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Abstract  

Wear resistance of dynamic system components is a major challenge in aeronautics. According the usage of the 

aircraft, off-centred dynamic loads can appear on shafts when rotating bodies are unbalanced. In literature, most of 

the wear studies applied to plain bearing consider static loads centred in the contact area. This article presents a 

study on the wear of a plain bearing submitted to off-centred dynamic loads in order to look for a better mastering 

of service life of plain bearing for their usage in severe aeronautic conditions. Boussinesq's equations were used to 

compute the pressure distribution and Archard's law was used to calculate the wear. The wear coefficients of the 

running-in and stable wear stages were defined experimentally. The evolution over time of the maximum wear 

depth and the size of the contact zone were validated with experimental results. The perspective of this work is to 

feed digital twins of dynamic systems in order to predict wear according aircraft usage. 
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1. Introduction  

Wear is one of the main causes of damage and 

failure in mechanisms [1]. Wear rate increases with 

part misalignments [2] (asymmetric loading, 

clearance, assembly and/or manufacturing defaults) 

or dynamic loads [3]. Wear resistance of dynamic 

system components is a major challenge in 

aeronautics. In the case of helicopter’s dynamic 

systems (Fig. 1a), off-centred dynamic loads can 

appear when rotating bodies are unbalanced (i.e. shaft 

bending, unbalanced mass). Fig. 1b represents an 

example of a bended transmission shaft supported by 

bearings.  Fig. 1c presents a simplified representation 

of the plain bearing system under a dynamic load.  

 This article presents a study on the wear of a 

plain bearing submitted to off-centred dynamic loads 

in order to looks for a better mastering of service life 

of plain bearing for their usage in severe aeronautic 

conditions. 

 

 
Fig. 1. (a) Helicopter dynamic systems; (b) Details of a bended 

transmission shaft supported by bearings; (c) Simplified 

representation of the plain bearing system under a dynamic load. 

 

Several research works have been done on 

mechanical wear considering the running-in stage 

and the stable wear stage under different loading 

conditions. 

Some works consider both the running-in and the 

stable wear stages in lubricated [4] or non-lubricated 

[5,6] mechanical systems. The running-in wear stage 

is characterized by a non-linear evolution of the rate 

of wear. Taking into account the running-in wear 

stage is difficult. Indeed, the friction coefficient, the 

wear coefficient, the temperature and the contact area 

evolve non-linearly in time [7]. Wear studies 

focusing on running-in were essentially done 

experimentally by studying the topographic evolution 

of the contact surface [8–11] and analytically  by 

studying the influence of particles on wear [6,12].  

The stable wear stage begins when parameters 

characterizing wear are stabilized. This phase 

represents the largest period of the system life and 

has been subjected to many studies. The stable wear 

stage was studied through different approaches: data-

based and physics-based (Finite element models and 

specific models). The data-based approach rests on 

experimental tests to the better understand the wear 

phenomenon. The most used method is the 

implementation of pin-on-disc type tests. These tests 

allow to determine, among others, the wear 

coefficients [6,13,14]. Different test rigs were created 

to simulate wear cases of bearings of variable stator 

vane under engine-like condition  [15] or to study the 

influence of the geometry of bearings on wear [16]. 

A test rig was also used with a design of experiments 

to study factors that influence the wear of bearings 

under mixed-lubrication conditions [17]. However, 

experimental tests are expensive and time consuming 

and some parameters, such as contact pressure, are 

difficult to measure directly.  

To address that, physics-based approaches have 

been developed. Finite element analysis (FEA) with 

mesh updating was largely used to study wear. This 

approach allows to reduce the implementation time in 

wear studies compared to the data-based approach 

[18,19]. This method has been used to represent the 

behaviour of wear for tilted shafts under dynamic 

loads [20] or for bearing with complex bio-inspired 

geometry under static loads [21]. However, FEA are 

more time consuming than numerical models [22]. 

Some authors developed specific numerical models 

to predict wear of lubricated gears [4,23] or un-

lubricated systems such as crossed steel wires 

[24,25], revolute joint in four-bar mechanism [22,26] 

or pin-on-disc configuration [14].  

