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Main result

The field of totally real algebraic numbers Q” c QN R has the
Bogomolov property relative to the Weil height h.

Theorem (VG, 2017)

Let Q' denote the field of all totally real numbers. If h denotes the
absolute logarithmic Weil height,

aeQma#£0,#+1 = h(a)> %Log 65, =0.020498...

The proof uses {g(z) of the B-shift, with B > 1 the smallest conjugate
of .
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Mahler measure, Weil height, trinomials —1 4z + 2"

If P(2) = az"+...+an = aIllL1(z - o) € Z[2], & # O,
n
M(P) = |ao| [ [max{1, |oyl}
j=1
is the Mahler measure of the polynomial P. For o € Q, of minimal
polynomial Py, M() :=M(P). The Weil height h(«) of o is

_ LogM(a)
M) = degla)

The absolute Mahler measure of P, resp. of «, is

Q(P) :=M(P)"/%9P) resp. Q(a) :=Q(Py) = M(P,)"/99(Fa),
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Mahler measure, Weil height, trinomials —1 4z + 2"

Let
Gn(X) = -1+ X+ X", n>2.

Selmer : If n# 5 (mod 6), then G,(X) is irreducible over Q. If
n=5 (mod 6), then the polynomial G,(X) admits X% — X +1 as
irreducible factor in its factorization and Gp(X)/(X? — X +1) is
irreducible.

Define :
6, := unique root in (0,1) of Gy(2)

(6, ) n=2 : decreasing sequence of Perron numbers > 1 tending to 1,
with

_1+V5
T2

6, , 65" =the smallest Pisot number 1.3247...,...
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Mahler measure, Weil height, trinomials —1 4z + 2"

FIGURE: The roots (black bullets) of G,(z) (represented here with n=71 and
n=12) are uniformly distributed near |z| = 1 according to the theory of
Erdés-Turan-Amoroso-Mignotte. A slight bump appears in the half-plane
R(z) > 1/2 in the neighbourhood of 1, at the origin of the different regimes of
asymptotic expansions. The dominant root of G}(z) is the Perron number
6, > 1, with 6, the unique root of Gj, in the interval (0,1).

zy p = first root in Imz > 0 (close to 1).
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Bogomolov property

Bombieri and Zannier (2001) have introduced the concept of
“Bogomolov property”, by analogy with the “Bogomolov Conjecture”.

Assuming a fixed choice of embedding Q — C, a field K C Q is said to
possess the Bogomolov property relative to his and only if h(«) is
zero or bounded from below by a positive constant for all @ € K.

The search of small Weil’'s heights is important (Amoroso Nuccio,
2007) (Choi, 2000). Every number field has the Bogomolov property
relative to h by Northcott’s theorem.
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Bogomolov property

Other fields are known to possess the Bogomolov property :

(i) Q (Schinzel, 1973 ; Fili Miner),

(ii) finite extensions of the maximal abelian extensions of number fields
(Amoroso Zannier, 2000, 2010),

(iii) totally p-adic fields (Bombieri Zannier, 2001),

(iv) Q(Etors) for E/Q an elliptic curve (Habegger, 2013).
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Totally real algebraic integers

Let L be a totally real algebraic number field, or a CM field (a totally
complex quadratic extension of a totally real number field). Then, for
any nonzero algebraic integer o € L, of degree d, not being a root of
unity, Schinzel (1973) obtained the minoration

d/2
M(a) > 6,2 = (1 +2f5> |

More precisely, if H(X) € Z[X] is monic with degree d, H(0) = +£1 and
H(—1)H(1) # 0, and if the zeroes of H are all real, then

M(H) > (1 +2\@)d/2

with equality if and only if H(X) is a power of X2 — X —1.
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Totally real algebraic integers

Bertin (1997) improved Schinzel’s minoration for the algebraic
integers «, of degree d, of norm N(a), which are totally real, as

