure that the circuit for the S- 21

Box is secure at order d. However, this is not sufficient for 22

the composition of rounds to secure as well at the same 23

order. For this reason, in this paper only the security of the 24

nonlinear layer circuit is formally proven. We conjecture that 25

the composition is nonetheless secure and it can be done, for 26

example, by using TightPROVE on the circuit that includes 27

every linear operations after the output of the last AND gates 28

of the previous nonlinear layer and the circuit of the S-box 29

itself. The validation of the full implementation is thus left 30

for future work. 31

A. Randomness Generation 32

Each gadget for the masked AND gate at order 3 (re- 33

spectively 7) requires the generation of 5 (respectively 20) 34

random masks. In our implementation, the masked functions 35

for text encryption and key scheduler take as parameter a 36

function pointer to rng_fill, a function that is used to fill 37

a buffer of arbitrary size with random values. For our specific 38

environment, rng_fill is implemented using the Random 39

Number Generator (RNG) embedded in the STM32L432. This 40

RNG is based on ring oscillators and allows to generate 32- 41

bit words. A specific control register in memory is updated 42

by the RNG module to tell whether or not the random value 43

is ready to be read for the data register in memory. It takes 44

approximately 64 cycles to generate each 32-bit word. The 45

performance impact of the RNG on the overall implementation 46

is discussed in Section IV-B. 47

The embedded RNG is working asynchronously with the 48

rest of the chip and thus it may induce unexpected and non- 49

deterministic delays while waiting for new random values to 50

be drawn. Thus, during the leakage assessment presented in 51

Section V-B, all needed random values are drawn beforehand 52

and stored in a buffer. This buffer contains as many random 53

values as needed by the function on which the assessment is 54

conducted. This impacts negatively on the memory footprint of 55



TABLE I: Number of cycles to compute AES-128 keysched-
ule, encryption and S-Box, using either the embedded RNG
or deterministic values.

