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Objective. Alterations in the methylation state of pseudogenes may serve as clinically useful biomarkers of glioblastomas (GBMs)
that do not have glioma-CpG island methylator phenotype (G-CIMP). Methods. Non-G-CIMP GBM datasets were included for
evaluation, and a RISK-score signature was determined from the methylation state of pseudogene loci. Both bioinformatic and
experimental analyses were performed for biological validation. Results. By integrating clinical information with DNA
methylation microarray data, we screened a panel of eight CpGs from discovery cohorts of non-G-CIMP GBMs. Each CpG
could accurately and independently predict the prognosis of patients under a treatment regime that combined radiotherapy
(RT) and temozolomide (TMZ). The 8-CpG signature appeared to show opposite prognostic correlations between patients
treated with RT/TMZ and those treated with RT monotherapy. The analyses further indicated that this signature had
predictive value for TMZ efficacy because different survival benefits between RT/TMZ and RT therapies were observed in each
risk subgroup. The incorporation of other risk factors, such as age and O-6-methylguanine-DNA methyltransferase (MGMT)
promoter methylation status, with our pseudogene methylation signature could provide precise risk classification. In vitro
experimental data revealed that two locus-specific pseudogenes (ZNF767P and CLEC4GP1) may modulate TMZ resistance via
distinct mechanisms in GBM cells. Conclusion. The biologically and clinically relevant RISK-score signature, based on
pseudogene methylation loci, may offer information for predicting TMZ responses of non-G-CIMP GBMs, that is independent
from, but complementary to, MGMT-based approaches.

1. Introduction

Glioblastoma multiforme (GBM) with a glioma-CpGs island
methylator phenotype (G-CIMP) are the most frequent and
devastating glioma subtype [1]. Intra- or intertumoral
molecular heterogeneity has been a major obstacle when
developing treatment strategies against this deadly disease

[2]. Identification of novel biologically and clinically relevant
biomarkers may assist in the stratification of GBM subsets
with distinct molecular features and allow for the develop-
ment of precision medicines [2].

Compelling data have linked pseudogene alterations
with glioma biology and response to treatment [3–5]. DNA
methylation is a critical layer of control for the pseudogene

Hindawi
Journal of Oncology
Volume 2022, Article ID 6345160, 15 pages
https://doi.org/10.1155/2022/6345160

https://orcid.org/0000-0002-1888-5551
https://orcid.org/0000-0002-4433-127X
https://orcid.org/0000-0002-4669-5384
https://orcid.org/0000-0002-6318-7277
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6345160


transcriptome [6] and has long been regarded as an ideal
cancer biomarker [7]; therefore, the identification of clinical
relevant alterations in DNA methylation of pseudogenes is
of great importance. In the present study, we integrate in
silico and experimental approaches to examine the clinical
and biological implications of pseudogene methylation in
non-G-CIMP GBMs.

2. Methods

2.1. Patient Cohort from Rennes and Angers University
Hospitals. A French patient cohort of seventy-seven primary
non-G-CIMP GBMs from Rennes and Angers University
Hospitals (RAUH) has previously been reported [7]. All
patients underwent combination radiotherapy (RT) and
concurrent and adjuvant temozolomide (TMZ). Snap-
frozen surgical samples were profiled using Infinium Human
Methylation450k BeadChip (Illumina Inc.) as described in
Ref [7]. The G-CIMP subtype was determined by a K-
means clustering algorithm [8], and the O-6-methylgua-
nine-DNA methyltransferase (MGMT) promoter methyla-
tion status was calculated using DNA methylation data
from two Illumina probes (cg12434587 and cg12981137) [9].

2.2. Patient Cohorts from Public Databases. Genomic DNA
methylation and gene expression microarray data from 106
patients with an integrative diagnosis of non-G-CIMP
GBM were downloaded from the Cancer Genome Atlas
(TCGA) together with clinical annotations (RT/TMZ, n =
73; RT monotherapy, n = 13; and unknown regimens, n =
20) [10]. A further collection of 59 non-G-CIMP GBM sam-
ples with Illumina 450k DNA methylation microarray data
was obtained from GSE60274 deposited in Gene Expression
Omnibus (GEO; RT/TMZ, n = 32, and RT monotherapy, n
= 27) [11]. Finally, Infinium450k DNA methylation micro-
array data from G-CIMP GBMs in TCGA [10] and nontu-
mor brains (NTBs) in GSE63347 [12], together with RNA
sequencing data from primary GBMs and NTBs in the Chi-
nese Glioma Genome Atlas (CGGA) [13], were included for
comparative analysis.

