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Abstract: Cell fusion (fusogenesis) occurs in natural and pathological conditions in prokaryotes
and eukaryotes. Cells of monocyte–macrophage lineage are highly fusogenic. They create syn-
cytial multinucleated giant cells (MGCs) such as osteoclasts (OCs), MGCs associated with the
areas of infection/inflammation, and foreign body-induced giant cells (FBGCs). The fusion of
monocytes/macrophages with tumor cells may promote cancer metastasis. We describe types and
examples of monocyte–macrophage lineage cell fusion and the role of actin-based structures in
cell fusion.

Keywords: cell fusion; syncytium; monocyte; macrophage; osteoclast; hematopoietic stem cells; giant
cells; viral fusion; cell protrusions; podosomes; tumor-associated macrophages

1. Monocyte–Macrophage Cell Lineage

Monocyte–macrophage cell lineage derives from multipotent hematopoietic stem cells
(HSCs) in the bone marrow. The classical view is that HSCs differentiate into lymphoid
(LPC) and myeloid (MPC) progenitor cells. After further differentiation, LPCs generate
T cells, NK cells, and B cells, while the MPCs produce basophils, eosinophils, erythrocytes,
megakaryocytes, monocytes, and neutrophils. Subsequent differentiation of monocytes
generates dendritic cells, macrophages, and pro-osteoclasts (Figure 1; [1–5]). With progress
in single-cell analyses, this traditional and simplistic version of progenitor cell differen-
tiation has been challenged. Many studies indicate that HSCs are heterogeneous and
biased in their differentiation potential [6]. Studies also showed that hematopoietic stem
cell bias is regulated by the distinct niche they occupy in bone marrow [7]. Based on
the bias, myeloid-biased (My-Bi), balanced (Ba), lymphoid-biased (Ly-Bi), platelet-biased
(Pl-Bi), and quiescent Peroxisome Proliferator-Activated Receptor γ positive (PPARγ+)
osteoclast-biased (Os-Bi) progenitors have been discovered (Figure 1; [8–16]).
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Figure 1. Differentiation of hematopoietic stem cells (HSCs). Multipotent and unbiased hematopoi-
etic stem cells (HSCs) are derived from bone marrow. Depending on the niche they occupy in bone 
marrow and/or expression of certain genes, they become biased in their differentiation potential 
toward a specific cell lineage, such as osteoclast-biased (Os-Bi), myeloid-biased (My-Bi), platelet 
biased (Pl-Bi), and lymphoid-biased (Ly-Bi). Some HSCs have balanced differentiation potential and 
can develop into osteoclast, myeloid, platelet, and lymphoid lineage precursors. Os-Bi HSCs de-
velop into preosteoclasts which, after fusion, create multinucleated osteoclasts. Osteoclasts can also 
derive from mature monocytes or macrophages. The My-Bi HSCs differentiate into neutrophils, eo-
sinophils, basophils, erythrocytes, and monocytes forming dendritic cells and macrophages. Pl-Bi 
HSCs develop into megakaryocytes, which subsequently produce platelets. Megakaryocytes can 
also develop from My-Bi HSCs. Ly-Bi develop into T cells, NK cells, and B cells producing plasma 
cells. 

2. Types and Mechanisms of Fusion 
Cell fusion (fusogenesis, syncytiogenesis) is widespread in natural and pathological 

conditions in prokaryotes and eukaryotes. It occurs, for example, during fertilization (fu-
sion of gametes), embryogenesis (placenta/trophoblast fusion), morphogenesis, tissue de-
velopment (muscle cell and osteoclast formation), tissue and organ repair, immune re-
sponse, tumor development, and pathogen infection and spreading [17–29]. Depending 
on applied criteria, cell fusion can be divided into homotypic (fusion of the same cell 
types) versus heterotypic (different cell type fusion), and synkaryotic (homotypic or het-
erotypic nuclei merge creating mononuclear syncytium) versus heterokaryotic (homo-
typic or heterotypic multinucleated syncytium) (Figure 2A; [30–33]). Some cases fall be-
tween strict categories when fusing cells are of the same origin but at a different phase of 
differentiation [34–36]. Additionally, the origin of syncytia can differ. Usually, we reserve 
the term syncytium for a product of a fusion of two or more independent cells. However, 
a product of multiple incomplete (without or with partial cytokinesis) divisions of a single 
cell can also be called syncytium. Examples include nurse cell syncytia in insect ovaries, 
early embryonic syncytium in Drosophila, and ovarian germline cyst in oogenesis of 
Xenopus frog (Figure 2B; [37–41]). 

