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Abstract: NK cells play a major role in the antiviral immune response, including against HIV-1. HIV-1
patients have impaired NK cell activity with a decrease in CD56dim NK cells and an increase in the
CD56−CD16+ subset, and recently it has been proposed that a population of CD56+NKG2C+KIR+CD57+

cells represents antiviral memory NK cells. Antiretroviral therapy (ART) partly restores the functional
activity of this lymphocyte lineage. NK cells when interacting with their targets can gain antigens from
them by the process of trogocytosis. Here we show that NK cells can obtain CCR5 and CXCR4, but
barely CD4, from T cell lines by trogocytosis in vitro. By UMAP (Uniform Manifold Approximation
and Projection), we show that aviremic HIV-1 patients have unique NK cell clusters that include
cells expressing CCR5, NKG2C and KIRs, but lack CD57 expression. Viremic patients have a larger
proportion of CXCR4+ and CCR5+ NK cells than healthy donors (HD) and this is largely increased
in CD107+ cells, suggesting a link between degranulation and trogocytosis. In agreement, UMAP
identified a specific NK cell cluster in viremic HIV-1 patients, which contains most of the CD107a+,
CCR5+ and CXCR4+ cells. However, this cluster lacks NKG2C expression. Therefore, NK cells can
gain CCR5 and CXCR4 by trogocytosis, which depends on degranulation.

Keywords: NK cells; HIV-1; trogocytosis; CCR5; CXCR4

1. Introduction

The primary role of Natural Killer (NK) cells in the host innate immune system
is to provide first line of protection against viral infection and other malignancies via
the mechanism of immune-surveillance [1]. During steady states as well as in acute
viral infections, NK cells are thought to constantly interact with their neighboring cells
within the tissue microenvironment or in circulation via a wide range of receptors and
adhesion molecules expressed on their surface [1–3]. As a consequence, these close-range
contacts between NK cells and their targets often results in passive or active transferring of
membrane patches and other surface molecules from the target cells into the effector (NK)
cells [4], a process called trogocytosis [5,6]. Trogocytosis is a process firstly described and
widely observed in other lymphocytes including B and T cells [5]. The potential trogocytosis
between HIV-1-infected cells and NK cells, as well as its physiological consequence, has
not been described, and very little is known regarding other immune cells [6,7].

We have identified a population of endogenous NK cells that is actively fighting
against tumor cells in cancer patients [4,8–10]. In hematological cancers, i.e., multiple
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myeloma, acute myeloid leukemia, B cell lymphoma and B-chronic lymphocytic leukemia,
this CD56dimCD16+ population is highly activated and has recently degranulated, which
is evidence of killing activity. These NK cells, which have been engaged in tumor cell
killing, can be easily distinguished by their CD45RA+RO+ phenotype (CD45RARO cells), as
opposed to non-activated cells in patients or in healthy donors displaying a CD45RA+RO−

(CD45RA cells) phenotype similar to naïve T cells [4]. A high percentage of CD45RARO
cells expressed NK cell p46-related protein (NKp46), natural-killer group 2, member D
(NKG2D) and killer inhibitory receptors (KIRs) and a low percentage expressed NKG2A
and CD94. They are also characterized by a high metabolic activity and active prolifer-
ation [4]. We observed that some patients’ NK cells have performed an astonishingly
efficient trogocytosis and capture of antigens from target cells, i.e., CD19 from the tumor
B cells of a B-cell lymphoma patient or CD14 from the tumor cells of an AML patient
and so on [4,9,10]. NK cells basically uptake antigens from tumor cells in all studied
hematological malignancies.

Patients with impaired NK cell functions are susceptible to viral infections [11]. Partic-
ularly, NK cells are able to kill HIV-1-infected CD4+ T cells [12,13], and they play a role in
HIV-1 containment [14]. The aim of this work was to test whether, by killing CD4+CCR5+

and/or CXCR4+ infected T cells, NK cells might acquire HIV-1 receptor and/or corecep-
tor(s) via trogocytosis.

