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Abstract: We present a new finite-sample analysis of M-estimators of
locations in a Hilbert space using the tool of the influence function. In
particular, we show that the deviations of an M-estimator can be con-
trolled thanks to its influence function (or its score function) and then,
we use concentration inequality on M-estimators to investigate the ro-
bust estimation of the mean in high dimension in a corrupted setting (ad-
versarial corruption setting) for bounded and unbounded score functions.
For a sample of size n and covariance matrix Σ, we attain the minimax
speed

√
Tr(Σ)/n +

√
‖Σ‖op log(1/δ)/n with probability larger than 1− δ

in a heavy-tailed setting. One of the major advantages of our approach
compared to others recently proposed is that our estimator is tractable
and fast to compute even in very high dimension with a complexity of
O(nd log(Tr(Σ))) where n is the sample size and Σ is the covariance ma-
trix of the inliers and in the code that we make available for this article is
tested to be very fast.

MSC2020 subject classifications: Primary 62F35; secondary 60G25.
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1. Introduction

Recently, there have been an increase in the quantity and dimensionality of
data one has to investigate in Machine Learning tasks. Big datasets are rather
difficult to handle because it is not possible anymore to check by hand some
gigabyte or terabyte of data to search for possibly abnormal data, and the task
is even more difficult in high dimension. An answer to this problem is robust
statistics and in particular, because mean estimators are used everywhere in
Machine Learning (for empirical risk minimization, cross validation, data pre-
processing, feature engineering...), it has become critical to understand in depth
robust mean estimators.

In this article, we try to understand one type of mean estimators: M-estimators.
We show that they are nearly optimal in the heavy-tailed setting and we exhibit
an algorithm that allows us to compute these estimators in a linear number of
steps. Furthermore, the algorithm is very fast in practice. See Section 7.3 for
more illustrations of our algorithms.

∗This work was done while the author was in Laboratoire Mathématiques d’Orsay for his
Ph.D.
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The analysis of M-estimators to estimate the mean is divided in two steps:
first we analyze the deviations of M-estimators around T (P ), which is some
location parameter meant to exhibit a central tendency of the data and then we
bound the bias ‖T (P )−E[X]‖. Let X ∼ P for some P probability on a Hilbert
space H, let ρ be an increasing function from R+ to R+, we are interested in
estimating the location parameter T (P ) defined by

T (P ) ∈ argmin
θ∈H

E [ρ(‖X − θ‖)] = 0, (1)

where ‖ ·‖ is a norm associated to a scalar product. Alternatively, if ρ is smooth
enough (which will be the case in this article), we define T (P ) by

E

[
X − T (P )

‖X − T (P )‖ψ(‖X − T (P )‖)
]
= 0, (2)

where ψ = ρ′ is called the score function. The empirical estimator obtained by
plugging the empirical density P̂n in equation (2) is called M-estimator asso-
ciated with ψ, it is denoted T (Xn

1 ) and computed from a sample X1, . . . , Xn

using the following equation:

n∑
i=1

Xi − T (Xn
1 )

‖Xi − T (Xn
1 )‖

ψ(‖Xi − T (Xn
1 )‖) = 0. (3)

A particular case of T (P ) is obtained when choosing ψ(x) = x in which case
T (P ) = E[X] and T (Xn

1 ) = 1
n

∑n
i=1 Xi, however it is well known that the

empirical mean is not robust. A careful choice of the function ψ yield estimators
that are more robust to outliers and to heavy-tailed data (see [5]).

The subsequent problem is to see how the properties of ψ impact the ro-
bustness and efficiency of T (Xn

1 ) when estimating T (P ) or E[X]. To study the
robustness of T (Xn

1 ) we use the influence function, a common tool in robust
statistics. The influence function is used to quantify the robustness of an esti-
mator, see for example [19, 20, 27, 36] in which are derived properties such as
the asymptotic variance or the breakdown point of the estimator T (Xn

1 ) using
the influence function. The influence function is the Gâteaux derivative of T
evaluated in the Dirac distribution in a point x ∈ H and in the case of M-
estimators in R

d, from [20, Eq 4.2.9 in Section 4.2C.], the influence function
takes the following simple form:

IF(x, T, P ) = lim
t→0

T ((1− t)P + tδx)− T (P )

t
= M−1

P,T

x− T (P )

‖x− T (P )‖ψ(‖x−T (P )‖),
(4)

where MP,T is a non-singular matrix whose explicit formula is not important for
most of our application because of our choice of ψ function (an explicit formula
can however be found in the proof of Theorem 3).

The general idea is that, if the estimator is smooth enough (for example if it
is Fréchet or Hadamard differentiable, see [17]), then one can write the following
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expansion

T (P ) = T (Q) +

∫
H
IF(x, T,Q)d(P −Q)(x) +R(P,Q), (5)

where the remainder term R(P,Q) is controlled. For example, if we apply equa-

tion (5) to Q = P̂n the empirical distribution, the influence function provides

a first order approximation for the difference between the estimator T (P̂n) =
T (Xn

1 ) and its limit T (P ). This technique of approximating the estimator by its
influence function is also linked to the Bahadur decomposition, see [2] and [22]
for applications to M-estimators. The influence function of M -estimators is usu-
ally chosen bounded in robust statistics, in particular from [18, 27] we have that
if ψ is bounded, then the influence function is bounded and T is qualitatively ro-
bust (i.e. the estimator T (Xn

1 ) is equi-continuous, c.f. [27]) and have asymptotic
breakdown point 1/2. On the other hand if ψ is unbounded, then T (Xn

1 ) is not
qualitatively robust, the influence function is not bounded and the asymptotic
breakdown point is zero. From Hampel’s Theorem [27, Theorem 2.21] we also
have that ψ is bounded if and only if T is a continuous functional with respect
to the Levy metric. More generally, the influence function has been used in a
lot of works on asymptotic robustness, see [20, 27] or [19, 36].

The influence function has also been used recently in Machine Learning lit-
erature in order to have a model selection tool specialized in robustness, see for
example [11], [28] and the closely related tool of leave one out error [16]. The field
of Robustness in Machine Learning has been very active in the last few years,
in particular after several works by Olivier Catoni and co-authors in [5, 6],
the goal is to prove non-asymptotic deviation bounds when the data are more
heavy-tailed than what is usually considered in classical Machine Learning. This
line of thought has been continued in a number of articles, in particular [13] in-
troduced some general concept of sub-Gaussian estimators that have been then
used successfully in other applications, see [9, 14, 5, 31, 39, 35]. See also some
comprehensive lecture notes on the subject in [30].

It is interesting to note that contrary to works from classical robust theory
from the 70’s, the influence functions of the M-estimators used by Catoni are
not necessarily bounded. In this article, we initiate the analysis of the effect of
unbounded influence function on the robustness of M-estimators, Huber [26] told
us that the influence function must be bounded while Catoni uses unbounded
influence function and he still shows robust properties for this type of estimator,
the difference is in their vision of what is a robust estimator.

There will be three parts in our analysis of this problem, first we extend
Catoni’s non-asymptotic analysis of M-estimators as we analyze M-estimators
with more general influence functions and in a multivariate setting using the
properties of the influence function, making a link between the deviations of the
influence function and the deviations of T (Xn

1 ). Second we apply our theory to
three specific M-estimators for which we show tight upper bound on the rate
of convergence to the mean. Finally, we investigate an algorithm to compute
T (Xn

1 ) and we show that this algorithm converges in a reasonable number of
steps.
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More precisely, In Section 3, we show that concentration inequalities for M-
estimators derive from concentration inequalities on the influence function by
showing roughly that

‖T (Xn
1 )− T (P )‖ �

∥∥∥∥∥ 1n
n∑

i=1

Xi − T (P )

‖Xi − T (P )‖ψ(‖Xi − T (P )‖)
∥∥∥∥∥ . (6)

From equation (4), the right hand side of equation (6) can be interpreted as
the deviation of the influence function. The right hand side of equation (6) can
be controlled under classical assumptions. For example in R, if ψ is bounded
by β > 0 (Huber estimator), we can use Hoeffding or Bernstein inequality
to get a control on ‖T (Xn

1 ) − T (P )‖. Using Hoeffding inequality, we obtain a
concentration rate similar to the rate of the empirical mean on Gaussian data.

P

(∣∣∣∣∣ 1n
n∑

i=1

ψ(Xi − T (P ))

∣∣∣∣∣ ≥ β√
n
λ

)
≤ e−2λ2

.

Remark that using Bernstein inequality, we don’t need to have ψ bounded,
hence this gives us a mean to show sub-Gaussian rates for M-estimators with
unbounded ψ function.

In Section 4, we provide bounds on the bias ‖T (P ) − E[X]‖ and on the
variance terms in the concentration inequality from Section 3. Bounding the bias
has often been a problem in robust statistics, if the distribution is skewed and
the bias is not controlled we can only say that we estimate a quantity meant to
quantify a central tendency of P but we do not estimate E[X] directly. However
in statistical learning for example, estimating the mean is not just an arbitrary
choice and we don’t want to estimate a central tendency of the dataset, we want
to estimate its mean. In this article, we give explicit bounds on the bias and we
use those bounds (in Section 5) to give concentration results on T (Xn

1 ) around
E[X] in the context of heavy-tailed and adversarially corrupted datasets even
beyond the L2 case. Indeed, we show that the L2 assumption is needed only to be
able to handle the bias ‖T (P )−E[X]‖ but on the other hand if the distribution is
symmetric, T (P ) = E[X] and we can obtain sharp deviation bounds even in the
case of L1 distributions. Bounds on the bias are already present for the specific
case Huber estimator in regression in [37]. Our bound on the bias has the same
flavor as [37, Proposition 1] but applied to multivariate location parameter for
more general M-estimators. Similarly to the discussion in [37], our analysis leads
us to the study of a bias-variance trade-off for M-estimator depending on the
value of β.

In this context, in Section 5, we show that T (Xn
1 ) is suitable to estimate the

mean in high dimension in a heavy-tailed and corrupted setting (even though
our estimators are not minimax in corrupted setting). In the literature, there
are estimators that have strong theoretical guarantees but that are intractable,
for example one can see estimators based on the aggregation of one-dimensional
estimators (same idea as projection pursuits), see [30, Theorem 44] and refer-
ence therein, see also [32] and there has also been estimators based on depth, for
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example Tukey’s median [7]. On the other hand, there are tractable algorithms
but with non minimax optimal rates of convergence for example the coordinate-
wise median or the geometrical median [33, 6], our work belong to this type of
methods, our estimator is easily computable and even though the obtained error
bounds are much better than for the coordinate-wise median, at least in cor-
rupted setting it is not minimax. Recently there have been several propositions
of algorithms whose goal was to be at the same time tractable and minimax,
see [15, 40, 23, 12, 24, 8] however these algorithms are often hard to implement
and in practice the complexity makes them intractable for high-dimensional
problems.

In a corrupted setting where inliers have a qth finite moment, for q > 2,
we control the deviations of M-estimators. Let us suppose that the data are
an adversarial εn corrupted dataset (see Assumption 1). Then, under some as-

sumptions on ψ, for all 0 < t � n

√
‖Σ‖op

E[‖X−E[X]‖q ]1/q
, with probability larger than

1− 8 exp(−t),

‖E[X]− T (Xn
1 )‖ �

√
Tr(Σ) +

√
‖Σ‖opt√

n

∨
E [‖X − E[X]‖q]1/q ε1−1/q

n .

See Proposition 2 below for the formal and more precise statement in the case
of Huber’s estimator, and see Section 5 for other examples in particular for
M-estimators with unbounded score function. In the heavy-tailed setting where
εn = 0, the bound is almost minimax optimal, the difference is that t is allowed

to be up to n

√
‖Σ‖op

E[‖X−E[X]‖q ]1/q
instead of the usual t � n. This estimator consti-

tutes one of the few tractable and efficient estimators of the multivariate mean
in heavy-tailed setting.

The error due to corruption is of order O(E [‖X − E[X]‖q]1/q ε1−1/q
n ), the

term ε
1−1/q
n is optimal (see [34, Lemma 5.4]) but the factor E [‖X − E[X]‖q]1/q

is sub-optimal. In Section 6 we show that the dependency in the dimension due

to the E [‖X − E[X]‖q]1/q is unavoidable (to understand the magnitude of this
term, one may think about the case where all the marginal have same law, then

we can show that E [‖X − E[X]‖q]1/q �
√
d). We can’t avoid this dimension

dependence for our estimator contrary to [12, 29] in which the authors show
that the optimal error due to corruption is O(ε

√
‖Σ‖op) in the case of Gaussian

distributions. Hence our estimator is not optimal with respect to corruption.

Finally, in Section 7, we exhibit an algorithm to compute T (Xn
1 ) and we show

that this algorithm converges in a finite number of steps resulting in a complexity
of order O(nd log(Tr(Σ))) where n is the sample size and Σ is the covariance
matrix of the inliers (our analysis is only valid for d 	 en). This algorithm is
practically efficient, it is illustrated in Section 7.3 and we invite the interested
reader to check out the github repository https://github.com/TimotheeMathieu
/RobustMeanEstimator for the python code.

https://github.com/TimotheeMathieu/RobustMeanEstimator
https://github.com/TimotheeMathieu/RobustMeanEstimator
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2. Setting and notations

2.1. Setting

In all the article, we consider X1, . . . , Xn in a Hilbert space H that have been
corrupted by an adversary using the following process.

Assumption 1. There exist X ′
1, . . . , X

′
n ∈ H i.i.d. following a law P that have

been modified by an “adversary” to obtain X1, . . . , Xn. The adversary can modify
at most |O| points such that there exist I,O partition of {1, . . . , n}, with I∪O =
{1, . . . , n} and |O| < |I|.

The points (Xi)i∈O are arbitrary and are called outliers, the points (Xi)i∈I
are called inliers. Remark that the statistician do not know the sets I,O and
that although we have Xi = X ′

i for any i ∈ I, the sample (Xi)i∈I is in general
not i.i.d. because the adversary can choose which data are corrupted using
knowledge on the inliers. For instance it is possible that the adversary decided
to corrupt the |O| points fromX ′

1, . . . , X
′
n that were the closest to the theoretical

mean in which case the (Xi)i∈I are not independent.
We consider the functional T defined by

E

[
X − T (P )

‖X − T (P )‖ψ(‖X − T (P )‖)
]
= 0, (7)

for some ψ : R+ → R+, the existence and unicity of T (P ) is discussed in
Lemma 2. We are interested in the behavior of the associated M-estimator
T (Xn

1 ) defined by

n∑
i=1

Xi − T (Xn
1 )

‖Xi − T (Xn
1 )‖

ψ(‖Xi − T (Xn
1 )‖) = 0, (8)

where ψ is a function that satisfies the following properties.

Assumption 2. The function ψ : R+ → R+ verifies the following properties:

(i) ψ is continuous and differentiable almost everywhere
(ii) ψ(0) = 0
(iii) ψ is concave
(iv) There exist β, γ > 0 such that

∀x ≥ 0, 1 ≥ ψ′(x) ≥ γ1{x ≤ β},

where 1 is the indicator function.

When we want to emphasize the dependency in β, we will use the notation
ψ1 to be such that for all x ≥ 0, ψ(x) = βψ1(x/β).

Because ψ is concave, non decreasing and not identically zero, there are al-
ways a couple of positive constants β, γ such that Assumptions 2 holds. For our
results to hold we will ask that β and γ are not too small. A first result that can
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be derived from Assumptions 2 and some additional assumptions is that our
problem is well defined. This comes from the fact that the problem is a convex
problem.

Let

ZP,ψ : θ 
→ EX∼P

[
X − θ

‖X − θ‖ψ (‖X − θ‖)
]
,

we have the following lemma whose proof is in Section C.1.