Order d 3 7

With RNG Without RNG With RNG Without RNG

AND gate 491 145 1771 497

S-Box 9353 3929 31025 10721

Keyschedule 100644 46393 323758 120716

Encryption 102442 48203 327383 124343

the implementation, but has the major advantage that two con-1

secutive runs of the same function are taking exactly the same2

number of cycle to execute, allowing the analysis of multiple3

traces without risking desynchronization between them. This4

approach to random values generation is thus advantageous for5

an attacker and detrimental to its performance (since the RNG6

is a device running parallel to the processor). It is done only7

for leakage assessment and not in the final implementation.8

The experimental leakage assessment exploits this RNG9

(through rng_fill), but also uses a fake alternative function10

that fills the buffer with deterministic values. This allows to11

observe almost directly the impact of masking by comparing12

the effect of the RNG on the detection of leakages.13

B. Performance14

The performance of our implementation in the number of15

cycles by block encryption is presented in Table I. As a com-16

parison with an unprotected AES optimized for the same plat-17

form, Schwabe and Stoffelen report that their implementation18

is computing a single block encryption in 661.7 cycles [15].19

In the same paper, they proposed an implementation masked20

at order 1 that takes 7422 cycles by using an RNG that outputs21

a 32-bit every 40 cycles, while the RNG we are using for our22

implementation is slower (64 cycles for each 32-bit words).23

For masked implementations at higher orders, we do not24

directly compare to the one by Journault and Standaert [16]25

since they use masking schemes only at order 32. Also,26

we do not compare to the implementation [25] because27

it is targeted at ARM Cortex-A, a higher end family of28

processors with vectorized instructions. Instead, we compare29

our implementation to [22] which has the same target (ARM30

Cortex-M) and the same range of masking order. They report31

that their implementation uses 3280d2+14075d+12192 cycles32

to compute an AES encryption where d is the masking order,33

including the cost of randomness generation. However, they34

use a RNG that is even faster than the one used by Schwabe35

and Stoffelen: it is able to produce a 32-bit random value every36

10 cycles.37

C. Taking RNG performance into account38

As seen in Table I and also reported in almost every39

implementations [15], [16], [17], [22], the performance of40

the RNG itself is crucial to be taken into account. In fact,41

in our implementation the cost of randomness generation is42

taking around 53% (respectively 62%) of the total number of 1

cycles needed for a block encryption at order 3 (respectively 2

order 7). Indeed, this impact strongly depends on the efficiency 3

of the RNG used. Thus, to achieve a fair comparison, we 4

approximate the cost of generating the needed random values 5

as a function of the parameter nRNG, which represents the 6

number of clock cycles taken by the RNG to output a 32-bit 7

random word. 8

At order 3, each S-Box is using 32 AND gates and each 9

bitsliced AND gate on 16-bit operands uses 16×5 random bits; 10

at order 7, each bitsliced AND gate on 16-bit operands uses 11

16× 20 random bits. For each nonlinear layer of the AES, 32 12

AND gates on 16-bit operands are computed. Thus, the overall 13

randomness usage of an S-Box computation is 32 × 16 × 5 14

bits, that is 80 32-bit words at order 3 and 32× 16× 20 bits, 15

that is 320 32-bit words at order 7. In AES-128, there are 16

10 nonlinear layers to apply to the state, which means that 17

at order 3 (respectively 7) our implementation needs 80 × 18

10 = 800 (respectively 320 × 10 = 3200) 32-bit words of 19

randomness. Then, the cost of randomness generation for a 20

full block encryption takes approximately 800nRNG at order 21

3 and 3200nRNG at order 7. 22

The implementation of Schwabe and Stoffelen [15] at order 23

1 is using nRNG = 40. With the same value for nRNG, our im- 24

plementation would take approximately 48203+ 800nRNG = 25

80203 cycles to run at order 3 and 124343 + 3200nRNG = 26

252343 at order 7. 27

The implementation of Goudarzi and Rivain [22] is us- 28

ing nRNG = 10 and takes 83937 cycles to run at or- 29

der 3 and 271437 cycles at order 7. With the same value 30

for nRNG, our implementation would take approximately 31

48203 + 800nRNG = 56203 cycles (vs 83937) at order 3 32

and 124343 + 3200nRNG = 156343 (vs 271437) at order 7. 33

This is an improvement of around 33% at order 3 and around 34

42% at order 7. 35

V. SECURE EVALUATION 36

A. Experimental Setup 37

Our implementation’s test target is an STM32L432 Nucleo 38

development board2 that embeds an ARM Cortex-M4 proces- 39

sor, 256 kilobytes of flash memory and 64 kilobytes of SRAM. 40

The processor has an embedded Random Number Generator 41

(RNG) using ring oscillators to generate 32-bit random output. 42

We monitor the target board and acquire traces using a 43

ChipWhisperer Lite Capture board3. To do so, we configure 44

and connect six of the 30 pins available on the STM32L432 to 45

establish a synchronization protocol between the target board 46

and the capture board. 47

Since masking is a generic counter-measure that is side- 48

channel agnostic, we chose to measure leakages from the 49

processor using an electromagnetic directional probe from 50

Langer EMV-Technik4. The probe is then connected to a pre- 51

2https://www.st.com/en/evaluation-tools/nucleo-l432kc.html
3https://store.newae.com/chipwhisperer-lite-cw1173-two-part-version/
4https://www.langer-emv.de/en/product/lf-passive-100-khz-up-to-50-mhz/

36/lf-b-3-h-field-probe-100-khz-up-to-50-mhz/3

https://www.st.com/en/evaluation-tools/nucleo-l432kc.html
https://store.newae.com/chipwhisperer-lite-cw1173-two-part-version/
https://www.langer-emv.de/en/product/lf-passive-100-khz-up-to-50-mhz/36/lf-b-3-h-field-probe-100-khz-up-to-50-mhz/3
https://www.langer-emv.de/en/product/lf-passive-100-khz-up-to-50-mhz/36/lf-b-3-h-field-probe-100-khz-up-to-50-mhz/3


Fig. 1: The hardware bench.