Wear phenomenon differs in function of the 

loading conditions. Fig. 2 depicts the difference of 

the position of the wear zones on the bearing and on 

the shaft for off-centred static and off-centred 

dynamic loads.   

 

 
Fig. 2. Comparison of static and dynamic off-centred load cases 

for a plain bearing system when the rotating shaft is stopped 

axially. 

 

Most of wear models consider static loads [21] or 

fretting conditions [5,19,27,28]. Models considering 

dynamic loads have been developed to predict wear 

of revolute joint in planar multibody system 

[22,26,29]. These models are useful in the case of 

planar mechanism where the rotational axes of the 

shaft and the bushing are parallels. In case of off-

centred loads, the shaft tilts inside the bushing and 
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three-dimensional approaches are necessary. Schmidt 

and al. [20] computed wear of the titled shaft under 

dynamic load using finite element method.  

This article presents the numerical model 

developed to predict the wear of the shaft and the 

bearings, for running-in and stable wear stage, under 

off-centred dynamic loading due to unbalanced mass. 

Results were validated by an experimental test rig. 

 

2. Material and Methods  

Wear of a plain bearing system under off-centred 

dynamic loads was studied to reproduce the operation 

conditions of unbalanced rotatory machinery. In 

order to reproduce the wear phenomenon, an 

experimental test rig was developed. A model is 

proposed to reproduce numerically this phenomenon. 

The experimental results allowed to determine the 

wear coefficients and to validate the model.  

 

2.1. Experimental test rig 

The test rig is illustrated by Fig. 3. A steel shaft 

OTMT 81001300 (item n°2 in Fig. 3) was 

rotationally guided by two bronze plain bearings 

SINT A50 (item n°3 in Fig. 3). The manufacturing 

tolerances of the bearings and the shaft are presented 

in Table 1. These parameters are assumed to be 

constant in this study and the influence of the 

variations are not taken into account. To create the 

dynamic load, an unbalanced mass (item n°1 in Fig. 

3) was fixed at the shaft end. A double universal joint 

(item n°4 in Fig. 3) was used to link the shaft to the 

motor.  

 

 
Fig. 3. Experimental test rig: (a) Test rig picture; (b) Test rig; (c) 

Kinematic chain to represent the test rig. 

 

 Tolerance Roughness (Ra) Circularity 

Bearings H7 0.3 - 0.6 5 µm 

Shaft h6 0.3 6 µm 

Table 1. Manufacturing tolerances of the bearings and the shaft. 

 

Three unbalanced masses were used to create the 

dynamic load: 50, 75 and 100 g. The rotational speed 

of the shaft was fixed to 1000, 1250 or 1500 rpm. 

These values were defined to ensure enough 

centrifugal force to counteract gravity and keep a 

permanent contact between the shaft and the 

bearings. Table 2 presents the tests carried out. Test 

n°1 was used to estimate the wear coefficients. Then 

test n°2 and test n°3 were used to validate results of 

the analytical model. The wear of the shaft and the 

bearings was measured during each test.  

 
Test number m (g) ω (rpm) 

Test n°1: Calibration 75 1250 

Test n°2: Prediction 50 1000 

Test n°3: Prediction 100 1500 

Table 2: Details of different tests done. 

 

 
Fig. 4. Wear measurement methods (a-c) on shaft with a 

micromesure station and (d-f) on bearings with a coordinate 

measuring machine. 

 

The geometry of the wear zone on the shaft was 

measured with a micromesure station (STIL 

Marposs, Micromesure 2) (Fig. 4a). This allowed 

obtaining a microtopography profile of the shaft (Fig. 

4b). The measured profile was composed of an 

unworn portion to have a reference. An example of 

the obtained microtopography profile is presented in 

Fig. 4c. The difference between the best-fit line of the 

unworn reference portion and maximum depth 

corresponds to the maximum wear depth hmax of the 

shaft.  

