Totally Real Algebraic Numbers, Bogomolov Property, and Dynamical Zeta Function of the β-shift

J.-L. VERGER-GAUGRY
LAMA,
Univ. Savoie Mont Blanc, CNRS

NUMERATION
Roma
8 June 2017

Contents

(1) Main result

(2) Mahler measure, Weil height, trinomials $-1+z+z^{n}$
(3) Bogomolov property
(4) Totally real algebraic integers
(5) Totally real algebraic numbers
(6) Dynamical zeta function of the β-shift, complex nonreal zeroes

The field of totally real algebraic numbers $\mathbb{Q}^{t r} \subset \overline{\mathbb{Q}} \cap \mathbb{R}$ has the Bogomolov property relative to the Weil height h.

Theorem (VG, 2017)
Let $\mathbb{Q}^{\text {tr }}$ denote the field of all totally real numbers. If h denotes the absolute logarithmic Weil height,

$$
\alpha \in \mathbb{Q}^{t r}, \alpha \neq 0, \neq \pm 1 \quad \Rightarrow \quad h(\alpha)>\frac{1}{4} \log \theta_{31}^{-1}=0.020498 \ldots
$$

The proof uses $\zeta_{\beta}(z)$ of the β-shift, with $\beta>1$ the smallest conjugate of α.

Contents

(1) Main result

(2) Mahler measure, Weil height, trinomials $-1+z+z^{n}$
(3) Bogomolov property

4 Totally real algebraic integers
(5) Totally real algebraic numbers

6 Dynamical zeta function of the β-shift, complex nonreal zeroes

If $P(z)=a_{0} z^{n}+\ldots+a_{n}=a_{0} \prod_{j=1}^{n}\left(z-\alpha_{j}\right) \in \mathbb{Z}[z], a_{0} \neq 0$,

$$
\mathrm{M}(P)=\left|a_{0}\right| \prod_{j=1}^{n} \max \left\{1,\left|\alpha_{j}\right|\right\}
$$

is the Mahler measure of the polynomial P. For $\alpha \in \overline{\mathbb{Q}}$, of minimal polynomial $P_{\alpha}, \mathrm{M}(\alpha):=\mathrm{M}\left(P_{\alpha}\right)$. The Weil height $h(\alpha)$ of α is

$$
h(\alpha):=\frac{\log \mathrm{M}(\alpha)}{\operatorname{deg}(\alpha)}
$$

The absolute Mahler measure of P, resp. of α, is

$$
\Omega(P):=\mathrm{M}(P)^{1 / \operatorname{deg}(P)}, \text { resp. } \quad \Omega(\alpha):=\Omega\left(P_{\alpha}\right)=\mathrm{M}\left(P_{\alpha}\right)^{1 / \operatorname{deg}\left(P_{\alpha}\right)} .
$$

Let

$$
G_{n}(X):=-1+X+X^{n}, \quad n \geq 2
$$

Selmer : If $n \not \equiv 5(\bmod 6)$, then $G_{n}(X)$ is irreducible over \mathbb{Q}. If $n \equiv 5(\bmod 6)$, then the polynomial $G_{n}(X)$ admits $X^{2}-X+1$ as irreducible factor in its factorization and $G_{n}(X) /\left(X^{2}-X+1\right)$ is irreducible.

Define:

$$
\theta_{n}:=\text { unique root in }(0,1) \text { of } G_{n}(z)
$$

$\left(\theta_{n}^{-1}\right)_{n \geq 2}$: decreasing sequence of Perron numbers >1 tending to 1 , with

$$
\theta_{2}^{-1}=\frac{1+\sqrt{5}}{2}, \quad \theta_{5}^{-1}=\text { the smallest Pisot number } 1.3247 \ldots, \ldots
$$

Figure: The roots (black bullets) of $G_{n}(z)$ (represented here with $n=71$ and $n=12$) are uniformly distributed near $|z|=1$ according to the theory of Erdős-Turán-Amoroso-Mignotte. A slight bump appears in the half-plane $\mathfrak{R}(z)>1 / 2$ in the neighbourhood of 1 , at the origin of the different regimes of asymptotic expansions. The dominant root of $G_{n}^{*}(z)$ is the Perron number $\theta_{n}^{-1}>1$, with θ_{n} the unique root of G_{n} in the interval $(0,1)$.
$z_{1, n}:=$ first root in Imz >0 (close to 1).