2. Materials and Methods
2.1. Patient Samples

People living with HIV-1 and between 55 and 70 years of age were proposed to
participate during a routine visit at the University Hospital of Nîmes, France. Patients were
either nontreated and viremic or under stable antiretroviral therapy with a viral load below
50 copies per mL for at least six months. Their CD4 counts were ≥200 cells/µL. Pregnant
or breastfeeding women, persons presenting a treatment or another disease modifying
their immune system were not included. This study was approved by a National Ethics
Committee with the identification code: Ref 13 06 03 N◦ ID-RCB: 2013-A00795-40. All
patients provided written informed consent. The trial was registered on ClinicalTrials.gov
(accessed on 10 March 2022) (NCT02592174) (https://clinicaltrials.gov/ct2/history/NCT0
2592174?V_4=View).

2.2. Cell Lines

The MT4 are derived from Adult T-cell Leukemia patients and carry HTLV-1. The
CEM is derived from an acute lymphoblastic leukemia (ALL) patient. Both cell lines were
grown in RPMI 1640 supplemented with 10% fetal bovine serum, 2 mM glutamine and
penicillin/streptomycin.

2.3. Cell Preparation

Expansion of primary NK cells were obtained by stimulating 1 × 106 PBMCs/mL
during 14 to 20 days with the lymphoblastoid EBV-positive cell line PLH together with
IL-2 (100 U/mL, PrePotech) and IL-15 (5 ng/mL, Miltenyi), as previously described [15].
Primary CD56-positive cells were purified from healthy donor buffy coat using the kit
EasySep Buffy Coat CD56 Positive (Stemcell) according to the manufacturer’s instructions.

2.4. Coculture

For in vitro trogocytosis assay, the T cell lines CEM and MT4 were labelled with
CelltraceViolet (Thermo Fisher, Waltham, MA, USA) following the manufacturer’s protocol
to allow identification as a target cell. CTV-labelled target cells were next incubated with
primary NK cells derived from PBMC. Upon 4 h in vitro incubation, CCR5 and CD4
expressions on NK cells were analyzed by FACS analysis. CTV-positivity on NK cells
indicated interaction between effector (NK) and target (CEM or MT4) cells.

https://clinicaltrials.gov/ct2/history/NCT02592174?V_4=View
https://clinicaltrials.gov/ct2/history/NCT02592174?V_4=View
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2.5. Flow Cytometry for In Vitro Trogocytosis Analysis

To analyze CXCR4 acquisition by the NK cell line, lymphocytes were stained for one hour
at room temperature in the dark with CD56-P5.5 (Beckman Coulter, Brea, CA, USA) and
CXCR4-PE (BD Biosciences, Franklin Lakes, NJ, USA). To analyze CXCR4, CD3, and CD4
acquisition by primary NK cells, lymphocytes were stained for one hour at room tempera-
ture in the dark with CD56-APC (Miltenyi, Paris, France) and CXCR4-PE (BD Biosciences)
or CD3 APC-cy7 (Sony, Minato, Tokyo, Japan) or CD4-FITC or -PE (Beckman Coulter). To
analyze CCR5 acquisition by primary NK cells, lymphocytes were stained for one hour
at room temperature in the dark with VPD450 (BD Biosciences), CD56-APC (Miltenyi),
CD3 APC-cy7 (Sony), and CCR5-PE/Cy5.5 (BD Biosciences). Cells were fixed using Cellfix
(BD biosciences).

2.6. FACS Analysis and Antibodies

For immune-monitoring studies, patient PBMC samples were stained with cocktail
fluorescent-conjugated antibody mix diluted in PBS containing 2% FBS + 0.01% azide
for 30 min at 4 ◦C in the dark. After a 2-step washing with PBS, cells were fixed with
2% PFA for 20 min at 4 ◦C. Samples were analyzed on a BD Fortessa Flow Cytometer
(UV-Violet-Blue-Yellow/Green-Red 5-Laser configuration). For the first cohort (aviremic
patients) the following antibodies were used: CCR5-FITC, CD158a-PE, CD57-PE-CF594,
CD14-Alexa Fluor 700, CD19-Alexa Fluor 700, CXCR4-BV421, CD62L-BV605, NKG2D-BV650,
CD16-BV711, CD3-BV786, CD56-BUV395 and CD4-BUV737 (BD Biosciences), CD158b-PE,
CD158e/k-PE, NKp46-PE-Vio770, NKG2C-APC, CD45RA-APC-Vio770, and CD45RO-VioGreen
(Miltenyi). For the second cohort (viremic patients) the similar panel of antibodies were
re-used, except for additional antibodies for CXCR4-BV421 and CD107a-PE-CF594 (BD Bio-
sciences). Cell death and viability were determined by DAPI (BD Biosciences). Data were
analyzed using FlowJo software (v10.8) (BD Biosciences) with appropriate plugins for
high-dimensional analysis and visualization.

