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Abstract

First-order homogenization generally becomes inaccurate for materials with a weak

scale separation between characteristic lengths of the heterogeneities and the struc-

tural problem. It is also unable to provide a correct solution in the vicinity of the

boundaries due to the loss of periodicity in these regions. In this article, we demon-

strate the effectiveness of higher-order homogenization, up to the third-order, in

estimating correctly the heterogeneous solution, for cases with a low scale separation

in elastic composite materials. We also propose a higher-order general boundary layer

method, effective for various boundary conditions (Dirichlet, Neumann or mixed), to

correct the obtained estimation near the boundaries. The efficiency and accuracy of

the proposed methods are studied on various numerical examples dealing with elastic

laminates and fiber-matrix composites.
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1. Introduction

Classical or first-order homogenization methods assume a complete separation of

scales in composite materials. This assumption is only valid when the scale of the

microstructure or microstructural fluctuation is much smaller than the characteristic

dimension of the macrostructure. Most of these homogenization methods are known

to be effective in capturing uniform macroscopic strain fields without large gradients.

For weak separation of scales, however, they generally become inaccurate (Ameen

et al., 2018). Such cases can occur mainly when: (a) The size of the microstructure

is of the same order of magnitude as that of the macrostructure, and (b) the wave

length of variation of macroscale fields is not sufficiently large compared to the size

of the microstructure. In such cases, the predicted properties obtained by first-order

homogenization may fail to describe the local or global responses of the compos-

ite (Ameen et al., 2018; Kouznetsova et al., 2002; He and Pindera, 2020a). This is

mainly explained by two reasons:

• The scale separation assumption implicitly implies macroscopic quasi-uniformity

of the strain field over the microstructure. Therefore, only first-order deforma-

tion modes (tension, compression, and shear) are considered. In contrast, in

the case of weak separation of scales, capturing a bending mode, for exam-

ple, remains beyond the capabilities of classical homogenization (Kouznetsova

et al., 2002; Fergoug et al., 2022), as will be shown later in this article.

• Higher-order homogenization may require consideration of non-local media.

Indeed, classical homogenization methods take into account the influence of the

volume fraction, distribution and morphology of the microstructure (Sanchez-
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Palencia and Zaoui, 1987; Suquet, 2014), but cannot account for geometrical

size effects in the mechanical behavior of heterogeneous materials.

To overcome these limitations, generalized continuum theories (higher-order continua

or higher-grade theories) are used to describe the behavior of either the microscopic

scale or the macroscopic one, or both levels simultaneously. Indeed, enriched contin-

uum theories extend the range of applicability of homogenization methods beyond

the strict assumption of scale separation. They also enable a relaxation of the local

action principle by introducing some additional length scale parameters to take into

account the influence of the surrounding physical state on the behavior of a contin-

uum point.

Two main categories of generalized continua are distinguished:

• Higher-order continua that introduce additional degrees of freedom, like the

Cosserat medium proposed by the Cosserat brothers (Cosserat and Cosserat,

1909) where local micro-rotations are introduced at each continuum point in

addition to the displacement field. This enhancement can be extended further

to obtain the micromorphic elasticity (Mindlin, 1964; Germain, 1973).

• Higher-grade continua according to Mindlin (1964); Mindlin and Eshel (1968)

that include higher-order gradients of kinematic or internal variables in the

expression of the (elastic) energy density.

The strain-gradient continuum offers some advantages compared to higher-order con-

tinua as stated in Yvonnet et al. (2020). Indeed, this model is rich enough to incorpo-

rate a characteristic length of the microstructure without introducing a large number

of parameters as in micromorphic elasticity (Auffray et al., 2015). Furthermore, such

a model can be constructed by asymptotic analyses (Boutin, 1996; Smyshlyaev and
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Cherednichenko, 2000; Peerlings and Fleck, 2004; Tran et al., 2012).

In most cases, it is agreed that including higher gradients of the macroscopic field in

the homogenization of a Representative Volume Element (RVE) is a natural way to

introduce the internal length scale characterizing the microstructure. At least two

approaches exist regarding this subject.

The first approach uses Quadratic Boundary Conditions (QBCs) applied to the unit-

cell (Gologanu et al., 1997; Forest, 1998; Forest et al., 2001; Kouznetsova et al., 2002;

Yvonnet et al., 2020). This method is an extension of the classical Kinematic Uni-

form Boundary Conditions (KUBC) (Huet, 1990; Kanit et al., 2003) which consist in

applying, on the boundary of the RVE, the displacement field that would occur if the

strain field was uniform. Indeed, a displacement that has a quadratic dependence

with the position vector is applied, with the macroscopic gradient of strain being

the considered enforcing term. This method has a major flaw: QBCs lead to non-

zero fluctuations when the material is homogeneous, which seems to be physically

unreasonable as stated by Yuan et al. (2008), Forest and Trinh (2011), Tran et al.

(2012), Monchiet et al. (2020), and Yvonnet et al. (2020), since these fluctuations

are due to the heterogeneity of the microstructure. To tackle this, a correction has

been proposed in Monchiet et al. (2020) by adding adequate body forces to QBCs

and has been successfully used in Yvonnet et al. (2020).

The second approach considers higher-order problems in the asymptotic homoge-

nization method. This approach of series expansion, initially presented by Sanchez-

Palencia (1983); Bensoussan et al. (2011) for periodic heterogeneous materials, in-

troduces a scale factor ϵ = l/L, where l and L are the characteristic lengths of

the microstructure and macrostructure, respectively. In the case of a strict scale

separation, i.e. ϵ ≪ 1, classical homogenization gives adequate estimate properties.

In cases of weak scale separation, i.e. ϵ < 1, the solution can be approximated by
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keeping higher-order terms in the series expansion. These terms are obtained by

resolving a hierarchical set of elasticity problems with prescribed body forces and

eigenstrains, obtained from the solution at the lower-order. It is shown in Boutin

(1996) that higher-order terms in asymptotic homogenization introduce successive

gradients of macroscale strain and tensors characteristic of the microstructure, which

result in introducing a non-local effect in the material behavior. The analytical solu-

tions of these characteristic tensors were provided by Boutin (1996) for a laminate.

The agreement with the phenomenological strain-gradient theories was established

by Smyshlyaev and Cherednichenko (2000); Peerlings and Fleck (2004); Tran et al.

(2012) by combining the asymptotic method with a variational technique.

In the present paper, the retained method for our multiscale analyses is the asymp-

totic homogenization method. Consequently, only periodic heterogeneous materials

are considered where the period, i.e. the unit-cell, defines the RVE without any

ambiguity.

We establish a general numerical framework to evaluate the effect of macroscopic

strain gradients on the local response of the composite. This framework is imple-

mented, in this article, using the Finite Element Method (FEM) but could be imple-

mented by using another discretization method. We perform a relocalization process

to estimate heterogeneous local fields by considering higher-order homogenization

problems, up to the third-order in the asymptotic expansion. This relocalization

process is associated with a macroscale problem, which remains, in this work, a

scale-independent Cauchy type. Our numerical implementation of the localization

tensors will be verified based on analytical solutions provided by Boutin (1996) (see

appendix A).

While asymptotic homogenization may estimate local fields within the composite by

a relocalization process, the construction of a solution at the vicinity of the bound-
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aries remains beyond the capabilities of classical homogenization (Sanchez-Palencia,

1986; Dumontet, 1986; Koley et al., 2019; Fergoug et al., 2022). Indeed, asymptotic

homogenization assumes a periodic solution, which is not the case on the boundaries.