2.3. Probe Selection and RISK-Score Modeling. A discovery-
validation approach was employed to develop a multimarker
prediction model. Data of patients treated with RT/TMZ
were collected from TCGA and GSE60274 datasets for use
during the discovery phase. Illumina 450k probes, that did
not match regions with single-nucleotide polymorphisms
and regions on X and Y chromosomes, were cross-
matched with a list of 13603 pseudogenes downloaded from
HGNC (HUGO Gene Nomenclature Committee;http://www
.genenames.org/). 3210 CpGs located within the genomic
regions of approximately 660 pseudogenes were identified
and those with a standard deviation of inter value >0.1 from
TCGA were further selected to correlate them with survival
data using a univariate Cox regression model (Figure 1(a)).
Inconsistent results from each discovery cohort were
removed, and 15 overlapping candidates (permutation P <
0:2) were inputted into a multivariate Cox regression model
that incorporated age, dataset source, and MGMT methyla-

tion status (Figure 1(a)). Finally, a panel of eight CpGs tar-
geting seven pseudogenes was identified and combined
using a RISK-score formula (Figure 1(a) and Table 1), which
was calculated as the sum of β values of each CpG weighted
by their multivariate Cox coefficients. The optimal cutoff for
stratification of risk subgroups was determined using the
maxstat R package [14]. Batch effect across datasets was
adjusted using a nonparametric empirical Bayes approach
(combat R package) [15].

2.4. Bioinformatic Analysis. Gene set enrichment analysis
(GSEA) was performed on the gene sets of the gene ontology
biological processes from molecular signature database
(MSigDB) to evaluate the functional profiles of each risk
subgroup [16]. Tumor mutation burden (TMB) was calcu-
lated using mutation annotation format (MAF) flies from
TCGA and defined as the total amount of coding variants/
the length of exons (38 million; maftools R package [17]).

2.5. Cell Culture and Drugs. The human GBM cell lines
(A172, U251, U373, and DBTRG-05MG) were obtained
from the American Type Culture Collection and were main-
tained in Dulbecco’s modified Eagle’s medium supple-
mented with 10% fetal bovine serum at 37°C in 5% CO2.
TMZ (MedChemExpress) was reconstituted in dimethysulf-
oxide (DMSO, Sigma-Aldrich) at a concentration of
100mM.

2.6. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR). TRIzol reagent (Shanghai Pufei Biotech) was
used for total RNA extraction. Total RNA was reverse tran-
scribed using M-MLV RT kit (Promega). qRT-PCR was
tested using SYBR Master Mixture (Takara) according to
the manufacturers’ protocol. The expression levels of tar-
geted pesudogenes were normalized to GAPDH mRNA
levels using the 2−ΔΔCt method. The pesudogene-specific
primers (Sangon Biotech) were listed as follows: GAPDH
forward: 5′-TGACTTCAACAGCGACACCCA-3′; GAPDH
reverse: 5′-CACCCTGTTGCTGTAGCCAAA-3′; ZNF767P
forward: 5′-AAGCTGGCTGATTGCGAGAA-3′; ZNF767P
reverse: 5′-GCAGTGGGAAAACCTCAGAGT-3′;
CLEC4GP1 forward: 5′-CACTGGTTACAGGGGGAACG-
3′; CLEC4GP1 reverse: 5′-TTGGCTAGGAGGAGAG
GTGG-3′.