2.7. High Dimensional Reduction Analysis

High-dimensional reduction analyses (t-SNE and UMAP) were performed as pre-
viously described [9]. Briefly, total NK cells for each sample were selected by manual
gating to exclude dead/debris cells, and other lineages (myeloid/B cells) and gated on
CD3−CD56+ population. The number of NK cells for each sample was established at 40,000
using DownSample (v3.1) and eventually merged into one unique FCS file with the concate-
nation function. Finally, the dimensionality reduction algorithms UMAP (UMAP v2.2) was
performed and the specific maps derived from healthy donors or patients were generated
based on SampleID parameters created during the concatenation step.

2.8. Cell Transduction

We have previously described the HIV-1 vectors delivering the CCR5/EGFP and the
LacZ genes and the production of the corresponding transducing particles [16].

2.9. Statistical Analysis

Figures presented in the manuscript and appropriate statistical analysis were per-
formed using GraphPad Prism (v9.2.0). A detailed description of the respective statistically
significant test is indicated directly under each figure legend, with appropriate post-hoc
correction tests applied. For all figures, statistical significances were presented as * p < 0.05;
** p < 0.01; *** p < 0.001 and **** p < 0.0001. Mean values are expressed as mean plus or
minus the standard error of the mean (SEM).

3. Results
3.1. Human NK Cells Cocultured with T Cell Lines Acquire T Cell Markers

We have previously shown that human NK cells perform efficient trogocytosis in sev-
eral immune cell types, e.g., myeloid or B cells [4,8–10]. To examine if NK cells can perform
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trogocytosis on T cells, we isolated NK cells from a healthy donor and co-cultured them with
the T cell lines CEM and MT4 that were previously labeled with the cell tracker violet (CTV;
Supplementary Figure S1). CEM and MT4 both expressed CD4 (partially for CEM). MT4 ex-
press the chemokine receptor CCR5. After 4 h of co-culturing, a proportion of NK cells were
CTV+ (Supplementary Figure S1A). In addition, some CTV+ NK cells also gained expres-
sion of CD4 after incubation with both cell lines (Supplementary Figure S1B). CCR5 was
expressed by NK cells only after incubation with MT4 cells (Supplementary Figure S1C).

3.2. NK Cells Cocultured with CXCR4+ Target Cells Acquire CXCR4 Surface Expression

Next, we tested whether human NK cells were able to acquire the chemokine receptor
CXCR4 upon contact with virus-infected CXCR4-positive cells. To this aim, we prepared
expanded NK cells (eNK) by culturing PBMCs with the lymphoblastoid EBV-positive
PLH cell line in the presence of IL-2 and IL-15 [15,17,18]. Then, we cocultured these eNK
with the MT4 cell line. Almost no CXCR4 molecule was detected at the surface of NK cells
cultured alone (supplementary Figure S2A,B). CXCR4 expression increased on NK cells
cocultured for 18 h with MT4 cells (supplementary Figure S2C,D).

We performed the same experiment with naïve CD56-positive lymphoid cells directly
purified from PBMCs. Again, CXCR4 appeared at the surface of these cells after an overnight
coculture with MT4 cells, but not at the surface of monocultured cells (Figure 1A,B). Of note,
62% of the cocultured CD56-positive lymphoid cells became CXCR4-positive. Expression of
the CD4 molecule on NK cells was much lower (Figure 1C,D).
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Figure 1. CD56-positive lymphoid cells acquire CXCR4 cell surface expression upon coculture with
CXCR4-positive MT4 cells. CXCR4 (A) and CD4 (C) expression at the surface of primary CD56+

lymphocytes cells cultured alone. CXCR4 (B) and CD4 (D) expression at the surface of primary
CD56+ lymphocytes cocultured overnight with MT4 cells.