Contents

(1) Main result

(2) Mahler measure, Weil height, trinomials $-1+z+z^{n}$
(3) Bogomolov property

4 Totally real algebraic integers
(5) Totally real algebraic numbers
(6) Dynamical zeta function of the β-shift, complex nonreal zeroes

Bombieri and Zannier (2001) have introduced the concept of "Bogomolov property", by analogy with the "Bogomolov Conjecture". Assuming a fixed choice of embedding $\overline{\mathbb{Q}} \rightarrow \mathbb{C}$, a field $\mathbb{K} \subset \overline{\mathbb{Q}}$ is said to possess the Bogomolov property relative to h is and only if $h(\alpha)$ is zero or bounded from below by a positive constant for all $\alpha \in \mathbb{K}$.

The search of small Weil's heights is important (Amoroso Nuccio, 2007) (Choi, 2000). Every number field has the Bogomolov property relative to h by Northcott's theorem.

Other fields are known to possess the Bogomolov property :
(i) $\mathbb{Q}^{t r}$ (Schinzel, 1973 ; Fili Miner),
(ii) finite extensions of the maximal abelian extensions of number fields
(Amoroso Zannier, 2000, 2010),
(iii) totally p-adic fields (Bombieri Zannier, 2001),
(iv) $\mathbb{Q}\left(E_{\text {tors }}\right)$ for E / \mathbb{Q} an elliptic curve (Habegger, 2013).

Contents

(1) Main result

(2) Mahler measure, Weil height, trinomials $-1+z+z^{n}$
(3) Bogomolov property

4 Totally real algebraic integers
(5) Totally real algebraic numbers

6 Dynamical zeta function of the β-shift, complex nonreal zeroes

Let \mathbb{L} be a totally real algebraic number field, or a CM field (a totally complex quadratic extension of a totally real number field). Then, for any nonzero algebraic integer $\alpha \in \mathbb{L}$, of degree d, not being a root of unity, Schinzel (1973) obtained the minoration

$$
M(\alpha) \geq \theta_{2}^{-d / 2}=\left(\frac{1+\sqrt{5}}{2}\right)^{d / 2}
$$

More precisely, if $H(X) \in \mathbb{Z}[X]$ is monic with degree $d, H(0)= \pm 1$ and $H(-1) H(1) \neq 0$, and if the zeroes of H are all real, then

$$
\mathrm{M}(H) \geq\left(\frac{1+\sqrt{5}}{2}\right)^{d / 2}
$$

with equality if and only if $H(X)$ is a power of $X^{2}-X-1$.

Bertin (1997) improved Schinzel's minoration for the algebraic integers α, of degree d, of norm $N(\alpha)$, which are totally real, as

$$
\mathrm{M}(\alpha) \geq \max \left\{\theta_{2}^{-d / 2}, \sqrt{N(\alpha)} \theta_{2}^{-\frac{d}{2 /\left.N(\alpha)\right|^{1 / d}}}\right\}
$$

The totally real algebraic numbers form a subfield, denoted by

$$
\mathbb{Q}^{t r}, \text { in } \overline{\mathbb{Q}} \cap \mathbb{R} .
$$

Denote $\mathbb{Z}^{t r}:=\mathbb{Q}^{t r} \cap \mathscr{O}_{\overline{\mathbb{Q}}}$.