It has been shown by Pipes et al. (1973); Tang and Levy (1975); Hsu and Herakovich

(1977); Pagano (1978) that complex stress states with a rapid change of gradients

occur within a local region near the boundaries, frequently referred to as a boundary

layer effect. This effect is often responsible for the initiation of structural failure, e.g.

in laminates (Pipes et al., 1973).

In a previous work (Fergoug et al., 2022), a general boundary layer correction was

proposed. It is valid for different Boundary Conditions (BCs): Dirichlet, Neumann or

mixed. The main idea of this method is to enrich, on boundaries, the first-order relo-

calized solution fields by adding decaying corrective terms obtained by the resolution

of independent auxiliary problems over the unit-cell. The nature of the problems to

be solved depends on the actual boundary conditions applied locally to the structure.

These corrective terms are then added to the first-order relocalized fields.

In the present article, we propose an extension of this general boundary layer cor-

rection to rectify higher-order relocalization fields up to the third-order. Indeed,

matching boundary conditions requires the introduction of boundary layers at each

order.

Regarding the aforementioned aspects, the present work proposes two main aspects:

• A higher-order relocalization process up to the third-order. This means that

we the introduce effects of the macroscopic strain, its gradient, and its second

gradient on the local response of the composite. By doing so, we extend the

range of applicability of relocalization to cases subjected where a first-order

homogenization/relocalization is generally not valid anymore.
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• A general boundary layer correction to accurately estimate higher-order relo-

calized fields, up to the third-order, on the boundaries.

To the best knowledge of the authors, such an extension of first-order boundary layer

correction has not been yet proposed in the literature.

A computing workflow is proposed to perform both the relocalization step and the

boundary layer correction within a finite element framework.

The outline of the paper is as follows. In Sec. 2, we first briefly recall the asymptotic

expansion homogenization method and describe the proposed higher-order relocal-

ization process. In Sec. 3, we detail the proposed general boundary layer correction

procedure. A numerical implementation procedure is proposed in Sec. 4. Numerical

examples are presented and discussed in Sec. 5, with the objective of demonstrating

the efficiency of the suggested approach.

2. Higher-order estimation of micromechanical fields

Conventionally in mechanical homogenization, asymptotic series are truncated

at the first-order. It follows that the obtained effective macroscopic continuum is a

scale-independent Cauchy type continuum. The consequence of taking into account

additional terms of the expansion, up to the third-order, as derived by Boutin (1996),

is to introduce scale-dependent corrective terms in the material behavior.

The objective of this section is to describe the proposed estimation of local heteroge-

neous fields based on a higher-order relocalization process. This relocalization stage

is associated with a given macroscale equilibrium state also elaborated in this section.

2.1. Statement of the boundary value problem and homogenization procedure

Consider a problem domain Ωϵ, formed by the spatial repetition of a heteroge-

neous unit-cell, as shown in Fig. 1. This body, considered as a linear elastic solid
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in static equilibrium, is subjected to a body force f per unit volume. The bound-

ary ∂Ωϵ consists of a portion Γu, on which the displacements are prescribed to the

value ud, and a portion Γt on which surface traction F d per unit area are prescribed,

such that ∂Ωϵ = Γu ∪ Γt, and Γu ∩ Γt = ∅.

Because of the heterogeneous nature of the material, the corresponding mechanical

behavior depends on two scales:

• Macroscale with domain Ω, free of heterogeneities, having L as a characteristic

length and global coordinates x ∈ Ω with the assumption that ∂Ωϵ = ∂Ω (see

Fig. 1).

• Microscale, having l as a characteristic length and with local coordinates y ∈ Y ,

where Y is the unit-cell domain, typically chosen here to be an open rectangular

parallelepiped Y =]0, Y1[×]0, Y2[×]0, Y3[ (see Fig. 1).

The coarse and fine scales are related by the parameter ϵ such that:

ϵ = l

L
, y = x

ϵ
. (1)

The domain Ωϵ can be considered as the product space Ω × Y :

Ωϵ =
{

x ∈ Ω
∣∣∣∣ (y = x

ϵ

)
∈ Y

}
. (2)

Since the heterogeneity of the material arises from the periodically repeating unit-cell,

and owing to this periodicity, one can define the elasticity tensor C as Y −periodic:

C = C (y) . (3)

The heterogeneous stiffness tensor reads Cϵ (x) = C (x/ϵ) = C (y), the superscript

indicating fine-scale dependence. Similarly, the microscale displacement, strain, and
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Heterogeneous problem
(Pref )

Homogeneous problem
(Phom)

×1
ϵCϵ (x)

C0

f

f
F d

F dΩ

Ωϵ
Heterogeneous

Unit-cell
Y

Homogeneous
Unit-cell

Y

Γu

Γu

Homogenization Relocalization

Figure 1: Illustration (Fergoug et al., 2022) of the heterogeneous problem (Pref ) with domain Ωϵ,

constructed by translating the unit-cell Y characterized by an oscillatory behavior Cϵ (x) over

the three space directions. The homogenized problem (Phom) with homogeneous domain Ω is

characterized by the homogenized elasticity tensor C0 obtained from the homogenization step.

Microscale fields are estimated by a relocalization process.

stress fields read uϵ, εϵ, and σϵ, respectively.

In our previous work (Fergoug et al., 2022), we have defined the following boundary

value problems:

• Heterogeneous problem (Pref ) with solution (uϵ, εϵ, σϵ). This problem is usu-

ally intractable by Direct Numerical Simulation (DNS, i.e. when the geometry

of the microstructure is explicitly described in simulations). Common practice

would call for a tractable estimate.

9



• First-order periodic problem
(
P1st

order

)
used to deduce the homogenized elas-

ticity tensor C0 and first-order displacement, strain, and stress localization

tensors: D0, A0, and B0, respectively.

• Homogenized problem (Phom) corresponding to the macroscale with solution

(displacement U , strain E, stress Σ), characterized by the homogenized elas-

ticity tensor C0.

Formal definitions of these problems are omitted here for conciseness; we refer the

reader to Fergoug et al. (2022) for more details.

We aim to truncate the asymptotic expansion up to the third-order. Therefore,

mechanical fields, solution to (Pref ), are approximated with an asymptotic expansion

in powers of the small parameter ϵ as:

uϵ (x) = u0 (x, y)+ϵu1 (x, y)+ϵ2u2 (x, y)+ϵ3u3 (x, y) + O
(
ϵ4
)

,

εϵ (x) = ε0 (x, y) +ϵε1 (x, y) +ϵ2ε2 (x, y) +O
(
ϵ3
)

,

σϵ (x) = σ0 (x, y)+ϵσ1 (x, y)+ϵ2σ2 (x, y)+O
(
ϵ3
)

.

(4)

(5)

(6)

The quantities un, εn and σn are Y −periodic functions called correctors of the dis-

placement, strain, and stress fields, respectively.