2.7. Cell Transfection. For in vitro knockdown of pseudo-
genes, small interfering (si) RNAs of CLEC4GP1 and
ZNF767P as well as negative control were synthesized by
Ribobio and transfected into GBM cells using X-
tremeGENE siRNA Transfection Reagent (Roche) according
to the manufacturers’ protocol. The siRNA sequences were
listed as follows: si-CLEC4GP1#1: CCACAGGTTAGACT
CTAGA; si-CLEC4GP1#2: CCAGGCAATAAACAGGCTA;
si-CLEC4GP1#3: ACACTAGTGCCCGTGAATA; si-
ZNF767P#1: TCTCCTCTTTCCTCTAAAC; si-ZNF767P#2:
GAATAGATGTCTCCCTATT; si-ZNF767P#3: CCATGT
CTTGAATGTTTCT.
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Figure 1: Continued.
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Figure 1: The discovery and validation of a pseudogene methylation signature for non-G-CIMP GBMs. (a) A multistep selection pipeline
for identifying a clinically relevant pseudogene methylation signature; (b) risk classification by this signature in a combined discovery cohort
of patients treated with RT/TMZ; (c) risk classification in an independent French cohort in term of OS and PFS; (d) risk classification in
validation cohorts of patients treated with RT monotherapy; and (e) forest plots of comparison in OS: low-risk vs. high-risk tumors in
patients with either RT/TMZ or RT alone.
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2.8. TMZ Cytotoxicity Assay. The chemosensitivity of TMZ
was tested by the Cell Counting Kit-8 (CCK-8) kit. GBM
cells were seeded in 96-cell plates at a density of 5 × 103 cells
per well and exposed at indicated concentrations of TMZ
(7.5, 15, 30, 60, 120, 240, and 480μM) for 48 h. CCK-8
reagent was then added to wells (10μl/well) and incubated
for 1 h at 37°C. The OD450nm value was measured for calcu-
lating half maximal inhibitory concentration (IC50).

2.9. Western Blot Analysis. Cell lysates were performed in
RIPA buffer contained protease inhibitor and phosphatase
inhibitor (Roche). Cell lysates were subjected to sodium
dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis
(PAGE) before transferring to polyvinylidene fluoride
(PDVF) membranes (Millipore). Western blotting was per-
formed with the following antibodies towards MGMT (Pro-
teintech, 17195-1-AP), cleaved-PARP (CST, #5625), MPG
(Proteintech, 11481-2-AP), p-p65 (CST, #3033), MLH1
(CST, #3515), MSH2 (CST, #2017), MSH6 (CST, #5424),
and β-actin (CST, #3700). The expression of β-actin was
used as the internal control. The intensity of bands was
quantified using Quantity One software (Bio-Rad).

2.10. Statistical Analysis. Frequency data were examined
using Fisher’s exact or Chi-square test. Continuous data
were examined using an unpaired t test or Mann–Whitney
test. Time-to-event data (for example, overall survival (OS)
or progression-free survival (PFS)) were compared using
Kaplan-Meier curves and the log-rank test. The prognostic
influence and independence of each variable were evalu-
ated using univariate and multivariate Cox regression
models. Results from each cohort or subgroup were pooled
using meta-analysis, where an inverse-variance approach
was applied using either fixed- or random effect models
based on the heterogeneity test, with P < 0:1 or I2 > 50%
considered to be statistically significant. Differences between
subgroups were tested using subgroup analysis. The perfor-
mance of risk variables was assessed using area under the
curve (AUC) from a time-dependent receiver operating
characteristic curve (survcomp R package) [18]. All statis-
tical tests were done within SPSS (SPSS software Inc.) and
R software. Statistical significance was defined as a two-
sided P < 0:05.

3. Results

3.1. Identification of an 8-CpGs Signature Corresponding to
Seven Pseudogenes in Non-G-CIMP GBMs. We screened a
panel of eight CpGs within genomic regions of seven pesu-
dogenes using a multistep selection strategy. Each locus pre-
dicted the OS of non-G-CIMP GBM patients treated with
RT/TMZ, independent of age, dataset source, and MGMT
promoter methylation status (Figure 1(a)). Genomic and
clinical information from the identified CpGs and their
methylation patterns in G-CIMP phenotype GBMs vs. NTBs
is shown in Table 1 and Figure S1. A RISK-score signature
was constructed for those eight CpGs as follows: RISK
score = ð1:584 × β value of cg18311708Þ + ð1:909 × β value
of cg22292345Þ + ð1:635 × β value of cg24257776Þ + ð−2:824
× β value of cg03534453Þ + ð−2:306 × β value of cg07835270
Þ + ð−2:773 × β value of cg08409173Þ + ð−2:604 × β value of
cg19089383Þ + ð−2:812 × β value of cg19500311Þ. The
optimal cutoff was calculated as -6.6904 for the combined
discovery cohort.