3.3. Trogocytosis Is Responsible for CXCR4 Acquisition by Cocultured NK Cells

Next, we wanted to ascertain that the appearance of this chemokine receptor on NK
cells cultured in the presence of CXCR4-positive cells was due to a cell-to-cell transfer of
CXCR4, rather than, for instance, the expression of the CXCR4 gene in activated NK cells or
to the translocation of CXCR4 from the inner of the NK cells to their surface. In addition, we
wished to investigate if NK cells can obtain other HIV-1 coreceptors from T cells. For this
purpose, we transduced MT4 cells with HIV-1 vectors delivering the CCR5 gene fused to the
marker gene EGFP to obtain CCR5/EGFP-MT4 cells expressing CCR5/EGFP fusion protein
(Figure 2A). As a negative control, we transduced in parallel MT4 cells with an HIV-1 vector
harboring the LacZ gene (LacZ-MT4 cells). We labeled freshly purified PBMC cells with the
vital dye VPD to rigorously distinguish NK cells from MT4 cells. Then, we cultured these
PBMC either with CCR5/EGFP-MT4 or with LacZ-MT4 cells. Eighteen hours later, we
analyzed EGFP and surface CCR5 expression on/in VPD+CD56+CD3− cells. Figure 2B,D
shows that 25% of NK cells became EGFP+ in the presence of CCR5/EGFP-MT4 cells but
not in presence of LacZ-MT4 cells. These data show that NK cells acquire cell surface
expression of the chemokine receptor CCR5, and that this acquisition is the consequence of
a transfer from the target to the NK cell.
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Figure 2. NK cells acquire CCR5 by trogocytosis. (A) CCR5 expression on non-transduced (left
hand histogram) and CCR5/EGFP-transduced (right hand histogram) MT4 cells. (B) Gating strategy
for VPD-labeled PBMC cocultured with MT4 cells. (C) EGFP and CCR5 expression of NK cells
among PBMC cocultured with LacZ-transduced MT4 cells. (D) EGFP and CCR5 expression of NK
cells among PBMC cocultured with CCR5/EGFP-transduced MT4 cells. (E) Gating strategy for
VPD-labeled NK cells directly cocultured with MT4 cells. (F) EGFP and CCR5 expression of NK cells
cocultured with LacZ-transduced MT4 cells. (G) EGFP and CCR5 expression of NK cells directly
cocultured with CCR5/EGFP-transduced MT4 cells.

To ascertain that the transfer of CCR5/EGFP from the MT4 cells to the NK cells was
direct, we repeated the experiment with freshly sorted primary NK cells instead of PBMC.
Here again, we observed the appearance of CCR5/EGFP at the surface of the purified NK
cells cocultured with CCR5/EGFP-MT4 cells, but not at the surface of NK cells cocultured
with LacZ-MT4 cells (Figure 2E–G).

3.4. UMAP (Uniform Manifold Approximation and Projection) Identifies NK Cell Subsets That
Have Actively Performed Trogocytosis and Degranulated in HIV-1 Aviremic Patients
under Treatment

To more precisely characterize the NK cell population in healthy donors (HDs) and
patients, we used the high dimensional reduction algorithm UMAP to generate unsuper-
vised UMAP embed maps as previously described [9,19]. We used 12 NK surface markers
(Supplementary Figure S3) to generate a UMAP plot from 15 samples, i.e., 11 aviremic
HIV-1+ patients and four HDs. Each sample contained 40,000 NK cells (Figure 3A). From
this original map, we derived two daughter maps only showing the events from HD or
patients (Figure 3B), and we identified four clusters. Two of them were common and
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represented CD56dim and CD56bright NK cell populations. The two other clusters were
specific to patients and could represent more than 30% of the total NK cells (Figure 3C).
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Figure 3. UMAP analysis of second cohort of HIV-1+ patients. (A) UMAP plot was generated from
40,000 pre-gated NK cells (CD14-CD19-CD3-CD56+ phenotype) from a cohort of HIV-1 patients
(n = 11) and HD (n = 4), in the right CD56 heatmap of CD56 expression on different populations.
(B) UMAP specific of HD and HIV-1+ patients. (C) Proportion of each cluster among HD (n = 4) and
HIV-1 patients (n = 11). Statistical significance was determined by unpaired t-test; ** p ≤ 0.01.