Lemma 1. Let ψ satisfy Assumptions 2, let u ∈ S and θ ∈ H,

uTJac(ZP,ψ)(θ)u ≤ −E [ψ′ (‖X − θ‖)]

where Jac denotes the Jacobi operator.

Using the previous lemma, we can prove using additional hypotheses that the
problem is well defined.

Lemma 2. Let ψ satisfy Assumptions 2, define ρ : x 
→
∫ x

0
ψ(t)dt and let X

satisfy E[ρ(‖X − E[X]‖)] < ρ(β), then T (P ) defined by equation (7) exists and
is unique.

This lemma is proven in Section C.2. Remark that the condition E[ρ(‖X −
E[X])‖)] < ρ(β) is implied by Tr(Σ) = E[‖X −E[X]‖2] < 2ρ(β) because ρ(x) ≤
x2/2 however an hypothesis on Tr(Σ) is a lot stronger because it supposes a
finite second moment. In the whole article, we will suppose that T (P ) is unique,
we do not necessarily suppose that the assumptions of Lemma 2 hold because
they are not minimal assumptions for unicity and existence of T (P ). However,
for simplicity, we will suppose that the following condition is verified.

Assumption 3. X satisfies E[ρ(‖X − E[X]‖)] < min(ρ(β/3), ψ(β/2)2/2).

Assumption 3 means that β should be large enough to encompass most of
the weight of X around the expectation. When ψ is bounded, this is only a first
moment assumption. This assumption is due to limitations in our methods and
we believe that this is not necessary. One can show that ρ(x) ≥ ψ(x)2/2 which
may be used to simplify Assumption 3.

Assumptions 2 and Assumptions 3 will be supposed true. The behavior of
ψ at 0 allows us to control the deviations of the estimator using the influence
function, see Section 3 and it is also important to control the bias of the re-
sulting estimator, see Section 4. On the other hand, the growth rate of ψ at
+∞ is central to derive concentration bounds of T (Xn

1 ), as will become clear
all along Section 3 and 5. Assumptions 2 do not always apply to M-estimators,
for example the sample median is not an estimator derived from a function ψ
satisfying these assumptions. On the other hand, we provide three examples of
score functions satisfying Assumptions 2, with three different growth rates when
x goes to infinity.

Huber’s estimator. Let β > 0. For all x ≥ 0, let

ψH(x) = x1{x ≤ β}+ β 1{x > β}. (9)
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Fig 1. Plot of ψH and ψC for β = 1. ψP is plotted for β = 10 and p = 5.

In dimension 1, the M-estimator constructed from this score function is
called Huber’s estimator [26].

Catoni’s estimator. Let β > 0. For all x ≥ 0, let

ψC(x) = β log

(
1 +

x

β
+

1

2

(
x

β

)2
)
. (10)

The associated M-estimator is one of the estimators considered by Catoni
in [5]. We call the resulting M-estimator Catoni’s estimator.

Polynomial estimator. Let p ∈ N
∗, β > 0. For all x ≥ 0, let

ψP (x) =
x

1 +
(

x
β

)1−1/p
. (11)

We call Polynomial estimator the M-estimator obtained using this score
function.

The following result shows that the score functions from the previous three
examples satisfy Assumptions 2.

Lemma 3. For all x ≥ 0, we have ψ′
H(x) = 1{x ≤ β}, ψ′

C(x) ≥ 4
51{x ≤ β},

ψ′
P (x) ≥ 1

41{x ≤ β}.
The proof of Lemma 3 is postponed to Section C.3.

2.2. Notations

Let P denote the set of probability distributions on H, S = {x ∈ H : ‖x‖ = 1}
where ‖ · ‖ is a norm associated with a scalar product 〈·, ·〉 on H. For any
ψ : R+ → R+, let Pψ = {P ∈ P : EP [ψ(‖X‖)] < ∞}. We denote a � b if there
exists a numerical constant C > 0 such that a ≤ Cb.
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Let TH , TC and TP denote the functionals associated to the score functions
ψP ,ψH and ψC respectively, using Equation (7). Define the following variance
terms

Vψ = E[ψ(‖X − TH(P )‖)2], and

vψ =

∥∥∥∥E [ (X − TH(P ))(X − TH(P ))T

‖X − TH(P )‖2 ψ(‖X − TH(P )‖)2
]∥∥∥∥

op

.

These variance terms are to be compared with Tr(Σ) and ‖Σ‖op in the multi-
variate Gaussian setting, Hanson-Wright inequality (see Equation 18) tells us
that Tr(Σ) and ‖Σ‖op describe the spread of the empirical mean in high di-
mension. Here we are not in a Gaussian setting and for example in the case of
Huber’s estimator, VψH

and vψH
will describe the spread of the influence func-

tion of Huber’s estimator. See Section 4.2 for a more formal study of the link
between VψH

, vψH
and Tr(Σ), ‖Σ‖op.

3. Tail probabilities of M-estimator and influence function

The main result of the paper compares the tail probabilities of ‖T (Xn
1 )−T (P )‖

and those of its influence function.

Definition 1. We call tT and tIF the tail probability functions defined for all
λ > 0 and θ ∈ H by

tT (λ; θ,X
n
1 ) := P (‖T (Xn

1 )− θ‖ ≥ λ) (12)

tIF (λ; θ,X
n
1 ) := P

(∥∥∥∥∥ 1n
n∑

i=1

Xi − θ

‖Xi − θ‖ψ(‖Xi − θ‖)
∥∥∥∥∥ ≥ λ

)
. (13)

The main theorem of Section 3 is the following.

Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. If moreover Vθ =
EP [ψ(‖X ′ − θ‖)2] ≤ ψ(β/2)2/2 < ∞ and |O| ≤ nγ/8, then for all λ ∈ (0, β/2)
and for all θ ∈ H,

tT (λ; θ,X
n
1 ) ≤ tIF (λγ/4; θ,Xn

1 ) + e−nγ2/32. (14)

The proof of this result is given in Section A.1. In the heavy-tailed setting, we
will use Theorem 1 with θ = T (P ) in order to have a small value of tIF(λ; θ,X

n
1 ).

On the other hand, in a corrupted setting, θ will be set to T (P ) where P is the
law of inliers. For now, there is no hypothesis on the outliers in O, in what
follows we will see that if ψ is unbounded, we will need some hypothesis on
Xi, i ∈ O in order to have a control of the value of tIF.

Remark that although M-estimators with bounded ψ are proven to have a
breakdown point of 1/2 (see [27]), our result is only valid for a proportion of
outliers |On|/n ≤ γ/8. This is an artifact of the proof and with more stringent
condition on β, we could allow for a higher breakdown point at the cost of a
more complicated analysis. Remark however that when the corruption is close
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to 1/2, the error due to corruption is the principal source of error and a looser
deviation analysis could then be allowed to reach a higher breakdown point.

Example: Huber’s estimation in dimension d = 1. In the case of Huber’s
estimator, ψ is bounded and from Lemma 3, γ = 1. Because ψH is bounded by
β, we have directly from Bernstein inequality for all t > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

sign(X − TH(P ))ψH(|X − TH(P )|)
∣∣∣∣∣ >

√
2VψH

t

n
+

βt

n

)
≤ 2e−t.

Then, by Theorem 1, if VψH
≤ β2/8, for all t > 0 such that 4

√
2VψH

t/n +
4βt/n ≤ β/2,

P

(
|TH(Xn

1 )− TH(P )| > 4

√
2VψH

t

n
+ 4

βt

n

)
≤ 2e−t + e−n/32. (15)

Remark that choosing β =
√
VψH

n gives us a sub-Gaussian concentration
around TH(P ), this is similar to the concentrations inequalities introduced in [13]
except that we concentrate around TH(P ) instead of E[X]. Remark also that
the condition VψH

≤ β2/8 is rather weak because we already have VψH
≤ β2,

the condition asks that there is enough weight in the interval [−β, β].

4. Bias and variance of M-estimators when considered as estimators
of the mean

If P is symmetric then we can avoid the problem of the bias and T (P ) = E[X],
but unfortunately in the case of skewed distribution the bias ‖T (P )−E[X]‖ can
be very large and the choice of β will determine how large the bias is. In this
section, we show how the bias behaves as β grows, we also provide bounds on
the variance terms defined in Section 2.2, these bounds will be useful to derive
concentration inequalities on T (Xn

1 ). We will use the notation ψ(x) = βψ1(x/β)
when we want to emphasize the dependency on β.

We introduce the following function

Zβ : θ 
→ E

[
β
(X − θ)

‖X − θ‖ψ1

(
‖X − θ‖

β

)]
.

The following theorem links Zβ with the distance between T (P ) and E[X].

Theorem 2. Let X be a random vector in H, X ∼ P with finite expectation and
suppose Assumptions 2 and 3. Then we have ‖E[X]− T (P )‖ ≤ 2

γ ‖Zβ(E[X])‖.
We postpone the proof to Section A.2. From Theorem 2, it is sufficient to

upper bound ‖Zβ(E[X])‖ to get a bound on the bias.

4.1. Bias of M-estimators

We begin with the bias of Huber’s estimator obtained from equation (3) with
ψ = ψH . The following lemma gives a bound on the bias of Huber’s estimator
for a distribution with a finite number of finite moments.
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Lemma 4. Let X be a random variable with E[‖X‖q] < ∞ for q ∈ N
∗ and

suppose that ρ1(1/3) ≥ E[ρ1(‖X − E[X]‖/β)]. Then

‖E[X]− TH(P )‖ ≤ 2E[‖X − E[X]‖q]
(q − 1)βq−1

.

The proof is in Section C.4. Lemma 4 is not exactly tight as can be seen for
instance if we do the computation with the Pareto distribution for d = 1 for
which if the shape parameter is α = 2, we have only one finite moment but can
show that in this parametric case, Huber’s estimator achieves rates 1/β.

The choice of β is a very important problem when estimating E[X] using
T (Xn

1 ) and in particular we will need to choose β carefully as a function of n in
order to have T (Xn

1 ) that converges to E[X]. The choice of β will entail a sort of
bias-variance tradeoff. Remark that we do not need a finite second moment for
our analysis to work, we only need E[ρ(‖X − T (P )‖/β)] < ∞ which translates
in a finite first moment in the case of ψ = ψH .

In addition to Lemma 4 we can also show an exponential bound on the bias
when the random variable X is sub-exponential however because the primary
use of Huber’s estimator is with robust statistics, we only state the result for
a finite number of finite moments as it is what will interest us. An interested
reader can adapt the proof to lighter-tailed distributions.

For a ψ function that is not Huber’s score function, the bias also depends
strongly on the behavior of ψ near 0.

Lemma 5. Suppose that ψ is k times differentiable with bounded kth derivative
and that Assumptions 2 and 3 hold, ψ′(0) = 1 and for 2 ≤ j ≤ k−1, ψ(j)(0) = 0.
Let X be a random variable such that E[‖X‖k] < ∞, then,

‖T (P )− E[X]‖ ≤ ‖ψ(k)
1 ‖∞

γk!βk−1
E
[
‖X − E[X]‖k

]
. (16)

Moreover, if X follows a Bernoulli distribution of parameter p, this bound is
tight in its dependency in β. When β → ∞, we have

Zβ(E[X]) = ψ
(k)
1 (0)

p(1− p)k − (1− p)pk

k!βk−1
+ o

(
1

βk−1

)
This Lemma is proven in Section C.5. For example, we can show that for

Catoni’s score function ψ(x) = log(1 + x + x2/2) whose second derivative is
ψ′′(x) = −(x + x2/2)/(1 + x + x2/2)2, we have that ψ(x) = x − x3/6 + o(x3)
and then the bias of Catoni’s estimator is in general of order 1/β2. Lemma 5
shows that the bias depends on the smoothness of the function near 0 and also
the number of finite moments.

4.2. Bound on the variance of M-estimators

First, we have to control the variability of T (Xn
1 ) in order to control its devia-

tions. The following lemma gives an upper bound on both Vψ and vψ defined in
Section 2.2.
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Lemma 6. Suppose that Assumptions 2 and 3 are satisfied, suppose that X
has a finite second moment with covariance operator Σ we have that Vψ ≤
E[‖X − E[X]‖2] = Tr(Σ), and vψ ≤ ‖Σ‖op + ‖E[X]− T (P )‖2.

Lemma 6 (proven in Section C.6) gives a control on Vψ and vψ using the
properties of X. Next we show that Lemma 6 is tight in the case of Huber’s
estimator as long as X is sufficiently concentrated using the following lemma
whose proof is provided in Section C.7.

Lemma 7. Suppose that Assumptions 2 and 3 are satisfied and that X is such
that E[‖X‖2q] < ∞ for some q > 1, then

VψH
≥ E[‖X − E[X]‖2]− 4q

E
[
‖X − TH(P )‖2q

]1−1/q

(E [‖X − TH(P )‖2q] + β2q)
1−2/q

.

and

VψH
≥ ‖Σ‖op − 4q

E
[
‖X − TH(P )‖2q

]1−1/q

(E [‖X − TH(P )‖2q] + β2q)
1−2/q

Lemmas 6 and 7 imply that if X has enough moments, say with 4 finite
moments, and if β is sufficiently large, then the behavior of the variance term is
the same as the variance term for the empirical mean. On the other hand, if X
is not very concentrated, Lemma 6 can be a very rough bound and in the case
of Huber estimator if X has only a finite first moment but no finite variance,
then VψH

and VψH
are finite even though Tr(Σ) = ‖Σ‖op = ∞.

5. Application to the concentration of M-estimators around the
mean in corrupted datasets

In this section, we investigate the concentration of the three M-estimators taken
as example in this article in a corrupted, heavy-tailed setting. The goal will be
to recover deviations similar to the one we would have in a Gaussian setting,
but when the data are not Gaussian. The gold standard in this context is the
deviation of the empirical mean in a Gaussian setting (see [4]). If X1, . . . , Xn

are i.i.d from N (μ, σ2) for some μ ∈ R and σ > 0, then for all t > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

Xi − μ

∣∣∣∣∣ > σ

√
t

2n

)
≤ e−t. (17)

An equivalent of this in the multi-dimensional setting is Hanson-Wright inequal-
ity [21]: let X ∼ N (μ,Σ) for Σ a positive definite matrix, μ ∈ R

d. Then, for any
t > 0,

P

⎛⎝∥∥∥∥∥ 1n
n∑

i=1

Xi − μ

∥∥∥∥∥
2

>
2Tr(Σ)

n
+

9t‖Σ‖op
n

⎞⎠ ≤ e−t. (18)
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This form of Hanson-Wright inequality can be found for example in [30]. Our
aim is to obtain deviations similar to the ones in equations (17) and (18) but in
a non-Gaussian setting.

The results we show in this section are not optimal, they are nearly optimal
in the heavy-tailed setting but the effect due to corruption is sub-optimal com-
pared to [12]. One of our goals is to illustrate the use of the influence function
and particularly Theorem 1 for an easy derivation of concentration inequalities
for M-estimators. We also illustrate an interesting phenomenon derived from
Theorem 1 by showing that the concentration of T (Xn

1 ) around T (P ) can be
much faster than the concentration of T (Xn

1 ) around E[X], because the variance
term is not Tr(Σ) but V which can be a lot smaller than Tr(Σ) (for instance if
Tr(Σ) is not finite). It also shows that T (Xn

1 ) is never arbitrarily bad as long as
E[ψ(‖X‖)] < ∞ contrary to the empirical mean. We use the following corollary
of [1, Theorem 4] recalled in Section D, this lemma is proven in Section C.8.