3.2. The Performance of the Pseudogene Methylation
Signature in Non-G-CIMP GBMs. Using the calculated cut-
off above, we divided all patients from the discovery cohorts
into low-risk and high-risk groups. Both pooled analysis of
patient-level data and risk classification for each discovery
cohort showed that OS of patients with high-risk tumors
was significantly shorter than patients with low-risk tumors
(Figure 1(b)). Similar results were observed for OS and PFS
with an independent French cohort (Figure 1(c)). Cox
regression analyses confirmed this signature as an indepen-
dent risk indicator for RT/TMZ-treated patients (Table 2).
Conversely, when RT monotherapy-treated cohorts were
examined, we found that high-risk patients appeared to be
associated with longer OS than low-risk patients
(Figure 1(d)). Meta-analysis and Cox regression models both
reported inverse prognostic correlations among patients
with different treatments (Figure 1(e) and Table 2). These
data suggested that our pseudogene methylation signature
may not be a potent prognostic indicator for general GBM
prognosis, but may be a predictive indicator for the survival
benefits of additional TMZ treatment.

Table 1: Characteristics of the eight CpGs corresponding to seven pseudogenes.

Probe ID Relevant pseudogene symbol Chr. Relation to gene region Relation to CpGs islanda Multivariate Cox coefficientsa

cg18311708 ZNF767P 7 TSS1500 Shore 1.584

cg22292345 NRADDP 3 TSS1500 Island 1.909

cg24257776 NRADDP 3 TSS1500 Island 1.635

cg03534453 PCDHB17P 5 Body Shore -2.824

cg07835270 MT1DP 16 TSS1500 Shore -2.306

cg08409173 CLEC4GP1 19 Body Island -2.773

cg19089383 ADCY10P1 6 Body Open Sea -2.604

cg19500311 BMS1P4 10 Body Shelf -2.812

Chr = chromosome; TSS = transcriptional start site. aCox coefficients were calculated from multivariate analysis incorporating age, MGMTmethylation status,
and cohort source in meta-discovery cohorts of TCGA and GSE60274. bShore, shelf, and open sea referred to regions away from relevant CpGs islands less
than 2000 base pairs, 2000~4000 base pairs, and more than 4000 base pairs, respectively.
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3.3. The Predictive Value of the Pseudogene Methylation
Signature for TMZ Response. To investigate whether our
pseudogene methylation signature could provide predictive
information about tumor response to TMZ, subgroup anal-
yses were carried out between the risk and treatment sub-
groups. Patient baseline characteristics, such as age, gender,
and MGMT methylation status, did not appear to differ
from between above subgroups (data not shown). Subgroup
analyses showed that low-risk patients benefited from RT/
TMZ treatment over RT monotherapy (Figure 2(a)); how-
ever, OS differed very little between treatment types in
high-risk patients (Figure 2(b)). Meta-analysis and Cox
regression model confirmed those findings (Figure 2(c) and
Table S1). The data indicated that our pseudogene
methylation signature may predict TMZ efficacy and help
identify patient subpopulations likely to benefit from TMZ
treatment.

3.4. Patient Classification in Clinically and Molecularly
Stratified Subcohorts. To further evaluate the performance
of the pseudogene methylation signature, we examined our
risk classifications in a combined cohort from TCGA,
GSE60274, and RAUH collectively, stratified by MGMT
promoter methylation status and age. The 8-CpG signature
was able to discriminate OS among patients with each
MGMT promoter methylation status (Figures 3(a) and
3(b)) or within each age subgroup (Figures 3(c) and 3(d)).
Moreover, AUC comparison showed that the signature had

predictive value similar to MGMT promoter methylation
status for patients of all ages treated with RT/TMZ and
was superior to the MGMT-based approach for elderly pop-
ulations (≥60 years; Figure 3(e)).

3.5. Clinical and Molecular Correlations of the Pseudogene
Methylation Signature in TCGA Samples. Correlation with
known clinical and molecular features showed that the 8-
CpG signature subgroups were not associated with age, gen-
der, MGMT promoter methylation status, gene expression
subtypes, and TMBs in TCGA samples (Figures 4(a) and
4(b)). GSEA on transcriptome data, however, revealed dif-
ferential functional profiles between risk subgroups. In par-
ticular, high-risk tumors appeared to be more enriched for
gene sets related to cell cycle regulation, DNA repair, and
ncRNA processing (Figure 4(c) and Table S2).