Both of these clusters expressed high levels of CD16 and KIRs and also NKG2C
(Figure 4A). However, only HIV-1 cluster 1 expresses CD57 (Figure 4A,B). In view of the
relationship between a viral infection, i.e., CMV, and NKG2C expression [20,21], we directly
analyzed NKG2C expression in our samples. Of note, although HIV-1 patients harbor CMV
more often than HIV-1-negative persons, CMV does not induce CXCR4 expression [22].
Compared with our HD cohort, all patients had higher NKG2C+ NK cell populations
(Figure 4C). CCR5 expression on NK cells from patients was higher than that from HD
(Figure 4C). HIV-1 cluster 2 expressed the highest percentage of CCR5+ cells, and this
cluster did not express CD57. NK cells lacked CD4 expression independently of any
cluster (Figure 4A).
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panel. (B) Manual gating on CD57 and NKG2C for all concatenated NK cells from the HIV-1 patients,
which were divided into four clusters, as described in Figure 3B. (C) Accumulation of NKG2C+

and CCR5+ NK in HIV-1 patients represented by FACS plot (left) and summarized statistics (right).
Statistical significance was determined by unpaired t-test; ** p ≤ 0.01.

3.5. Increased Expression of CCR5 and CXCR4 by NK Cells in Viremic HIV-1 Patients

We hypothesized that NK cells in contact with T cells freshly infected with HIV-1
would have increased trogocytosis, thus we investigated if HIV-1 patients with current
viremia had NK cells expressing cell surface CCR5 and CXCR4. We analyzed blood samples
from a second cohort of four healthy donors (HD) and 4 HIV-1 patients (Figure 5). Almost
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40% of the CD56+CD3− NK cells derived from patients expressed CXCR4 and more than
20% were also CCR5+ (Figure 5B). These values were significantly higher than those found
in HD. These NK cells from patients also expressed higher levels of the degranulation
marker CD107a.
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Figure 5. Enhanced trogocytosis and ex vivo degranulation activity on NK cells derived from four
viremic, untreated, HIV-1 patients compared to four healthy donors (HD). (A) Level of CXCR4 (top),
CCR5 (middle) and ex vivo degranulation (bottom panels) presented in parallel on two populations
of NK cells: CD56+ NK (40,000 cells per sample; left panels) and CD56negCD16+ (2500 cells per
sample; right panel). (B) Quantitative dot plots displaying the percentage of CXCR4+ (left), CCR5+

(middle) and CD107a+ NK (right) cells. Statistical significance was determined by un-paired t-test
between HD vs. HIV-1; * p ≤ 0.05, ** p ≤ 0.01, and **** p ≤ 0.0001.

During chronic HIV-1 infection, there is an expansion of a CD56− NK cell pop-
ulation that can constitute up to half of the peripheral NK cells and are functionally
impaired [23–25]. This NK cell subset is also found in healthy individuals [26,27], but it
is unknown to what extent this population represents a similar or distinct phenotype in
patients and in healthy individuals. Hence, we analyzed the expression of the abovemen-
tioned markers in the CD56−CD16+ population. We observed a significant increase in
CXCR4 and CCR5 expression (Figure 5), but patients were highly heterogenous regarding
this population and the markers expressed.
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We next analyzed the correlation between the cells that have degranulated and those
that have gained CXCR4 and CCR5. In patients, most of the cells that had degranulated,
were CXCR4- and CCR5-positive (Figure 6A–C). In contrast, only around 20% of the cells
that had not degranulated expressed these receptors. Figure 6C shows the statistical
relevance of these observations. In summary, trogocytosis is linked to degranulation.
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Figure 6. NK cells that have degranulated in viremic HIV-1+ patients performed enhanced trogo-
cytosis. (A,B) Comparison of trogocytosis on CD107a+ vs. CD107a− on CD56+ NK cells in viremic
HIV-1 patients (A) and HD (B). (C) Percentage of CXCR4 and CCR5 expression on CD56+ NK cells
expressing or not CD107a. (D,E). CD56−CD16+ NK cells in viremic HIV-1 patients performed en-
hanced trogocytosis. Comparison of trogocytosis on CD107a+ vs. CD107a- on CD56−CD16+ NK cells
in HIV-1+ patients (D) and HD (E). (F) Percentage of CXCR4 and CCR5 expression on CD56−CD16+