Figure 1. Differentiation of hematopoietic stem cells (HSCs). Multipotent and unbiased hematopoietic
stem cells (HSCs) are derived from bone marrow. Depending on the niche they occupy in bone
marrow and/or expression of certain genes, they become biased in their differentiation potential
toward a specific cell lineage, such as osteoclast-biased (Os-Bi), myeloid-biased (My-Bi), platelet
biased (Pl-Bi), and lymphoid-biased (Ly-Bi). Some HSCs have balanced differentiation potential
and can develop into osteoclast, myeloid, platelet, and lymphoid lineage precursors. Os-Bi HSCs
develop into preosteoclasts which, after fusion, create multinucleated osteoclasts. Osteoclasts can
also derive from mature monocytes or macrophages. The My-Bi HSCs differentiate into neutrophils,
eosinophils, basophils, erythrocytes, and monocytes forming dendritic cells and macrophages. Pl-Bi
HSCs develop into megakaryocytes, which subsequently produce platelets. Megakaryocytes can also
develop from My-Bi HSCs. Ly-Bi develop into T cells, NK cells, and B cells producing plasma cells.

2. Types and Mechanisms of Fusion

Cell fusion (fusogenesis, syncytiogenesis) is widespread in natural and pathological
conditions in prokaryotes and eukaryotes. It occurs, for example, during fertilization
(fusion of gametes), embryogenesis (placenta/trophoblast fusion), morphogenesis, tissue
development (muscle cell and osteoclast formation), tissue and organ repair, immune
response, tumor development, and pathogen infection and spreading [17–29]. Depending
on applied criteria, cell fusion can be divided into homotypic (fusion of the same cell types)
versus heterotypic (different cell type fusion), and synkaryotic (homotypic or heterotypic
nuclei merge creating mononuclear syncytium) versus heterokaryotic (homotypic or het-
erotypic multinucleated syncytium) (Figure 2A; [30–33]). Some cases fall between strict
categories when fusing cells are of the same origin but at a different phase of differentia-
tion [34–36]. Additionally, the origin of syncytia can differ. Usually, we reserve the term
syncytium for a product of a fusion of two or more independent cells. However, a product
of multiple incomplete (without or with partial cytokinesis) divisions of a single cell can
also be called syncytium. Examples include nurse cell syncytia in insect ovaries, early
embryonic syncytium in Drosophila, and ovarian germline cyst in oogenesis of Xenopus frog
(Figure 2B; [37–41]).
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Figure 2. Types and origin of syncytia. (A) Syncytium derived from the fusion of identical cells is 
called homotypic syncytium. Homotypic fusion of cell cytoplasms creates homotypic heterokaryotic 
syncytium with multiple nuclei. Homotypic fusion of cell cytoplasms and nuclei creates homotypic 
synkaryotic syncytium. Syncytium derived from the fusion of different cell types is called hetero-
typic syncytium. Heterotypic fusion of only cell cytoplasms creates heterotypic heterokaryotic syn-
cytium with multiple nuclei of different origins. Heterotypic fusion of cell cytoplasms and nuclei 
creates heterotypic synkaryotic syncytium. (B) Origin of syncytia during development. In some in-
stances, progenitor cell divides multiple times with partial cytokinesis forming a group (called nest 
or cyst) of descendant cells connected by cytoplasmic bridges. Eventually, these cells either separate 
into individual cells (for example, in frog or mammalian oogenesis) or fuse to form multinuclear 
syncytium (for example, nurse cell syncytium in insect telotrophic ovary). In other instances, for 
example, during early embryogenesis in Drosophila, the nucleus of the progenitor cell divides mul-
tiple times, creating a multinuclear cell (syncytium), which eventually cellularizes into individual 
cells. 