The following formulation for higher-order homogenization is classical without new

developments. Nevertheless, efforts have been made to detail formulation of hierar-

chical periodic problems, up to the third-order. Details of the prescribed body forces

and eigenstrains, used to solve these periodic problems, are provided. Furthermore,

since our objective is to conduct a higher-order relocalization process, the localization

tensors at different orders are also provided.
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Second-order periodic problem
(
P2nd

order

)
This problem is defined on the unit-cell Y . Its solution are the displacement

corrector u2 and stress σ1. It reads:

Find (u2, σ1) such that:

(
P2nd

order

)
:



divy

(
σ1 (x, y)

)
+ L1 (x, y) = 0, ∀y ∈ Y,

σ1 (x, y) = C (y) :
(
εy(u2) + ηηη1 (x, y)

)
, ∀y ∈ Y,

u2 (x, y) is Y − periodic,

σ1 (x, y) · n is Y − antiperiodic,

(7a)

(7b)

(7c)

(7d)

with:

εy(u2) = sym
(
∇yu2

)
= 1

2

(
∇yu2 +

(
∇yu2

)⊤
)

. (8)

The body force L1 (x, y) and the strain field ηηη1 (x, y) read:
L1 (x, y) =

(
B0 (y) −

〈
B0 (y)

〉
Y

)
... ∇xE (x) ,

ηηη1 (x, y) = sym
(
D0 (y) : ∇xE (x)

)
.

(9)

The periodic fluctuation u2 takes the following form:

u2 (x, y) = D1 (y) ... ∇xE (x) , (10)

where D1 (y) is a fourth-rank tensor, called second-order displacement localization

tensor. It is periodic over unit-cell Y and verifies ⟨D1⟩Y = 0, where ⟨•⟩Y = 1
|Y |
∫

Y • dY

indicates the volume average over unit-cell Y .

The second-order strain corrector reads:

ε1 (x, y) = A1 (y) ... ∇xE (x) , (11)
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where A1 (y) is a fifth-rank tensor, called second-order strain localization tensor. We

therefore can define the second-order stress corrector as:

σ1 (x, y) = C (y) : ε1 (x, y) = B1 (y) ... ∇xE (x) , (12)

where

B1 (y) = C (y) : A1 (y) , (13)

is the fifth-rank stress localization tensor.

The effective, fifth-rank, elasticity tensor C1, which depends on the microstructure,

is deduced from the volume average of the stress localization tensor over the unit-cell:

C1 =
〈
B1 (y)

〉
Y

. (14)

The tensor C1 is of odd rank and therefore equals to zero in case of centro-symmetric

unit-cell.

Third-order periodic problem
(
P3rd

order

)
This problem is defined on the unit-cell Y . Its solution are the displacement

corrector u3 and stress σ2. It reads:

Find (u3, σ2) such that:

(
P3rd

order

)
:



divy

(
σ2 (x, y)

)
+ L2 (x, y) = 0, ∀y ∈ Y,

σ2 (x, y) = C (y) :
(
εy(u3) + ηηη2 (x, y)

)
, ∀y ∈ Y,

u3 (x, y) is Y − periodic,

σ2 (x, y) · n is Y − antiperiodic.

(15a)

(15b)

(15c)

(15d)
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The body force L2 (x, y) and the strain field ηηη2 (x, y) read:
L2 (x, y) =

(
B1 (y) −

〈
B1 (y)

〉
Y

)
:: ∇x∇xE (x) ,

ηηη2 (x, y) = sym
(
D1 (y) ... ∇x∇xE (x)

)
.

(16)

Similarly to the second-order, a body force and eigenstrain based on the solution to

the previous order are prescribed over the unit-cell.

The periodic fluctuation u3, solution to the third-order problem, reads:

u3 (x, y) = D2 (y) :: ∇x∇xE (x) , (17)

where D2 (y) is a fifth-rank tensor, called third-order displacement localization ten-

sor. It is periodic over unit-cell Y and verifies ⟨D2⟩Y = 0.

The third-order strain corrector reads:

ε2 (x, y) = A2 (y) :: ∇x∇xE (x) , (18)

where A2 (y) is a sixth-rank tensor, called third-order strain localization tensor. We

can therefore define the third-order stress corrector as:

σ2 (x, y) = C (y) : ε2 (x, y) = B2 (y) :: ∇x∇xE (x) , (19)

where

B2 (y) = C (y) : A2 (y) , (20)

is the third-rank stress localization tensor.

The effective, sixth-rank, elasticity tensor C2 reads:

C2 =
〈
B2 (y)

〉
Y

. (21)

For both second and third-order problems, the applied body forces and eigenstrains

are related to successive gradients of the macroscopic strain tensor. Hence, the
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resolution of these problems introduces a non-local effect in the material behav-

ior. When strain gradients are significant, contributions of higher-order correctors

become significant as well. In contrast, a weaker contribution is expected for quasi-

homogeneous deformation cases. For these reasons, the possible drawback of QBCs

approaches highlighted in the introduction, that strain gradient effects persist even

when the material is homogeneous, does not concern periodic homogenization based

on asymptotic series expansion.

2.2. Proposed micromechanical fields estimates

Fergoug et al. (2022) have shown that a first-order relocalization may provide an

accurate estimate of DNS fields, provided that macroscale strain gradients remain

sufficiently small. Indeed, for a bending case, it was shown that the first-order esti-

mate may not be accurate anymore (Fergoug et al., 2022).

We propose a better estimate of DNS fields by conducting a higher-order relocaliza-

tion process which takes into account additional terms of the asymptotic expansion,

up to the third-order. This is expected to capture the effect of macroscopic successive

gradients, and thus introduce a length scale in the modeling.

This estimate is built here using:

• The macroscale strain and its successive gradients obtained from the resolu-

tion of the homogeneous problem (Phom). We recall that the homogenized

macroscopic continuum is a scale-independent Cauchy type.

• localization tensors (D0,A0,B0), (D1,A1,B1), and (D2,A2,B2) obtained from

the resolution of
(
P1st

order

)
,
(
P2nd

order

)
, and

(
P3rd

order

)
, respectively.

The proposed estimates in the composite read:
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uest (x, y) = U (x)

+ ϵ D0 (y) : E (x)

+ ϵ2 D1 (y) ... ∇xE (x)

+ ϵ3 D2 (y) :: ∇x∇xE (x)


∀x ∈ Ω, ∀y ∈ Y, (22)

εest (x, y) = A0 (y) : E (x)

+ ϵ A1 (y) ... ∇xE (x)

+ ϵ2 A2 (y) :: ∇x∇xE (x)


∀x ∈ Ω, ∀y ∈ Y, (23)

σest (x, y) = B0 (y) : E (x)

+ ϵ B1 (y) ... ∇xE (x)

+ ϵ2 B2 (y) :: ∇x∇xE (x)


∀x ∈ Ω, ∀y ∈ Y. (24)

3. Boundary layer correction

While asymptotic homogenization may provide an accurate estimate of local fields

within the structure based on a relocalization process, the construction of a solution

near the boundaries remains beyond its capability. This is mainly explained by the

loss of the periodicity assumption in the vicinity of boundaries.

Fergoug et al. (2022) have proposed a new approach to correct first-order estimates,

constructed by a first-order relocalization process. This approach is based on the

idea of introducing corrective terms that would decay inward the material, far from

boundaries. These terms are obtained from the resolution of various problems over
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the unit-cell. The nature of the problems to be solved depends on the actual bound-

ary conditions applied to the structure. The proposed approach is general, i.e. valid

for different BCs: Dirichlet, Neumann or mixed.

In this section, an extension of this method is proposed to correct higher-order esti-

mated fields, (uest, εest, σest) defined in Eq. (22), (23), (24), respectively. To do so,

supplementary problems over the unit-cell, beside those of a first-order correction,

must be considered: 18 additional problems for a second-order correction and 54 for

a third-order correction.

3.1. Correctors for Neumann BCs

The homogenized problem (Phom) can be written as:



div (Σ (x)) + f (x) = 0, ∀x ∈ Ω,

Σ (x) = C0 : E (x) , ∀x ∈ Ω,

U (x) = ud, ∀x ∈ Γu,

Σ (x) · n = F d, ∀x ∈ Γt,

(25a)

(25b)

(25c)

(25d)

with the macroscale stress: ⟨σest⟩Y = Σ and strain: ⟨εest⟩Y = E.