3.6. A Preliminary Experimental Study of Two Pseudogenes
on TMZ Resistance in GBM Cells. CGGA RNA sequencing
data showed that two locus-specific pseudogenes were differ-
entially expressed between GBMs with the wild-type isoci-
trate dehydrogenase gene (IDHwt), a surrogate marker for
the G-CIMP phenotype, and NTBs; specifically, ZNF767P
was found to be upregulated and CLEC4GP1 downregulated
in IDHwt GBMs (Figure S2). Functional assays on these two
pseudogenes showed that ZNF767P was relatively highly
expressed in DBTRG-05MG cells and CLEC4GP1 in both
DBTRG-05MG and U251 cells (Figure S3). TMZ

Table 2: Univariate and multivariate Cox regression analyses in non-G-CIMP GBMs with RT/TMZ or RT monotherapy.

Variables
Univariate Cox model Multivariate Cox model

HR 95% CI P value HR 95% CI P value

Combined discovery cohorts (RT/TMZ)

Patient age (increasing years) 1.037 1.011-1.063 0.005 1.037 1.012-1.063 0.003

The RISK-score signature (low vs. high) 0.199 0.106-0.372 <0.001 0.180 0.092-0.350 <0.001

MGMT methylation status (unmethylated vs. methylated) 2.203 1.232-3.938 0.008 1.826 0.994-3.355 0.052

Gene expression subtypes (nonproneural vs. proneural) 1.276 0.659-2.472 0.469

Dataset source (TCGA vs. GSE60274) 1.223 0.729-2.052 0.446

Combined discovery cohorts (RT monotherapy)

Patient age (increasing years) 1.025 0.989-1.063 0.175

The RISK-score signature (low vs. high) 2.325 1.047-5.166 0.038

MGMT methylation status (unmethylated vs. methylated) 1.274 0.650-2.497 0.480

Gene expression subtypes (nonproneural vs. proneural) 1.033 0.416-2.569 0.944

Dataset source (TCGA vs. GSE60274) 1.689 0.773-3.693 0.189

RAUH cohort (RT/TMZ)

Patient age (increasing years) 1.032 1.003-1.062 0.029 1.035 1.002-1.069 0.039

Pre-adjuvant therapy KPS (≤ 70 vs. >70) 1.319 0.602-2.887 0.489

Extent of surgery (biopsy vs. partial vs. total) 1.034 0.689-1.550 0.872

The RISK-score signature (low vs. high) 0.441 0.249-0.779 0.005 0.528 0.285-0.981 0.043

TERT promoter mutation (no vs. yes) 0.367 0.144-0.932 0.035 0.500 0.178-1.404 0.188

MGMT methylation status (unmethylated vs. methylated) 2.423 1.334-4.401 0.004 2.685 1.366-5.277 0.004

Gene expression subtypes (nonproneural vs. proneural) 1.040 0.569-1.898 0.889

RAUH=Rennes and Angers University Hospitals; TCGA= the Cancer Genome Atlas; G-CIMP= glioma-CpGs island methylator phenotype; MGMT= the
O-6-methylguanine-DNA methyltransferase; GBM= glioblastoma; KPS = Karnofsky performance score; TMZ = temozolomide; RT = radiotherapy;
TERT = telomerase reverse tranase. Italics were significant results.
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cytotoxicity assays showed that siRNA knockdown of
ZNF767P increased sensitivity to TMZ in DBTRG-05MG
cells, while CLEC4GP1 knockdown decreased sensitivity to
TMZ in both DBTRG-05MG and U251 cells (Figures 5(a)–
5(c)). Western blot analysis showed that ZNF767P

knockdown was associated with reduced activation of
PAPR, a key mediator of base excision repair (BER) [19],
while CLEC4GP1 knockdown resulted in decreased levels
of mismatch repair (MMR) proteins such as MLH1 and
MSH2 [19] (Figure 5(d)). Finally both pseudogenes had
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Figure 3: Continued.
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significant impacts on NF-κB activation in DBTRG-05MG
cells (Figure 5(d)). These data show that disruption of
these two pseudogenes led to a disruption of the molecular
mechanisms associated with TMZ resistance.