Live imaging and video microscopy studies showed several patterns of macrophage 
fusion [42]: fusion between the leading edge of one cell and the cell body of another cell; 
and fusion of the leading edge with the posterior end of another cell or between the lead-
ing edges of both cells. The least common patterns were fusions between cell bodies and 
rear ends [42]. 

Although cell fusion mechanisms are highly diverse depending on the fusing part-
ners and biological context, they usually require the presence of proteins mediating fu-
sion, called fusogens. In unilateral fusion, a fusogen is present only on one of the fusing 
partners. In bilateral homotypic fusion, the same fusogen is present on both cells. In bilat-
eral heterotypic fusion, fusing cells contain different fusogens [43]. Before fusion, cells 
must overcome an existing powerful thermodynamic repulsion of membrane lipid bi-
layers and make direct (~nm distance) contact [43–45]. Next, contacting (proximal) lipid 
monolayers rearrange and mix. The subsequent merger of distant monolayers creates a 
fusion pore. Fusogen plays a role in overcoming initial repulsion and opening and ex-
panding fusion pore [43]. The only fusogen implicated in the fusion of myeloid cells is 
Syncytin. Syncytin 1 and 2 in humans and Syncytin A and B in mice derived from retro-
viral syncytin gene integrated during evolution into the mammalian genome [34,46,47]. 
Syncytin binds to its receptor Sodium-Dependent Neutral Amino Acid Transporter Type 
2 (ASCT-2); [34,46]. 

Figure 2. Types and origin of syncytia. (A) Syncytium derived from the fusion of identical cells is
called homotypic syncytium. Homotypic fusion of cell cytoplasms creates homotypic heterokaryotic
syncytium with multiple nuclei. Homotypic fusion of cell cytoplasms and nuclei creates homotypic
synkaryotic syncytium. Syncytium derived from the fusion of different cell types is called heterotypic
syncytium. Heterotypic fusion of only cell cytoplasms creates heterotypic heterokaryotic syncytium
with multiple nuclei of different origins. Heterotypic fusion of cell cytoplasms and nuclei creates
heterotypic synkaryotic syncytium. (B) Origin of syncytia during development. In some instances,
progenitor cell divides multiple times with partial cytokinesis forming a group (called nest or cyst)
of descendant cells connected by cytoplasmic bridges. Eventually, these cells either separate into
individual cells (for example, in frog or mammalian oogenesis) or fuse to form multinuclear syncytium
(for example, nurse cell syncytium in insect telotrophic ovary). In other instances, for example, during
early embryogenesis in Drosophila, the nucleus of the progenitor cell divides multiple times, creating
a multinuclear cell (syncytium), which eventually cellularizes into individual cells.

Live imaging and video microscopy studies showed several patterns of macrophage
fusion [42]: fusion between the leading edge of one cell and the cell body of another cell;
and fusion of the leading edge with the posterior end of another cell or between the leading
edges of both cells. The least common patterns were fusions between cell bodies and rear
ends [42].