Lemma 8. Let Y1, . . . , Yn be i.i.d random variables taking values in H, centered
and with covariance operator Σ, and such that the Orlicz norm of Y is finite:

‖Y ‖ψ1 = inf {λ > 0 : E [exp (‖Y ‖/λ)− 1] ≤ 1} < ∞.

There exists an universal constant C > 0 such that, for all t ≥ 0,

P

(∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥ ≥ 3

2

√
E

[
‖Y ‖2

]
n+2

√
nt‖Σ‖op + Ct‖ max

1≤i≤n
‖Yi‖‖ψ1

)
≤4 exp (−t) .

(19)

The last term in equation (19) can be handled using [38, Lemma 2.2.2] from
which we get that there exists an absolute constant K > 0 such that∥∥∥∥ max

1≤i≤n
‖Yi‖

∥∥∥∥
ψ1

≤ K log(n) ‖Yi‖ψ1
. (20)

However, note that Hanson-Wright’s inequality for Gaussian random variables
shows that this logarithm factor is not optimal. This extra logarithm factor can
be removed if Y is bounded, which will be the case when we apply this result
to Huber’s estimator but not for Catoni’s estimator.

In the rest of the section, we prove concentration inequalities for the esti-

mators featured in Section 2 using Lemma 8 applied to Y = X−T (P )
‖X−T (P )‖ψ(‖X −

T (P )‖) and using the bounds on the bias from Section 4. For simplicity, we will
not keep track of all the constants and we will give the names C1, C2, C3 to
numerical constants that do not depend on any of the parameters of the model
(in particular they do not depend on P or β).

5.1. Huber’s estimator

Let β > 0, and, for all x ≥ 0, let ψH(x) = x1{x ≤ β} + β 1{x > β}. From
Lemma 3, Assumptions 2 hold in this example with γ = 1. As ψH is bounded
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by β, Hoeffding’s lemma (see [4, Section 2.3]) shows that max1≤i≤n ‖ψH(‖Xi −
TH(P )‖)‖ψ1 ≤ β. From Lemma 8, we have the following proposition, whose
proof is given Section B.1.

Proposition 1. Suppose that Assumption 1 and Assumption 3 are verified with
|O| ≤ n/32. Then, there exist some numerical constants C1, C2, C3 > 0 such that
if β2 ≥ VψH

max(8, C1/n), then for any t ≤ C2n, with probability larger than
1− 4e−t − e−n/32, we have

‖TH(Xn
1 )− TH(P )‖ ≤ 6

√
VψH

n
+ 8

√
tvψH

n
+

C3tβ

n
+ 8βεn,

where εn = |O|/n is the proportion of outliers.

Remark that the condition on β can be simplified if needed, using Lemma 6,
to β2 ≥ 8Tr(Σ). The second step is to choose the value of β, the choice of β
will be a tradeoff between the bias term from Lemma 4 and the concentration
in Proposition 1

Proposition 2. Suppose the same assumptions as in Proposition 1 and suppose
additionally that EP [‖X − EP [X]‖q] < ∞ for some q ≥ 2. Then, there exist
C1, C2, C3 > 0 numerical constants such that for all t > 0 with

t ≤ C1nmin

(
EP [‖X − EP [X]‖q]

Tr(Σ)q/2
, 1

)
,

we have with probability larger than 1− 4e−t − e−n/32 that

‖TH(Xn
1 )− EP [X]‖ ≤ 6

√
Tr(Σ)

n
+ 8

√
t‖Σ‖op

n

+ C2

(
C3t

n
+ 8εn

)1−1/q

E[‖X − E[X]‖q]1/q

where β is fixed to the value

βq =
2E[‖X − E[X]‖q]

4εn + C3t/n
.

In particular, if q > 2 and t ≤ C1n

√
‖Σ‖op

E[‖X−E[X]‖q ]
1

q−1
then we have the following

bound on the deviations.

‖TH(Xn
1 )− EP [X]‖ ≤ 6

√
Tr(Σ)

n
+ 9

√
t‖Σ‖op

n
+ C2ε

1−1/q
n E[‖X − E[X]‖q]1/q.

(21)

When εn = 0 the previous proposition guarantees an optimal sub-Gaussian
rate. Notice that εn is multiplied by a quantity that increases with the dimension
in general, this bound is not minimax, see [12] which achieve a sharper bound in
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the Gaussian setting. We see that the dependency on εn is O(ε
1−1/q
n ), this type

of bound is already present for example in [25] and the power 1−1/q is optimal
(see [34, Lemma 5.4]) however, the E[‖X−E[X]‖q]1/q factor in front of it is not
optimal, we show in Section 6 that this factor is unavoidable for M-estimators.
On the other hand, when εn = 0, we obtain sub-Gaussian rates of convergence
as soon as t � n.

For Equation (21) to hold, we must have t ≤ C1n

√
‖Σ‖op

E[‖X−E[X]‖q ]
1

q−1
. Remark

that this is dependent on the dimension, we could have stated a similar deviation

bound under the alternative condition t ≤ O
(
n

q−2
2q−2

)
, avoiding the dimension

dependence at the price of a worse dependency on n. For simplicity we did not
state it in the proposition.

Remark that in R
d, with respect to the dimension, E[‖X−E[X]‖q]1/q behaves

similarly to
√
Tr(Σ). Indeed, if Σ = Id, we have

√
Tr(Σ) =

√
d and on the other

hand, by Jensen’s inequality, if we denote by X(i) be the ith coordinate of X,

E[‖X − E[X]‖q]1/q = E

⎡⎣( d∑
i=1

(X(i) − E[X(i)])2

)q/2
⎤⎦1/q

≤ d1/2−1/q

(
d∑

i=1

E

[
|X(i) − E[X(i)]|q

])1/q

.

The dependency in the dimension is similarly of order
√
d.

Finally, we present the symmetric case for which there is no need for Lemma 4
because we have right-away that TH(P ) = EP [X] and this simplifies the com-
putations. In particular we only need a finite first moment and we can directly
pick the minimal value of β in Proposition 1 to get,

Proposition 3. Suppose the same assumptions as in Proposition 1 and more-
over, suppose that P is symmetric with EP [‖X‖] < ∞. Then, there exist some
numerical constants C1, C2, C3 > 0, such that for any t ≤ C1n, with probability
larger than 1− 4e−t − e−n/32, we have

‖TH(Xn
1 )− EP [X]‖ ≤ 6

√
VψH

n
+ 8

√
tvψH

n
+ C2E[‖X − E[X]‖]

(
t

n
+ εn

)
.

(22)

where εn = |O|/n is the proportion of outliers and TH , VψH
, vψH

are computed
with β = C3E[‖X − E[X]‖].

We see with Proposition 3 that we can relax the Gaussian inliers assumption
made in [12] to inliers that are symmetric or inliers with infinite number of finite
moments and still we have a linear dependency in εn. We see also that this bound
does not need a finite second moment, the law only need to be symmetric and
have a finite first moment.
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5.2. Catoni’s estimator

In the case of Catoni’s estimator and Polynomial estimator, we will only prove
a proposition similar to Proposition 2 but we could also state the equivalents of
Propositions 1 and 3 using the same reasoning.

Let β > 0 and, for all x ≥ 0, let ψC(x) = β log
(
1 + x

β + x2

2β2

)
. From

Lemma 3, ψC satisfies Assumptions 2 with γ = 4/5. Lemma 8 in addition
to Theorem 1 can be used to obtain the following proposition.

Proposition 4. Suppose Assumption 1 and Assumption 3 are verified with
EP [‖X‖2] < ∞, suppose that there exist some constants CO > 0 and δO ∈ (0, 1)
such that with probability larger than 1− δO, we have

1

|O|
∑
i∈O

ψC(‖Xi − TC(P )‖) + ψC(‖X ′
i − TC(P )‖) ≤ βCO.

Fix the value of β to

β3 =
5E[‖X − E[X]‖3]

120COεn + Ct log(n)/n
,

and suppose |O| ≤ n/(20CO).
Then, there exist some numerical constants C1, C2, C3 > 0 such that for any

t ≤ C2
n

log(n)4

√
‖Σ‖op

E[‖X−E[X]‖3]1/3
, we have with probability larger than 1 − 4e−t −

e−n/50 − δO,

‖TC(X
n
1 )− EP [X]‖ ≤ 15

2

√
Tr(Σ)

n
+ 11

√
t‖Σ‖op

n
+ C2ε

2/3
n E[‖X − E[X]‖3]1/3.

Proposition 4 gives results that are similar to Huber’s estimator in Proposi-
tion 2 using stronger assumptions on the corruption. If E[‖X‖3] is finite, we can
use similar arguments to show a bound of order O(ε2/3) the interested reader
could adapt the proof of Proposition 2. Contrary to Proposition 2, our method
does not allow us to go further than the 3rd order because of the bias bound
from Lemma 5.

The condition on outliers is not very unusual. Indeed, if we suppose that the
outliers are i.i.d with law PO and such that EPO

[ψC(‖X − TC(P )‖)] < ∞, we
can use Chebychev inequality to say that for any CO > 0

P (∀i ∈ O, ψC(‖Xi − TC(P )‖) ≤ COβ) ≥
(
1− EPO

[ψC(‖X − TC(P )‖)]
COβ

)|O|

and then, we can choose CO such that the right-hand-side is strictly positive.
Remark that we only suppose a finite moment for ψC(‖X − TC(P )‖), which is
a logarithmic moment, this is a rather mild requirement on the outliers. On the
other hand, if there is a fixed number of outliers, i.e. εn = C/n, we deduce from
Proposition 4 that the speed of convergence does not deteriorate if the outliers
are bounded almost surely by exp(

√
nVψC

) in which case δO = 0. This is also a
rather mild requirement on outliers.
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5.3. Polynomial estimator

Finally, we look at the polynomial estimator defined for p, β > 0 by

ψP (x) =
x

1 + (x/β)1−1/p
.

Proposition 5. Suppose Assumption 1 and Assumption 3 are verified with law
P that verifies EP [‖X‖2] < ∞ and its covariance matrix is denoted Σ. We
suppose that there exist some constants CO ≥ 1 and δO ∈ (0, 1) such that with
probability 1− δO, we have

1

|O|
∑
i∈O

ψP (‖Xi − TP (P )‖) + ψP (‖X ′
i − TP (P )‖) ≤ COβ.

We fix the value of β to β2 = Tr(Σ). Then, there exist some numerical constants
C1, C2, C3 > 0 such that for any t ≤ C1n, with probability larger than 1−e−C2t−
e−n/512 − δO, we have

‖TP (X
n
1 )− E[X]‖ ≤ 16

√
65

Tr(Σ)t

n
+ 16εnCO

√
Tr(Σ).

where εn = |O|/n is the proportion of outliers, supposed positive, and the pa-
rameter p is fixed to p = C3t.

The proof of this proposition can be found Section B.5 In this proposition
we see that we obtain weaker guarantees for the polynomial estimator because
the t in the right-hand-side of the bound is multiplied by Tr(Σ) as compared to
the smaller ‖Σ‖op factor that we had before, hence this bound is not optimal.
Nonetheless, this result is valid with very high probability and this may be
surprising to the reader but recall that p is considered a parameter that we
tuned using the level t so that in fact we use a function ψP that gets very close
to a bounded function when t gets large.

6. Lower bound in corruption bias for M-estimators

In this section we suppose ψ bounded and H = R
d. Define Pε = (1− ε)P + εQ

for some outlier probability Q and some ε ∈ (0, 1/2). The goal is to estimate the
error we would incur if we want to estimate the expectation of P using data from
Pε. Remark that this setting is more restrictive than the adversarial corruption
setting we used until now, indeed we can see Pε as a corrupted setting in which
the adversary chose to modify a random number of randomly chosen outliers.

Theorem 3. Suppose P = N (0, σ2Id). There exist a distribution Q and εmax >
0 such that for all ε ∈ (0, εmax),

‖T (P )− T (Pε)‖ = ‖T (Pε)‖ ≥ σ
ε
√
d− 2

12

where Pε = (1− ε)P + εQ.
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Theorem 3 (proven in Section A.3) gives us a lower bound on the bias due
to the corruption. Remark that a similar result already existed for the case of
the geometric median, see [29, Proposition 2.1]. Our result extends the result of
[29] to more general ψ functions using an alternative proof.

To make the link with the corrupted setting from Assumption 1, remark that
if an adversary chose �(1− ε)n� inliers i.i.d from P and �εn� outliers i.i.d from
Q, then the resulting empirical distribution converges to Pε and by continuity
of T with respect to the weak topology (see Hampel’s theorem in [27]), we have
that T (Xn

1 ) → T (Pε).
Then, remark that we have

‖T (Xn
1 )− EP [X]‖ ≥ ‖T (Pε)− E[X]‖ − ‖T (Xn

1 )− T (Pε)‖. (23)

In the right-hand-side of (23), we have the term ‖T (Pε) − T (P )‖ = ‖T (Pε) −
E[X]‖ that stays bounded by below for any value of β from Theorem 3 and the
term ‖T (Xn

1 ) − T (Pε)‖ that goes to 0 as n goes to infinity. More precisely, we
have the following corollary of Theorem 3 consequence of the consistency of the
plug-in estimator T (P̂n) = T (Xn

1 ) for any distribution P (see [27]).

Corollary 1. Suppose P = N (μ, σ2Id). There exist a distribution Q and εmax >
0 such that for all ε ∈ (0, εmax) and if an adversary chose �(1−ε)n� inliers i.i.d
from P and �εn� outliers i.i.d from Q to form a sample X1, . . . , Xn, we have

P

(
‖T (Xn

1 )− EP [X]‖ ≥ σ
ε
√
d− 2

24

)
−−−−→
n→∞

1.

It is possible to quantify the rates in Corollary 1 but this is not really neces-
sary as this already proves that we can’t hope to achieve a rate that does not
depend on d in the corruption error, i.e. we can’t attain the minimax rates of
convergence which is in this case of order O(σε).

7. M-estimators in practice

In this section, we give results for H = R
d but they could be extended to more

general Hilbert spaces provided that one use a sufficiently accurate initialization
instead of the coordinate median used here.

7.1. Algorithm and convergence using iterative re-weighting

To compute T (Xn
1 ), we use an iterative re-weighting algorithm. This algorithm

is rather well known to compute M-estimators, see [27, Section 7] and it has
already been extensively studied. The principle is to rewrite the definition of
T (Xn

1 ) from equation (3) as

T (Xn
1 )

n∑
i=1

ψ (‖Xi − T (Xn
1 )‖)

‖Xi − T (Xn
1 )‖

=
n∑

i=1

Xi
ψ (‖Xi − T (Xn

1 )‖)
‖Xi − T (Xn

1 )‖
,
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then, denote wi =
ψ(‖Xi−T (Xn

1 )‖)
‖Xi−T (Xn

1 )‖ , we get an expression of T (Xn
1 ) as a weighted

sum:

T (Xn
1 ) =

n∑
i=1

Xi
wi∑n
i=1 wi

.

The weights wi depend on T (Xn
1 ) and the principle of the algorithm is as follows.

Initialize θ0 with the coordinate-wise median and iterate the following

w
(m)
i =

ψ
(
‖Xi − θ(m)‖

)
‖Xi − θ(m)‖ ,and θ(m+1) =

n∑
i=1

Xi
w

(m)
i∑n

i=1 w
(m)
i

.

We show that this algorithm allows us to find a minimizer of

Jn(θ) =
1

n

n∑
i=1

ρ (‖Xi − θ‖) .

Let rn, δ > 0 be such that

P (‖T (Xn
1 )− EP [X]‖ ≥ rn) ≤ δ,

for instance, one can use the bound given in Section 5. We have the following
theorem.