The geometry of the bearings was measured with 

a coordinate-measuring machine (Messwelk, MM 

1004 E Trimesures) (Fig. 4d). We are interested in 

the maximum wear depth. This value is critical in the 

case of off-centred dynamic loads as it drives the 

maximum tilt of the shaft. Two circular paths inside 

the bearings were measured, at 1.5 mm from each 

end of the bearing. Each circular path was acquired 

with 200 points uniformly distributed. The maximum 

wear depth was estimated as the diameter variation of 

the best-fit circle of the current measure regarding the 

initial one. Fig. 4f presents an example of two 

measured circular paths (wear values were amplified 

to be visible). 

  

2.2. Numerical wear model 

The workflow of the proposed model used to 

predict wear is presented with Fig. 5. The input 

parameters of the model are the rotational speed of 

the shaft ω and the unbalanced mass m. Reaction 

forces at the two bearings are calculated in function 

of these parameters. Wear is calculated recursively 

considering the evolution of the contact area. Each 

iteration is composed of four main steps: 

computation of contact pressure and area with the 
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Boussinesq’s equation, computation of wear volume 

with Archard’s law, computation of wear depth and 

finally computation of cumulative wear. The 

simulation stops when the final time, fixed at 60 h, is 

achieved. These steps are detailed hereafter. 

 

 

 
Fig. 5. Workflow of wear analytical method. 

 

2.2.1. Force balance 

For the resolution, some assumptions were made: 

bodies were supposed rigid and the effects of the 

clearance between the shaft and the bearing in the 

force balance were neglected. It was reported that 

friction affects the location of the wear zone but not 

the contact pressure distribution [30] so friction was 

neglected between the shaft and the bearing in the 

force balance.  

 

 
Fig. 6. Diagram of dynamic load case. (a) Isometric view; (b) 

Front view, plane y1Oz1; (c) Side view, plane x2Oy2. 

 

The loads considered (Fig. 6) where:  Ps the 

weight of shaft, Pm the weight of the unbalanced 

mass, Fcm the centrifugal force, R1 and R2 the contact 

reaction forces between shaft and bearings. By 

solving the force balance and projecting along the 

reference frame (O, x1, y1, z1), the expression of 

contact reactions between shaft and bearings can be 

obtained: 

 

𝑅1 = (1/2L)(𝐹𝑐𝑚
2(𝐿 − 2𝑑)2 + (2𝑒𝑃𝑠 − 𝐿(𝑃𝑠 + 𝑃𝑚) +

2𝑑𝑃𝑚)2 − 2𝐹𝑐𝑚(𝐿 − 2d)(𝐿(𝑃𝑠 + 𝑃𝑚) − 2𝑑𝑃𝑚 −
2𝑒𝑃𝑠)cos𝜃)1/2   

(1) 
 

𝑅2 = (1/2𝐿)(𝐹𝑐𝑚
2(𝐿 + 2𝑑)2 + (2𝑒𝑃𝑠 + 𝐿(𝑃𝑠 + 𝑃𝑚) +

2𝑑𝑃𝑚)2 − 2𝐹𝑐𝑚(𝐿 + 2𝑑)(𝐿(𝑃𝑠 + 𝑃𝑚) + 2𝑑𝑃𝑚 +
2𝑒𝑃𝑠)cos𝜃)1/2  

(2) 

 

where d is the positioning of the unbalanced mass, L 

the distance between outer faces of the bearings, e the 

distance between O and the centre of gravity of the 

shaft Gs on x2 axis and θ the position angle of the 

shaft. Fig. 7 shows the evolution of the reaction 

forces R1 and R2 for a revolution of the shaft for the 

parameters presented in Table 3. 

 

 
Fig. 7. Reaction force at interface between shaft and bearings for 

one revolution. 