__d
M() > max{6, %/, \/N(a) 6, M}
The totally real algebraic numbers form a subfield, denoted by

Q. in QNR.
Denote Z" := Q"N Og-
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Totally real algebraic integers

Because the degree d of the algebraic number commonly appears in
the exponent of the lower bounds of the Mahler measure, the (absolute
logarithmic) Weil height h is more adapted than the Mahler
measure. Schinzel’s bound, originally concerned with the algebraic
integers in Z!, reads :

acZ’ a#0,#+1 = h(()z)zh(62*1):%Log(1 +2\£

) = 0.2406059. ..
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Totally real algebraic integers

Smyth (1981) proved that the set
{exp(h(a)) | o totally real algebraic integer,a # 0,# +£1}
is everywhere dense in (1.31427... ) ; in other terms

liminf h(a) < Log(1.31427...)=0.27328...

ozl
Flammang (1996) completed Smyth’s results by showing

liminf h(ot) > 1Log(1.720566...):0.271327...
oEZL 2

with exactly (complete) 6 isolated points in the interval
(0,0.271327...), the smallest one being Schinzel’s bound
0.2406059... (method of auxiliary functions).
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Totally real algebraic integers

For v =1, ¥n1 >0 and H(yn+1) = ¥vn, Wwhere H(x) = x —1/x. Given by
one-half the logarithm of the absolute Mahler measures (the first 4
discovered by Smyth, 1981) :

Q). A1%). %K), 2e), o), 2A1E)
with a2 and a5 2 roots of
(x®—5x2+6x—1).(x*—6x2+5x—1),
o2, and agg roots of

(x* —7x34+14x%2 —8x+1).(x* —=8x3 +14x2 —7x +1).
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Totally real algebraic numbers

Passing from algebraic integers to algebraic numbers lead to various
smaller minorants of h(a) : for instance
Amoroso and Dvornicich (2000), for L/Q an abelian extension of

number fields,
Log5

12

for any nonzero o € L which is not a root of unity ;
Ishak, Mossinghoff, Pinner and Wiles (2010)

h(a) > —0.134119...

h(e) > 0.155097 ...

for nonzero o € Q(&n), not being a root of unity, 3 not dividing m;
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Totally real algebraic numbers

Fili and Miner (2015), using results of Favre and Rivera-Letelier
(2006) on the equidistribution of points of small Weil height, obtained
the limit infimum of the height

140 /1 1\?
imi > —[-——— ] =0.120786...
Iggértlrf h(et) > 3 <8 67r> 0.120786

for totally real algebraic numbers o (with h(o) # 0).

Theorem

Let Q' denote the field of all totally real numbers. If h denotes the
absolute logarithmic Weil height,

aeQa#£0,#4+1 = h(a)> %Logeaq1 =0.020498...
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Totally real algebraic numbers

Finite number of (isolated) values h(«) in

[0.020498,0.120786].

Which ones ?
For which as ?
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Dynamical zeta function of the -shift, complex nonreal zeroes

Take « a totally real algebraic number and put
B = the smallest conjugate of a which is > 1.

Introduce the Parry Upper function fg(z) of the B-shift from the
dynamical zeta function {g(z) of the B-shift.

n such that :
6, <B <6,
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Dynamical zeta function of the -shift, complex nonreal zeroes

Let B > 1 (real number). The Parry Upper function f3(z) is defined by

(1) fs(z) = %1(2) if B is not a simple Parry number,
and
(i) fg(z) = —ﬂ if B is a simple Parry number
¢s(2)

where N, which depends upon 3, is the minimal positive integer such
that T3/(1) = 0. It is holomorphic in the open unit disk {|z| < 1}. It has
no zero in |z| <1/ except z= 1/ which is a simple zero. The Taylor

series of f5(2) at z=1/B is f3(2) = 51 (z— &) +Gp2(z — §)°+... with

oo

im= Y, — - [BTI(1))(

&, (n—m)t mi

;)m>0, forall m>1.
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Dynamical zeta function of the -shift, complex nonreal zeroes

Theorem (VG, 2017)

