Totally Real Algebraic Numbers, Bogomolov Property, and Dynamical Zeta Function of the β -shift

J.-L. VERGER-GAUGRY

LAMA, Univ. Savoie Mont Blanc, CNRS

> NUMERATION Roma 8 June 2017

🚺 Main result

2 Mahler measure, Weil height, trinomials $-1 + z + z^n$

3 Bogomolov property

- 4) Totally real algebraic integers
- 5 Totally real algebraic numbers
- Dynamical zeta function of the β-shift, complex nonreal zeroes

The field of totally real algebraic numbers $\mathbb{Q}^{tr} \subset \overline{\mathbb{Q}} \cap \mathbb{R}$ has the Bogomolov property relative to the Weil height *h*.

Theorem (VG, 2017)

Let \mathbb{Q}^{tr} denote the field of all totally real numbers. If h denotes the absolute logarithmic Weil height,

$$\alpha \in \mathbb{Q}^{tr}, \alpha \neq 0, \neq \pm 1 \Rightarrow h(\alpha) > \frac{1}{4} \operatorname{Log} \theta_{31}^{-1} = 0.020498...$$

The proof uses $\zeta_{\beta}(z)$ of the β -shift, with $\beta > 1$ the smallest conjugate of α .

Main result

3 Bogomolov property

- 4 Totally real algebraic integers
- 5 Totally real algebraic numbers
- Dynamical zeta function of the β-shift, complex nonreal zeroes

If
$$P(z) = a_0 z^n + \ldots + a_n = a_0 \prod_{j=1}^n (z - \alpha_j) \in \mathbb{Z}[z], a_0 \neq 0$$
,
$$M(P) = |a_0| \prod_{j=1}^n \max\{1, |\alpha_j|\}$$

is the **Mahler measure** of the polynomial *P*. For $\alpha \in \overline{\mathbb{Q}}$, of minimal polynomial P_{α} , $M(\alpha) := M(P_{\alpha})$. The **Weil height** $h(\alpha)$ of α is

$$h(\alpha) := \frac{\operatorname{Log} M(\alpha)}{\operatorname{deg}(\alpha)}.$$

The **absolute Mahler measure** of *P*, resp. of α , is

$$\Omega(P) := \mathrm{M}(P)^{1/\deg(P)}, \ \textit{resp.} \quad \Omega(\alpha) := \Omega(P_{\alpha}) = \mathrm{M}(P_{\alpha})^{1/\deg(P_{\alpha})}$$

NUMERATION Roma 8 June 2017

Let

$$G_n(X):=-1+X+X^n, \qquad n\geq 2.$$

Selmer : If $n \not\equiv 5 \pmod{6}$, then $G_n(X)$ is irreducible over \mathbb{Q} . If $n \equiv 5 \pmod{6}$, then the polynomial $G_n(X)$ admits $X^2 - X + 1$ as irreducible factor in its factorization and $G_n(X)/(X^2 - X + 1)$ is irreducible.

Define :

$$\theta_n :=$$
 unique root in (0,1) of $G_n(z)$

 $(\theta_n^{-1})_{n\geq 2}$: decreasing sequence of Perron numbers >1 tending to 1, with

$$\theta_2^{-1} = \frac{1+\sqrt{5}}{2}, \quad \theta_5^{-1} = \text{the smallest Pisot number 1.3247...,}$$

FIGURE: The roots (black bullets) of $G_n(z)$ (represented here with n = 71 and n = 12) are uniformly distributed near |z| = 1 according to the theory of Erdős-Turán-Amoroso-Mignotte. A slight bump appears in the half-plane $\Re(z) > 1/2$ in the neighbourhood of 1, at the origin of the different regimes of asymptotic expansions. The dominant root of $G_n^*(z)$ is the Perron number $\theta_n^{-1} > 1$, with θ_n the unique root of G_n in the interval (0, 1).

```
z_{1,n} := first root in Imz > 0 (close to 1).
```

Main result

Bogomolov property

- 4) Totally real algebraic integers
- 5 Totally real algebraic numbers
- ⁶ Dynamical zeta function of the β-shift, complex nonreal zeroes

Bombieri and Zannier (2001) have introduced the concept of "Bogomolov property", by analogy with the "Bogomolov Conjecture".

Assuming a fixed choice of embedding $\overline{\mathbb{Q}} \to \mathbb{C}$, a field $\mathbb{K} \subset \overline{\mathbb{Q}}$ is said to possess the Bogomolov property relative to *h* is and only if $h(\alpha)$ is zero or bounded from below by a positive constant for all $\alpha \in \mathbb{K}$.

The search of small Weil's heights is important (Amoroso Nuccio, 2007) (Choi, 2000). Every number field has the Bogomolov property relative to h by Northcott's theorem.