 
Parameters  Value 

Ps Weight of shaft (N) 10.53 

Pm Weight of unbalanced mass (N) 0.74 

Fcm Centrifugal force (N) 115.66 

rm Eccentricity of the unbalanced mass (mm) 90 

d Positioning of the unbalanced mass (mm) 129 

L 
Distance between outer faces of the bearings 

(mm) 
92 

e distance between O and Gs (mm) 37 

Lb Bearing length (mm) 25 

rs External radius of shaft (mm) 14.985 

rb Internal radius of bearing (mm) 15.005 

Es Young’s modulus of steel (GPa) 206 

Eb Young’s modulus of bronze (GPa) 65 

ν Poisson’s ratio 0.3 

Table 3. Geometrical and material parameters of shaft and 

bearings. 

 

2.2.2. Calculation of contact pressure and 

contact area 
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Boussinesq’s equation was used to compute the 

contact area between the shaft and the bearings. 

Contacts were supposed frictionless and under 

normal pressure only. The Young’s modulus of the 

steel shaft is named Es and that of the bronze bearings 

Eb. An equivalent Young’s modulus Eeq (Eq. (3)) and 

an equivalent shear modulus Geq (Eq. (4)) were 

considered: 

  

𝐸𝑒𝑞 = (
1−𝜈²

𝐸𝑠
+

1−𝜈²

𝐸𝑏
)

−1

  (3) 

 

𝐺𝑒𝑞 =
𝐸𝑒𝑞

2(1+𝜈)
  (4) 

 

where ν is the Poisson’s ratio considered the same for 

both materials.  

An equivalent radius was calculated in function 

of the radius of contact surfaces:  

 

𝑟𝑒𝑞 = (
1

𝑟𝑠
+

1

𝑟𝑏
)

−1
  (5) 

 

where rs is the external radius of shaft and rb the 

internal radius of bearing. Table 3 presents the 

geometrical and material parameters related to the 

shaft and the bearings. 

 

Any point of the contact surface is defined by the 

coordinates (a, b) in the reference frame (Oc, x, y2, z). 

The vectors of this reference frame are defined as 

follows: x = x2 and z = z2
*, where z2

* is the axis of 

curvilinear coordinates of the cylindrical surface of 

the shaft (see Fig. 8b). The elastic strain δ(a,b) in the 

normal direction can be derived using Boussinesq’s 

equations: 

 

𝛿(𝑎, 𝑏) =
1−𝜈

2𝜋𝐺𝑒𝑞
∬

𝑃(𝑥,𝑧)

√(𝑎−𝑥)2+(𝑏−𝑧)²
 𝑑𝑥 𝑑𝑧  (6) 

 

where P(x,z) is the contact pressure field which was 

supposed to be linear in the plane with normal z and 

sinusoidal [16] in the plane with normal x (see Fig. 

8). The boundary of the contact pressure field on the 

shaft was assumed to be parabolic. These three 

assumptions conduct to the following equations: 

 

𝑃(𝑥, 𝑧) = 𝑃𝑚𝑎𝑥 (1 −
𝑥

𝐿𝑐
) cos (

𝜋 𝑧

2𝑟𝑒𝑞𝜑(𝑥)
)  (7) 

  

𝜑(𝑥) = ± sin−1 (√1 −
𝑥

𝐿𝑐
 sin(𝜑0))  (8) 

 

where Pmax is the maximum contact pressure, Lc the 

contact length along the x axis, φ(x) the half aperture 

angle of the contact surface and φ0 the maximum half 

aperture angle (Fig. 8). By assuming small 

displacements, a linear expression of Lc can be 

obtained in function of the contact angle 𝛼 and the 

maximum elastic strain δmax: 

 

𝐿𝑐 = (𝛿𝑚𝑎𝑥 + ℎ𝑚𝑎𝑥_𝑏 + ℎ𝑚𝑎𝑥_𝑠)/𝛼  (9) 

  

𝛼 = tan−1 (
2(𝑟𝑏−𝑟𝑠)+2ℎ𝑚𝑎𝑥 _𝑏+ℎ𝑚𝑎𝑥 _𝑠 

𝐿
)  (10) 

 

where hmax_b and hmax_s are the maximum wear depths 

for the bearings and the shaft. 