Although cell fusion mechanisms are highly diverse depending on the fusing partners
and biological context, they usually require the presence of proteins mediating fusion,
called fusogens. In unilateral fusion, a fusogen is present only on one of the fusing partners.
In bilateral homotypic fusion, the same fusogen is present on both cells. In bilateral
heterotypic fusion, fusing cells contain different fusogens [43]. Before fusion, cells must
overcome an existing powerful thermodynamic repulsion of membrane lipid bilayers and
make direct (~nm distance) contact [43–45]. Next, contacting (proximal) lipid monolayers
rearrange and mix. The subsequent merger of distant monolayers creates a fusion pore.
Fusogen plays a role in overcoming initial repulsion and opening and expanding fusion
pore [43]. The only fusogen implicated in the fusion of myeloid cells is Syncytin. Syncytin
1 and 2 in humans and Syncytin A and B in mice derived from retroviral syncytin gene
integrated during evolution into the mammalian genome [34,46,47]. Syncytin binds to its
receptor Sodium-Dependent Neutral Amino Acid Transporter Type 2 (ASCT-2); [34,46].
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Although the specifics of fusion depend on cell type and biological context, all fuso-
genic proteins must decrease the energy barrier and drive lipid bilayers’ contact, followed
by bilayer rearrangements and rejoining. The syncytin 1 molecule involved in fusion
in mammalian placenta contains several regions: receptor binding domain, two regions
forming a disulfide bond, a furin cleavage site, a fusion peptide, heptad repeats 1 and 2, a
transmembrane region, and a cytoplasmic region. Endopeptidase furin cleaves syncytin,
creating surface and transmembrane subunits. The binding of syncytin to its receptor
changes the structural organization of the syncytin molecule. It breaks the disulfide bonds
and unfolds the fusion peptide that becomes inserted into the membrane. The fusion
peptide penetrates the lipid bilayer of the fusing partner. It also reorganizes actin filaments
underlying membranes, which regulate the stiffness of fusing membranes. Rupture of the
membrane creates a fusion pore connecting the cytoplasm of fusing cells. Rupture of the
membrane creates a fusion pore connecting the cytoplasm of fusing cells. The final step
consists of positional changes of heptad repeat 1 and 2 domains, membrane apposition,
and bending [46].

3. Examples of Monocyte–Macrophage Lineage Cell Fusion

Cells of monocyte–macrophage lineage are highly syncyciogenic (fusogenic) under
physiological and pathological conditions, forming syncytial multinucleated giant cells
(MGCs). Examples of homotypic syncytia derived from monocyte–macrophage lineage
cell fusion are osteoclasts (OCs), MGCs associated with areas of infection/inflammation
called granulomas [48], and foreign body-induced giant cells (FBGCs) [34]. Additionally,
monocyte–macrophages can fuse with cells of different origins, such as hepatocytes [49],
T cells [50], and various circulating and tissue-resident tumor cells [51–53], resulting in
heterotypic syncytia.

3.1. Osteoclasts (OCs)

Osteoclasts are bone-resorbing cells, which, together with bone-forming osteoblasts,
orchestrate bone remodeling [54–58]. Monocyte–macrophage lineage cells differentiate and
fuse into osteoclasts through the activity of the receptor activator of nuclear factor-kappa-B
ligand (RANKL) and its receptor (RANK) signaling pathway (Figure 3; [54]). Osteoclast
activation is also promoted by the RANKL pathway [59]. Mature osteoclasts are large
(~100 µm) cells with up to 20 nuclei [60,61]. Studies showed that giant multinuclear
osteoclasts have much higher bone-resorbing activity than small osteoclasts [59,62–64].
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moting fusion and formation of syncytial multinuclear osteoclasts. After further activation by vari-
ous cytokines, mature osteoclasts acquire a bone-resorbing activity. Osteoblast and stromal cells 
also produce osteoprotegerin (OPC) that prevents excessive bone resorption by binding to and de-
pleting RANKL. Thus, RANKL/OPC ratio determines bone resorption or bone formation. 

3.2. Langhans Giant Cells and Foreign Body Induced Giant Cells (FBGCs) 
Langhans giant cells (LGCs) (not to be confused with Langerhans cells) first de-

scribed in tuberculosis [65] are MGCs containing a characteristic horseshoe-shaped ring 
of nuclei. LGCs are present within every form of granuloma, regardless of infectious or 
non-infectious etiology [66–69]. It is believed that LGCs play a role in restricting the path-
ogen/compound within the host. [69]. Foreign body-induced MGCs (FBGCs) form in re-
sponse to large organic and inorganic compounds and surgical implants [67,70,71]. FBGCs 
are specifically adapted for phagocytosis and removal of large (above 45 μm diameter) 
particles, which individual macrophages cannot eliminate [67]. 