Other fields are known to possess the Bogomolov property :

- (i) \mathbb{Q}^{tr} (Schinzel, 1973; Fili Miner),
- (ii) finite extensions of the maximal abelian extensions of number fields (Amoroso Zannier, 2000, 2010),
- (iii) totally *p*-adic fields (Bombieri Zannier, 2001),
- (iv) $\mathbb{Q}(E_{tors})$ for E/\mathbb{Q} an elliptic curve (Habegger, 2013).

1) Main result

- 2 Mahler measure, Weil height, trinomials $-1 + z + z^n$
- 3 Bogomolov property
- 4 Totally real algebraic integers
- 5) Totally real algebraic numbers
- ⁶ Dynamical zeta function of the β-shift, complex nonreal zeroes

Let \mathbb{L} be a totally real algebraic number field, or a CM field (a totally complex quadratic extension of a totally real number field). Then, for any nonzero **algebraic integer** $\alpha \in \mathbb{L}$, of degree *d*, not being a root of unity, Schinzel (1973) obtained the minoration

$$\mathrm{M}(lpha) \geq heta_2^{-d/2} = \left(rac{1+\sqrt{5}}{2}
ight)^{d/2}$$

More precisely, if $H(X) \in \mathbb{Z}[X]$ is monic with degree d, $H(0) = \pm 1$ and $H(-1)H(1) \neq 0$, and if the zeroes of H are **all real**, then

$$\mathrm{M}(H) \geq \left(\frac{1+\sqrt{5}}{2}\right)^{d/2}$$

with equality if and only if H(X) is a power of $X^2 - X - 1$.

Bertin (1997) improved Schinzel's minoration for the **algebraic** integers α , of degree *d*, of norm $N(\alpha)$, which are totally real, as

$$\mathbf{M}(\alpha) \geq \max\{\theta_2^{-d/2}, \sqrt{N(\alpha)}\,\theta_2^{-\frac{d}{2|N(\alpha)|^{1/d}}}\}.$$

The totally real algebraic numbers form a subfield, denoted by

 \mathbb{Q}^{tr} , in $\overline{\mathbb{Q}} \cap \mathbb{R}$.

Denote $\mathbb{Z}^{tr} := \mathbb{Q}^{tr} \cap \mathscr{O}_{\overline{\mathbb{Q}}}$.

Because the degree *d* of the algebraic number commonly appears in the exponent of the lower bounds of the Mahler measure, the (absolute logarithmic) **Weil height** *h* **is more adapted than the Mahler measure**. Schinzel's bound, originally concerned with the algebraic integers in \mathbb{Z}^{tr} , reads :

$$\alpha \in \mathbb{Z}^{tr}, \alpha \neq 0, \neq \pm 1 \Rightarrow h(\alpha) \ge h(\theta_2^{-1}) = \frac{1}{2} \operatorname{Log}(\frac{1+\sqrt{5}}{2}) = 0.2406059...$$

Smyth (1981) proved that the set

 $\{\exp(h(\alpha)) \mid \alpha \text{ totally real algebraic integer}, \alpha \neq 0, \neq \pm 1\}$

is everywhere dense in $(1.31427...,\infty)$; in other terms

$$\liminf_{\alpha\in\mathbb{Z}^{tr}} h(\alpha) \leq \operatorname{Log}(1.31427...) = 0.27328...$$

Flammang (1996) completed Smyth's results by showing

$$\liminf_{\alpha \in \mathbb{Z}^{tr}} h(\alpha) \geq \frac{1}{2} \text{Log}(1.720566...) = 0.271327...$$

NUMERATION Roma 8 June 2017

with exactly (complete) **6 isolated points** in the interval (0,0.271327...), the smallest one being Schinzel's bound 0.2406059... (method of auxiliary functions).

For $\gamma_0 = 1$, $\gamma_{n+1} > 0$ and $H(\gamma_{n+1}) = \gamma_n$, where H(x) = x - 1/x. Given by one-half the logarithm of the absolute Mahler measures (the first 4 discovered by Smyth, 1981) :

$$\Omega(\gamma_1^2), \Omega(\gamma_2^2), \Omega(\gamma_3^2), \Omega(\alpha_7^2), \quad \Omega(\alpha_{60}^2), \Omega(\gamma_4^2)$$

with α_7^2 and α_7^{-2} roots of

$$(x^3-5x^2+6x-1).(x^3-6x^2+5x-1),$$

 $lpha_{60}^2$ and $lpha_{60}^{-2}$ roots of

$$(x^4 - 7x^3 + 14x^2 - 8x + 1).(x^4 - 8x^3 + 14x^2 - 7x + 1).$$

NUMERATION Roma 8 June 2017

Main result

2) Mahler measure, Weil height, trinomials $-1 + z + z^n$

3 Bogomolov property

4) Totally real algebraic integers

5 Totally real algebraic numbers

Dynamical zeta function of the β -shift, complex nonreal zeroes

Passing from algebraic integers to algebraic numbers lead to various smaller minorants of $h(\alpha)$: for instance **Amoroso and Dvornicich (2000)**, for \mathbb{L}/\mathbb{Q} an abelian extension of number fields,

$$h(\alpha)\geq \frac{\mathrm{Log}\,5}{12}=0.134119\ldots$$

for any nonzero $\alpha \in \mathbb{L}$ which is not a root of unity ; Ishak, Mossinghoff, Pinner and Wiles (2010)