The expression of φ0 can be deduced from 

geometrical relations (Fig. 8c): 

 

𝜑0 =  𝜑(𝑥 = 0)  = |tan−1 (
𝐶1

𝐶2+(𝛥𝑅+𝛿𝑚𝑎𝑥)
)|  (11) 

 

where ΔR is the difference of radius and C1 and C2 

two constants which depend on geometrical 

parameters:  

 

𝛥𝑅 = 𝑟𝑏 − 𝑟𝑠 + ℎmax_b + ℎmax_s  (12) 

  

𝐶1 = √𝑟𝑠² − (𝛥𝑅 + 𝛿𝑚𝑎𝑥 + 𝐶2)2  (13) 

  

𝐶2 =
𝑟𝑠²−𝑟𝑏²+(𝛥𝑅+𝛿𝑚𝑎𝑥)2

2(𝛥𝑅+𝛿𝑚𝑎𝑥)
  (14) 

 

 
Fig. 8. Details of the contact between the shaft and the bearing: 

(a) contact pressure field on the shaft; (b) contact pressure field 

and wear distribution represented in curvilinear coordinates; (c) 

cross section of the maximal indentation between the shaft and 

the bearing. 

 

In Eq. (6), if a and b are set to zero, the 

expression of the δmax is obtained: 
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𝛿𝑚𝑎𝑥 = 𝛿(0,0)

=
1 − 𝜈

2𝜋𝐺𝑒𝑞

𝑃𝑚𝑎𝑥 ∫ ∫

(1 −
𝑥
𝐿𝑐

) 𝑐𝑜𝑠 (
𝜋 𝑧

2𝑟𝑒𝑞𝜑(𝑥)
)

√𝑥2 + 𝑧2
 𝑑𝑧 𝑑𝑥

𝑟𝑒𝑞𝜑(𝑥)

𝑧=−𝑟𝑒𝑞𝜑(𝑥)

𝐿𝑐

𝑥=0

 
(15) 

 

where φ(x) is obtained from Eq. (8). 

 

 The former system of equations cannot be solved 

analytically because of their non-linearities. 

Therefore, a numerical solution was adopted 

considering a finite number of angular positions of 

the shaft (spatial discretization). One revolution of 

the shaft was divided into N angular positions θ, 

where N is an integer. A sensitivity analysis was done 

to identify the influence of this spatial discretization.    

 

The system of equations was solved by 

dichotomy method (Fig. 9). Each iteration computes 

the contact length Lc by means of Eq. (9), the 

maximum half aperture angle φ0 by means of  Eq. 

(11), the maximum contact pressure Pmax by means of 

Eq. (15) and the residual difference ε by means of Eq. 

(16). The residual difference between the integral of 

the local forces over the contact area and the contact 

reaction force is minimized to guarantee the 

equilibrium: 

 

ε = 𝑅(𝜃) − ∬ 𝑃(𝑥, 𝑧) 𝑑𝑥 𝑑𝑧  (16) 

 

where R(θ) is the normal reaction force applied 

between the shaft and the bearing for the angular 

position θ. If ε is smaller than a fixed error, 

parameters computed during the loop are accepted 

and computation stops. 

 

 
Fig. 9. Workflow of the calculation of contact pressure and 

contact area. 

 

2.2.3. Wear volume calculation 

Archard’s law [31] was used to calculate the wear 

volume of the shaft and the bearings: 

 

∆𝑉(𝜃) = 𝐾 𝑅(𝜃)𝛥𝑑  (17) 

 

where ΔV(θ) is the wear volume for the shaft or the 

bearings for the angular position θ and K the wear 

coefficient defined by K = Kr/H, where Kr is a 

dimensionless wear coefficient and H the material 

hardness. Δd is the sliding distance. For an angular 

portion, Δd can be calculated as: 

 

𝛥𝑑 = 2𝜋𝑟𝑠/𝑁  (18) 

 

where N is the number of angular positions θ taken 

on one revolution (defined by the spatial 

discretization). 