Because the degree d of the algebraic number commonly appears in the exponent of the lower bounds of the Mahler measure, the (absolute logarithmic) Weil height h is more adapted than the Mahler measure. Schinzel's bound, originally concerned with the algebraic integers in $\mathbb{Z}^{\text {tr }}$, reads :
$\alpha \in \mathbb{Z}^{\text {tr }}, \alpha \neq 0, \neq \pm 1 \Rightarrow h(\alpha) \geq h\left(\theta_{2}^{-1}\right)=\frac{1}{2} \log \left(\frac{1+\sqrt{5}}{2}\right)=0.2406059 \ldots$

Smyth (1981) proved that the set

$$
\{\exp (h(\alpha)) \mid \alpha \text { totally real algebraic integer, } \alpha \neq 0, \neq \pm 1\}
$$

is everywhere dense in $(1.31427 \ldots, \infty)$; in other terms

$$
\liminf _{\alpha \in \mathbb{Z}^{t r}} h(\alpha) \leq \log (1.31427 \ldots)=0.27328 \ldots
$$

Flammang (1996) completed Smyth's results by showing

$$
\liminf _{\alpha \in \mathbb{Z}^{t r}} h(\alpha) \geq \frac{1}{2} \log (1.720566 \ldots)=0.271327 \ldots
$$

with exactly (complete) 6 isolated points in the interval ($0,0.271327 \ldots$), the smallest one being Schinzel's bound $0.2406059 \ldots$ (method of auxiliary functions).

For $\gamma_{0}=1, \gamma_{n+1}>0$ and $H\left(\gamma_{n+1}\right)=\gamma_{n}$, where $H(x)=x-1 / x$. Given by one-half the logarithm of the absolute Mahler measures (the first 4 discovered by Smyth, 1981) :

$$
\Omega\left(\gamma_{1}^{2}\right), \Omega\left(\gamma_{2}^{2}\right), \Omega\left(\gamma_{3}^{2}\right), \Omega\left(\alpha_{7}^{2}\right), \quad \Omega\left(\alpha_{60}^{2}\right), \Omega\left(\gamma_{4}^{2}\right)
$$

with α_{7}^{2} and α_{7}^{-2} roots of

$$
\left(x^{3}-5 x^{2}+6 x-1\right) \cdot\left(x^{3}-6 x^{2}+5 x-1\right)
$$

α_{60}^{2} and α_{60}^{-2} roots of

$$
\left(x^{4}-7 x^{3}+14 x^{2}-8 x+1\right) \cdot\left(x^{4}-8 x^{3}+14 x^{2}-7 x+1\right) .
$$

Contents

(1) Main result

(2) Mahler measure, Weil height, trinomials $-1+z+z^{n}$
(3) Bogomolov property

4 Totally real algebraic integers
(5) Totally real algebraic numbers

6 Dynamical zeta function of the β-shift, complex nonreal zeroes

Passing from algebraic integers to algebraic numbers lead to various smaller minorants of $h(\alpha)$: for instance
Amoroso and Dvornicich (2000), for \mathbb{L} / \mathbb{Q} an abelian extension of number fields,

$$
h(\alpha) \geq \frac{\log 5}{12}=0.134119 \ldots
$$

for any nonzero $\alpha \in \mathbb{L}$ which is not a root of unity ; Ishak, Mossinghoff, Pinner and Wiles (2010)

$$
h(\alpha) \geq 0.155097 \ldots
$$

for nonzero $\alpha \in \mathbb{Q}\left(\xi_{m}\right)$, not being a root of unity, 3 not dividing m;

Fili and Miner (2015), using results of Favre and Rivera-Letelier (2006) on the equidistribution of points of small Weil height, obtained the limit infimum of the height

$$
\liminf _{\alpha \in \mathbb{Q}^{t r}} h(\alpha) \geq \frac{140}{3}\left(\frac{1}{8}-\frac{1}{6 \pi}\right)^{2}=0.120786 \ldots
$$

for totally real algebraic numbers α (with $h(\alpha) \neq 0$).

Theorem
Let $\mathbb{Q}^{\text {tr }}$ denote the field of all totally real numbers. If h denotes the absolute logarithmic Weil height,

$$
\alpha \in \mathbb{Q}^{t r}, \alpha \neq 0, \neq \pm 1 \Rightarrow h(\alpha)>\frac{1}{4} \log \theta_{31}^{-1}=0.020498 \ldots
$$

Finite number of (isolated) values $h(\alpha)$ in
[0.020498, 0.120786].

Which ones?
 For which α s?