4. Discussion

Pseudogenes, characteristic by high sequence similarity to
functional parent genes, have long been regarded as “junk
DNA” due to the presence of a variety of disabling mutations
(e.g., insertions, deletions, and stop codons) that result in
loss of function [20]. The advent of large-scale, pan-cancer
studies has prompted many to reexamine the function of
pseudogenes, highlighting their multifaceted roles in cancer
biology [3–5]. Integrative analysis of multiomics data
showed that pseduogenes can be transcribed and translated,
and that pseudogenic RNA and protein can regulate the
function of key cancer genes, including their parent genes
[3–5]. An increasing number of transcribed or translated
pseudogenes have been discovered with diagnostic, prognos-
tic, and predictive potentials in cancers [3–5]. Those pesudo-

gene biomarkers have many disadvantages, namely, over
standard biomarkers, due to issues inherent with the exam-
ination of expression data, such as unreliable RNA sampling
and unstable altered patterns [21], and issues specific to the
detection of pseudogene expression, such as complexities in
designing reliable expression profiling approaches to distin-
guish the expression of parent gene with high sequence sim-
ilarity, difficulties in defining which pseudogenes are
transcribed, and a high dependence on the quality of refer-
ence genome sequences and annotation3-5.

Epigenetic marks and DNA methylation, in particular,
represent critical layers of control of pseudogene transcrip-
tion [22]. DNA methylation can, therefore, provide informa-
tion about pseudogene transcription while avoiding issues
with genetic sequence similarities. Pseudogene methylation
information has many advantages over expression informa-
tion, since DNA sampling is reliable, patterns are stable, and
drug-induced changes are reversible [23]. Biomarkers that
take advantage of pseduogene methylation patterns can
often, therefore, be more practical and informative. In the
present study, we constructed a RISK-score signature based
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Figure 3: The risk classification of the pseudogene methylation signature in molecularly and clinically stratified cohorts. Risk classification
and forest plots of comparison in OS for low-risk vs. high-risk patients from a combined cohort (TCGA, GSE60274, and RAUH collectively)
who have (a) an MGMT methylated tumor, (b) an MGMT unmethylated tumor, (c) an age<60 years old or (d) an age≥60 years old; and
AUC comparison in (e) all available patients with RT/TMZ or in (f) all available RT/TMZ-treated patients with different ages.

9Journal of Oncology



on the methylation pattern of eight pseudogene-related
CpGs by employing a multistep selection pipeline. The pseu-
dogene methylation signature was found to exhibit opposite
prognostic correlations for patients treated with RT/TMZ vs.
RT monotherapy. Specifically, a high-risk score may be
indicative of a poor outcome in RT/TMZ-treated patients,
but a better outcome in those treated with RT alone. Sub-
group analyses highlighted a predictive potential when mak-
ing decisions about TMZ usage; the addition of TMZ

appeared to be beneficial for low-risk but not high-risk
counterparts. Correlation analyses indicated that the pseu-
dogene methylation signature may not be an alternative
manifestation of known clinical or molecular characteristics.
Together, these data suggest that our pseudogene methyla-
tion signature may serve as a novel and promising predictive
biomarker for TMZ response in non-G-CIMP GBMs, rather
than as a general, treatment-independent prognostic bio-
marker [24].
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The most informative biomarker for predicting TMZ
outcome is the promoter methylation status of MGMT
[25]. However, it is unlikely that TMZ would be withheld
in patients with unmethylated MGMT promoters, since
there is a lack of effective alternative therapies, and this agent
has some benefits for this subpopulation [26]. Therefore, the
use of MGMT promoter methylation as a biomarker for
TMZ response may have limited value. The use of TMZ is
also controversial for elderly subpopulations which are char-
acterized by general poor health, reduced tolerance to anti-
cancer therapy, and increased expectation for a better
quality of life [27]. In fact, TMZ may not be a cost-