 

For the stable stage, wear has a linear evolution 

through time, so the stable stage wear coefficient 

named Klin was supposed constant. For the running-in 

wear stage, the model proposed by Yang [6] was 

used to define the running-in wear coefficient Krun: 

 

𝐾𝑟𝑢𝑛 =
3𝐴

𝐹𝐿
(1 − 𝑒−𝐵𝐿)  (19) 

 

where F is the normal force fixed to the mean on one 

revolution of the reaction force R, A and B are 

constant coefficients determined experimentally and 

L is the total sliding distance for the entire time step 

defined by:  

 

𝐿 = 2𝜋𝑟𝑠𝜔∆𝑡  (20) 

 

where ω is the rotation speed of the shaft and Δt the 

time step.  

For the shaft and the bearing wear coefficients 

were considered different. The coefficients A, B and 

Klin were determined by means of experimental tests 

(Table 4). 

 
 Shaft Bearing 

Klin (MPa-1) 1.8 E-12 N*1.8 E-12 

A (m3) 2.8 E-11 1.25*N*2.8 E-11 

B(m-1) 2 E-4 2 E-4 

Table 4. Values of the wear coefficients.  

 

2.2.4. Wear depth calculation 

The shape of the wear distribution (represented in 

red in Fig. 8b) was assumed to be the same as that of 

the contact pressure (in green in Fig. 8b). Thus, the 

wear distribution h(x,z) is given by the following 

equation: 

 

ℎ(𝑥, 𝑧) = ℎ𝑚𝑎𝑥 (1 −
𝑥

𝐿𝑐
) cos (

𝜋 𝑧

2𝑟𝑒𝑞𝜑(𝑥)
)  (21) 

 

where hmax is the maximum wear depth. By 

integrating Eq. (21), the maximum wear depth can be 

calculated: 
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ℎmax (𝜃) =
∆𝑉(𝜃)

∫ ∫ (1−
𝑥

𝐿𝑐
) 𝑐𝑜𝑠(

𝜋 𝑧

2𝑟𝑒𝑞𝜑(𝑥)
) 𝑑𝑧 𝑑𝑥

𝑟𝑒𝑞𝜑(𝑥)

𝑧=−𝑟𝑒𝑞𝜑(𝑥)
𝐿𝑐

𝑥=0

  (22) 

 

where hmax(θ) is the maximum wear depth for the 

shaft or the bearings related to an angular position θ. 

 

2.2.5. Cumulative wear depth 

Due to the type of the studied dynamic loading, 

the same zone of the shaft slid around the entire inner 

face of the bearings. Therefore, the way to calculate 

the cumulative wear depth of the shaft and the 

bearings was different.  

For the shaft, the wear depths calculated for each 

angular positions θ were added to have the wear 

depth on one revolution h*
max_s: 

 

ℎ𝑚𝑎𝑥_𝑠
∗ = ∑ ℎ𝑚𝑎𝑥 _𝑠(𝜃𝑖)

𝑁

𝑖=1

 (23) 

 

where hmax_s was calculated from Eq. (22) using the 

wear coefficient of the shaft (Table 4). 

For the bearings, the wear was located all around 

the inner face. So, the wear depth for each angular 

portion is different and was calculated considering 

the related reaction force and the wear coefficients of 

the bearings (Table 4). 

To obtain the cumulative wear depths for the 

shaft and the bearings for the time step, the wear 

depth for one revolution was multiplied by the 

number of revolutions done during the time step. 

 

2.2.6. Geometry update  

Because of wear, the clearance between the shaft 

and the bearings increases. This is why the wear 

depth is taken into account to compute the radius 

difference ΔR (Eq. (12)), the contact angle α (Eq. 

(10)) and the contact length Lc (Eq. (9)). 

 

2.3. Confidence intervals 

Monte Carlo’s method was used to compute 

confidence intervals of the results. Input parameters 

of the proposed model were varied following a 

normal distribution. The variations are mainly related 

to uncertainties of the measuring process. Table 5 

presents these parameters, the mean and the assumed 

variation.  
 