4. Tumor-Associated Macrophages (TAMs) and Cell Fusion in Cancer 
Tumor-associated macrophages (TAMs) are a significant component of tumors, ac-

counting for 30–50% of a tumor mass. In many cancers, a high density of TAMs correlates 
with poor patient prognosis and survival. There are two primary sources of TAMs. One 
is the reprogramming of tissue-resident macrophages to TAMs by the tumor milieu. An-
other is the recruitment of circulating monocytes into the tumor, where they differentiate 
into TAMs [72–74]. One of the theories of tumor progression and metastasis states that 
TAMs and other cells of myeloid origin fuse with cancer cells, allowing them to acquire 
motility and metastasize [52,53,75–77]. Macrophage fusion in breast cancer was recapitu-
lated in cell culture. Shabo et al. [52] observed spontaneous fusion between M2 macro-
phages and GFP-labeled MCF-7 cancer cells. Hybrid cancer cells expressed macrophage-
specific antigen CD163, which correlates with poor survival in cancer patients. The same 
group [53] suggested that the formation of multinucleated fusion hybrids salvages the loss 
of gene function/DNA damage caused by chemotherapy or radiation, allowing hybrid 
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in normal conditions. The bone-resorbing cells’ osteoclasts form through the fusion of preosteoclasts,
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which are derived from monocytes/macrophages and/or osteoclast-biased hematopoietic stem cells
(HSC). Osteoblasts and stromal cells in the bone produce a receptor activator of nuclear factor-kappa-
B ligand (RANKL), which belongs to a tumor necrosis factor family of proteins. RANKL binds to
its receptor RANK expressed on the surface of preosteoclasts and osteoclasts, promoting fusion
and formation of syncytial multinuclear osteoclasts. After further activation by various cytokines,
mature osteoclasts acquire a bone-resorbing activity. Osteoblast and stromal cells also produce
osteoprotegerin (OPC) that prevents excessive bone resorption by binding to and depleting RANKL.
Thus, RANKL/OPC ratio determines bone resorption or bone formation.

3.2. Langhans Giant Cells and Foreign Body Induced Giant Cells (FBGCs)

Langhans giant cells (LGCs) (not to be confused with Langerhans cells) first described
in tuberculosis [65] are MGCs containing a characteristic horseshoe-shaped ring of nuclei.
LGCs are present within every form of granuloma, regardless of infectious or non-infectious
etiology [66–69]. It is believed that LGCs play a role in restricting the pathogen/compound
within the host. [69]. Foreign body-induced MGCs (FBGCs) form in response to large
organic and inorganic compounds and surgical implants [67,70,71]. FBGCs are specifically
adapted for phagocytosis and removal of large (above 45 µm diameter) particles, which
individual macrophages cannot eliminate [67].

4. Tumor-Associated Macrophages (TAMs) and Cell Fusion in Cancer

Tumor-associated macrophages (TAMs) are a significant component of tumors, ac-
counting for 30–50% of a tumor mass. In many cancers, a high density of TAMs correlates
with poor patient prognosis and survival. There are two primary sources of TAMs. One is
the reprogramming of tissue-resident macrophages to TAMs by the tumor milieu. Another
is the recruitment of circulating monocytes into the tumor, where they differentiate into
TAMs [72–74]. One of the theories of tumor progression and metastasis states that TAMs
and other cells of myeloid origin fuse with cancer cells, allowing them to acquire motility
and metastasize [52,53,75–77]. Macrophage fusion in breast cancer was recapitulated in
cell culture. Shabo et al. [52] observed spontaneous fusion between M2 macrophages
and GFP-labeled MCF-7 cancer cells. Hybrid cancer cells expressed macrophage-specific
antigen CD163, which correlates with poor survival in cancer patients. The same group [53]
suggested that the formation of multinucleated fusion hybrids salvages the loss of gene
function/DNA damage caused by chemotherapy or radiation, allowing hybrid cells to
survive and metastasize. Pavelek et al. [76] showed that cancer cells acquire macrophage
molecules and pathways regulating adhesion, extracellular matrix, formation of blood
vessels, chemotaxis and motility, immune response, and multidrug resistance. For example,
macrophage–tumor cell hybrids express B1,6-branched N-glycans, used by macrophages
for migration. In many human cancers, expression of B1,6-branched oligosaccharides
correlates with metastasis and poor patient outcome. Authors suggest that B1,6-branched
oligosaccharides can be used as a marker of macrophage–cancer cell fusion and lead to
novel therapies [76]. Seyfried and Huysentruyt [77] proposed that metastatic cancers stem
from the fusion of cancer cells with myeloid cell lineage descendants, e.g., macrophages,
dendritic cells, or lymphocytes with damaged mitochondria-deficient respiration caused
by chronic inflammation microenvironment. Many hybrid cells express aerobic glycolysis
(Warburg effect), a common feature of metastatic cancers in humans [77].