Theorem 4. Let X1, . . . , Xn be in the I ∪O setting with (Xi)i∈I i.i.d with law
P whose variance is finite and the covariance matrix is denoted Σ. Suppose also
that |O| ≤ n/8 and β ≥ 2

√
2Tr(Σ) + rn + ψ−1

(√
2Vψ

)
. Then, for all N ∈ N,

with probability larger than 1− (d+ 4)e−n/8 − δ, we have

‖θ(m)−T (Xn
1 )‖ ≤ 1

(1 + γ/2)m
‖θ(0)−T (Xn

1 )‖ ≤ 1

(1 + γ/2)m

(
2
√
2Tr(Σ) + rn

)
.

Said differently, the iterative reweighting algorithm is such that for any ε, we
have ‖θ(m) − T (Xn

1 )‖ ≤ ε after a number of iterations

m ≥ log

(
2
√
2Tr(Σ) + rn

ε

)
/ log(1 + γ/2).

The proof of Theorem 4 can be found in Section A.4. To prove this theorem,
we use techniques similar to those used to prove the convergence of Weiszfeld’s
Method (see [3]).

We obtain an exponential rate of convergence. Remark that because the ob-
jective function is convex, even if the initialization was not as good as the
coordinate-wise median or if β was not large enough, we would converge nonethe-
less but with a linear rate of convergence (similar to convergence rates in [3])
until we are close enough to T (Xn

1 ) for the rate to be exponential.
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7.2. Discussion on the choice of β

The choice of β is a frequent problem when using Huber estimator. One solution
is to use Lepski’s method but this is computationally expensive and not always
efficient, another (often used) approach is to use a heuristic for β based on the
median absolute deviation by saying that β must be of order σ the standard
deviation of the inliers however in Section 5 we see that this choice is very
conservative and β would often be too small if it is estimated using the median
absolute deviation.

In view of Section 5 where we see that depending on the number of finite
moments, we may want to choose β between

√
Tr(Σ) and

√
Tr(Σ)n, we propose

to choose β in the interval [0,MAD
√
n] where MAD = Med (‖Xi −GMed(Xn

1 )‖)
(GMED being the geometric median).

We propose the following Heuristic to choose β:

β̂ = arg min
β∈[0,MAD

√
n]

V̂ψβ

n
+ Cψ

MAD4

β2
+ (0.05β)2

where V̂ψβ
= 1

n

∑n
i=1 ψβ(‖Xi − Tψβ

(Xn
1 )‖)2 and Cψ is a constant that depend

on ψ as described by the bounds on the bias (Section 4, CψH
= 1, CψC

= 5/32
and CψP

= 1/16). This is a bias-variance trade-off, the first term converges to
the asymptotic variance of Tψβ

(Xn
1 ), the second term is a bound on the squared

bias and the third term is a bound on the corruption bias if we suppose that
εn ≤ 0.05 (In the Robust literature, it is often said that there is less than 5 or
10 percent of outliers).

Remark that the objective function may not be convex and hence there can
be local minima, we restrict the search space [0,MAD

√
n] in order to be able

to choose β efficiently using a grid-search.

7.3. Illustrations

To illustrate the behavior of M-estimators in heavy-tailed setting we consider a
multivariate Pareto law for which the coordinates are drawn, independently of
each other, from a Pareto distribution and a multivariate student distribution.
All of the dataset present a finite variance but infinite third moment.

Dataset 1: Coordinates drawn from a Pareto with shape parameter α = 2.1
and scale parameter 1, with two corrupted samples situated in 3001d where
1d is the vector with all coordinates equal to 1.

Dataset 2: Coordinates drawn from a Pareto with shape parameter α = 3 and
scale parameter 1. Uncorrupted dataset.

Dataset 3: Data i.i.d from a mixture 0.4T (0, 2.1)+0.6T (21d, 2.1), where T (μ, ν)
is the multivariate student distribution with mean μ and degree of freedom
ν. In this dataset, there is also two corrupted samples situated in 3001d.

Dataset 4: Data i.i.d from the mixture 0.4T (0, 3)+0.6T (21d, 3). Uncorrupted
dataset.
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Fig 2. Boxplots of the error ‖μ̂−E[X]‖ of various estimators μ̂ using 100 independent copies
of the three dataset considered.

In these three datasets, we consider n = 1000 samples and the dimension is
d = 100.

We consider 5 estimators : Huber and Catoni estimator with β chosen using
Section 7.2, the polynomial estimator with p = 5 and β chosen using Section 7.2,
the geometric median (gmed) and the geometric median of means described in
[33] with k = 9 blocks. The result is represented in Figure 2

In Figure 2, M-estimators are outperforming the geometric median by quite
a lot because the geometric median is very biased when estimating the mean
of an asymmetric distribution. The geometric median of means is closer in per-
formance to M-estimators but it is not as good, maybe because there is no
adaptivity the number of blocks have been fixed to 9.

Remark that the multivariate robust mean estimators described in [15, 12, 24,
8] are not presented here because they are either too computationally intensive
or too hard to implement for the purpose of comparison. Remark also that the
choice of β from Section 7.2 is heuristic. In a learning setting, one may prefer
to use cross-validation to tune β using directly the learning criterion.
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Appendix A: Proof of Theorems

A.1. Proof of Theorem 1

Hypotheses in this proof. (i) Vθ = EP [ψ(‖X ′ − θ‖)2] ≤ ψ(β/2)2/2 < ∞
(ii) |O| ≤ nγ/8

For all n ∈ N
∗, λ ∈ R, θ ∈ H and θ �= T (Xn

1 ), let

fn(λ; θ) =
1

n

n∑
i=1

〈Xi − θ − λun(θ), un(θ)〉
‖Xi − θ − λun(θ)‖

ψ(‖Xi − θ − λun(θ)‖),

where un(θ) =
θ−T (Xn

1 )
‖θ−T (Xn

1 )‖ .

Step 1. For any λ > 0, P(‖θ − T (Xn
1 )‖ ≥ λ) ≤ P(fn(λ; θ) ≥ 0).

Proof. For all θ ∈ H, let Jn(θ) =
1
n

∑n
i=1 ρ(‖Xi − θ‖) from Lemma 1

applied to the empirical density P̂n = 1
n

∑n
i=1 δXi , we have for any

u ∈ S and θ ∈ H,

uTHess(Jn)(θ)u ≥ 1

n

n∑
i=1

ψ′ (‖Xi − θ‖) .

In particular, fn(λ; θ) = −〈∇Jn(θ−λun(θ)), un(θ)〉 and if we take the
derivative of fn with respect to λ, we have the following equation

f ′
n(λ; θ) = −un(θ)

THess(Jn)(θ − λun(θ))un(θ)

≤ − 1

n

n∑
i=1

ψ′(‖Xi − θ − λun(θ)‖). (24)

where f ′
n(λ; θ) is the derivative of fn(λ; θ) with respect to λ. Then,

because ψ′ is non-negative (Assumption 2-(iv)), the function fn( · ; θ)
is non-increasing. Hence, for all n ∈ N

∗, λ ∈ R

‖θ − T (Xn
1 )‖ ≥ λ ⇒ fn(‖θ − T (Xn

1 )‖; θ) = 0 ≤ fn(λ; θ).

And then,

P(‖θ − T (Xn
1 )‖ ≥ λ) ≤ P(fn(λ; θ) ≥ 0). (25)

Step 2. For all λ > 0,

fn(λ; θ) ≤ fn(0)− λ inf
t∈[0,λ]

|f ′
n(t; θ)| .

Proof. We apply Taylor’s inequality to the function λ 
→ fn(λ; θ). As
λ 
→ fn(λ; θ) is non-increasing (because its derivative is non-positive,
see Equation (24)), we get the result.
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Step 3. Let m = γP (‖X ′
i − θ‖ ≤ β/2). With probability than 1− e−nm2/8, we

have

inf
t∈[0,λ]

|f ′
n(λ; θ)| ≥

3m

4
− |O|

n
.

Proof. From equation (24),

|f ′
n(t; θ))| ≥

1

n

n∑
i=1

ψ′(‖Xi − θ − tun(θ)‖)

≥ 1

n

n∑
i=1

ψ′(‖X ′
i − θ − tun(θ)‖)

+
1

n

∑
i∈O

(ψ′(‖Xi − θ − tun(θ)‖)− ψ′(‖X ′
i − θ − tun(θ)‖)) .

(26)

Hence, because ψ′ ∈ [0, 1], we have

inf
t∈[0,λ]

|f ′
n(t; θ))| ≥ inf

t∈[0,λ]

1

n

n∑
i=1

ψ′(‖X ′
i − θ − tun(θ)‖)−

|O|
n

≥ inf
t∈[0,λ]

γ

n

n∑
i=1

1{‖X ′
i − θ − tun(θ)‖ ≤ β} − |O|

n

≥ γ

n

n∑
i=1

1{‖X ′
i − θ‖ ≤ β/2} − |O|

n

The last line is a consequence of λ ∈ (0, β/2). Then, this is a sum of
bounded random variables and by Hoeffding’s inequality, with proba-
bility larger than 1− e−2nε2 , we have

sup
t∈[0,λ]

−|f ′
n(λ; θ)| ≤ −γE [1{‖X ′

i − θ‖ ≤ β/2}] + ε+
|O|
n

.

take ε = γP (‖X ′
i − θ‖ ≤ β/2) /4 to conclude

Step 4. For λ ∈ (0, β/2), P(‖θ − T (Xn
1 )‖ ≥ λ) ≤ tIF (λγ/4; θ,Xn

1 ) + e−nγ2/32.

Proof. For any λ > 0, we have

P(‖θ − T (Xn
1 )‖ ≥ λ)

(a)

≤ P(fn(λ; θ) ≥ 0)

(b)

≤ 1− P

(
fn(0; θ)− λ inf

t∈[0,λ]
|f ′

n(t; θ)| ≤ 0

)
(c)

≤ 1− P

(
fn(0; θ) ≤ λ

(
3

4
m− |O|

n

))
+ e−nm2/8

= tIF

(
λ

(
3

4
m− |O|

n

)
; θ,Xn

1

)
+ e−nm2/8,

(27)
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where (a) follows from Step 1, (b) follows from Step 2 and (c) follows
from Step 3. Finally, we bound m because ψ is increasing on [0, β], for
any λ < β/2,

P (‖X ′
i − θ‖ ≤ β/2) = P (ψ(‖X ′

i − θ‖) ≤ ψ(β/2)) .

As Vθ = E[ψ(‖X − θ‖)2] < ∞, by Markov’s inequality, it follows that

m = γP (‖X ′
i − θ‖ ≤ β/2) ≥ γ

(
1− Vθ

ψ(β/2)2

)
. (28)

From Hypothesis (i), Vθ ≤ ψ(β/2)2/2, we get m ≥ γ/2. Plugging this
bound in equation (27), we get

P(‖θ − T (Xn
1 )‖ ≥ λ) ≤ tIF

(
λ

(
3γ/8− |O|

n

)
; θ,Xn

1

)
+ e−nγ2/32.

(29)

we conclude using that |O| ≥ nγ/8 (from Hypothesis (ii)).

A.2. Proof of Theorem 2

Step 1. We have

‖Zβ(E[X])− Zβ(T (P ))‖
≥ γ‖E[X]− T (P )‖P

(
‖X − T (P )‖ ≤ β − ‖E[X]− T (P )‖

)
.

Proof. The function θ 
→ Zβ(θ) is differentiable and by the mean value
theorem, we have

‖Zβ(E[X])− Zβ(T (P ))‖
≥ ‖E[X]− T (P )‖ inf

t∈[0,1]
‖Jac(Zβ)(tE[X] + (1− t)T (P ))‖op (30)

Where Jac denotes the Jacobi operator. From Lemma 1 and Assump-
tion 2-(iv), we get

‖Jac(Zβ)(θ)‖op ≥ E

[
ψ′
1

(∥∥∥∥X − θ

β

∥∥∥∥)] ≥ γP (‖X − θ‖ ≤ β) .

Hence, for all t ∈ [0, 1],

‖Jac(Zβ)(tE[X] + (1− t)T (P ))‖op
≥ γP (‖X − tE[X]− (1− t)T (P )‖ ≤ β)

≥ γP (‖X − T (P )‖ ≤ β − ‖E[X]− T (P )‖)

inject this in Equation (30) to get the result.
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Step 2. P (‖X − T (P )‖ ≤ β − ‖E[X]− T (P )‖) ≥ 1
2 .

Proof. Use the following lemma proven in Section C.9.

Lemma 9. If ρ(1/3) ≥ E[ρ(‖X−E[X]‖/β)], then ‖E[X]−T (P )‖ ≤ β
3 .

We get,

P (‖X − T (P )‖ ≤ β − ‖E[X]− T (P )‖)
≥ P (‖X − T (P )‖ ≤ 2β/3)

= P

(
ρ

(
‖X − T (P )‖

β

)
≤ ρ(2/3)

)
≥ P

(
ρ

(
‖X − T (P )‖

β

)
≤ 2ρ(1/3)

)
because ρ is increasing and super-additive on R+ (ρ is increasing
because ψ(0) = 0 and ψ is non-decreasing because ψ′ ≥ 0, hence
ψ = ρ′ ≥ 0). Hence, by Markov’s inequality and using the hypothesis,

P (‖X − T (P )‖ ≤ β − ‖E[X]− T (P )‖)

≥ 1− 1

2ρ(1/3)
E

[
ρ

(
‖X − T (P )‖

β

)]
≥ 1

2

Step 3. ‖E[X]− T (P )‖ ≤ 2
γ ‖Zβ(E[X])‖ .

Proof. Use Step 1 and Step 2

A.3. Proof of Theorem 3

P is symmetric around 0, hence T (P ) = 0. By definition of the influence function
we have

IF(x) = lim
ε→0

T (Pε)− T (P )

ε

where Pε = (1− ε)P + εδx and we have, from [20] that IF(x) = M−1 x
‖x‖ψ(‖x‖),

where

M = −E

[(
Id

‖X‖ − XXT

‖X‖3
)
ψ(‖X‖) + XXT

‖X‖2 ψ
′(‖X‖)

]
.

Hence, taking ‖x‖ such that ψ(‖x‖) ≥ ‖ψ‖∞/2 (this fixes the norm of x) and
‖M−1x‖ = ‖M−1‖op‖x‖ (this fixes the direction of x), we have

‖IF(x)‖ ≥ ‖M−1‖op
2

‖ψ‖∞ ≥ 1

2‖M‖op
‖ψ‖∞ (31)

where ‖M‖op is the operator norm of M . Let us control this operator norm. We
have for all u ∈ S where S is the sphere in R

d,

uTMu = −E

[(
1

‖X‖ − 〈X,u〉2
‖X‖3

)
ψ(‖X‖) + 〈X,u〉2

‖X‖2 ψ′(‖X‖)
]
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Hence,

|uTMu| ≤ 3E

[
ψ(‖X‖)
‖X‖

]
≤ 3‖ψ‖∞E

[
1

‖X‖

]
≤ 3

‖ψ‖∞
σ

E

[
σ2

‖X‖2
]1/2

Then, use that X ∼ N (0, σ2Id) to have that σ2/‖X‖2 have a law inverse-χ2 of
parameter d. Hence,

|uTMu| ≤ 3
‖ψ‖∞

σ
√
d− 2

.

Inject this in equation (31) to conclude that ‖IF(x)‖ ≥
√
d− 2/6. Now, use that

ε 
→ T (Pε) is continuous (it is in fact Lipshitz continuous because the Influence
function is bounded) to conclude.

A.4. Proof of Theorem 4

This proof mimic the proof of convergence for EM algorithm or for the algorithm
used to compute the geometric median.

Let

Jn(θ) =
1

n

n∑
i=1

ρ1

(
‖Xi − θ‖

β

)
,

we are searching for the argmin of Jn.
First, we show that the initialization is not too far away from the optimum.