 $h(\alpha) \geq 0.155097\ldots$

for nonzero $\alpha \in \mathbb{Q}(\xi_m)$, not being a root of unity, 3 not dividing *m*;

Fili and Miner (2015), using results of Favre and Rivera-Letelier (2006) on the equidistribution of points of small Weil height, obtained the limit infimum of the height

$$\liminf_{\alpha \in \mathbb{Q}^{tr}} h(\alpha) \geq \frac{140}{3} \left(\frac{1}{8} - \frac{1}{6\pi} \right)^2 = 0.120786...$$

for totally real algebraic numbers α (with $h(\alpha) \neq 0$).

Theorem

Let \mathbb{Q}^{tr} denote the field of all totally real numbers. If h denotes the absolute logarithmic Weil height,

$$\alpha \in \mathbb{Q}^{tr}, \alpha \neq 0, \neq \pm 1 \Rightarrow h(\alpha) > \frac{1}{4} \operatorname{Log} \theta_{31}^{-1} = \mathbf{0.020498} \dots$$

Finite number of (isolated) values $h(\alpha)$ in

[0.020498, 0.120786].

Which ones? For which α s?

Main result

2 Mahler measure, Weil height, trinomials $-1 + z + z^n$

3 Bogomolov property

4) Totally real algebraic integers

Totally real algebraic numbers

6 Dynamical zeta function of the β -shift, complex nonreal zeroes

Take α a totally real algebraic number and put

 β = the smallest conjugate of α which is > 1.

Introduce the Parry Upper function $f_{\beta}(z)$ of the β -shift from the dynamical zeta function $\zeta_{\beta}(z)$ of the β -shift.

n such that :

$$\theta_n^{-1} \leq \beta < \theta_{n-1}^{-1}$$

Let $\beta > 1$ (real number). The **Parry Upper function** $f_{\beta}(z)$ is defined by

(*i*)
$$f_{\beta}(z) = -\frac{1}{\zeta_{\beta}(z)}$$
 if β is not a simple Parry number,

and

(*ii*)
$$f_{\beta}(z) = -\frac{1-z^N}{\zeta_{\beta}(z)}$$
 if β is a simple Parry number

where *N*, which depends upon β , is the minimal positive integer such that $T_{\beta}^{N}(1) = 0$. It is holomorphic in the open unit disk $\{|z| < 1\}$. It has no zero in $|z| \le 1/\beta$ except $z = 1/\beta$ which is a simple zero. The Taylor series of $f_{\beta}(z)$ at $z = 1/\beta$ is $f_{\beta}(z) = c_{\beta,1}(z - \frac{1}{\beta}) + c_{\beta,2}(z - \frac{1}{\beta})^{2} + ...$ with

$$c_{\beta,m} = \sum_{n=m}^{\infty} \frac{n!}{(n-m)! \ m!} \lfloor \beta \ T_{\beta}^{n-1}(1) \rfloor \left(\frac{1}{\beta}\right)^{n-m} > 0, \qquad \text{for all } m \ge 1.$$

Theorem (VG, 2017)

Let $1 < \beta < \theta_{31}^{-1}$ be any algebraic number. Then the minimal polynomial $P_{\beta}(z)$ and the Parry Upper function $f_{\beta}(z)$ satisfy the canonical identity of the complex variable *z*

 $P_{eta}(z) = U_{eta}(z) imes f_{eta}(z)$

where $U_{\beta}(z) = \frac{P_{\beta}(z)}{f_{\beta}(z)} \in \mathbb{Z}[z]$ is holomorphic on the open disc $D_{1,n} = \{z \mid |z - z_{1,n}| < \frac{\pi |z_{1,n}|}{n a_{\max}}\}$ having no zero on this disc. Moreover, if $\omega_{1,n}$ is the unique zero of $f_{\beta}(z)$ inside this disc, we have :

$$U_{\beta}(\omega_{1,n})=\frac{P_{\beta}'(\omega_{1,n})}{f_{\beta}'(\omega_{1,n})}.$$

The zero $\omega_{1,n} = \omega_{1,n}(\beta)$ of $f_{\beta}(z)$ is a nonreal complex zero of the minimal polynomial $P_{\beta}(z)$, and a continous function of β .