5. Virally Induced MGCs

Transfer of viruses between cells usually occurs by releasing viral particles from in-
fected cells to an acellular environment and attaching to and entering uninfected cells.
However, viruses enveloped by an external lipid bilayer, such as HIV-1, SARS-CoV-2,
viruses from the Herpesviridae family, and some non-enveloped Reoviridaeviruses devel-
oped an additional efficient way of dissemination through direct cell-to-cell transmission.
Intercellular transfer of virus may occur through intercellular projections such as tunnel-
ing nanotubes (TNTs) [46,78–80] or involve fusion of infected and target cells to form
giant multinucleated syncytial cells [21]. In some cases, syncytial MGCs contain no more
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than ten nuclei (small MGCs), but they are also giant syncytia with hundreds of nu-
clei [21]. Infected cells express on their surface virus-encoded fusogenic proteins, which
interact with receptors or surface molecules present on uninfected cells, promoting fusion
(Figure 4) [21,81–85]. Intercellular transfer through cell fusion allows faster dissemination
and evasion of the immune system. It also allows for infection of myeloid cells (dendritic
cells, macrophages) naturally resistant to infection with a cell-free HIV-1 virus [86]. Myeloid
cells express a high level of the sterile alpha motif and HD-domain-containing protein
1 (SAMHD1) enzyme that cleaves dNTPs necessary for viral replication [86]. Thus, the
HIV-1 virus found another way to effectively disseminate and establish a virus reservoir
in host tissues by fusing macrophages with infected T cells. Studies by Bracq et al. [50]
detailed consecutive steps of macrophage-T cell fusion. In the first step, the infected T
cell establishes contact and fuses with the uninfected macrophage. In the second step, T
cell-macrophage heterotypic syncytium fuses with one or more surrounding uninfected
macrophages, creating an infected MGC that survives for a long time as a reservoir
of virus [50].
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binds to its receptor on the surface of the noninfected cells promoting cell fusion. Resulting multi-
nuclear syncytium replicates the viral genome, becoming the virus’s reservoir and facilitating the 
virus’s further spreading. 
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ing HIV-1 infection in vivo comes from the studies in humanized mice harboring human 
lymphoid tissues. Intravital imaging of viruses encoding fluorescent tags allows for real-
time tracking of syncytia formation. These studies showed that infected T cells elongate 
and fuse into small snake-like syncytia containing a low number of nuclei, which over 
time increase in size. Around 20% of all T cells formed those small syncytia. Importantly, 
these syncytia were mobile and disseminated the virus through transient contacts with 
noninfected lymphocytes [87,88]. 

6. Actin Cytoskeleton Role in Cell Fusion 
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movement, adhesion to the substrate, interaction between fusing partners, and eventually, 
the fusion of cell membranes [43]. These steps require a profound rearrangement of the 
cell cytoskeleton, especially actin filaments, orchestrated by small GTPases Rac-1 and 
RhoA pathways [42,64,70,89–91]. Before fusion, cells must adhere to place their mem-
branes in close contact. Adhesion proteins such as cadherins, β2 integrin, and integrin 
αvβ3 participate in MGC and osteoclast adhesion. Subsequently, integrins mediate the 
rearrangement of the cell cytoskeleton through activation of the Rac-1 pathway [92]. Stud-
ies of the fusion of different cell types (macrophages, osteoclasts, muscle cells) in inverte-
brate and vertebrate animals showed the presence of (short or long) protrusion(s), some-
times called fusopodes [93] emanating from the cell edge [94–101]. Fusopods contain 
bands of actin filaments, and their formation is regulated by Rac-1 [93], Wiskott–Aldrich 
syndrome protein (WASp) family, and Arp2/3 complex, which nucleate and branch actin 