Contents

(1) Main result

(2) Mahler measure, Weil height, trinomials $-1+z+z^{n}$
(3) Bogomolov property

4 Totally real algebraic integers
(5) Totally real algebraic numbers

6 Dynamical zeta function of the β-shift, complex nonreal zeroes

Take α a totally real algebraic number and put

$$
\beta=\text { the smallest conjugate of } \alpha \text { which is }>1 \text {. }
$$

Introduce the Parry Upper function $f_{\beta}(z)$ of the β-shift from the dynamical zeta function $\zeta_{\beta}(z)$ of the β-shift.
n such that :

$$
\theta_{n}^{-1} \leq \beta<\theta_{n-1}^{-1}
$$

Let $\beta>1$ (real number). The Parry Upper function $f_{\beta}(z)$ is defined by

$$
\text { (i) } \quad f_{\beta}(z)=-\frac{1}{\zeta_{\beta}(z)}
$$

if β is not a simple Parry number,
and

$$
\text { (ii) } \quad f_{\beta}(z)=-\frac{1-z^{N}}{\zeta_{\beta}(z)}
$$

if β is a simple Parry number
where N, which depends upon β, is the minimal positive integer such that $T_{\beta}^{N}(1)=0$. It is holomorphic in the open unit disk $\{|z|<1\}$. It has no zero in $|z| \leq 1 / \beta$ except $z=1 / \beta$ which is a simple zero. The Taylor series of $f_{\beta}(z)$ at $z=1 / \beta$ is $f_{\beta}(z)=c_{\beta, 1}\left(z-\frac{1}{\beta}\right)+c_{\beta, 2}\left(z-\frac{1}{\beta}\right)^{2}+\ldots$ with

$$
c_{\beta, m}=\sum_{n=m}^{\infty} \frac{n!}{(n-m)!m!}\left\lfloor\beta T_{\beta}^{n-1}(1)\right\rfloor\left(\frac{1}{\beta}\right)^{n-m}>0, \quad \text { for all } m \geq 1 .
$$

Theorem (VG, 2017)

Let $1<\beta<\theta_{31}^{-1}$ be any algebraic number. Then the minimal polynomial $P_{\beta}(z)$ and the Parry Upper function $f_{\beta}(z)$ satisfy the canonical identity of the complex variable z

$$
P_{\beta}(z)=U_{\beta}(z) \times f_{\beta}(z)
$$

where $U_{\beta}(z)=\frac{P_{\beta}(z)}{f_{\beta}(z)} \in \mathbb{Z}[z]$ is holomorphic on the open disc
$D_{1, n}=\left\{z| | z-z_{1, n} \left\lvert\,<\frac{\pi\left|z_{1, n}\right|}{n a_{\max }}\right.\right\}$ having no zero on this disc. Moreover, if $\omega_{1, n}$ is the unique zero of $f_{\beta}(z)$ inside this disc, we have :

$$
U_{\beta}\left(\omega_{1, n}\right)=\frac{P_{\beta}^{\prime}\left(\omega_{1, n}\right)}{f_{\beta}^{\prime}\left(\omega_{1, n}\right)}
$$

The zero $\omega_{1, n}=\omega_{1, n}(\beta)$ of $f_{\beta}(z)$ is a nonreal complex zero of the minimal polynomial $P_{\beta}(z)$, and a continous function of β.

Proof :

(i) Let α be a totally real algebraic integer $\neq 0, \neq \pm 1, \operatorname{deg}(\alpha) \geq 1$. Assume

$$
P_{\alpha}(x)=\prod_{i=1}^{\operatorname{deg}(\alpha)}\left(x-\alpha^{(i)}\right)
$$

totally positive. $\mathrm{M}\left(P_{\alpha}\right)$ If P_{α} is reciprocal, the number of conjugates $\alpha^{(i)}>1$ is equal to the number of conjugates $\alpha^{(i)}$ which are in $(0,1)$. Denote by β the smallest conjugate of α which is >1. Then

$$
\mathrm{M}(\alpha) \geq \beta^{\operatorname{deg}(\alpha) / 2}
$$

We now apply the above Theorem to β. The conjugates of β are the conjugates of α. They all lie on the real line. If we assume $n=\operatorname{dyg}(\beta) \geq 32$, we arrive at a contradiction since P_{α} would admit the nonreal complex $\omega_{1, n}$ as zero. Therefore $\beta>\theta_{31}^{-1}$ and

$$
\frac{\log \mathrm{M}(\alpha)}{\operatorname{deg}(\alpha)}=h(\alpha)>\frac{1}{2} \log \theta_{31}^{-1}=0.04 \ldots
$$