Let1 < B < 93T11 be any algebraic number. Then the minimal
polynomial Pg(z) and the Parry Upper function fg(z) satisfy the
canonical identity of the complex variable z

Pﬁ(Z) = Uﬁ(Z) X fﬁ(Z)

where Up(z) = Pﬁﬁ((z) € Z[z] is holomorphic on the open disc

”‘ 21,

Dipn={z||z—2z1n| < "} having no zero on this disc. Moreover, if
w1 n Is the unique zero of fﬁ( ) inside this disc, we have :

) = -

B((l)1 n) fé(w‘l n)

The zero w1 n = w1,5(B) of fg(2) is a nonreal complex zero of the
minimal polynomial Pg(z), and a continous function of j3.

v
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Dynamical zeta function of the -shift, complex nonreal zeroes

Proof :

(i) Let a be a totally real algebraic integer # 0,# +1, deg(o) > 1

Assume
deg(a

H (x a)

totally positive. M(Py) If Py, is reciprocal, the number of conjugates
al) > 1 is equal to the number of conjugates a(") which are in (0,1).
Denote by B the smallest conjugate of a which is > 1.
Then

M(at) > peeal®)/2
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Dynamical zeta function of the -shift, complex nonreal zeroes

We now apply the above Theorem to . The conjugates of 8 are the
conjugates of a. They all lie on the real line. If we assume

n=dyg(B) > 32, we arrive at a contradiction since P, would admit the
nonreal complex oy , as zero. Therefore > 6,,' and

LogM()
deg(a)

If Py is not reciprocal and that the number x of conjugates of a which
are > 1is > deg(a)/2, we denote by 8 the smallest conjugate of o
which is > 1. Then M(a) > B* > p9ea(®)/2 gnd

h(at) > 3 Log 65! = 0.04... as above with the same argument.

:h(oc)>1

5 Log 65 =0.04...
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Dynamical zeta function of the -shift, complex nonreal zeroes

If Py is not reciprocal and that x < deg(«)/2, then we consider P;,.
Then the number of conjugates of o' which are > 1 is > deg(«a)/2.
Let B denote the smallest conjugate of &~ which is > 1. Then
M(a) = M(P;) > |Py(0)| B99(*)/2_ All the roots of P, are real. The
same argument (Theorem A) leads to

Log|Py(0) | 1

_ g1 _
h(a 1) = h((x) Z W + éLOg 9311 Z §L0g0311 =0.04...
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Dynamical zeta function of the -shift, complex nonreal zeroes

(ii) The case where « is a totally real algebraic integer # 0, # +1
having a minimal polynomial P, not totally positive is deduced from (i).
Indeed, the polynomial (—1)9¢9(®) P, (x)P,(—x) is totally positive, of
degree 2deg(«), and its Mahler measure is equal to M(P,)2. If

Py (x)P«(—x) has a number of roots > 1 greater than, or equal to,
deg(a), then B2 denotes the smallest root of Py (x)Pg(—x) which is

> 1. If not, B2 denotes the smallest root of x29€9(*) P, (x~1)Py(—x~1)
which is > 1. Then, as above : M(a)? > (32)%9(®) with 82 > 6;,". We
deduce the minoration of h(«@)

1
h(a) > 4 Log 65, =0.020498....
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Dynamical zeta function of the -shift, complex nonreal zeroes

(iii) Let a be a totally real algebraic number # 0,# +1 which is a
noninteger. Let Py (x) = c[1°°9*)(x — a()) denote the minimal
polynomial of o, for some integer ¢ > 2. Using (i) and the Theorem
above, with P,(x) totally positive and reciprocal, the Mahler measure
of o satisfies :

M(P,) > cp9e9(®)/2

where B is the smallest conjugate of o whichis > 1,and 8 > 93*11.

Hence, 1 ]
Logc _ _
g + ELog 9311 > ELog 6311.
If Py is totally positive and nonreciprocal we conclude as in (i). If Py is

not totally positive, we invoke the same arguments as in (ii).

hla) = deg(a)
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