Figure 4. Virally induced fusion. (A) Fusion of the virus with the host cell membrane. Fusion of
virus with the host cell membrane. Virus envelope contains fusion protein, which is recognized
by receptors on the host cell membrane. After binding to its receptor, viral fusion protein unfolds,
causing membrane scission and allowing the viral genome to enter the host cell. (B) Virally induced
fusion of host cells. An infected cell expresses viral fusion protein on its surface. Fusion protein binds
to its receptor on the surface of the noninfected cells promoting cell fusion. Resulting multinuclear
syncytium replicates the viral genome, becoming the virus’s reservoir and facilitating the virus’s
further spreading.

Many in vitro studies showed that cultured T cells infected with HIV virus form giant
multinuclear syncytia. However, these in vitro observations are not necessarily true in
the in vivo situation. The most thorough and realizable description of syncytia formation
during HIV-1 infection in vivo comes from the studies in humanized mice harboring human
lymphoid tissues. Intravital imaging of viruses encoding fluorescent tags allows for real-
time tracking of syncytia formation. These studies showed that infected T cells elongate
and fuse into small snake-like syncytia containing a low number of nuclei, which over
time increase in size. Around 20% of all T cells formed those small syncytia. Importantly,
these syncytia were mobile and disseminated the virus through transient contacts with
noninfected lymphocytes [87,88].
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6. Actin Cytoskeleton Role in Cell Fusion

Cell fusion is a multistep process involving the acquisition of fusion competence, cell
movement, adhesion to the substrate, interaction between fusing partners, and eventually,
the fusion of cell membranes [43]. These steps require a profound rearrangement of the cell
cytoskeleton, especially actin filaments, orchestrated by small GTPases Rac-1 and RhoA
pathways [42,64,70,89–91]. Before fusion, cells must adhere to place their membranes
in close contact. Adhesion proteins such as cadherins, β2 integrin, and integrin αvβ3
participate in MGC and osteoclast adhesion. Subsequently, integrins mediate the rear-
rangement of the cell cytoskeleton through activation of the Rac-1 pathway [92]. Studies of
the fusion of different cell types (macrophages, osteoclasts, muscle cells) in invertebrate
and vertebrate animals showed the presence of (short or long) protrusion(s), sometimes
called fusopodes [93] emanating from the cell edge [94–101]. Fusopods contain bands
of actin filaments, and their formation is regulated by Rac-1 [93], Wiskott–Aldrich syn-
drome protein (WASp) family, and Arp2/3 complex, which nucleate and branch actin
filaments [42,102,103]. Some studies of myeloid cell fusion indicate that tunneling nan-
otubes (TNTs), which contain actin filaments and/or microtubules [79], can also function
as fusopodes [34].

Besides cell extensions, other actin-based structures participating in cell fusion are
podosomes and podosome-derived zipper-like structures (Figure 5). Podosomes are actin-
rich membrane protrusions containing a core of branched F-actin and actin-regulatory
proteins surrounded by an adhesion ring of integrins, vinculin, and talin. Podosomes
play a role in stabilizing cell extensions, sensing rigidity and topography of milieu, adhe-
sion to the substrate, and extracellular matrix degradation [34,104]. Zipper-like structures
(ZLSs), containing periodic bands of actin resembling zipper, are involved in cell-to-cell
interactions and bridging two cell membranes [105–107]. Studies by Balbyev et al. [105]
showed that ZLSs present at the surface of adhering MGCs formed in response to foreign
materials are temporary structures lasting about 15 min. They derive from podosomes and
reconstitute into podosomes. Besides actin, ZLSs also contain adhesion proteins typical
for podosomes. Authors suggest that ZLSs bridge “zippered up” membranes of MGCs
but do not function in cell fusion per se (Figure 5 [105]). In contrast, ZLSs described by
Takito et al. [106] in osteoclasts participate in the cell fusion process. However, the osteo-
clasts’ ZLSs do not derive from podosomes, do not contain adhesion proteins, and form
through a continuous retrograde flow of actin [107]. Thus, ZLSs of MGCs and osteoclasts
share similar morphology but have different functions. Faust et al. [42] studied, in detail,
the relationship between fusogenic protrusions and podosomes in fusing macrophages.
They observed that, before the fusion, a wave of podosomes migrates from the macrophage
interior to the periphery. Subsequently, podosomes align along the cell membrane of
the impending fusion area enriched in extending/retracting cell protrusions. Soon after
aligning podosomes, one protrusion initiates fusion. Following fusion pore formation, actin
filaments reorganize, expanding the pore, and podosomes translocate from the donor cell
to the fusion partner (Figure 5 [42]).