Lemma 10. If Assumption 1 is verified, Σ is the covariance matrix of P and
|O| ≤ n/8. Then, with probability larger than 1− de−n/8 − δ,

‖θ0 − T (Xn
1 )‖ ≤ 2

√
2Tr(Σ) + rn

The proof is provided in Section C.10. Then, we note that Jn is strongly
convex with high probability, using Lemma 1, for all u ∈ S and all θ ∈ R

d,

uTHess(Jn)(θ)u ≥ 1

β2n

n∑
i=1

ψ′
1

(
‖Xi − θ‖

β

)
. (32)

This allows us to show that the sequence of iterates is equivalent to minimizing
a convex majorant of J .

Lemma 11. Assume that ρ is convex, that x 
→ ψ(x)/x is bounded and non-
increasing, define

Uκ(θ) =

n∑
i=1

(
wi(κ)

2

(
‖Xi − θ‖

β

)2

+ ρ1(ri(κ))−
1

2
ri(κ)ψ(ri(κ))

)
.

where ri(κ) = ‖Xi − κ‖/β and wi(κ) = ψ1(ri(κ))/ri(κ). We have that

• Uθ(m) is minimized at θ(m+1)
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• for all κ ∈ R
d, Uκ ≥ Jn

• The approximation error h = Jn−Uκ is differentiable and ∇h is L-Lipshitz

continuous with L = 1
nβ2

∑n
i=1

ψ(ri)
ri

• h(κ) = 0 and ∇h(κ) = 0.

The proof is provided in Section C.11.
From Lemma 11, we get that the direction from θ(m) to θ(m+1) is a proper

descent direction through the following lemma proved in Section C.12.

Lemma 12. For all θ ∈ R
d and for all m ∈ N, we have

J(θ(m+1)) ≤ J(θ) +
1

2β2n

n∑
j=1

wj(θ
(m))

(
‖θ(m) − θ‖ − ‖θ(m+1) − θ‖

)
Use Lemma 12 with θ = T (Xn

1 ).

J(θ(m+1)) ≤ J(T (Xn
1 ))

+
1

2β2n

n∑
j=1

wj(θ
(m))

(
‖θ(m) − T (Xn

1 )‖ − ‖θ(m+1) − T (Xn
1 )‖

)
Hence, using the fact that T (Xn

1 ) is a minimizer of J , we get the result that

‖θ(m+1) − T (Xn
1 )‖ ≤ ‖θ(m) − T (Xn

1 )‖ (33)

This allows us to restrict ourselves to a bounded domain. From Lemma 10,
with probability larger than 1− de−n/8 − δ, we have that θ0 is in

Θ = {θ ∈ R
d : ‖θ − T (Xn

1 )‖ ≤ 2
√
2Tr(Σ) + rn}.

and then, equation (33) assures us that we stay in Θ for the other iterations:
∀m ∈ N, θ(m) ∈ Θ. The following Lemma is proven in Section C.13.

Lemma 13. Let θ ∈ Θ, if X1, . . . , Xn are corrupted by an adversary with
X ′

1, . . . , X
′
n i.i.d with law P whose variance is finite and the covariance matrix

is denoted Σ. Moreover, we suppose |O| ≤ n/8, then if β ≥ 2
√
2Tr(Σ) + rn +

ψ−1
1

(√
2Vψ

)
, we have with probability greater than 1− e−n/32,

1

β2n

n∑
i=1

ψ′
1

(
‖Xi − θ‖

β

)
≥ γ

4β2

This allows us to quantify the speed at which the sequence ‖θ(m) − T (Xn
1 )‖

decreases. Indeed, from Lemma 12 for θ = T (Xn
1 ), we have

J(θ(m+1)) ≤ J(T (Xn
1 ))

+
1

2β2n

n∑
j=1

wj(θ
(m))

(
‖θ(m) − T (Xn

1 )‖ − ‖θ(m+1) − T (Xn
1 )‖

)
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and by Lemma 13 and Lemma 10 and the convexity equation (32), we have by
Taylor’s theorem that with probability larger than 1− (d+4)e−n/8−δ (because
e−n/32 ≤ 4e−n/8),

J(θ(m+1))− J(T (Xn
1 )) ≥

γ

4β2
‖θ(m+1) − T (Xn

1 )‖.

Hence,

γ

4β2
‖θ(m+1) − T (Xn

1 )‖ ≤

1

2β2n

n∑
j=1

wj(θ
(m))

(
‖θ(m) − T (Xn

1 )‖ − ‖θ(m+1) − T (Xn
1 )‖

)
.

Solve this equation for ‖θ(m+1) − T (Xn
1 )‖ to obtain,

‖θ(m+1) − T (Xn
1 )‖ ≤

1
2nβ2

∑n
j=1 wj(θ

(m))
1

2nβ2

∑n
j=1 wj(θ(m)) + γ

4β2

‖θ(m) − T (Xn
1 )‖ (34)

then use that
∑n

j=1 wj(θ
(m)) ≤ n and the fact that the right-hand-side of Equa-

tion (34) is increasing in
∑n

j=1 wj(θ
(m)) to get for all m ∈ N,

‖θ(m+1) −T (Xn
1 )‖ ≤ 1/2

1/2 + γ
4

‖θ(m) −T (Xn
1 )‖ =

1

1 + γ/2
‖θ(m) −T (Xn

1 )‖ (35)

Then, this implies directly that with probability larger than 1−(d+4)e−n/8−δ,
we have

‖θ(m)−T (Xn
1 )‖ ≤ 1

(1 + γ/2)m
‖θ(0)−T (Xn

1 )‖ ≤ 1

(1 + γ/2)m

(
2
√

2Tr(Σ) + rn

)

Appendix B: Proof of propositions

B.1. Proof of Proposition 1

Hypotheses in this proof. (i) |O| ≤ n/32
(ii) β2 ≥ VψH

max(8, C1/n)

From Theorem 1 with γ = 1, we have that if VψH
= EP [ψH(‖X−TH(P )‖)2] ≤

ψ(β/2)2/2 = β2/8, then for all λ ∈ (0, β/2) and for all θ ∈ H,

tT (λ;TH(P ), Xn
1 ) ≤ tIF (λ/4;TH(P ), Xn

1 ) + e−n/32. (36)

let us find an upper bound of tIF (λ/4;TH(P ), Xn
1 ).

Step 1. tIF (λt/4;TH(P ), Xn
1 ) ≤ 4e−t.
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Proof. We have,

P

(∥∥∥∥∥ 1n
n∑

i=1

Xi − T (P )

‖Xi − TH(P )‖ψH (‖Xi − TH(P )‖)
∥∥∥∥∥ ≥ λ/4

)

≤ P

(∥∥∥∥∥ 1n
n∑

i=1

X ′
i − T (P )

‖X ′
i − TH(P )‖ψH (‖X ′

i − TH(P )‖)
∥∥∥∥∥ ≥ λ/4− 2

|O|
n

β

)
(37)

because ψH is bounded by β. Then, we use Lemma 8 to bound the
sum of i.i.d. bounded random variables. Having ψH bounded, we see
that by Hoeffding’s lemma (see [4, Section 2.3]), max1≤i≤n ‖ψH(‖Xi−
TH(P )‖)‖ψ1 ≤ β. Then, by Lemma 8 for all t > 0, with probability
larger than 1− 4e−t,∥∥∥∥∥ 1n

n∑
i=1

X ′
i − T (P )

‖X ′
i−TH(P )‖ψH (‖X ′

i − TH(P )‖)
∥∥∥∥∥≤ 3

2

√
VψH

n
+2

√
tvψH

n
+
Ctβ

n
,

inject this in Equation (37) with λt = 4

(
3
2

√
VψH

n + 2
√

tvψH

n + Ctβ
n

)
+

8β |O|
n to get tIF (λt/4;TH(P ), Xn

1 ) ≤ 4e−t.

Step 2. There exists a constant C2 > 0 such that condition λt ≤ β/2 is verified
for any t ≤ C2n.

Proof. Use Hypothesis (i) to get that λt ≤ β/2 is implied by

β

4
≥ 6

√
VψH

n
+ 8

√
tvψH

n
+ 4

Ctβ

n
.

Then, this is implied by the following system of equation with C1, C2,
C3 > 0 three numerical constants,⎧⎪⎪⎨⎪⎪⎩

β ≥ C1

√
VψH

n

β ≥
√

C2
tvψH

n

β ≥ tβ
C3n

⇐

⎧⎪⎪⎨⎪⎪⎩
β ≥ C1

√
VψH

n

t ≤ C2nβ
2/vψH

t ≤ C3n

⇐

⎧⎪⎪⎨⎪⎪⎩
β ≥ C1

√
VψH

n

t ≤ C2n

t ≤ C3n

The last implication is from Hypothesis (ii): β2 ≥ 8VψH
≥ 8vψH

. Inject
this in Equation (36) to get the desired result.

B.2. Proof of Proposition 2

Hypotheses in this proof. (i) EP [‖X − EP [X]‖q] < ∞ for some q ≥ 2.

(ii) t ≤ C1nmin
(

EP [‖X−EP [X]‖q ]
Tr(Σ)q/2

, 1
)
,
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Step 1. β =
(

2EP [‖X−EP [X]‖q ]
8εn+C3t/n

)1/q
verifies the conditions of Proposition 1.

Proof. We will check the stronger assumption that β2 ≥ Tr(Σ)max(8,
C1/n).

Having εn ≥ 0, we can bound the chosen β by βq ≥ nE[‖X−E[X]‖q ]
C3t

,
then there exists C > 0 such that the hypothesis on β is verified if

t ≤ C
nE[‖X − E[X]‖q]

Tr(Σ)q/2
.

This is condition on t is verified in Hypothesis (ii).

Step 2. For any t ≤ C2n, we have

‖TH(Xn
1 )− EP [X]‖ ≤6

√
VψH

n
+ 8

√
tvψH

n

+ 4

(
C3t

n
+ 8εn

)1−1/q

E[‖X − EP [X]‖q]1/q.

Proof. From the previous step, we can apply Proposition 1, and by
Lemma 4 and Hypothesis (i), if β2 ≥ VψH

max(8, C1/n) then with
probability larger than 1− 4e−t − e−n/32,

‖TH(Xn
1 )− EP [X]‖

≤ 6

√
2
VψH

n
+ 8

√
2
tvψH

n
+

C3tβ

n
+ 8βεn + ‖EP [X]− TH(P )‖

≤ 6

√
2
VψH

n
+ 8

√
2
tvψH

n
+

C3tβ

n
+ 8βεn +

2E[‖X − E[X]‖q]
(q − 1)βq−1

. (38)

To simplify, we don’t take into account the effect of β on VψH
and vψH

when choosing β then, we choose β such that

βq =
2EP [‖X − EP [X]‖q]

8εn + C3t/n

inject this in Equation (38) to get

‖TH(Xn
1 )− EP [X]‖ ≤ 6

√
VψH

n
+ 8

√
tvψH

n

+ 21/q
(
1 +

1

q − 1

)(
C3t

n
+ 8εn

)1−1/q

EP [‖X − EP [X]‖q]1/q.

The result follow because 21/q(1 + 1
q−1 ) ≤ 4.

Step 3. For any t ≤ C2n,
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‖TH(Xn
1 )− EP [X]‖ ≤ 6

√
2
Tr(Σ)

n

+ 8

√
2
t‖Σ‖op

n
+ C4

(
C3t

n
+ 8εn

)1−1/q

E[‖X − E[X]‖q]1/q.

Proof. From Lemma 6, VψH
≤ Tr(Σ) and

vψH
≤‖Σ‖op + ‖E[X]− TH(P )‖2

≤‖Σ‖op +
4E[‖X − E[X]‖2q]
(q − 1)2β2q−2

≤ ‖Σ‖op

+
22/qE[‖X − E[X]‖q]2/q

(q − 1)2

(
8εn + C3

t

n

)2−2/q

by sub-linearity of the square root we obtain

√
vψH

≤
√

‖Σ‖op +
21/qE[‖X − E[X]‖q]1/q

(q − 1)

(
4εn + C3

t

n

)1−1/q

inject this in Step 2, to get

‖TH(Xn
1 )− EP [X]‖

≤6

√
2
Tr(Σ)

n
+ 8

√
2
t‖Σ‖op

n

+
(
4 + 2

√
t/n

)(C3t

n
+ 8εn

)1−1/q

E[‖X − E[X]‖q]1/q

≤6

√
2
Tr(Σ)

n
+ 8

√
2
t‖Σ‖op

n
+C4

(
C3t

n
+8εn

)1−1/q

E[‖X−E[X]‖q]1/q.

B.3. Proof of Proposition 3

From Proposition 1, if β2 ≥ VψH
max(8, C1/n) and having EP [X] = TH(P ), we

get with probability larger than 1− 4e−t− e−n/32,

‖TH(Xn
1 )− EP [X]‖ ≤ 6

√
2
VψH

n
+ 8

√
2
tvψH

n
+

C3tβ

n
+ 8βεn (39)

Take β = C2E[‖X − E[X]‖] with C2
2 ≥ max(8, C1), this value of β verifies that

β2 ≥ VψH
max(8, C1/n) hence it verifies the condition of Proposition 1. Inject

the value of β in Equation (39) to get,

‖TH(Xn
1 )− EP [X]‖ ≤ 6

√
VψH

n
+ 8

√
tvψH

n
+ C2E[‖X − T (P )‖]

(
C3t

n
+ 8εn

)
.

(40)
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B.4. Proof of Proposition 4

Hypotheses in this proof. (i) With probability larger than 1−δO, we have
1

|O|
∑

i∈O ψC(‖Xi − TC(P )‖) + ψC(‖X ′
i − TC(P )‖) ≤ βCO.

(ii) β3 = 5E[‖X−E[X]‖3]
120COεn+24Ct log(n)/n ,

(iii) |O| ≤ n/(20CO)

Step 1. β verify that β2 ≥ 10Tr(Σ).

Proof. Having εn ≥ 0 and s ≥ 1, we can bound the chosen β by

β3 ≥ 5E[‖X−E[X]‖3]
48Ct log(n)/n . Then, because there exists C3 > 0 such that t ≤

C3n/ log(n), we have β2 ≥ 10E[‖X −E[X]‖3]2/3 (if needed, C3 can be
decreased to obtain the right constant), hence β2 ≥ 10Tr(Σ).

Step 2.

tIF(λ;TC(P ), Xn
1 )

≤P

(∥∥∥∥∥ 1n
n∑

i=1

X ′
i−TC(P )

‖X ′
i−TC(P )‖ψC (‖X ′

i−TC(P )‖)
∥∥∥∥∥ ≥ λ/5−εnCOβ

)
+δO

Proof. From Theorem 1 with γ = 4/5, we have that if VψC
= EP [ψC(

‖X − TC(P )‖)2] ≤ ψC(β/2)
2/2 = β2 log(13/8)2/2, then for all λ ∈

(0, β/2),

tT (λ;TC(P ), Xn
1 ) ≤ tIF (λ/5;TC(P ), Xn

1 ) + e−n/50. (41)

The condition VψC
≤ β2 log(13/8)2/2 is verified because β2 ≥ 10Tr(Σ)

and VψC
≤ Tr(Σ) by Lemma 6.