It is apparent from problem (25d) that the boundary condition on Γt is only satisfied

by the mean value of σest, therefore, in general:

σest · n ̸= F d. (26)

Corrective term σbl is introduced, whose sum with the estimated stress field σest

satisfies exactly the Neumann boundary condition at each microscopic point, then:

(
σest + σbl

)
· n = F d. (27)
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We propose to compute σbl by considering auxiliary problems on the unit-cell, sub-

jected to characteristic loads Fi with i ∈ {1, 2, 3} where the Neumann boundary

condition is applied. The opposite surface is fixed, and other remaining surfaces are

subjected to periodicity conditions (see (Fergoug et al., 2022) for more details). The

expression of characteristic loads depends on the order of the boundary correction:

• First-order corrective load:

F 0
ikl = −B0

ijkl · nj + 1
|Y |

∫
Y

B0
ijkl · nj dY , with fixed index j. (28)

B0
ijkl are components of the first-order stress localization tensor B0 and kl = {11, 22, 33, 23, 31, 12}6.

Therefore, 6 loads are applied successively over the unit-cell.

• Second-order corrective load:

F 1
iklm = −B1

ijklm · nj + 1
|Y |

∫
Y

B1
ijklm · nj dY , with fixed index j. (29)

B1
ijklm are components of the second-order stress localization tensor B1 and klm =

{111, 211, 311, ..., 112, 212, 312}18. Therefore, 18 loads are applied successively over

the unit-cell.

• Third-order corrective load:

F 2
iklmn = −B2

ijklmn · nj + 1
|Y |

∫
Y

B2
ijklmn · nj dY , with fixed index j. (30)
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B2
ijklmn are components of the third-order stress localization tensor B2 and klmn =

{1111, 2111, 3111, ..., 1312, 2312, 3312}54. Therefore, 54 loads are applied successively

over the unit-cell.

Note that nj is the normal direction of Γt and the fixed index j ∈ {1, 2, 3} is the

index of this normal direction.

The resulting displacement, strain, and stress fields obtained for each loading case

provide a component of first, second, or third order boundary layer displacement,

strain, and stress localization tensors (D0,bl,A0,bl,B0,bl), (D1,bl,A1,bl,B1,bl), and (D2,bl,A2,bl,B2,bl),

respectively.

Therefore, the boundary layer correctors read:

ubl (x, y) = ϵD0,bl (y) : E (x)

+ ϵ2 D1,bl (y) ... ∇xE (x)

+ ϵ3 D2,bl (y) :: ∇x∇xE (x)


∀x ∈ Γt, ∀y ∈ Y, (31)

εbl (x, y) = A0,bl (y) : E (x)

+ ϵ A1,bl (y) ... ∇xE (x)

+ ϵ2 A2,bl (y) :: ∇x∇xE (x)


∀x ∈ Γt, ∀y ∈ Y, (32)

σbl (x, y) = B0,bl (y) : E (x)

+ ϵ B1,bl (y) ... ∇xE (x)

+ ϵ2 B2,bl (y) :: ∇x∇xE (x)


∀x ∈ Γt, ∀y ∈ Y. (33)

As a result, the stress field σcor

σcor = σest + σbl, (34)

satisfies the Neumann BC.
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Remark 1. In order to manage boundaries which are neither vertical nor horizontal,

one can write the following tensors:


F0 = −B0 · n + 1
|Y |

∫
Y
B0 · n dY,

F1 = −B1 · n + 1
|Y |

∫
Y
B1 · n dY,

F2 = −B2 · n + 1
|Y |

∫
Y
B2 · n dY,

(35a)

(35b)

(35c)

where F0, F1 and F2 are third, fourth and fifth-rank tensors, respectively. Corrective

loads to be applied over the unit-cell, for different orders, are the components of these

tensors. For instance, the normal vector n will be equal to 1√
2

(
1 1 0

)⊤
in the case

of a macroscopic boundary that has a 45◦ boundary.

3.2. Correctors for Dirichlet BCs

It is clear from (25c) that the homogenized displacement field U verifies the

Dirichlet BC, i.e. U = ud on Γu. Therefore, uest defined in Eq. (22) does not

necessarily satisfy this BC. Therefore, a correction is needed that verifies:

ucor (x, y) = U (x) +
(
v (x, y) + ubl (x, y)

)
, (36)

where the periodic fluctuation v reads:

v = ϵu1 (x, y) + ϵ2u2 (x, y) + ϵ3u3 (x, y) , (37)

then
v =ϵ D0 (y) : E (x)

+ ϵ2 D1 (y) ...∇xE (x)

+ ϵ3 D2 (y) :: ∇x∇xE (x) .

(38)
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The correction ubl must verify:

ubl (x, y) = −v (x, y) , ∀x ∈ Γu, ∀y ∈ Y. (39)

Similarly to the Neumann boundary case, several auxiliary problems are consid-

ered providing boundary layer correctors. In this case, corrective displacements ϱi

with i ∈ {1, 2, 3} are applied to the unit-cell and defined as:

• First-order corrective displacement:

ϱ0
ikl = −D0

ikl, (40)

with kl = {11, 22, 33, 23, 31, 12}6 and D0
ikl are components of the first-order dis-

placement localization tensor D0.

• Second-order corrective displacement:

ϱ1
iklm = −D1

iklm, (41)

with klm = {111, 211, 311, ..., 112, 212, 312}18 and D1
iklm are components of the

second-order displacement localization tensor D1.

• Third-order corrective displacement:

ϱ2
iklmn = −D2

iklmn, (42)

with klmn = {1111, 2111, 3111, ..., 1312, 2312, 3312}54 and D2
iklmn are components

of the third-order displacement localization tensor D2.
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The corrective boundary layer fields are obtained by conducting the same analyses

defined in Eq. (31), (32), and (33).

Remark 2. We recall that in order to compute boundary layer localization ten-

sors, for a Neumann boundary conditions, at different orders: (D0,bl,A0,bl,B0,bl),

(D1,bl,A1,bl,B1,bl), and (D2,bl,A2,bl,B2,bl), auxiliary problems, over the unit-cell, are

considered where the applied loads F 0
ikl, F 1

iklm and F 2
iklmn are defined in Eq. (28), (29),

and (30), respectively. Similarly for Dirichlet boundary conditions, displacement

fields ϱ0
ikl, ϱ1

iklm, and ϱ2
iklmn, defined in Eq. (40), (41), and (42), are applied on the

unit-cell. Details concerning the formulation of auxiliary problems, at the first-order,

are provided in Fergoug et al. (2022), and are omitted here for higher-orders for the

sake of conciseness.

Remark 3. For mixed BCs, the correction is derived by applying both characteristic

load Fi and displacement ϱi. The correction to be ultimately applied depends on the

actual (Neumann or Dirichlet) BC applied in this specific direction. For more details,

the reader is referred to Fergoug et al. (2022).

4. Numerical implementation

The objective of the relocalization process is to compute estimated fields (uest, εest, σest)

defined in Eq. (22), (23), (24), respectively. To do so, three hierarchical sets of elastic-

ity problems are solved over the unit-cell, with applied Periodic Boundary Conditions

(PBC):

• First-order problem
(
P1st

order

)
: After discretizing the unit-cell domain, six lin-

early independent unit strain loads are applied (for 3D cases). By using the modified

Voigt notations, the macroscale strain field reads:

E =
(
E11, E22, E33,

√
2E23,

√
2E31,

√
2E12

)
6

. (43)
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The solutions to these problems are first-order displacement, strain, and stress lo-

calization tensors: D0, A0, and B0, respectively. The homogenized elasticity tensor

reads: C0 = ⟨B0 (y)⟩Y .