amplifier in order to amplify the signal before it reaches the1

capture board. This setup is illustrated in Figure 1.2

Every experiment will be done twice: once using deter-3

ministic values in lieu of random masks (RNG off); and a4

second time using the integrated RNG of the STM32L4325

(RNG on) to generate these random masks. Doing so allows6

to directly compare the effect of masking on the leakages. It7

also helps distinguishing between points in time that are not8

depending on the processed data (e.g., loop counter increment9

or unconditional jump) with points in time actually leaking10

information to the attacker. Thus, this can be used to get rid11

of many points before doing a multivariate analysis by keeping12

only the most information-carrying points, reducing the overall13

cost of the assessment.14

The capture board used in our setup is limited to 24 000 time15

samples at once. This means that we are not able to make a16

measurement for each cycle during the full masked encryption17

for neither order 3 nor order 7, which takes respectively18

48 203 and 124 343 cycles to execute. Instead, we assess the19

leakages that occurs during the computation of the S-boxes.20

We generate the required random values beforehand. This21

allows to run the implementation at both order 3 (in less than22

4000 cycles) and order 7 (in less than 11000 cycles) and assess23

the leakage under the same conditions. A full assessment of24

the complete implementation and with an improved setup is25

planned for the near future.26

B. Leakage Assessment27

The Test Vector Leakage Assessment (TVLA) is a proce-28

dure that consists in trying to detect statistically meaningful29

differences between two datasets containing traces measured30

during the computation on the device under test and differ-31

ing with respect to a specific parameter: for instance, one32

containing the traces measured during the encryption of a33

constant plaintext with a constant key, whereas the second34

dataset contains the traces measured during the encryption of a35

random plaintext with the same key. Being able to statistically36

distinguish the two sets of traces would mean that what is37

leaked during the execution depends on the plaintext on which38

the encryption is performed.39

This can be seen as a necessary condition to potential attacks 1

against the implementation, but the number of total traces 2

analysed is crucial in experimental evaluation. It is not uncom- 3

mon to start observing significant differences between the two 4

datasets only after several hundred thousands traces measured 5

if the environmental measurement noise is significant or when 6

some counter-measures are implemented. 7

The underlying statistical test commonly used is a Welch’s
t-test done for each point in time. The common approach to
aggregate every trace inside each dataset is to compute their
mean and to try to distinguish this mean from the mean of the
other dataset. The Welch’s t-test is producing a statistic t:

t =
µ1 − µ2√
s12

n1
+ s22

n2

,

with µi the mean of the i-th dataset, si its variance and ni its 8

size. The greater the absolute value of t, the more statistically 9

significant the difference. 10

In the original proposal of the TVLA, the two datasets are 11

compared using a common threshold directly on the value of 12

t. This threshold is fixed to ±4.5 for every point in time. This 13

means that the device under test is said to successfully pass 14

the test (i.e., no leakage is found) if the maximum absolute 15

value of t over all points in time is lower than 4.5. In [26], 16

the authors proposed to try to distinguish these datasets by 17

using moments of higher order (variance, skewness, kurtosis, 18

. . . ) instead of the variances. 19

Replacing the Welch’s t-test by Pearson’s χ2-test has been 20

proposed in 2015 as a complementary approach [27]. As 21

for the t-test, this test aims at trying to distinguish the two 22

datasets. However, it does not consists in comparing the means 23

(or higher-order moments) of the observations but instead it 24

works directly on the whole distribution. Nonetheless, this test 25

also work at the granularity level of a single point in time. 26

In the χ2-test setting, there is no concept of moment of 27

higher order as for the t-test since it does not use moments. 28

In some case the χ2-test can directly detect leakages that 29

otherwise would need a higher-order analysis in the case of 30

the t-test. We use this test as it was intended and described 31

in the work of Moradi et al. [27], that is as a complementary 32

approach to the t-test. The results are visible in Figure 2: 33

on the left for order 3, and on the right for order 7. The 34

latter looks more leaking than the former, which is a likely 35

artifact created by more complex code. From top to bottom, 36

the reader can se the TVLA analysis for the deterministic 37

(i.e., unprotected) and random masks using Welch’s t-test, 38

and the χ2-test using random masks. The latter has also been 39

performed on deterministic masks: it shows obvious leakages 40

and the result is thus not shown for brevity. 41

C. Multivariate analysis 42

In the TVLA methodology, both the t-test and the χ2- 43

test are conducted on each point in time independently. This 44

is sometimes called a univariate (or vertical) analysis, in 45

opposition with a multivariate (or horizontal) analysis where 46

n > 1 points in time are considered simultaneously. In a 47



Implementation masked at order 3

(a) t-test on 2× 100 000 traces with deterministic masks.