Now, we take care of the outliers in the right-hand side of Equa-
tion (41),

tIF (λ/5;TC(P ))

≤P

(∥∥∥∥∥ 1n
n∑

i=1

X ′
i − TC(P )

‖X ′
i − TC(P )‖ψC (‖X ′

i − TC(P )‖)
∥∥∥∥∥ ≥ λ/5

− 1

n

∑
i∈O

ψC(‖Xi − TC(P )‖) + ψC(‖X ′
i − TC(P )‖)

)

≤P

(∥∥∥∥∥ 1n
n∑

i=1

X ′
i−TC(P )

‖X ′
i−TC(P )‖ψC (‖X ′

i−TC(P )‖)
∥∥∥∥∥ ≥ λ/5−εnCOβ

)
+δO

(42)

Step 3. E[‖X − TC(P )‖2] ≤ 2Tr(Σ).
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Proof. We apply Lemma 5 with γ = 4/5, ‖ψ′‖∞ ≤ 1 and two fi-

nite moments to get, ‖TC(P ) − EP [X]‖ ≤ 5Tr(Σ)
4β . We get ‖TC(P ) −

EP [X]‖ ≤ 5Tr(Σ)/(4
√
10) ≤ Tr(Σ). Hence, by bias-variance decom-

position, E[‖X − TC(P )‖2] = E[‖X − E[X]‖2] + ‖TC(P )− EP [X]‖2 ≤
2Tr(Σ).

Step 4. We have
tIF (λt/5;TC(P )) ≤ 4e−t + δ0

where

λt = 5

(
3

2

√
VψC

n
+ 2

√
tvψC

n
+

Ctβ

n
log(n)

)
+ 5εnCOβ.

Proof. In order to use Lemma 8, we use the following Lemma.

Lemma 14. If X satisfies EP [‖X‖2] < ∞, then, for all q ∈ N
∗,

EP [ψC(‖X − TC(P )‖)q] ≤ q!(sβ)q,

where

s = max

(
e, log

(
1 +

EP [‖X − TC(P )‖])
β

+
E[‖X − TC(P )‖2]

2β2

))
.

The proof of Lemma 14 is postponed to Section C.14. By Step 3 and
the fact that β2 ≥ Tr(Σ), we have s ≤ max(e, log(1 + 1 + 1/2)) ≤ e.
Then, by Lemma 14, for any q ∈ N

∗,

EP [ψC(‖X − TC(P )‖)q] ≤ q!(eβ)q,

Then, using the power series expansion of the exponential function, we
get that, for all t > βe,

E

[
exp

(
ψC(‖X − TC(P )‖)

t

)]
=

∞∑
q=0

E[ψC(‖X − T (P )‖q]
tqq!

≤
∞∑
q=0

βqeq

tq
=

1

1− βe/t
.

Choosing t = 2βe shows that ‖ψC(‖X − TC(P )‖)‖ψ1 ≤ 2eβ. Then,
using Lemma 8, we get for all t > 0, with probability larger than
1− 4e−t, ∥∥∥∥∥ 1n

n∑
i=1

X ′
i − TC(P )

‖X ′
i − TC(P )‖ψH (‖X ′

i − TC(P )‖)
∥∥∥∥∥

≤ 3

2

√
VψC

n
+ 2

√
tvψC

n
+

Ctβ

n
log(n),
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Hence, from Step 2, we have

tIF (λt/5;TC(P )) ≤ 4e−t + δ0

where

λt = 5

(
3

2

√
VψC

n
+ 2

√
tvψC

n
+

Ctβ

n
log(n)

)
+ 5εnCOβ.

Step 5. The condition λt ≤ β/2 is implied by t ≤ C3n/ log(n) for some absolute
constant C3.

Proof. We use that εnCO ≤ 1/20 to get that λt ≤ β/2 is implied by

β

4
≥ 15

2

√
VψC

n
+ 10

√
tvψC

n
+ 5

Ctsβ

n
log(n).

Then, this is implied by the following system of equation with C1, C2,
C3 > 0 three numerical constants,⎧⎪⎪⎨⎪⎪⎩

β ≥ C1

√
VψC

n

β ≥
√

C2
tvψC

n

β ≥ tβ
C3n

log(n)

⇐

⎧⎪⎪⎨⎪⎪⎩
β ≥ C1

√
VψC

n

t ≤ C2nβ
2/vψC

t ≤ C3
n

s log(n)

⇐

⎧⎪⎪⎨⎪⎪⎩
β ≥ C1

√
VψC

n

t ≤ C2n

t ≤ C3
n

log(n)

The last implication is because β2 ≥ 8VψC
≥ 8vψC

. The first inequality
is necessarily verified because β2 ≥ 10Tr(Σ), hence the only remaining
condition is t ≤ C3n/ log(n) for some absolute constant C3.

Step 6. There exists a numerical constant C2 > 0 such that with probability
larger than 1− 4e−t − δ0,

‖TC(X
n
1 )− EP [X]‖ ≤ 15

2

√
Tr(Σ)

n
+ 10

√
t‖Σ‖op

n

+ C2E[‖X − E[X]‖3]1/3
(
COεn + Ct

log(n)

n

)2/3

. (43)

Proof. From Lemma 5, with 3 finite moments, we have

‖TC(P )− EP [X]‖ ≤ 5E[‖X − E[X]‖3]
24β2

. (44)

Then, from Step 4 with probability larger than 1− 4e−t − e−n/50,

‖TC(X
n
1 )− EP [X]‖ ≤ 15

2

√
VψC

n
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+ 10

√
tvψC

n
+

Ctβ

n
log(n) + 5βCOεn +

5E[‖X − E[X]‖3]
24β2

.

Then, there exists a constant C4 > 0 such that

‖TC(X
n
1 )− EP [X]‖ ≤ 15

2

√
VψC

n
+ 10

√
tvψC

n

+ C4E[‖X − E[X]‖3]1/3
(
COεn + t

log(n)

n

)2/3

, (45)

To simplify, we also use the bounds on the variance from 6, VψC
≤

Tr(Σ) and also

vψC
≤ ‖Σ‖op + ‖E[X]− TC(P )‖2

≤ ‖Σ‖op +
25E[‖X − E[X]‖3]2

576β2
.

By sub-linearity of the square root we obtain

√
vψC

≤
√
‖Σ‖op +

5E[‖X − E[X]‖3]
24β2

=
√
‖Σ‖op + C4E[‖X − E[X]‖3]1/3

(
COεn + ts

log(n)

n

)2/3

,

inject this in Equation (45), to get

‖TC(X
n
1 )− EP [X]‖ ≤ 15

2

√
Tr(Σ)

n
+ 10

√
t|Σ‖op

n

+ C4

(
1 +

√
2t

n

)
E[‖X − E[X]‖3]1/3

(
COεn + Ct

log(n)

n

)2/3

.

Having t � n, we get that there exists a numerical constant C2 > 0
such that

‖TC(X
n
1 )− EP [X]‖ ≤ 15

2

√
Tr(Σ)

n
+ 10

√
t‖Σ‖op

n

+ C2E[‖X − E[X]‖3]1/3
(
COεn + Ct

log(n)

n

)2/3

. (46)

Step 7. Using the sub-linearity of x 
→ x2/3 and using that

t ≤ C2
n

log(n)4

√
‖Σ‖op

E[‖X − E[X]‖3]1/3
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for C2 small enough in equation (46), we have

C2E[‖X − E[X]‖3]1/3
(
COεn + Ct

log(n)

n

)2/3

≤ C3E[‖X − E[X]‖3]1/3ε2/3n +

√
t‖Σ‖op

n

which finishes the proof.

B.5. Proof of Proposition 5

Hypotheses in this proof. (i) With probability larger than 1−δO, we have
1

|O|
∑

i∈O ψP (‖Xi − TP (P )‖) + ψP (‖X ′
i − TP (P )‖) ≤ βCO.

(ii) β2 = Tr(Σ)

Step 1. For t ≤ C1n, with probability larger than 1− e−C1t − e−n/512 − δO,

‖TP (X
n
1 )− TP (P )‖ ≤ 16

√
EP [‖X − TP (P )‖2]t

n
+ 16εnCOβ.

Proof. From Theorem 1 with γ = 1/4, we have that if VψP
= EP [ψP (

‖X − TP (P )‖)2] ≤ ψP (β/2)
2/2 = β2/8, then for all λ ∈ (0, β/2),

tT (λ;TP (P ), Xn
1 ) ≤ tIF (λ/16;TP (P ), Xn

1 ) + e−n/512. (47)

The following lemma applies.

Lemma 15. Let n ∈ N
∗, suppose X1, . . . , Xn are i.i.d. Let q ∈ N

∗ and
suppose EP [‖X‖q] < ∞. There exists an absolute constant K > 0 such
that

tIF(λ) ≤
EP [‖X − TP (P )‖q]

βq

(
Kpqβ√

nλ

)qp

.

The proof is postponed to Section C.15.
Take q = 2 and λ =

√
EP [‖X − TP (P )‖2]t/n, we get for all t > 0,

P

(∥∥∥∥∥ 1n
n∑

i=1

X ′
i−TP (P )

‖X ′
i−TP (P )‖ψP (‖X ′

i−TP (P )‖)
∥∥∥∥∥≥

√
EP [‖X−TP (P )‖2]t

n

)

≤
(

β2

EP [‖X − TP (P )‖2]

)p−1(
4K2p

t

)2p

.

Take having Tr(Σ) ≤ EP [‖X − T (P )‖2], we have β2 ≤ EP [‖X −
T (P )‖2] hence

P

(∥∥∥∥∥ 1n
n∑

i=1

X ′
i−TP (P )

‖X ′
i−TP (P )‖ψP (‖X ′

i−TP (P )‖)
∥∥∥∥∥≥

√
EP [‖X − TP (P )‖2]t

n

)
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≤
(
4K2p

t

)2p

.

Take p = t
4K2 e

−1, and there is a constant C1 > 0 such that with
probability larger than 1− e−C1t, we have∥∥∥∥∥ 1n

n∑
i=1

X ′
i−TP (P )

‖X ′
i−TP (P )‖ψP (‖X ′

i−TP (P )‖)
∥∥∥∥∥≤

√
EP [‖X − TP (P )‖2]t

n
.

(48)
Now, we take care of the outliers in a similar way as in Proposition 1
and Proposition 4. We have from Hypothesis (i),

tIF (λ/16;TP (P ), Xn
1 ) ≤ tIF

(
λ

16
− εnCOβ;TP (P ), (X ′)n1

)
+ δO (49)

Hence, from Equation (48) and Equation (49) with

λ = λt = 16

√
EP [‖X − TP (P )‖2]t

n
+ 16εnCOβ,

we have with probability larger than 1− e−C1t − e−n/512 − δO,

‖TP (X
n
1 )− TP (P )‖ ≤ 16

√
EP [‖X − TP (P )‖2]t

n
+ 16εnCOβ

≤ 16

√
EP [‖X − TP (P )‖2]t

n
+ 16εnCOβ.

Step 2. There exist a constant C ′
1 > 0 such that for any t ≤ C ′

1n, we have
λt ≤ β/2.

Proof. The condition λt ≤ β/2 is implied by

16

√
EP [‖X − TP (P )‖2]t

n
≤ β/4

using the fact that εn ≤ 1/(64CO). This simplifies with t � nβ2/EP [
‖X − TP (P )‖2] and then, by Hypothesis (ii) t � n.

Step 3. With probability larger than 1− e−C2t − e−n/512 − δO, we have

‖TP (X
n
1 )− E[X]‖ ≤ 16

√
65

Tr(Σ)t

n
+ 16εnCO

√
Tr(Σ).

Proof. For any t ≤ C1nβ
2/E[‖X − TP (P )‖2], with probability larger

than 1− e−C2t − e−n/512 − δO,

‖TP (X
n
1 )− TP (P )‖ ≤ 16

√
E[‖X − TP (P )‖2]t

n
+ 16εnCOβ. (50)
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From Lemma 5, we also have that ‖TP (P )−E[X]‖ ≤ 8Tr(Σ)/β. Hence,

E[‖X − TP (P )‖2] ≤ E[‖X − E[X]‖2] + ‖E[X]− TP (P )‖2

≤ Tr(Σ)

(
1 +

64Tr(Σ)

β2

)
from Hypothesis (ii) we have β2 = Tr(Σ), hence

E[‖X − TP (P )‖2] ≤ Tr(Σ)(1 + 64) = 65Tr(Σ),

and ‖TP (P )− E[X]‖ ≤ 8
√
Tr(Σ). Then, inject this in Equation (50),

‖TP (X
n
1 )− E[X]‖ ≤ 16

√
65

Tr(Σ)t

n
+ 16εnCO

√
Tr(Σ).

Appendix C: Proof of lemmas

C.1. Proof of Lemma 1

By direct differentiation of ZP,ψ,

Jac(ZP,ψ)(θ) =E

[
(X − θ)⊗ (X − θ)

‖X − θ‖3 ψ (‖X − θ‖)
]
− E

[
IH

‖X − θ‖ψ (‖X − θ‖)
]

− E

[
(X − θ)⊗ (X − θ)

‖X − θ‖2 ψ′ (‖X − θ‖)
]

Hence, for any u ∈ S,

uTJac(ZP,ψ)(θ)u = −E

[
1

‖X − θ‖ψ (‖X − θ‖)
]
+E

[
〈X − θ, u〉2
‖X − θ‖3 ψ (‖X − θ‖)

]
− E

[
〈X − θ, u〉2
‖X − θ‖2 ψ′ (‖X − θ‖)

]
(51)

Then, remark that because ψ is concave, by Taylor’s theorem we have ∀y ≥ 0,
ψ(y) ≥ ψ(0) + yψ′(y). And then, because and ψ(0) = 0 we have for any y ≥ 0,
ψ(y) ≥ yψ′(y).

Moreover, by Cauchy-Schwarz inequality we also have 1−
〈

X−θ
‖X−θ‖ , u

〉2

≥ 0.

Hence, with these two inequalities, we get

E

[
1− 〈 X−θ

‖X−θ‖ , u〉2

‖X − θ‖ ψ (‖X − θ‖)
]
≥ E

[(
1− 〈 X − θ

‖X − θ‖ , u〉
2

)
ψ′ (‖X − θ‖)

]
.

Inject this in (51) to get the result: for any u ∈ S,

uTJac(ZP,ψ)(θ)u ≤ −E [ψ′ (‖X − θ‖)] .
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C.2. Proof of Lemma 2

Hypotheses in this proof. (i) E[ρ(‖X − E[X]‖)] < ρ(β)

Step 1. T (P ) is a critical point of J(θ) = E[ρ(‖X − θ‖)].
Proof. First, notice that from Assumptions 2-(i) and 2-(iv) ρ is two
times derivable and increasing on R+. Hence, J is differentiable and
its gradient is

∇J(θ) = −E

[
X − θ

‖X − θ‖ψ(‖X − θ‖)
]
.

Then, by definition of T (P ) (Equation (7)), T (P ) verifies ∇J(T (P )) =
0, i.e. T (P ) critical point of J .

Step 2. J is convex

Proof. Let Hess(J) denote the Hessian of J . From Lemma 1, for any
θ ∈ H and u ∈ S,

uTHess(J)(θ)u = −uTJac(Zψ)(θ)u ≥ E [ψ′(‖X − θ‖)] ≥ 0

Hence, J is convex because its Hessian is positive.

Step 3. T (P ) exists

Proof. Because ρ is increasing, we have ρ(x) −−−−→
x→∞

∞ and hence

J(θ) −−−−−→
‖θ‖→∞

∞. Hence, J is coercive and as J is also convex (Step 2),

its minimum T (P ) exists.

Step 4. J is strictly convex at T (P ).

Proof. From Assumption 2-(iv), and because ρ is increasing,

E[ψ′(‖X−T (P )‖)]≥γP(‖X−T (P )‖≤β)=γP(ρ(‖X−T (P )‖)≤ρ(β)).