NK cells expressing or not CD107a. Statistical significance was carried by two-way ANOVA between
HD vs. HIV-1 and CD107a− vs. CD107a+; * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 and **** p ≤ 0.0001.
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We used the same approach in the CD56−CD16+ population. CXCR4 and CCR5 MFI
values were much lower in this population compared with CD56+ cells (compared in
Figure 6A,D). The CD56−CD16+ population derived from patients showed higher trogocy-
tosis in the cells that had degranulated, but the differences were lower than for CD56+ cells
(Figure 6D). In HD the values were lower, mainly in the cells that had not degranulated
(Figure 6E). Figure 6F showed the statistical relevance of our results.

3.6. UMAP (Uniform Manifold Approximation and Projection) Identifies NK Cell Subsets That
Have Actively Performed Trogocytosis and Degranulated

To more precisely characterize the NK cell population in HD and viremic patients, we
also used the high dimensional reduction algorithm as described above. This approach
clearly distinguished the different immune cell populations and showed a decrease in CD4
T cells and, in less proportion, NK cells in viremic HIV-1 patients (Supplementary Figure S4).

Next, we used 12 NK surface markers (Supplementary Figure S5) to generate a
UMAP plot for the eight samples, i.e., 4 patients and 4 HDs. Each sample contained
40,000 NK cells (Figure 7A). From this original map, we derived two daughter maps
only showing the events from HD or patients. Patients showed UMAP maps that were
relatively homogenous and clearly distinct from that of HDs (Figure 7B). The common
cluster contained the CD56bright population, which usually expresses low CD16 and
Killer Immunoglobin-like Receptors (KIRs) (Figure 7C). The HD clusters contained ma-
tured NK cells with HD cluster 2 expressing high CD62L (Figure 7C). HIV-1 clusters 1 and
2 are very similar mainly comprising mature NK cells with relatively high KIR expres-
sion. However, cluster 2 contained cells that expressed NKG2C. Cluster 3 was formed by
CD56dim cells with few cells expressing CD16 or NKG2C and 50% expressing KIRs. They
also expressed also low CD45RA levels. Interestingly, this cluster contained the highest
proportion of cells that had degranulated. In addition, they expressed CCR5 and CXCR4.

We next performed a similar UMAP analysis in the CD56−CD16+ cells
(supplementary Figure S6) and identified two HDs and two patients’ clusters (Figure 8A).
Individual patient’s maps were heterogenous (Figure 8B). CD107a, CCR5 and CXCR4
expressions were higher in patients and did not correlate with NKG2C and KIR expressions
(Figure 8C). Hence, in both NK cell populations, degranulation and potential trogocytosis
were not linked to NKG2C expression in viremic patients. Therefore, we investigated in
the whole NK cell population the correlation between NKG2C and CD107a. Cells lacking
NKG2C showed increased degranulation (supplementary Figure S7A) and CD107a− cells
express more NKG2C than CD107a+ cells. Therefore, in our study the NK cell population
that was degranulating and possibly performing trogocytosis on T cells did not express
NKG2C at the time of analysis.
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Figure 7. Cluster analysis on CD56+ NK cells by tSNE mapping in viremic patients. The tSNE
map was built from 40,000 pre-gated CD56+ NK per sample (HD: n = 4, HIV-1: n = 4) based on
12 surface markers (supplementary Figure S5). (A) General tSNE map from all samples (left), HD
samples (middle) and HIV-1+ samples (right) with identification of group-specific clusters. (B) tSNE
replica showing clusters of each viremic HIV-1 patient. (C) Phenotypical characters of each cluster as
identified in (A). Bar graphs represent the proportion of positive cells for each of the surface markers
from the whole of events analyzed in each cluster.
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Figure 8. Cluster analysis on CD56negCD16+ NK cells by tSNE mapping in viremic patients. tSNE
map was built from 2500 pre-gated CD56negCD16+ NK per sample (HD: n = 4, HIV-1: n = 4) based
on 12 surface markers (supplementary Figure S6). (A) General tSNE map from all samples (left),
HD samples (middle) and HIV-1+ samples (right) with identification of group-specific clusters.
(B) tSNE replica showing clusters of each HIV-1+ patients. (C) Phenotypical characters of each cluster
as identified in (A). Bar graphs represent the proportion of positive cells for each of the surface
markers from the whole of events analyzed in each cluster.