Parameters Mean Variation 

Unbalanced mass m (g) 50, 75, 100 ± 10 

Rotational speed ω (rpm) 1000, 1250, 1500 ± 50 

Eccentricity of m (mm) 90 ± 2 

Positioning of m (mm) 129 ± 2 

Radius diff. ΔR (μm) 15 ± 10 

Coefficient A 2.8 E-11 ± 0.14 E-11 

Coefficient B  2 E-4 ± 0.10 E-4 

Table 5. Input parameters of Monte Carlo method. 

 

Confidence intervals were assumed as three times 

the standard deviation. Table 6 gives values that 

characterize confidence interval at final time for six 

outputs of the developed model for the test n°1.  

 
 

Mean 
Standard 

deviation 

Max. wear depth on shaft (μm) 5.65 0.66 

Max. wear depth on bearing  (μm) 6.18 0.74 

Max. contact pressure (MPa) 2.61 0.23 

Contact length (mm) 23.16 1.27 

Max. half aperture angle (deg) 56.57 1.79 

Contact area (mm^2) 81.21 6.60 

Table 6. Outputs of Monte Carlo computations for test n°1 at 

final time. 

 

3. Results and discussion 

All results presented hereafter are for the mass-

side contact zone. 

 

3.1. Determination of the wear coefficients 

The determination of the wear coefficient was 

done for ω = 1250 rpm and m = 75 g (test n°1 in 

Table 2). Wear coefficients were calculated to 

include the experimental results in the calculated 

confidence intervals. Fig. 10 shows the evolution of 

the maximum wear depth through time for the shaft 

(Fig. 10a) and the bearing (Fig. 10b). This figure 

shows: the experimental results from the test rig (red 

and dark green dots and triangles), the numerical 

result from the model developed (purple and green 

dotted line) and the confidence intervals (light grey 

zone). The repeatability was evaluated for test n°1 by 

doing it twice. All the measures of the two tests (dots 

for the first test and triangles for the second one in 

Fig. 10) are inside the confidence interval so the 

repeatability of the experiments was supposed valid 

for test n°2 and test n°3. It is known that the wear 

coefficient depends on many parameters such as 

speed, load or temperature. In this work, the 

variability of the wear coefficient was considered in 

the uncertainty analysis (Section 2.3 and Table 5). 

 

 
Fig. 10. Maximum wear depth through time for test n°1for (a) the 

shaft and (b) the bearing. 

 

Validation of the developed model  

The results predicted by the developed model 

under different loading conditions (ω and m) and 
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using the computed wear coefficients were validated 

experimentally. 

For test n°2, the rotational speed ω was higher 

(1500 rpm) and the unbalanced mass m heavier (100 

g) than test n°1. Fig. 11 presents the evolution of the 

maximum wear depth for the shaft (Fig. 11a) and the 

bearing (Fig. 11b). All experimental results of wear 

depth of the shaft (red dots in Fig. 11a) and the 

bearing (dark green star in Fig. 11b) are inside the 

confidence intervals and close to the numerical result. 

Fig. 12 shows the evolution through time of the 

maximum contact pressure (Fig. 12a), the contact 

area (Fig. 12b), the contact length (Fig. 12c) and the 

maximum half aperture angle (Fig. 12d) for test n°2.  

The different stages of the wear process can be 

seen in Fig. 11 and Fig. 12. The running-in wear 

stage is until time of 6 h and then there is the stable 

wear stage where the evolution is almost linear. 

However, on Fig. 12b and Fig. 12c there is a slope 

discontinuity appearing at about 26 h. This change of 

slope is due to the limit in the contact length imposed 

by the bearing geometry (length Lb). Once the contact 

length achieves this limit, it stays constant and 

directly impacts the evolution of the contact area 

(Fig. 12b).  

 

 
Fig. 11. Maximum wear depth through time for (a) the shaft and 

(b) the bearing for test n°2. 

 

 
Fig. 12. Evolution of the contact field characteristics through 

time for test n°2: (a) the maximum contact pressure, (b) the 

contact area, (c) the contact length and (d) the maximum half 

aperture angle.  