Proof :

(i) Let α be a totally real algebraic integer $\neq 0, \neq \pm 1, \deg(\alpha) \ge 1$. Assume

$$\mathcal{P}_{lpha}(x) = \prod_{i=1}^{\deg(lpha)} (x - lpha^{(i)})$$

totally positive. $M(P_{\alpha})$ If P_{α} is reciprocal, the number of conjugates $\alpha^{(i)} > 1$ is equal to the number of conjugates $\alpha^{(i)}$ which are in (0,1). Denote by β the smallest conjugate of α which is > 1. Then

$$\mathrm{M}(lpha)\geq eta^{\mathrm{deg}(lpha)/2}.$$

We now apply the above Theorem to β . The conjugates of β are the conjugates of α . They all lie on the real line. If we assume $n = dyg(\beta) \ge 32$, we arrive at a contradiction since P_{α} would admit the nonreal complex $\omega_{1,n}$ as zero. Therefore $\beta > \theta_{31}^{-1}$ and

$$\frac{\mathrm{Log}\,\mathrm{M}(\alpha)}{\mathrm{deg}(\alpha)} = h(\alpha) > \frac{1}{2}\mathrm{Log}\,\theta_{31}^{-1} = 0.04...$$

If P_{α} is not reciprocal and that the number *x* of conjugates of α which are > 1 is $\geq \deg(\alpha)/2$, we denote by β the smallest conjugate of α which is > 1. Then $M(\alpha) \geq \beta^{x} \geq \beta^{\deg(\alpha)/2}$ and $h(\alpha) > \frac{1}{2} \log \theta_{31}^{-1} = 0.04...$ as above with the same argument.

If P_{α} is not reciprocal and that $x < \deg(\alpha)/2$, then we consider P_{α}^* . Then the number of conjugates of α^{-1} which are > 1 is $\ge \deg(\alpha)/2$. Let β denote the smallest conjugate of α^{-1} which is > 1. Then $M(\alpha) = M(P_{\alpha}^*) \ge |P_{\alpha}(0)| \beta^{\deg(\alpha)/2}$. All the roots of P_{α}^* are real. The same argument (Theorem A) leads to

$$h(\alpha^{-1}) = h(\alpha) \ge \frac{\log |P_{\alpha}(0)|}{\deg(\alpha)} + \frac{1}{2}\log \theta_{31}^{-1} \ge \frac{1}{2}\log \theta_{31}^{-1} = 0.04...$$

(ii) The case where α is a totally real algebraic integer $\neq 0, \neq \pm 1$ having a minimal polynomial P_{α} not totally positive is deduced from (i). Indeed, the polynomial $(-1)^{\deg(\alpha)}P_{\alpha}(x)P_{\alpha}(-x)$ is totally positive, of degree $2\deg(\alpha)$, and its Mahler measure is equal to $M(P_{\alpha})^2$. If $P_{\alpha}(x)P_{\alpha}(-x)$ has a number of roots > 1 greater than, or equal to, $\deg(\alpha)$, then β^2 denotes the smallest root of $P_{\alpha}(x)P_{\alpha}(-x)$ which is > 1. If not, β^2 denotes the smallest root of $x^{2\deg(\alpha)}P_{\alpha}(x^{-1})P_{\alpha}(-x^{-1})$ which is > 1. Then, as above : $M(\alpha)^2 \ge (\beta^2)^{\deg(\alpha)}$ with $\beta^2 > \theta_{31}^{-1}$. We deduce the minoration of $h(\alpha)$

$$h(\alpha) > \frac{1}{4} \log \theta_{31}^{-1} = 0.020498....$$

(iii) Let α be a totally real algebraic number $\neq 0, \neq \pm 1$ which is a noninteger. Let $P_{\alpha}(x) = c \prod_{i=1}^{\deg(\alpha)} (x - \alpha^{(i)})$ denote the minimal polynomial of α , for some integer $c \ge 2$. Using (i) and the Theorem above, with $P_{\alpha}(x)$ totally positive and reciprocal, the Mahler measure of α satisfies :

$$\operatorname{M}({\it P}_{lpha})\geq c\,eta^{\operatorname{\mathsf{deg}}(lpha)/2}$$

where β is the smallest conjugate of α which is > 1, and $\beta > \theta_{31}^{-1}$. Hence,

$$h(\alpha) \geq \frac{\log c}{\deg(\alpha)} + \frac{1}{2} \log \theta_{31}^{-1} \geq \frac{1}{2} \log \theta_{31}^{-1}.$$

If P_{α} is totally positive and nonreciprocal we conclude as in (i). If P_{α} is not totally positive, we invoke the same arguments as in (ii).