• Second-order problem
(
P2nd

order

)
: A body force L1 and eigenstrain η1 defined

in Eq. (9), which depend on the resolution of
(
P1st

order

)
, are prescribed over the unit-

cell. Since these enforcing terms are connected with the gradient of strain E, then

one should apply 18 loads on the unit-cell. Indeed, ∇xE is symmetric according to

its first two indices (Eij,k = Eji,k), then it is possible to represent it by a vector of

dimension 18 as:

∇xE =
(
E11,k, E22,k, E33,k,

√
2E23,k,

√
2E31,k,

√
2E12,k

)
18

, with k = 1, 2, 3. (44)

The solutions to these problems are second-order displacement, strain, and stress

localization tensors: D1, A1, and B1, respectively.

• Third-order problem
(
P3rd

order

)
: A body force L2 and eigenstrain η2 defined in

Eq. (16), which depend on the resolution of
(
P2nd

order

)
, are prescribed over the unit-

cell. Since these enforcing terms are connected with the second gradient of strain E,

one should apply 54 loads on the unit-cell. Indeed, ∇x∇xE can be represented by

a vector of dimension 54:

∇x∇xE =
(
E11,kj, E22,kj, E33,kj,

√
2E23,kj,

√
2E31,kj,

√
2E12,kj

)
54

, with k, j = 1, 2, 3. (45)

The solutions to these problems are third-order displacement, strain, and stress lo-

calization tensors: D2, A2, and B2, respectively.

Remark 4. From a practical standpoint, solving
(
P1st

order

)
,
(
P2nd

order

)
and

(
P3rd

order

)
cor-

responds to subjecting the unit-cell to 6, 18 or 54 gradients of various order of the

strain field.
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Remark 5. Localization tensors, of various orders, are functions of microstructural

characteristics only, and independent of the homogenized problem. Thus, these quan-

tities are computed only once for each type of unit-cell.

After discretizing the macroscale mesh, one can solve the homogenized problem (Phom)

whose solution fields are (U , E, Σ). Successive macroscale strain gradients are used

to compute estimated fields defined in Eq. (22), (23), (24).

Remark 6. Successive gradients of macroscale strain, involved in higher-order relo-

calization processes, are resolved numerically. For instance, the gradient of macroscale

strain field, ∇xE, has been evaluated by extrapolating corresponding strain values be-

tween integration points to the nodes and then appropriately differentiating them

using the usual finite element shape functions. The same procedure is used to evalu-

ate the second gradient of macroscale strain field ∇x∇xE. Sufficient order of finite

element shape functions are required.

To eliminate mesh sensitivity and facilitate the computation of error estimates, we

consider that the macroscale mesh is identical to the microscale one, but endowed

with homogenized properties. If not, a mapping of the homogeneous fields on the

microscale mesh could be considered as shown by Kruch (2007). An intermediate

step is then considered to locate each unit-cell on the macroscale mesh as in Fergoug

et al. (2022).

The relocalization process improvement proposed by Kruch and Forest (1998) is

considered. Estimated fields, in a given point of the unit-cell, are determined using

localization tensors combined with the value of the current macroscale strain or its

gradients at this point, and not its average over the unit-cell.

Once homogenization problems are solved, localization tensors are used to con-

struct corrective loads and displacements for the boundary layer correction. After-
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wards, boundary layer localization tensors (D0,bl,A0,bl,B0,bl), (D1,bl,A1,bl,B1,bl) and

(D2,bl,A2,bl,B2,bl) are computed and used to compute boundary layer correctors de-

fined in Eq. (31), (32), and (33).

Higher-order relocalization and boundary layer correction processes are summarized

in Fig. 2.

5. Numerical examples

To demonstrate the effectiveness of the proposed relocalization and boundary

layer correction processes, two numerical examples of composite structures in linear

elasticity are presented.

In these examples, we will compare the following fields:

• Microscale fields obtained by solving problem (Pref ) using DNS, which will be

considered as our reference, indexed ref.

• Homogeneous fields obtained by solving problem (Phom), indexed hom.

• Proposed first, second, and third-order estimates of microscale fields obtained

by the first, second, and third-order relocalization processes, indexed est1, est2,

and est3, respectively.

• Proposed first, second, and third-order boundary layer corrections of estimated

fields indexed cor1, cor2, and cor3, respectively.

We will also quantify the difference between the reference and estimated fields by

computing the modeling error. For this purpose, the following local (element-wise)

24



First-order
problem

Third-order
relocalization

Third-order
problem

Second-order
problem

Second-order
relocalization

Volume
average

Homogenized
problem

Higher-order
relocalization

Macroscale
mesh

First-order
relocalization

Second-order
boundary layer

correction

Neuman BC

Dirichlet BC

Mixed BC
{

Third-order
boundary layer

correction

Neuman BC

Dirichlet BC

Mixed BC
{

Neuman BC

Dirichlet BC

Mixed BC
{ First-order

boundary layer
correction

+

Boundary layer
Correction

First-order
relocalization

on the boundary

Second-order
relocalization

on the boundary

Third-order
relocalization

on the boundary

Unit-cell Unit-cell

Figure 2: Workflow describing higher-order relocalization and boundary layer correction processes.

error in energy norm is defined:

∥e∥E(Ωe) = ∥uref (x) − uk (x)∥E(Ωe)

=
(∫

Ωe

∇s
(
uref (x) − uk (x)

)
: C : ∇s

(
uref (x) − uk (x)

)
dΩe

) 1
2

,
(46)
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where Ωe denotes the domain of an element and uk (x) denotes the estimated dis-

placement field whose error is measured. The global error ∥e∥E(Ω) is then defined

as:

∥e∥2
E(Ω) =

∑
e

∥e∥2
E(Ωe). (47)

5.1. Laminated composite in bending

We consider a plane strain elasticity problem of a laminated composite made of

two layers as presented in Fig. 3. The size of the structure is L = 8 mm, H = 5 mm

and W = 1 mm. The two layers are assumed to be isotropic linear elastic with

coefficients (Em = 500 MPa, νm = 0.3) and (Ef = 5000, νf = 0.3).

In this example, we consider that ϵ = 1. Therefore, mechanical fields depend only

s

(E , ν )
f f

(E , ν )
m m

(a) Structure geometry
(b) Unit-cell domain

(c) Unit-cell mesh

Figure 3: Illustration of the laminated composite subjected to bending. The structure is sliding

on Γs and a surface bending is applied on Γt. Other boundaries are kept free of forces. Results will

be plotted along AB and CD lines. Boundary layer correctors will be plotted for the boundary cell

with dashed line.

on x, representing both microscale and macroscale coordinates. The finite element

mesh describing the unit-cell is composed of 1600 fifteen-node wedge element as

shown in Fig. 3. Therefore the mesh describing the entire structure including all
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heterogeneities is composed of 64 000 elements, corresponding to 867 909 degrees of

freedom.

Remark 7. In order to correct the mixed boundary Γs, it is necessary to apply both

the Neumann and Dirichlet boundary corrections.