effective option for GBM in health resource-limited coun-
tries, such as China [28]. The overuse of TMZ could result
in overconsumption of health resources, raise medical cost
to families and caregivers, and increase risk of drug toxicity.
Selecting patients that are likely to respond well to TMZ and
have favorable prognostic biomarkers may represent an
effective approach for optimizing TMZ usage and increasing
cost-effectiveness of treatment [26, 27]. The data reported
here show that the pseudogene methylation signature could
provide more refined risk classification in subpopulations
determined by age or MGMT methylation status and may
be helpful in identifying subsets of elderly patients, or
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Figure 5: The impact of CLEC4GP1 and ZNF767P on TMZ resistance and relevant molecular alterations in GBM cells. IC50 of (a) DBTRG-
05MG cells with siRNA knockdown of ZNF767P under the treatment of TMZ; IC50 of (b) DBTRG-05MG and (c) U251 cells with siRNA
knockdown of CLEC4GP1 under the treatment of TMZ; and (d) protein levels of key components in different DNA repair pathways in
DBTRG-05MG cells with siRNA knockdown of CLEC4GP1 and ZNF767P, respectively; ∗P < 0:05; ∗∗P < 0:01; ∗∗∗ P < 0:001.
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patients with unmethylated tumors, most likely to benefit
from TMZ treatment. We have shown that the pseudogene
methylation signature has a better predictive power than
the standard MGMT-based approach in elderly subpopula-
tions. Taken together, our data highlights that the pseudogene
methylation signature could be of use when optimizing patient
selection, guiding treatment choice, and refining risk classi-
fication for non-G-CIMP GBMs. Despite the encouraging
findings, the current signature biomarker is based on
microarray data, and is yet not ready for routine clinical
use due to the inaccessibility of high-throughput detection
devices in daily clinical practice. Future studies are needed to
exploit the microarray information in a common detection
method, such as pyrosequencing.

Few studies have explored the biological implications of
the pseudogenes harboring the identified CpGs: MT1DP,
encoding metallothionein 1 (sub) isoforms [29], has been
reported to have tumor suppressor roles in liver and lung
cancers via RNA-RNA interactions [30]. PCDHB17P is
highly expressed in breast cancers and promotes cancer
by competing with endogenous RNA [31]. ZNF767P, a
pseudogene on chromosome 7, has been reported to be dif-
ferentially expressed in human cancers and to be trans-
lated when fused with oncogenic genes (e.g., BRAF) [32,
33]. CLEC4GP1 is a pseudogene of CLEC4G with unclear
functions; its mRNA expression, however, has been
reported to significantly correlate with the survival of
GBM patients [34]. Little is known about the roles of the
other three pseudogenes (NRADDP, ADCY10P1, and
BMS1P4) in cancer.

Although DNA methylation is deemed to be a crucial
regulator of pseudogene transcription, its epigenetic mecha-
nisms and impact remain largely unclear, due to the com-
plexity and specificity of pseudogenes in the genome [35].
DNA methylation may regulate the transcription of pseudo-
genes or genes adjacent to regions of pseudogene insertion
[35]. Unfortunately, due to a lack of paired epigenetic and
transcriptomic data, no direct evidence linking the pseudo-
gene methylation panel and specific transcriptional alter-
ations could be provided. Instead, two differentially
expressed pseudogenes were selected for functional studies.
ZNF767P was found to be upregulated and CLEC4GP1
downregulated in CGGA GBM samples. TMZ cytotoxicity
increased the following ZNF767P knockdown in GBM cells,
while knockdown of CLEC4GP1 decreased TMZ sensitivity.
It is known that activation of NF-κB signaling is one of the
major molecular events associated with the TMZ resistance
of GBM cells [36]. In addition, chemoresistance is also
induced by dysfunctions of multiple DNA repair pathways,
including MGMT, MMR, and BER [19]. Our data showed
that both of the two pseudogenes affected NF-κB activation,
where each resulted in altered proteins involved in distinct
DNA repair pathways, indicating that they may use different
molecular mechanisms to modulate TMZ resistance. How-
ever, the current experimental data are too preliminary to
draw firm conclusions. Future studies should explore the
impacts of DNA methylation on the expression of these
pseudogenes and examine more comprehensively the role
played by these pseudogenes in glioma biology.

The following limitations should be noted when inter-
preting the findings of this study: (1) the Illumina 450k plat-
form provides limited genomic coverage of pesudogenes; (2)
the predictive value of our model has yet to be prospectively
or retrospectively justified in a randomized setting; and (3)
there are potential patient selection biases inherent in the
retrospective study design, together with a small sample size
for RT monotherapy-treated patients, the presence of non-
standard regimens, and incomplete clinical data.

In summary, we presented a preliminary report describ-
ing DNA methylation-based pesudogene signature as a bio-
marker in cancer. The multimarker signature may be useful
for providing predictive information for outcome of TMZ in
non-G-CIMP GBMs, independent of and complementary to
the current MGMT-based approach.
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