4. Discussion

In the present study, we show evidence of the transfer of the chemokine receptors
CXCR4 and CCR5 from virus-infected target cells towards NK cells. Of note, CCR5 transfer
to PBMC has already been reported, but via microparticles [28]. In our work, trogocytosis
appeared to be selective, confirming previous observations [29]. Contrary to an earlier
work claiming the capture of CD4 by CD8+ T cells via trogocytosis [30], here we observed
that NK cells barely capture CD4 molecules. Why are certain plasma membrane molecules
trogocytosed and not others? This is unknown, and it is probably related to the unknowl-
edge of the mechanism(s) of trogocytosis [5,31]. Of note, the co-trogocytosis of CD4 with
CCR5 or CXCR4 could have resulted in the HIV-1 infectibility of NK cells in the same
way as trans-synaptic acquisition of CD21 by NK cells allowed EBV binding [32]. More-
over, NK cells can eliminate EBV bound to B cells through a specific antibody-mediated
uptake [33]. It would be interesting to know if this is the case of HIV-1 from T cells.

It has already been shown that transferred membrane receptors after trogocytosis may
be functional and modify the functions of the acquirer cell [34]. For instance, transferred
Ig-like Transcript 2 on T cells that acquired them via trogocytosis are able to signal and
modify the functions of their new host [35]. The newly acquired chemokine receptors
CXCR4 and CCR5 may be functional at the surface of the cytotoxic cells, as previously re-
ported for CCR7 [36]. This could result in a modification of NK cell circulation and homing.
Such a modification could impact NK cell functionality, inasmuch as other molecules, as
adhesion molecules, for instance, may have also been captured. It could also affect NK cell
function in different therapies [37]. This risk has to be taken into consideration and to be
further explored for the therapeutic use of chimeric antigen receptors (CAR)-NK cells.
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We have observed that the amount of antigen and the percentage of cells that have
performed trogocytosis is higher in the CD56+ population than in the CD56−CD16+ subset.
Taking the previous literature into account [23–25,38], we suggest that the CD56−CD16+

cells that have trogocytosed or degranulated are exhausted NK cells that have performed
their function and would not perform a cytotoxic function any longer and are losing the
trogocytosed markers.

We observed an increase in cells expressing CCR5 compared to HD in aviremic pa-
tients. This observation supports the hypothesis that NK cells could gain antigens from
HIV-1-infected T cells that are still producing viral components [38,39]. The control of
HIV-1-1 viremia by ART also leads to the recovery of NK cells with cytotoxicity against
HIV-1 infected T cell targets [39,40]. In agreement, the cells present in HIV-1 cluster 2
(described here in Figure 4) exhibit NKG2C and KIRs and have performed trogocytosis on
CCR5. This resembles the recently described memory-like NK cell population in the HIV-1
patients or the macaques model [20,21,39,41–43], which shows increased effector functions
when reencountering viral antigens. This would explain why they carry T cell markers, i.e.,
they obtained them by trogocytosis after encountering HIV-1-infected T cells. However,
we observed the cells that have trogocytosed lacked CD57 expression. It is possible that
when evolving from memory (CD57+) to effector cells, CD57 is lost. Interestingly, in active
viremic patients, we found a negative relationship between degranulation and trogocytosis
versus NKG2C expression. It is probable that these patients have not yet generated NKG2C+