5.1.1. Comparison of stress fields

Comparison of resulting stress fields along AB and CD lines are presented in

Fig. 4. First-order estimates, i.e. σest1
11 and σest1

12 , obtained by the first-order relocal-

ization process, are inaccurate in the inner domain of the structure. This is mainly

explained by high macroscale strain gradients induced by the bending and neglected

by a classical first-order relocalization.

We propose to conduct a higher-order relocalization process, up to the third-order,

to introduce the effects of macroscale strain gradients. As noticed in Fig. 6, second-

order estimates, i.e. σest2
11 and σest2

12 , and third-order estimates, i.e. σest3
11 and σest3

12 ,

perfectly coincide with the reference inside the structure.

Remark 8. In this example, the contribution of a third-order relocalization is neg-

ligible compared to a second-order relocalization. This is explained by the low second

gradient of macroscale strain field, ∇x∇xE, induced by the bending. For the sake of

conciseness, upcoming analyses will be restricted up to the second-order.

The estimated fields lose their accuracy near the boundaries. This is due to the loss

of periodicity in the vicinity of these regions.

We propose a boundary layer correction method based on the computation of correc-

tive terms, that decay toward the interior of the body. Figures 5a and 5b show first

and second-order boundary layer correctors σbl1
11 , and σbl2

11 , respectively. The decay of

both boundary corrections takes place over one unit-cell. These corrective terms are
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Figure 4: Results of the homogenized (hom) and reference (ref) fields compared with the first-

order (est1), second-order (est2), and third-order (est3) estimates for the laminated composite in

bending.
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added to the estimated fields obtained from the relocalization processes.

First-order (cor1) and second-order (cor2) corrected fields plotted along AB and

(a) σbl1
11 (MPa) (b) σbl2

11 (MPa)

Figure 5: First-order (σbl1
11 ) and second-order (σbl2

11 ) boundary layer correctors for the boundary cell

with dashed line in Fig. 3. The decay inward (left side of the unit-cell) of both boundary corrections

takes place over one unit-cell.

CD lines are presented in Fig. 6.

Remark 9. Boundary layer correctors are introduced at each order. Thus, for in-

stance: σcor1
11 = σest1

11 + σbl1
11 , and σcor2

11 = σcor1
11 + σbl2

11 .

First-order corrected fields are still inaccurate on the boundaries, contrarily to second-

order corrected fields which are in a good agreement with the reference fields. In

particular, σcor2
11 verifies the applied Neumann condition at x1 = 8 mm similarly to

the reference and the homogeneous counterparts, but it is not the case for σest1
11 .

We also notice that high stresses are developed inside the structure and in the vicinity

of the sliding boundary Γs as shown in figure 6, which may result in underestimating

failure criteria if the design is conducted without the higher-order relocalization and
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boundary layer correction.

More precise quantification of the error is provided in the next subsection.

5.1.2. Modeling error

Local relative modeling error between the reference and first-order relocalized

fields, before and after the boundary layer correction, are shown in Fig. 7a and 7b,

respectively. After the boundary layer correction, the error is reduced on the bound-

aries, yet still spread inside the structure. For second-order fields, the error before

the correction (Fig. 7c), is negligible in the inner domain of the structure, but signif-

icant on the boundaries, especially in the vicinity of the sliding boundary Γs. After

the correction, the modeling error is drastically reduced, but remains concentrated

at the corners, as shown in Fig. 7d.

Remark 10. A particular treatment was considered for corner cells correction, as

explained by Fergoug et al. (2022). This correction improves the overall result, yet

leaves some residual errors because of the loss of periodicity conditions. Indeed, as

shown in Fergoug et al. (2022), Periodic Boundary Conditions (PBC) are not applied

for corner cells, contrary to other boundaries where PBC are considered. The corner

cells correction can be improved by considering a boundary layer correction applied

to two unit-cells instead of one.

Table 1 summarizes the global relative modeling error for different fields. Second-

order relocalization combined with the boundary layer correction allows to drastically

reduce the global modeling error by a factor of 3 to 4.

Remark 11. The use of a Cauchy continuum on the macroscale can lead to errors in

the relocalization process for some microstructures and loading conditions as shown in

appendix C. In these cases, a higher continuum should considered at the macroscale.

30



hom ref cor1 cor2

 80

 100

 120

 140

 160

 180

 200

 220

 0  1  2  3  4  5  6  7  8

x1 (mm)

(a) σ11 (MPa) plotted along AB line

-40

-20

 0

 20

 40

 60

 80

 100

 120

 0  1  2  3  4  5  6  7  8

x1 (mm)

(b) σ12 (MPa) plotted along AB line

-400

-300

-200

-100

 0

 100

 200

 300

 400

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

x2 (mm)

(c) σ11 (MPa) plotted along CD line

-80

-60

-40

-20

 0

 20

 40

 60

 80

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

x2 (mm)

(d) σ12 (MPa) plotted along CD line

Figure 6: Results of the homogenized (hom) and reference (ref) fields compared with the corrected

first-order (cor1), and second-order (cor2) estimates for the laminated composite in bending.
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(a)
∥uref −uest1∥2

E(Ωe)
∥uref ∥2

E(Ω)
(b)

∥uref −ucor1∥2
E(Ωe)

∥uref ∥2
E(Ω)

(c)
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(d)
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Figure 7: Comparison of the local relative modeling error results for the laminated composite in

bending. The modeling error is drastically reduced by increasing the order of the relocalization and

boundary layer correction.

Table 1: Comparison of the global relative modeling error for different fields.

Global modeling k = k = k = k =

error est1 cor1 est2 cor2

∥uref −uk∥E(Ω)
∥uref ∥E(Ω)

16.6% 10.9% 14.4% 4.7%
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5.2. Matrix-inclusion composite subjected to prescribed body forces

We consider the in-plane linear elasticity problem of a matrix-inclusion composite,

as depicted in Fig. 8, subjected to body forces (f1 and f2) in the two space directions,

with Γu fixed. The size of the structure is L = 1 mm and H = 1 mm with fiber volume

fraction of 0.25; matrix and inclusions are assumed to be isotropic linear elastic with

coefficients (Em = 1 MPa, νm = 1/3) and (Ef = 100, νf = 1/3), respectively. In this

example, the scale ratio ϵ = 1/3. The finite element mesh describing the unit-cell is

composed of 6300 twenty-node brick element element as shown in Fig. 8. Therefore

the mesh describing the entire structure including all heterogeneities is composed of

56 700 elements, corresponding to 1 193 409 degrees of freedom.

Body forces are prescribed in the form:

(E , ν )
m m

(E , ν )
f f

u

(a) Structure geometry

y

y

(b) Unit-cell domain
(c) Unit-cell mesh

Figure 8: Illustration of matrix-inclusion composite. The structure is fixed on Γu, body forces f1

and f2 are applied in the two directions of space. Results will be plotted along AB and CD lines.

Boundary layer correctors will be plotted for the boundary cell with dashed line.


f1= sin(πx1) sin(πx2) − C0

1122 + C0
1212

C0
2222 + C0

1212
cos(πx1) cos(πx2),

f2= sin(πx1) sin(πx2) − C0
2211 + C0

1212
C0

1111 + C0
1212

cos(πx1) cos(πx2).

(48a)

(48b)
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The choice of the applied body forces f1 and f2 is justified by the resulting sim-

ple analytical solutions obtained for the homogenized problem (Phom). Indeed, the

homogenized displacement field is:


Ui =Xi sin(πx1) sin(πx2),

X1=
1

π2 (C0
1111 + C0

1212)
, X2 = 1

π2 (C0
2222 + C0

1212)
,

(49a)

(49b)

where C0
ijkl are the components of the effective tensor C0, and the homogenized

material is orthotropic.