Hence, by Markov’s inequality,

E[ψ′(‖X − T (P )‖)] ≥ γ

(
1− E[ρ(‖X − T (P )‖)]

ρ(β)

)
. (52)

By Step 3, we have that T (P ) minimizer of J , hence

E[ρ(‖X − T (P )‖)]
ρ(β)

=
J(T (P ))

ρ(β)
≤ J(E[X])

ρ(β)
.

Inject this in Equation (52) to get

E[ψ′(‖X − T (P )‖)] ≥ γ

(
1− E[ρ(‖X − E[X])‖)]

ρ(β)

)
.

Then, using Hypothesis (i), we get E[ψ′(‖X − T (P )‖)] > 0, which
implies from Lemma 1 that for all u ∈ H, u �= 0, uTHess(J)(T (P ))u >
0. Hence J is strictly convex at T (P ), the minimizer of J .
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Step 5. T (P ) as defined by Equation (7) exists and is unique.

Proof. As T (P ) is minimizer of J , it is also root of Equation (7) and
the existence and unicity we proven in Step 2 and Step 4.

C.3. Proof of Lemma 3

Huber’s score function: The equality for the Huber’s score function is im-
mediate by derivation of ψH .
Catoni’s score function: ψC is differentiable, and we have for all x ≥ 0,

ψ′
C(x) =

1 + x
β

1 + x
β + x2

2β2

.

This function is decreasing on R+, positive and even, hence

ψ′
C(x) ≥ ψ′

C(β)1{x ≤ β} =
4

5
1{x ≤ β}.

Polynomial score function: ψP is differentiable, and we have for all x ≥ 0

ψP (x)
′ =

1 + 1
p

(
x
β

)1−1/p

(
1 +

(
x
β

)1−1/p
)2 .

As in the case of Catoni’s score function, this function is decreasing over R+,
positive and even. Then, we get

ψ′
P (x) ≥ ψ′

P (β)1{x ≤ β} =
1

4

(
1 +

1

p

)
1{x ≤ β} ≥ 1

4
1{x ≤ β}.

C.4. Proof of Lemma 4

From Theorem 2 we only need to control Zβ(E[X]). We have,

Zβ(E[X])

= E

[
β
(X − E[X])

‖X − E[X]‖ψ1

(∥∥∥∥X − E[X]

β

∥∥∥∥)]
= E

[
β
(X − E[X])

‖X − E[X]‖ψ1

(∥∥∥∥X − E[X]

β

∥∥∥∥)]− E

[
β
(X − E[X])

‖X − E[X]‖

∥∥∥∥X − E[X]

β

∥∥∥∥]
Hence, by triangular inequality,

‖Zβ(E[X])‖ ≤ βE

[∣∣∣∣ψ1

(∥∥∥∥X − E[X]

β

∥∥∥∥)−
∥∥∥∥X − E[X]

β

∥∥∥∥∣∣∣∣]
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We denote Y = ‖X − E[X]‖/β, we have

‖Zβ(E[X])‖ ≤ βE [|ψ1 (Y )− Y |] = β

∫
|ψ1(y)− y|dFY (y)

= β

∫ ∞

0

(y − ψ1(y))dFY (y)

because ψ1 is 1-Lipshitz and ψ1(0) = 0. Then, by integration by part,

‖Zβ(E[X])‖ ≤ β

∫ ∞

0

(1− ψ′
1(y))(1− FY (y))dy

Until now, the proof was valid for any ψ1, for the specific case of Huber score
function and using Theorem 2, we get that

‖E[X]− TH(P )‖ ≤ 2β

∫ ∞

1

P (‖X − E[X]‖ ≥ βy) dy

Then, use Markov’s inequality,

‖E[X]− TH(P )‖ ≤ 2β

∫ ∞

1

‖X − E[X]‖q
βqyq

dy =
2‖X − E[X]‖q
(q − 1)βq−1

.

C.5. Proof of Lemma 5

We have,

Zβ(E[X]) = E

[
X − E[X]

‖X − E[X]‖βψ1

(∥∥∥∥X − E[X]

β

∥∥∥∥)]
Then, by Taylor expansion

‖Zβ(E[X])‖ ≤
∥∥∥∥E [ X − E[X]

‖X − E[X]‖β
∥∥∥∥X − E[X]

β

∥∥∥∥]∥∥∥∥+βE

[
‖ψ(k)

1 ‖∞
k!

∥∥∥∥X − E[X]

β

∥∥∥∥k
]

=E

[
‖ψ(k)

1 ‖∞E[‖X − E[X]‖k]
k!βk−1

]
which proves the first part of the lemma using Theorem 2. In the case of Bernoulli
distribution, the result follows from a Taylor expansion:

Zβ(E[X]) =E

[
sign(X − E[X])βψ1

(∣∣∣∣X − E[X]

β

∣∣∣∣)]
=p

(
βψ1

(
1− p

β

))
+ (1− p)

(
βψ1

(
−p

β

))
=pβ

(
1− p

β
+

1

k!
ψ
(k)
1 (0)

(1− p)k

βk
+ o

(
1

βk

))
− (1− p)β

(
p

β
+

1

k!
ψ
(k)
1 (0)

pk

βk
+ o

(
1

βk

))
.
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C.6. Proof of Lemma 6

Step 1. For any ψ that satisfies Assumptions 2, Vψ ≤ Tr(Σ).

Proof. First, remark that we have for all x ∈ R+, ψ
2
1(x) ≤ 2ρ1(x).

Indeed, let h(x) = ψ2
1(x) − 2ρ1(x), its derivative is h′(x) = 2ψ1(x)

(ψ′
1(x)− 1) and because ψ′

1 ≤ 1 and ψ1(0) = 0, we get that h is
decreasing, the fact that h(0) = 0 implies that for all x ∈ R+, ψ

2
1(x) ≤

2ρ1(x). Then,

Vψ ≤ 2β2
E

[
ρ1

(
‖X − T (P )‖

β

)]
. (53)

Define J(θ) = E

[
ρ1

(
‖X−θ‖

β

)]
by definition 1, T (P ) is the minimum

of J and by equation (53),

Vψ ≤ 2β2
E

[
ρ1

(
‖X − E[X]‖

β

)]
Then finally, using that by integration of ψ′

1 ≤ 1 we have ρ1(x) ≤ x2/2,
hence the result.

Step 2. For any ψ that satisfies Assumptions 2, xψ ≤ ‖Σ‖op+‖E[X]−T (P )‖2.
Proof. Note that because ψ1(x) ≤ 2ρ1(x) ≤ x2,

vψ = β2 sup
u∈S

E

[
〈u,X − T (P )〉2
‖X − T (P )‖2 ψ1

(
‖X − T (P )‖

β

)2
]

≤ β2 sup
u∈S

E

[
〈u,X − T (P )〉2
‖X − T (P )‖2

(
‖X − T (P )‖

β

)2
]

= sup
u∈S

E
[
〈u,X − T (P )〉2

]
= sup

u∈S
E

[
(〈u,X − E[X]〉+ 〈u,E[X]− T (P )〉)2

]
= sup

u∈S
E
[
〈u,X − E[X]〉2 + 〈u,E[X]− T (P )〉2

]
= ‖Σ‖op + ‖E[X]− T (P )‖2

C.7. Proof of Lemma 7

Step 1. if X has q > 2 finite moments, then

VψH
≥ E[‖X − TH(P )‖2]

− E

[(
‖X − TH(P )‖2 + β2

)q]1/q
P (‖X − TH(P )‖ > β)

1−1/q
. (54)
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Proof. We have

VψH
= E

[
ψH (‖X − TH(P )‖)2

]
= E[β2 ∧ (‖X − TH(P )‖)2]
= E[‖X − TH(P )‖2]− E[

(
‖X − TH(P )‖2 + β2

)
× 1{‖X − TH(P )‖ > β}]

Then, by Hölder inequality, we get the result announced.

Step 2. We have VψH
≥ E[‖X − E[X]‖2]− 4q

E[‖X−TH(P )‖2q]
1−1/q

(E[‖X−TH(P )‖2q ]+β2q)1−2/q .

Proof. We use the following lemma

Lemma 16. Let Y be a positive real random variable, E[Y q] < ∞.
We have for all λ > 0,

P (Y ≥ λ) ≤ 2q−1 E [Y q]

λq + E[Y q]

See Section C.16 for the proof. Then, for Y = ‖X − TH(P )‖ and
from Step 1, we get,

VψH
≥ E[‖X − TH(P )‖2]

−E

[(
‖X−TH(P )‖2+β2

)q]1/q(
22q−1 E

[
‖X−TH(P )‖2q

]
E [‖X−TH(P )‖2q]+β2q

)1−1/q

.

Use the fact that (a+ b)q ≤ 2q−1(aq + bq),

VψH
≥E[‖X − TH(P )‖2]

− 2(q−1)/q+(2q−1)(1−1/q) E
[
‖X − TH(P )‖2q

]1−1/q

(E [‖X − TH(P )‖2q] + β2q)
1−2/q

≥E[‖X − TH(P )‖2]− 22q
E
[
‖X − TH(P )‖2q

]1−1/q

(E [‖X − TH(P )‖2q] + β2q)
1−2/q

And finally, because E[X] is the minimizer of the quadratic loss,

VψH
≥ E[‖X − E[X]‖2]− 4q

E
[
‖X − TH(P )‖2q

]1−1/q

(E [‖X − TH(P )‖2q] + β2q)
1−2/q

.

Step 3. Similarly, if X has q > 2 finite moments, we havevψH
≥ ‖Σ‖op −

4q
E[‖X−TH(P )‖2q]

1−1/q

(E[‖X−TH(P )‖2q]+β2q)1−2/q .
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Proof. Then, we operate the same manner for the bound on vψH
. We

have,

vψH
= sup

u∈S
E

[
〈u,X − TH(P )〉2
‖X − TH(P )‖2

(
β2 ∧ (‖X − TH(P )‖)2

)]
= sup

u∈S

(
E
[
〈u,X − TH(P )〉2

]
− E

[
〈u,X − TH(P )〉2
‖X − TH(P )‖2

(
β2 − (‖X − TH(P )‖)2

)
× 1{‖X − TH(P )‖ ≥ β}

])
Then, use Cauchy-Schwarz inequality,

vψH
≥ sup

u∈S
E
[
〈u,X − TH(P )〉2

]
− E

[(
β2 − (‖X − TH(P )‖)2

)
1{‖X − TH(P )‖ ≥ β}

]
≥ sup

u∈S

(
E
[
〈u,X − E[X]〉2

]
+ 〈u,E[X]− TH(P )〉2

− −E
[(
β2 − (‖X − TH(P )‖)2

)
1{‖X − TH(P )‖ ≥ β}

])
≥ sup

u∈S
E
[
〈u,X − E[X]〉2

]
− E

[(
β2 − (‖X − TH(P )‖)2

)
1{‖X − TH(P )‖ ≥ β}

]
Then, use the same reasoning as for the bound on VψH

to conclude
that

vψH
≥ ‖Σ‖op − 4q

E
[
‖X − TH(P )‖2q

]1−1/q

(E [‖X − TH(P )‖2q] + β2q)
1−2/q

C.8. Proof of Lemma 8

From [1, Theorem 4] and because ‖Y ‖ = sup‖u‖=1〈Y, u〉, there exists an absolute
constant C1 such that, for all t ≥ 0,

P

(∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥ ≥ 3

2
E

[∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
]
+ t

)

≤ exp

(
− t2

4nσ2

)
+ 3 exp

(
− t

C1‖max1≤i≤n ‖Yi‖‖ψ1

)
.

where σ2 = n supu∈S E[〈X,u〉2]. Remark that σ2 can be rewritten

σ2 = n sup
u∈S

〈uE[X ⊗X], u〉 = n‖Σ‖op.
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Then, by Cauchy-Schwarz inequality,

E

[∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
]
≤ E

⎡⎣∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
2
⎤⎦1/2

=
√
nE

[
‖Y ‖2

]1/2
.

C.9. Proof of Lemma 9

ρ is convex because ρ′′ = ψ′ ≥ 0 and it is increasing because ψ = ρ′ ≥ 0
(ψ(0) = 0 and ψ increasing). Then, from triangular inequality and Jensen’s
inequality, we have

ρ

(
‖E[X]− T (P )‖

β

)
≤ ρ

(
E[‖X − T (P )‖]

β

)
≤ E

[
ρ

(
‖X − T (P )‖

β

)]
.

By definition of T (P ), it is a minimizer of θ 
→ E

[
ρ
(

‖X−θ‖
β

)]
, hence,

ρ

(
‖E[X]− T (P )‖

β

)
≤ E

[
ρ

(
‖X − E[X]‖

β

)]
then, use the hypothesis to upper bound the right-hand side by ρ(1/3), we get

ρ

(
‖E[X]− T (P )‖

β

)
≤ ρ(1/3).

Finally, because ρ is non-decreasing on R+ (its derivative is non-negative), we
get the result.

C.10. Proof of Lemma 10

First, let us begin with d = 1. We have that for all t > 0,

P (Med(Xn
1 )− EP [X] > t) ≤ P

(
n∑

i=1

1{Xi − EP [X] > t} ≥ n

2

)

≤ P

(
n∑

i=1

1{X ′
i − EP [X] > t} ≥ n

2
− |O|

)
(55)

By Hoeffding’s inequality, we have

P

(
n∑

i=1

1{Xi − EP [X] > t} ≥ n

2
− |O|

)

≤ exp

(
−2n

(
1

2
− |O|

n
− P (X − EP [X] > t)

)2
)
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and by Chebychev inequality, for the choice t = 2
√
2σ we have

P (X − EP [X] > t) ≤ 1/8. Then, from Equation (55),

P

(
Med(Xn

1 )− EP [X] > 2
√
2σ
)
≤ exp

(
−2n

(
1

2
− |O|

n
− 1

8

)2
)
.

and then, because |O| ≤ n/8,

P

(
Med(Xn

1 )− EP [X] > 2
√
2σ
)
≤ exp (−n/8) .

Now for dimension d, we use the dimension 1 result on each coordinate, and
by union bound we have that with probability larger than 1 − de−n/8, for all
1 ≤ j ≤ d,

Med(〈Xn
1 , ej〉)− EP [〈X, ej〉] ≤ 2

√
2σj

and then, by taking the sum of the squares, we get ‖θ0−EP [X]‖2 ≤ 8
∑d

j=1 σ
2
j =

8Tr(Σ). We conclude using that ‖T (Xn
1 )−EP [X]‖ ≤ rn with probability larger

than 1− δ.

C.11. Proof of Lemma 11

The proof is derived from the proof of iterative reweighting algorithm for re-
gression found in [27, Section 7.8].

First point.
We have

Uθ(m)(θ)

=
1

n

n∑
i=1

(
wi(θ

(m))

2

(
‖Xi − θ‖

β

)2

+ ρ1(ri(θ
(m)))− 1

2
ri(θ

(m))ψ1(ri(θ
(m)))

)
.

Uθ(m) is a convex function, let us take its gradient to find its minimum,

∇Uθ(m)(θ) =
1

n

n∑
i=1

wi(θ
(m))

θ −Xi

β2

Hence, the minimum is found for θ =
∑n

i=1
wi(θ

(m))∑n
j=1 wj(θ(m))

Xi = θ(m+1).

Second point.
For all i ∈ {1, . . . , n},

gi(x) =
wi(κ)

2
x2 + ρ1(ri(κ))−

1

2
ri(κ)ψ1(κ)− ρ1(x)

We have that gi is differentiable and g′i(x) = wi(κ)x−ψ1(x) =
ψ1(ri(κ))

ri(κ)
x−ψ1(x).