Implementation masked at order 7

(b) t-test on 2× 100 000 traces with deterministic masks.

(c) t-test on 2× 1 000 000 traces with random masks. (d) t-test on 2× 1 000 000 traces with random masks.

(e) χ2-test on 2× 1 000 000 traces with random masks. (f) χ2-test on 2× 1 000 000 traces with random masks.

Fig. 2: TVLA (fixed vs. random) on the S-box layer masked at order 3 (left) and 7 (right). Top figures (a,b) use deterministic
masks (i.e., no masking).

multivariate setting, the distribution of subsets of n points are1

compared in order to distinguish between the fixed and the2

random dataset.3

An univariate leakage assessment is more adapted to an4

implementation where multiple shares are manipulated in5

parallel as in hardware implementations of masked circuits.6

However, in software implementations the computation are7

done sequentially and different shares of the same value are8

manipulated at different clock cycles, except when the value9

in memory or in a register is overwritten with another value.10

Thus, a multivariate analysis is often needed to successfully11

achieve a side-channel attack on masked software implemen-12

tation.13

The major drawback of a multivariate analysis is its ef- 1

ficiency: when the number of datapoint of a single trace 2

increases, the number of different subsets of n points grows 3

exponentially. The goal of an attacker is then to find the so- 4

called Points of Interest (PoI), which are a reduced set of 5

points in time that are carrying the most information and are 6

thus more susceptible to lead to an attack. Detecting those 7

points is often the most challenging part, while the Welch’s 8

t-test or the χ2-test can be adapted to the multivariate case by 9

carefully choosing an aggregation function that is applied on 10

the subsets of n points. 11

We conduct a bivariate analysis using the χ2-test on our 12

implementation by following the methodology of Moradi et 13



(a) Deterministic masks at order 3 (2× 30 000 traces). (b) Deterministic masks at order 7 (2× 30 000 traces).

(c) Random masks at order 3 (2× 1 000 000 traces). (d) Random masks at order 7 (2× 1 000 000 traces).

Fig. 3: Bivariate χ2-test (fixed vs. random) on the S-box layer masked at order 3 (183 Points of Interest) and 7 (585 POI).

al. [27]. In order to limit the time and memory complexity of a1

bivariate analysis, we keep only the points in time that actually2

carry information. We do so by filtering out the ones that do3

not go above the threshold during the univariate χ2 analysis4

on the implementation using deterministic masks. Thanks to5

this step, we are able to reduce the number of points from6

4000 to 183 at order 3, and from 11000 to 585 at order 7,7

corresponding to an improvement by a factor of about 20.8

The result of the bivariate analysis is shown in Figure 3. The9

colour of each pixel represents the p-value of the combination10

of the two points in time at the corresponding coordinate.11

The diagonal thus corresponds to the univariate analysis.12

Since our bivariate analysis relies on a symmetric combination13

function of each point, the resulting graph is also symmetric.14

p-values above the threshold are shown in levels of red and15

the ones that are below the threshold are in plain white. When16

deterministic masks are used, only 30 000 traces for each17

dataset are sufficient to detect clear differences between the18

two datasets whereas after 1 000 000 traces for each dataset, 1

no bivariate leakage has been found for the implementation 2

at both order 3 and 7 when the embedded RNG is used to 3

generate the masks. 4

VI. CONCLUSION AND PERSPECTIVES 5

In this paper, we presented a secure implementation of the 6

AES and conducted an experimental assessment of the leakage 7

that occurs when executing it giving more confidence in its 8

security. We have shown that performance is largely affected 9

by the RNG production rate, and that our implementation 10

[28] improves comparable implementations by 30 to 40%. We 11

have shown the effectiveness of the masking scheme, formally 12

proven, against univariate and bivariate statistical analysis to 13

prove the actual absence of leakages. It must be pointed out, 14

however, that only the nonlinear layer of this implementation 15

is formally proven to be d-order secure, and that only this 16

step has been assessed against leakage due to limitations of 17

our experimental platform. In the future, the analysis will 18



be extended to the whole AES implementation, by formally1

proving the complete code, assessing the leakage through2

higher-order statistical tests, or by more extensive experiments3

on the EM leakage, and porting to RISC-V architectures.4
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