Remark 12. Successive gradients of macroscale strain are computed analytically.

Therefore, numerical errors resulting from higher-order spatial derivatives of E are

avoided. In the general case, E and its successive gradients must be obtained numer-

ically, as in the previous example 5.1.

This problem 5.2 has also been treated by He and Pindera (2020b), where a third-

order relocalization is performed using a finite volume method. The boundary layer

correction is conducted by applying the third-order relocalized displacement field, de-

fined in Eq. 22, in the inner domain of the fully detailed, i.e. using DNS, boundary.

This may be computationally cumbersome when the boundary domain is large. We

propose an alternative boundary layer method, where corrective terms are obtained

by the resolution of independent auxiliary problems over a single unit-cell, and then

added to the relocalized fields as explained in section 3. The nature of the prob-

lems to be solved depends on the actual boundary conditions applied locally to the

structure (Fergoug et al., 2022). A comparative study is performed in appendix B.

5.2.1. Comparison of stress fields

Comparisons of stress fields, before the boundary layer correction, along the AB

and CD lines are presented in Fig. 9. Second and third-order estimates perfectly co-
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incide with reference fields in the inner domain of the composite, but are inaccurate

near the boundaries. The first-order estimate, however, provides a poor approxima-

tion on the whole plotted domain. It is noticed, in Fig. 9, that third-order estimates

provide slightly more accurate solutions than second-order estimates, especially near

the boundaries, albeit at a higher computation cost.

First (σbl1
11 ), second (σbl2

11 ) and third-order (σbl3
11 ) boundary layer correctors are shown

in figures 10a, 10b, and 10b, respectively. It is observed that the decay of the cor-

rection takes place over one unit-cell and becomes less pronounced by increasing the

order of the correction.

Comparisons of stress fields, after the boundary layer correction, along the AB

and CD lines are presented in Fig. 11. It is showed that corrected fields, near the

boundaries, get closer to the reference by increasing the order of the correction.

5.2.2. Modeling error

The local relative modeling error, without the boundary layer correction, is pre-

sented in figures 12a, 12b, and 12c. By increasing the order of the relocalization,

the error is drastically reduced in the inner domain of the composite, but remains

concentrated near the fixed boundary Γu.

The local relative modeling error, after the boundary layer correction, is presented

in figures 12d, 12e, and 12f. The modeling error significantly decreases near the

boundaries, but remains mainly concentrated at the corners.

Table 2 summarizes the global relative modeling error for different fields. The global

modeling error is reduced by a factor of 3 to 4 for a third-order relocalization com-

bined with boundary layer correction.
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Figure 9: Results of the reference (ref) field compared with the first-order (est1), second-order

(est2), and third-order (est3) estimates.
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(a) σbl1
11 (MPa) (b) σbl2

11 (MPa) (c) σbl3
11 (MPa)

Figure 10: First (σbl1
11 ), second (σbl2

11 ), and third-order (σbl3
11 ) boundary layer correctors for the

boundary cell with dashed line in Fig. 8. The decay inward (upper side of the unit-cell) of the

corrections takes place over one unit-cell, but less pronounced for the second and third-order cor-

rections.

Table 2: Comparison of the global relative modeling error for different fields.

Global modeling k = k = k = k = k = k =

error est1 cor1 est2 cor2 est3 cor3

∥uref −uk∥E(Ω)
∥uref ∥E(Ω)

16.4% 12.7% 12.6% 6.1% 12.3% 5.1%

6. Conclusions

In this work, we have proposed a higher-order relocalization process, up to the

third-order, to estimate heterogeneous fields without conducting DNS. The pro-

posed relocalization introduces the effects of macroscale strain gradients, generally

neglected by a classical first-order homogenization. As a result, the range of applica-

bility of asymptotic homogenization/relocalization is extended to cases subjected to
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Figure 11: Results of the reference (ref) field compared with the first-order (est1), second-order

(est2), and third-order (est3) estimates.
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(a)
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E(Ωe)
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(d)
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(f)
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E(Ωe)
∥uref ∥2

E(Ω)

Figure 12: Comparison of the local relative modeling error results. The error is drastically reduced

by increasing the order of the relocalization and boundary layer correction.

strong macroscale strain gradients. Our implementation of localization tensors has

been verified, up to the third-order, based on analytical solutions provided by Boutin

(1996). These tensors can be computed off-line and used for any composite structure

involving the same unit-cell.

We have also proposed a general boundary layer correction based on asymptotic

homogenization, up to the third-order, in order to estimate consistent microscale

fields in the vicinity of the boundaries. The classical asymptotic homogenization is
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modified at the boundaries by adding corrective terms, that decay toward the in-

terior of the composite. These terms are obtained from the resolution of different

problems over the unit-cell. The nature of the problems to be solved depends on

the actual boundary conditions applied locally to the composite structure. The pro-

posed boundary layer method is valid for different boundary conditions: Dirichlet,

Neumann or mixed.

The major conclusions that can be drawn from this study are:

• The boundary layer correction decays within one unit-cell.

• First-order estimates may be inaccurate on the boundaries and in the inner

domain of the structure. In contrast, second and third-order estimates are

in good agreement with the reference fields inside the structure, but remain

inaccurate at the boundaries.

• By increasing the order of the boundary layer correction, corrected fields pro-

gressively tend towards the reference.

• Higher-order relocalization combined with the boundary layer correction allows

to drastically reduce the global modeling error by a factor of 3 to 4.

• Second and third-order corrected stress fields capture high stresses developed

inside the structure and near boundary regions. In particular, for the laminated

composite in bending shown in Sec. 5.1, σest1
12 is 3 times smaller, inside the

structure, than σref
12 and 5 times smaller near the sliding boundary. This may

result in underestimating failure criteria if the design is conducted without the

higher-order relocalization and boundary layer correction.

The proposed higher-order relocalization and boundary layer correction are appli-

cable to 3D cases, but only 2D examples were provided for the sake of conciseness.
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The suggested methods could be a path toward estimating microscale fields of 3D

realistic engineering composite structures. This implies the use of irregular structure

domains, coarse macroscale finite element meshes and locally nonperiodic zones.
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Appendix A: Numerical validation of localization tensors

The objective of this appendix is to validate our numerical implementation of

higher-order localization tensors, up to the third-order. To do so, we compare the

obtained numerical, relocalization and effective, tensors with their analytical solu-

tions provided by Boutin (1996). For the sake of conciseness, expressions of analytical

solutions are omitted.

A stratified composite is considered composed of two isotropic elastic layers a and b

with respective thickness (1 − τ)h and τh as shown in Fig. A.1a. The elastic moduli

of the phase a and b are (Ea, νa) and (Eb, νb), respectively. Layers a and b are peri-

odically distributed along the direction y1, and remain unchanged by any translation

along directions y2 and y3. Therefore, local fields depend only on variable y1.

(a) Stratified composite geometry (b) Unit-cell domain

Figure A.1: Illustration of the studied problem.

For numerical simulations, the following material properties are considered: Eb = 1GPa, Ea = 5GPa

and µa = µb = 0.3 with τ = 0.5.
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First-order problem
(
P1st

order

)
validation

The solutions to these problems are first-order displacement, strain, and stress

localization tensors: D0, A0, and B0, respectively.

Components D0
111 and A0

1111 are shown in Fig. A.2a and A.2b, respectively. Displace-

ment fields, i.e. components of D0, are piecewise linear as shown in Fig. A.2c while

strain fields, i.e. components of A0, are constant per layer as shown in Fig. A.2d.