Then, having that x 
→ ψ1(x)/x is non-increasing on R+, we have that for
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x ∈ [0, ri(κ)], g
′
i(x) ≥ 0 and for x ≥ ri(κ), g

′
i(x) ≤ 0. Hence, gi is minimal in

x = ri(κ) and gi(x) ≥ gi(ri(κ)) = 0.
This prove that gi is a majorant of ρ1 and by taking the sum, this implies

that Uκ is a majorant of Jn.
Third point.
Define

hi,κ(θ) =
wi(κ)

2

(
‖Xi − θ‖

β

)2

+ ρ1(ri(κ))−
1

2
ri(κ)ψ1(ri(κ))− ρ1

(
‖Xi − θ‖

β

)
,

we have by definition of wi(κ),

hi,κ(κ) =
wi(κ)

2
ri(κ)

2 + ρ1(ri(κ))−
1

2
ri(κ)ψ1(ri(κ))− ρ1(ri(κ)) = 0 (56)

and moreover, hi is a differentiable function whose gradient is

∇hi,κ(θ) = wi(κ)
(θ −Xi)

β2
− θ −Xi

β‖θ −Xi‖
ψ1

(
‖Xi − θ‖

β

)
,

and we can verify that

∇hi,κ(κ) = wi(κ)
(κ−Xi)

β2
− κ−Xi

β2ri
ψ (ri) = 0. (57)

Let us show that ∇hκ is Lipshitz. We have

Hess(hi,κ) = wi(κ)
Id
β2

−Hess(θ 
→ ρ1(‖Xi − θ‖))

Then, use that θ 
→ ρ1(‖Xi− θ‖) is convex, hence its Hessian is positive and we
have for all u ∈ S,

uTHess(hi,κ)u ≤ wi

β2

This conclude that ∇hi,κ is wi/β
2-Lipshitz continuous and hence by summing

over i,∇hκ is Lipshitz continuous with Lipshitz constant L = 1
nβ2

∑n
i=1

ψ1(ri)
ri

≤
1/β2.

Fourth point already verified using Equations (56) and (57).

C.12. Proof of Lemma 12

The function Uκ can be rewritten as follows:

Uκ(θ) =
1

n

n∑
i=1

(
wi(κ)

2

(
‖Xi − θ‖

β

)2

+ ρ1(ri(κ))−
1

2
ri(κ)ψ1(ri(κ))

)

=
1

n

n∑
i=1

wi(κ)

2

‖Xi − κ‖2 + ‖κ− θ‖+ 2〈Xi − κ, κ− θ〉
β2
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+
1

n

n∑
i=1

(
ρ1(ri(κ))−

1

2
ri(κ)ψ1(ri(κ))

)

=
1

n

n∑
i=1

ri(κ)ψ1(ri(κ))

2
+

wi(κ)

2

‖κ− θ‖+ 2〈Xi − κ, κ− θ〉
β2

+
1

n

n∑
i=1

(
ρ1(ri(κ))−

1

2
ri(κ)ψ1(ri(κ))

)

=
1

n

n∑
i=1

(
ρ1(ri(κ)) +

〈Xi − κ, κ− θ〉
β‖Xi − κ‖ ψ1(ri(κ)) +

wi(κ)‖κ− θ‖
2β2

)

=J(κ) + 2〈∇J(κ), θ − κ〉+ 1

2nβ2

n∑
i=1

wi(κ)‖θ − κ‖2

Then, let f(θ) =
∑n

i=1
wi(θ)∑n

j=1 wj(θ)
Xi where wi(θ) = ψ1(ri(θ)) and ri(θ) = ‖Xi−

θ‖/β. Inject θ = f(κ) to get,

Uκ(f(κ)) = J(κ) + 2〈∇J(κ), f(κ)− κ〉+ 1

2nβ2

n∑
i=1

wi(κ)‖f(κ)− κ‖2

Then, use that Uκ is a majorant of J (Lemma 11) and apply this to κ = θ(m)

to obtain

J(θ(m+1)) ≤ J(θ(m))

+ 〈∇J(θ(m)), θ(m+1) − θ(m)〉+
∑n

j=1 wj(θ
(m))

2nβ2
‖θ(m+1) − θ(m)‖2

Then, because Jn is convex, we have that for all θ ∈ R
d, J(θ(m) ≤ J(θ) +

〈∇J(θ(m)), θ(m) − θ〉, hence

J(θ(m+1))

≤J(θ) + 〈∇J(θ(m)), θ(m+1) − θ〉+
∑n

j=1 wj(θ
(m))

2nβ2
‖θ(m+1) − θ(m)‖2

=J(θ) + 〈∇Uθ(m)(θ(m)), θ(m+1) − θ〉+
∑n

j=1 wj(θ
(m))

2nβ2
‖θ(m+1) − θ(m)‖2

=J(θ) +

〈
1

n

n∑
i=1

wi(θ
(m))(Xi − θ(m)), θ(m+1) − θ

〉

+

∑n
j=1 wj(θ

(m))

2nβ2
‖θ(m+1) − θ(m)‖2

=J(θ) +

n∑
j=1

wj(θ
(m))

〈
θ(m+1) − θ(m), θ(m+1) − θ

〉
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+

∑n
j=1 wj(θ

(m))

2nβ2
‖θ(m+1) − θ(m)‖2

Then, use the following identity: for all u, v, w ∈ R
d,

2〈w − v, v − u〉 = ‖w − v‖2 − ‖w − u‖2 + ‖u− v‖2

to conclude that

J(θ(m+1)) ≤ J(θ) +
1

2nβ2

n∑
j=1

wj(θ
(m))

(
‖θ(m) − θ‖ − ‖θ(m+1) − θ‖

)

C.13. Proof of Lemma 13

By Assumption 2-(iv), we have

1

n

n∑
i=1

ψ′
1

(
‖Xi − θ‖

β

)
≥ γ

n

n∑
i=1

1{‖Xi − θ‖ ≤ β}

Then, because θ ∈ Θ and β ≥ 2
√
2Tr(Σ) + 2rn + ψ−1

1

(√
2Vψ1

)
,

1

n

n∑
i=1

ψ′
1

(
‖Xi − θ‖

β

)
≥ γ

n

n∑
i=1

1{‖Xi − T (Xn
1 )‖ ≤ β − 2

√
2Tr(Σ)− rn}

≥ γ

n

n∑
i=1

1{‖Xi − T (Xn
1 )‖ ≤ ψ−1

1

(√
2Vψ1

)
+ rn}

Now, having that with probability larger than 1− δ, ‖T (Xn
1 )− T (P )‖ ≤ rn, we

have with probability larger than 1− δ,

1

n

n∑
i=1

ψ′
1

(
‖Xi − θ‖

β

)
≥ γ

n

n∑
i=1

1{‖Xi − T (P )‖ ≤ ψ−1
1

(√
2Vψ1

)
}.

Then, as we don’t have informations on the outliers, we take them out:

1

n

n∑
i=1

ψ′
1

(
‖Xi − θ‖

β

)
≥ γ

n

n∑
i=1

1
{
‖X ′

i − T (P )‖ ≤ ψ−1
1

(√
2Vψ1

)}
− γ

|O|
n

Then, by Hoeffding’s inequality, we have that for t > 0, with probability
larger than 1− δ − exp(−2nt2),

1

n

n∑
i=1

ψ′
1

(
‖Xi − θ‖

β

)
≥ γP

(
‖X − T (P )‖ ≤ ψ−1

1

(√
2Vψ1

))
− γt− γ

|O|
n

≥ γP
(
ψ1(‖X − T (P )‖)2 ≤ 2Vψ1

)
− γt− γ

|O|
n
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By Markov inequality and having |O| ≤ n/8, we have that

1

n

n∑
i=1

ψ′
1

(
‖Xi − θ‖

β

)
≥ γ

(
1

2
− t− 1

8

)
.

Hence, with probability larger than 1− δ − e−n/32, we have

1

n

n∑
i=1

ψ′
1

(
‖Xi − θ‖

β

)
≥ γ

4
.

C.14. Proof of Lemma 14

For q ∈ N
∗, let

gq : x 
→
{
qqx/(eq − 1) if x ∈ [0, eq − 1]

log(1 + x)q if x > eq − 1

Step 1. gq is a concave function over R+.

Proof. gq is continuous at eq − 1, the left and right limits are equal to
qq. gq is derivable on [0, eq −1) and (eq −1,∞). This derivative is non-
increasing on both intervals. At eq−1, the left derivative is qq(eq−1)−1

while the derivative on the right is qqe−q. Thus, the left derivative at
eq − 1 is larger than the right derivative. Hence the derivative is non-
increasing on R+, gq is concave on R+.

Step 2. E[log(1 + Z)q] ≤ E[gq(Z)] ≤ gq(E[Z]).

Proof. By concavity, log(1+x)q is smaller than its tangent in eq−1−1.
This tangent is given by the function

x 
→ (q − 1)q +
qq

eq−1 − 1

(
x− (eq−1 − 1)

)
.

This last function is clearly smaller than the function x 
→ qqx/(eq−1).
Hence, x 
→ log(1 + x)q is smaller than gq, we found a concave upper
bound of x 
→ log(1 + x)q.
Since gq is concave (Step 1), by Jensen’s inequality, for any positive
random variable Z such that E[Z] < ∞, we have E[log(1 + Z)q] ≤
E[gq(Z)] ≤ gq(E[Z]).

Step 3. For any q ∈ N
∗, E[ψC(‖X − TC(P )‖)q] ≤ q!(βs)q.

Proof. Then, for all x, we have gq(x) ≤ max(qq, log(1 + x)q), hence,
by Step 2

E[log(1 + Z)q] ≤ max(qq, log(1 + E[Z])q).

Finally, use that qq ≤ q!eq to get

E[log(1 + Z)q] ≤ q! max(e, log(1 + E[Z]))q. (58)
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Denote s = max
(
e, log

(
1 + E[‖X−TC(P )‖])

β + E[‖X−TC(P )‖2]
2β2

))
, and ap-

ply equation (58) to Z = X/β+X2/(2β2) to get E[ψC(‖X−TC(P )‖)q] ≤
q!(βs)q.

C.15. Proof of Lemma 15

By Markov’s inequality, we have for any λ > 0,

tIF(λ;TP (P ), Xn
1 ) ≤

E

[∥∥∥ 1
n

∑n
i=1

Xi−TP (P )
‖Xi−TP (P )‖ψP (‖Xi − TP (P )‖)

∥∥∥qp]
λqp

. (59)

Let Yi =
1
n

∑n
i=1

Xi−TP (P )
‖Xi−TP (P )‖ψP (‖Xi−TP (P )‖) for 1 ≤ i ≤ d. from [10, Theorem

1.2.5], there exists an absolute constant K > 0 such that

E

[∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
pq]1/(pq)

≤ Kpq

⎛⎜⎝E

⎡⎣∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
2
⎤⎦1/2

+ E

[
max
1≤i≤n

‖Yi‖pq
]1/(pq)⎞⎟⎠ .

(60)

Step 1. We have E

[
‖
∑n

i=1 Yi‖2
]
≤ 4nE[‖Y ‖pq]2/(pq).

Proof. Let ε1, . . . , εn denote i.i.d Rademacher random variable inde-
pendents from Y1, . . . , Yn. By the symmetrization lemma (see [10, Lemma
1.2.6]),

E

⎡⎣∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
2
⎤⎦ ≤ 4E

⎡⎣∥∥∥∥∥
n∑

i=1

εiYi

∥∥∥∥∥
2
⎤⎦ = 4E

[
n∑

i=1

‖Yi‖2
]
= 4nE[‖Y ‖2].

Thus, by Jensen’s inequality, E
[
‖
∑n

i=1 Yi‖2
]
≤ 4nE[‖Y ‖pq]2/(pq).

Step 2. E [max1≤i≤n ‖Yi‖pq] ≤ npq/2
E [‖Y ‖pq].

Proof. As the max of n non-negative real numbers is smaller than their
sum, we have

E

[
max
1≤i≤n

‖Yi‖pq
]
≤ E

⎡⎣ ∑
1≤i≤n

‖Yi‖pq
⎤⎦ ≤ nE [‖Y ‖pq] ≤ npq/2

E [‖Y ‖pq] .

Step 3. For any λ > 0, tIF(λ;TP (P ), Xn
1 ) ≤

E[‖X−TP (P )‖q]
βq

(
Kpqβ√

nλ

)qp
.

Proof. From Step 1 and Step 2 and equation (60), we get

E

[∥∥∥∥∥
n∑

i=1

Yi

∥∥∥∥∥
pq]1/(pq)

≤ 3Kpq
√
nE [‖Y ‖pq]1/(pq) . (61)
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From equations (59) and (61) and if we re-inject the definition of Yi’s,
we get

tIF(λ;TP (P ), Xn
1 ) ≤ E[ψP (‖X − TP (P )‖)pq]

(
Kpq√
nλ

)qp

.

Then, use that ψp(‖x‖) ≤ ‖x‖1/pβ1−1/p to get

tIF(λ;TP (P ), Xn
1 ) ≤

E[‖X − TP (P )‖q]
βq

(
Kpqβ√

nλ

)qp

.

C.16. Proof of Lemma 16

We have for all u, λ > 0,

P (Y ≥ λ) = P ((Y + u)q ≥ (λ+ u)q) ≤ E [(Y + u)q]

(λ+ u)q
≤ E [(Y + u)q]

(λq/2 + uq/2)2
.

Then, use that by convexity of the qth-power function, (a+ b)q ≤ 2q−1(aq + bq)
and also (a+ b)q ≥ aq + bq,

P (Y ≥ λ) ≤ 2q−1 E [Y q + uq]

(λq/2 + uq/2)2
.

Take u = E[Y q]2/q/λ to get,

P (Y ≥ λ) ≤ 2q−1E [Y q] + E[Y q ]2

λq

λq(1 + E[Y q ]
λq )2

= 2q−1 E [Y q]

λq(1 + E[Y q ]
λq )

= 2q−1 E [Y q]

λq + E[Y q]
.

Appendix D: Technical tools

We remind the reader of Bernstein inequality, a classical concentration inequal-
ity, this form of Bernstein inequality is borrowed from [4, Theorem 2.10].

Theorem 5. Let X1, . . . , Xn be independent real-valued random variables. As-
sume that there exist positive numbers v and c such that

∑n
i=1 E[X

2
i ] ≤ v and

n∑
i=1

E[(Xi)
q
+] ≤ vcq−2 for all integers q ≥ 3,

where x+ = max(0, x). Then for all t > 0

P

(
n∑

i=1

(Xi − E[Xi]) ≥
√
2vt+ ct

)
≤ e−t.
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The following theorem is borrowed from [1, Theorem 4], it is a concentration
inequality for suprema of sums of independent random variables.

Theorem 6. Let X1, . . . , Xn be independent random variables with values in a
measurable space (S,B) and let F be a countable class of measurable functions
f : S → R. Assume that for every f ∈ F and every i, E[f(Xi)] = 0 and for any
α ∈ (0, 1] and all i, ‖ supf |f(Xi)|‖ψα < ∞. Let

Z = sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Xi)

∣∣∣∣∣ .
Define moreover

σ2 = sup
f∈F

n∑
i=1

E[f(Xi)
2].

Then, for all 0 < η < 1 and δ > 0, there exists a constant C = C(α, η, δ) > 0
such that for all t ≥ 0,

P(Z ≥ (1 + η)E[Z] + t) ≤

exp

(
− t2

2(1 + δ)σ2

)
+ 3 exp

(
−
(

t

C‖maxi supf∈F |f(Xi)|‖ψα

)α)
, (62)

and

P(Z ≤ (1− η)E[Z]− t) ≤

exp

(
− t2

2(1 + δ)σ2

)
+ 3 exp

(
−
(

t

C‖maxi supf∈F |f(Xi)|‖ψα

)α)
. (63)

Remark that because of the need for a countable set F , this Theorem can
only be applied to separable spaces.
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