If P_{α} is not reciprocal and that the number x of conjugates of α which are >1 is $\geq \operatorname{deg}(\alpha) / 2$, we denote by β the smallest conjugate of α which is >1. Then $\mathrm{M}(\alpha) \geq \beta^{x} \geq \beta^{\operatorname{deg}(\alpha) / 2}$ and $h(\alpha)>\frac{1}{2} \log \theta_{31}^{-1}=0.04 \ldots$ as above with the same argument.

If P_{α} is not reciprocal and that $x<\operatorname{deg}(\alpha) / 2$, then we consider P_{α}^{*}. Then the number of conjugates of α^{-1} which are >1 is $\geq \operatorname{deg}(\alpha) / 2$. Let β denote the smallest conjugate of α^{-1} which is >1. Then $\mathrm{M}(\alpha)=\mathrm{M}\left(P_{\alpha}^{*}\right) \geq\left|P_{\alpha}(0)\right| \beta^{\mathrm{deg}(\alpha) / 2}$. All the roots of P_{α}^{*} are real. The same argument (Theorem A) leads to

$$
h\left(\alpha^{-1}\right)=h(\alpha) \geq \frac{\log \left|P_{\alpha}(0)\right|}{\operatorname{deg}(\alpha)}+\frac{1}{2} \log \theta_{31}^{-1} \geq \frac{1}{2} \log \theta_{31}^{-1}=0.04 \ldots
$$

(ii) The case where α is a totally real algebraic integer $\neq 0, \neq \pm 1$ having a minimal polynomial P_{α} not totally positive is deduced from (i). Indeed, the polynomial $(-1)^{\operatorname{deg}(\alpha)} P_{\alpha}(x) P_{\alpha}(-x)$ is totally positive, of degree $2 \operatorname{deg}(\alpha)$, and its Mahler measure is equal to $\mathrm{M}\left(P_{\alpha}\right)^{2}$. If $P_{\alpha}(x) P_{\alpha}(-x)$ has a number of roots >1 greater than, or equal to, $\operatorname{deg}(\alpha)$, then β^{2} denotes the smallest root of $P_{\alpha}(x) P_{\alpha}(-x)$ which is >1. If not, β^{2} denotes the smallest root of $x^{2 \operatorname{deg}(\alpha)} P_{\alpha}\left(x^{-1}\right) P_{\alpha}\left(-x^{-1}\right)$ which is >1. Then, as above : $\mathrm{M}(\alpha)^{2} \geq\left(\beta^{2}\right)^{\operatorname{deg}(\alpha)}$ with $\beta^{2}>\theta_{31}^{-1}$. We deduce the minoration of $h(\alpha)$

$$
h(\alpha)>\frac{1}{4} \log \theta_{31}^{-1}=0.020498 \ldots
$$

(iii) Let α be a totally real algebraic number $\neq 0, \neq \pm 1$ which is a noninteger. Let $P_{\alpha}(x)=c \prod_{i=1}^{\operatorname{deg}(\alpha)}\left(x-\alpha^{(i)}\right)$ denote the minimal polynomial of α, for some integer $c \geq 2$. Using (i) and the Theorem above, with $P_{\alpha}(x)$ totally positive and reciprocal, the Mahler measure of α satisfies :

$$
\mathrm{M}\left(P_{\alpha}\right) \geq c \beta^{\operatorname{deg}(\alpha) / 2}
$$

where β is the smallest conjugate of α which is >1, and $\beta>\theta_{31}^{-1}$. Hence,

$$
h(\alpha) \geq \frac{\log c}{\operatorname{deg}(\alpha)}+\frac{1}{2} \log \theta_{31}^{-1} \geq \frac{1}{2} \log \theta_{31}^{-1} .
$$

If P_{α} is totally positive and nonreciprocal we conclude as in (i). If P_{α} is not totally positive, we invoke the same arguments as in (ii).