Comparison between obtained numerical and analytical solutions of first-order dis-

placement, strain, and stress localization tensors: D0, A0, and B0 are shown in fig-

ures A.2c, A.2d and A.2e, which are in perfect agreement.

Remark A.1. By a volume average process on B0, one can deduce the homogenized

elasticity tensor C0. An orthotropic macroscopic elastic behavior is obtained.

Second-order problem
(
P2nd

order

)
validation

The solutions to these problems are second-order displacement, strain, and stress

localization tensors: D1, A1, and B1, respectively.

Components D1
2222 and A1

12222 are shown in figures A.2a and A.2b, respectively. Dis-

placement fields are now quadratic functions as shown in Fig. A.3c while strain fields

are piecwise linear as shown in Fig. A.3d. Comparison between obtained numerical

and analytical solutions of second-order displacement, strain, and stress localization

tensors: D1, A1, and B1 are shown in figures A.3c, A.3d and A.3e, which are in perfect

agreement.

Remark A.2. Components of B1 have a zero volume average on the unit-cell. There-

fore, the second-order effective tensor C1 = 0, which is a fifth-rank tensor.
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(a) D0
111 component (b) A0

1111 component
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Figure A.2: Results of the first-order homogenization problem
(

P1st

order

)
. Figures A.2c, A.2d

and A.2e show perfect agreement between numerical (in blue) and analytical (in red) results.
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Third-order problem
(
P3rd

order

)
validation

The solutions to these problems are third-order displacement, strain, and stress

localization tensors: D2, A2, and B2, respectively.

Components (D2
12222, B2

222222) and (D2
21121, A2

121121) are shown in Fig. A.4. Dis-

placement fields are now cubic functions as shown in figures A.4b and A.4f while

stress/strain fields are quadratic functions as shown in figures A.4d and A.4h.

Remark A.3. After averaging values of B2, one can deduce the third-order effective

tensor C2, which is a sixth-rank tensor. Analytical expression of D2, A2, and B2 were

not provided in Boutin (1996), but values of C2 are detailed. We have verified that we

obtain, exactly, the same values of C2 provided in Boutin (1996) by our numerical

procedure.
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Figure A.3: Results of the second-order homogenization problem
(

P2nd

order

)
. Figures A.3c, A.3d

and A.3e show perfect agreement between numerical (in blue) and analytical (in red) results.
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(a) D2
12222 component
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Figure A.4: Third-order relocalization components (D2
12222, B2

222222) and (D2
21121, A2

121121).
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Appendix B: Comparative study

The objective of this appendix is to compare our results of higher-order relocaliza-

tion and boundary layer correction with those obtained in He and Pindera (2020a).

First, second and third-order components of stress localization tensors are shown in

Fig. B.1. These results are to be compared with those presented in He and Pin-

dera (2020a) (see their figure 3), where a finite-volume method was used to compute

localization tensors. It is noticed that exactly the same results are obtained.

(a) B0
1111 (MPa) (b) B1

11111 (MPa) (c) B2
111111 (MPa)

Figure B.1: First, second and third-order components of stress localization tensors produced by a

unit loadings.

Remark B.1. The component B1
11111 has a zero average distribution over the unit-

cell, implying that the first component of the second-order effective tensor C1
11111 = 0.

In general, C1 = 0 in case of centro-symmetric unit-cell.

Comparison of different stress fields σ11 are shown in Fig. B.2. By increasing the

order of the relocalization, estimated stress fields approach progressively the refer-

ence. Figures B.2e and B.2f show that a third-order relocalization provides a good

estimation in the inner domain of the structure, nevertheless accuracy is lost near the
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boundaries. Similar results are shown in He and Pindera (2020a) (see their figure 5).

Comparison of stress fields, after the boundary layer correction, are shown in

(a) σest1
11 (b) σest2

11 (c) σest3
11

(d) σref
11 (e) σest1

11 − σref
11 (f) σest3

11 − σref
11

Figure B.2: Comparison of different stress fields σ11 (MPa). By increasing the order of the relocal-

ization, estimated stress fields approach progressively the reference, yet remain inaccurate near the

boundaries.

Fig. B.3. It is noticed that the corrected stress, σcor3
11 , provides a better estimation

near the boundaries (see figure B.3b), contrary to σest3
11 in figure B.2f.

In He and Pindera (2020a), a boundary layer correction is conducted by applying

the third-order relocalized displacement field in the inner domain of the fully de-

tailed, i.e. using DNS, boundary.
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By comparing our results, it is noticed that a better approximation of σcor3
11 is pro-

vided by the boundary correction by He and Pindera (2020a), albeit at a higher

computing cost. Indeed, instead of conducting DNS, which may be computationally

cumbersome when the boundary domain is large, our method introduce corrective

terms computed on a single unit-cell.

(a) σcor3
11 (b) σcor3

11 − σref
11

Figure B.3: Comparison of corrected stress fields σ11 (MPa). σcor3
11 provides a better approximation

than σest3
11 as shown in Fig. B.2f.
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Appendix C: Limitation of the proposed approach

We consider a plane strain elasticity problem of a laminated composite made of

two layers as presented in Fig. C.1. The size of the structure is L = 8 mm, H = 5 mm

and W = 1 mm. The two layers are assumed to be isotropic linear elastic with co-

efficients (Ef/Em = 200, νm = νf = 0.3). The structure is fixed on the left

whereas a prescribed displacement u2 = − 2 mm is applied on the right, as shown

in Fig. C.1.

The comparison between the reference displacement field uref
2 and the homogenized

x

x

u =-2mm
2

(E , ν )
f f

(E , ν )
m m

(a) Structure geometry

y

y

(b) Unit-cell domain

Figure C.1: Illustration of a laminated composite in bending. The structure is fixed on the left, a

displacement u2 = − 2 mm is applied on the right.

one uhom
2 , using conventional Cauchy continuum, are presented in Fig. C.2. It can be

seen that the Cauchy medium gives a poor prediction of the real deformation state.

This is due to the fact that it is not able to take into account the clamping con-

ditions. Consequently, the relocalization process will be inaccurate, even including

higher-order terms, since the resulting macroscale strain and its gradients, consider-

ing a Cauchy continuum, are inaccurate and not representative of the deformation

state, especially near the fixed boundary, which can be seen in Fig. C.3. Cosserat
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(a) uref
2 (b) uhom

2

Figure C.2: Comparison between the reference and homogenized displacement field u2.

medium was considered at the macroscale in Forest and Sab (1998) providing better

solutions. A higher-order relocalization, using a Cosserat medium at the macroscale,

is supposed then to provide better solutions than those presented in Fig. C.3. A

macroscopic strain gradient approach would also provide a better solution.

Remark C.1. When considering a structure constructed by one of the two unit-cells

presented in subsection 5.1 or 5.2 and subjected to the same boundary conditions in

Fig. C.1a, the macroscale strain and its gradients, using a Cauchy continuum, will

be representative of the deformation state. Consequently, higher-order estimates will

accurately approximate reference fields. The need of a higher-gradient continuum is,

therefore, specific to both the considered microstructure and loading conditions.
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(a) σref
11 (MPa) (b) σest1

11 (MPa)

(c) σest2
11 (MPa) (d) σest3

11 (MPa)

Figure C.3: Results of the reference (σref
11 ) field compared with the first-order (σest1

11 ), second-order

(σest2
11 ), and third-order (σest3

11 ) estimates for the laminated composite in bending.
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