During cell fusion, fusing partners must remodel their cytoplasmic membranes. Re-
modeling requires assembly and disassembly of cortical actin filament bundles underlying
the membranes. Recent studies showed that cullin 3-based E3 ubiquitin ligase CUL3KCTD10

controls the reorganization of cortical actin in fusing myoblasts. Cortical actin bundles
are stabilized at contacting cell membranes by EPS8–IRSp53 complexes. These complexes
are also known to activate the Rac-1 pathway and regulate filopodia formation, cancer
cell motility, and metastasis [108,109]. Monoubiquitylation of EPS8 by CUL3KCTD10 re-
moves EPS8–IRSp53 from the membrane cortex, preventing actin bundling and allowing
membrane fusion [110]. Although this process has been described in myoblast fusion,
ubiquitination may be a universal mechanism controlling fusion in other cell types.
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One of the protrusions (usually the longest) acts as a fusopod-initiating fusion and creates the fusion 
pore. (D) Reorganization of actin filaments expands fusion pore, allowing migration of podosomes 
from donor to fusion partner (Modified from Faust et al., Ref. [42]). (E) Zipper-like structures (ZLSs) 
at the surface of adhering MGCs formed in response to foreign materials. Membranes of adjacent 
cells adhere via adhesion proteins (gray ovals). Podosomes (red and blue stars) fuse into giant actin 
globules (red) surrounded by adhesion proteins (blue) and attached by smaller actin globules to the 
membrane. Actin globules are evenly spaced (resembling the zipper) along the membrane (modi-
fied from Balbyev et al., Ref. [105]). (F) Image of mouse macrophage showing podosomes (yellow). 
The nucleus (blue) is stained with DAPI. Actin is stained red with Rhodamine-Phalloidin; podo-
somes look yellow because of the high actin concentration and image overexposure. The magnifica-
tion bar is equal to 10μm. 
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Figure 5. Actin-based structures in cell adhesion and fusion. (A) After establishing a fusion area
between fusing partners, the cell-initiating fusion extends different size actin-based (red lines) pro-
trusions at its edge. (B) Podosomes (stars), consisting of actin center (red) and peripheral adhesion
proteins (blue), of the fusion-initiating cell migrate from the cell interior to the pre-fusion area.
(C) One of the protrusions (usually the longest) acts as a fusopod-initiating fusion and creates the
fusion pore. (D) Reorganization of actin filaments expands fusion pore, allowing migration of po-
dosomes from donor to fusion partner (Modified from Faust et al., Ref. [42]). (E) Zipper-like structures
(ZLSs) at the surface of adhering MGCs formed in response to foreign materials. Membranes of adja-
cent cells adhere via adhesion proteins (gray ovals). Podosomes (red and blue stars) fuse into giant
actin globules (red) surrounded by adhesion proteins (blue) and attached by smaller actin globules to
the membrane. Actin globules are evenly spaced (resembling the zipper) along the membrane (modi-
fied from Balbyev et al., Ref. [105]). (F) Image of mouse macrophage showing podosomes (yellow).
The nucleus (blue) is stained with DAPI. Actin is stained red with Rhodamine-Phalloidin; podosomes
look yellow because of the high actin concentration and image overexposure. The magnification bar
is equal to 10 µm.

Although the molecular components of the signaling pathways involved in macrophage–
monocyte lineage cell fusion are well-characterized (see other chapters in this volume),
further studies are needed to establish the functional relationship and causality between
actin filaments, podosomes, ZLSs, fusopodes, and fusogenic proteins during the cell
fusion process.
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