memory-like NK cells or, in active viremia, this population did not have time to establish
itself. Interestingly, in viremic patients the cluster that has degranulated and performed
trogocytosis are CD56dim cells with low CD16 expression. This decrease in CD16 is found
in NK cells after encountering target cells [44]. They also expressed low CD45RA levels,
which could be due to the increased expression of CD45RO. CD45RO is linked to antitumor
NK cell function in hematological cancer patients [4,8–10]. In summary, in HIV-1 patients
the populations of memory and effector NK cells are phenotypically different. Antiviral
memory NK cells express NKG2C, whereas antiviral effector NK cells lack NKG2C, but
can be recognized by degranulation and by their capacity to perform trogocytosis.

Trogocytosis is becoming a field of intense study to understand the communica-
tion/interaction of tumor and immune cells which can affect the clinical outcome as
recently shown by the trogocytosis of PD-1 by NK cells in cancer patients [45]. Being sure
that ex vivo observations properly mirror the in vivo physiology is extremely difficult for
all of these types of studies, and hence, our study has some limitations. Besides trogocy-
tosis, CCR5 and CXCR4 overexpression on NK cells, we report here that nontreated HIV
patients could have other causes. A genetic cause is unlikely. ∆32CCR5 heterozygosity is a
known cause of low cell surface CCR5 density. Yet, the frequency of ∆32CCR5/WTCCR5
individuals in France is 0.18 [46], so the probability for the 4 HD of each cohort that we
have analyzed to be ∆32CCR5 heterozygous is extremely low. Coinfections could also
play a role. For instance, human CMV infection, which is more frequent in HIV-positive
than in HIV-negative individuals, is associated with an increased frequency of NKG2C+

NK cells [47]. Yet, as mentioned, CMV does not induce CXCR4 expression. It would be
interesting to support our proposal that CCR5 and CXCR4 overexpression on NK cells in
HIV patients is due to trogocytosis by quantifying CCR5 and CXCR4 mRNA in NK cells to
discard the hypothesis of an endogenous production. However, this implies the sorting
of a small number of cells and the corresponding ex vivo manipulation that could affect
gene expression.

5. Conclusions

NK cells play a major role in the antiviral immune response, including against HIV-1.
We identified specific NK cell subsets that expressed CCR5 and CXCR4, but barely CD4,
T cell antigen markers on their plasma membrane. We show a strong association of degran-
ulation and trogocytosis ex vivo, suggesting that NK cells are eliminating or trying to elimi-
nate HIV-1 infected T cells. By UMAP (Uniform Manifold Approximation and Projection),
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we show that aviremic HIV-1 patients have unique NK cell clusters that encompass cells
expressing CCR5, NKG2C and KIRs, but lack CD57 expression. Viremic patients have
a larger proportion of CXCR4+ and CCR5+ NK cells than healthy donors (HD), and this
subset lacks NKG2C expression. Therefore, our results strongly suggest that NK cells can
gain CCR5 and CXCR4 by trogocytosis in vivo, which depends on degranulation and does
not always correlate with NKG2C expression.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/vaccines10050688/s1, Figure S1: NK cells from healthy donors
uptake molecules from T cells; Figure S2: Primary expanded NK cells (eNK) acquire CXCR4 cell
surface expression upon coculture with CXCR4-positive MT4 cells.; Figure S3: Heatmaps of individual
markers that constitute the UMAP in Figure 3; Figure S4: UMAP (Uniform Manifold Approximation
and Projection for Dimension Reduction) analysis of 50,000 viable cells of healthy donors and HIV+
patients and constitution of PBMC populations.; Figure S5: Heatmaps of the expression of the
12 surface markers used to constitute the original UMAP embed on Figure 7; Figure S6: Heatmaps of
the expression of the 12 surface markers used to constitute the original UMAP embed on Figure 8;
Figure S7: Expanded NKG2C+ NK population in viremic HIV patients did not correlate with
enhanced in vivo degranulation.
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