 

Test n°3 was realized with a lower rotational 

speed ω (1000 rpm) and a lighter unbalanced mass m 

(50 g) than test n°1. Fig. 13 and Fig. 14 present the 

evolution through time of the maximum wear depth 

for the shaft (Fig. 13a),  the maximum wear depth for 

the bearing (Fig. 13b), the maximum contact pressure 

(Fig. 14a), the contact area (Fig. 14b), the contact 

length (Fig. 14c) and the maximum half aperture 

angle (Fig. 14d). All experimental results of the wear 

depth for this test are inside the confidence intervals 

of the predicted results. However, it can be noticed 

that the gap between the experimental and the 

numerical results for the wear depth of the shaft (Fig. 

13a) increases with time. At time of 60 h this 

difference reaches up to 62 %. This difference can be 

related with the fact that measured wear depth was 

relatively small regarding the precision of the 

measuring tool.  

 

 
Fig. 13. Maximum wear depth through time for (a) the shaft and 

(b) the bearing for test n°3. 

 

 
Fig. 14. Evolution of the contact field characteristics through 

time for test n°3: (a) the maximum contact pressure, (b) the 

contact area, (c) the contact length and (d) the maximum half 

aperture angle. 

 

3.2. Comparison of the results with other 

works 

Obtained numerical results cannot be 

quantitatively compared to other works because 

similar cases (in terms materials properties and 
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loading conditions) have not been reported in the 

literature. Nevertheless, the evolution wear can be 

compared from a qualitative point of view. In [27] 

[14] and [25] a similar evolution regarding our results 

of the wear thought time have been reported. Other 

authors [19,25,27,32] have also observed a rapid 

decrease of the contact pressure at the very beginning 

of the wear process. 

 

3.3. Worn geometry of the bearing 

Due to the type of the studied dynamic loading, 

the entire inner face of the bearings is worn. The 

developed model is able to predict the worn geometry 

of the bearings and the numerical results have been 

compared to the experimental results. Fig. 15 shows 

the final worn profile (in green) of the bearings 

compared to the reference profile (in black). For both 

results, numerical (Fig. 15a) and experimental (Fig. 

15b), the wear is not uniform on the whole inner face 

of the bearing. The maximum wear depth of the 

bearing (red line in Fig. 15) is not located at the same 

place. For the numerical result, the maximum wear 

depth is aligned with the y1-axis, whereas for the 

experimental result, it is shifted. The reason of this 

difference is related with the fact of not taking into 

account friction in the contact calculation. Indeed, it 

was reported that frictional contact contributes to 

shift the location of wear but does not influence the 

pressure distribution [30]. 

 

 
Fig. 15. The profile of the wear for the bearing after 60 h with (a) 

the developed model and (b) the test rig (to be visible, 

deformations have been amplified). 

 

3.4. Computation time comparison 

The advantage of using the developed model is to 

be less time consuming than FEA. The developed 

model needed about 22 minutes to simulate 4.5E6 

cycles with a standard laptop (2.7 GHz Intel Core i7 

processor and 16 GB of RAM). Authors working 

with FEA to predict wear reported longer 

computational time (Table 7). 

 

Ref. 
Number 

of cycles 

Computational 

time 
CPU characteristics 

[27] 18 000 24 hours Not reported 

[33] 408 000 3.4 hours Processor:  2.0 GHz 

Intel Pentium  

RAM: 2.0 GB  

[34] Not 

reported 

2.2 hours Processor:  3.6 GHz 

Intel Core i7  

RAM: 16 GB 

Table 7. Computational time for FEA models predicting wear 

from literature. 

 

3.5. Influence of the discretization method 

Several tests were done to analyse the influence 

of spatial and temporal discretization on maximum 

wear depth of the shaft and the bearings. 

 

(i) Spatial discretization  

From a sensitivity analysis, it was found that N 

had little influence on maximum wear depth results. 

The difference on the calculated maximum wear 

depth when increasing N = 4 to N = 28 was about 

0.02%. However, the computational time increased of 

about 20%. 

 

(ii) Temporal discretization  

In the stable wear stage, the size of the time step 

had low influence on final results. Multiplying by 

two the time step (from 10 h to 20 h) in stable wear 

stage induced a difference of 0.8% on the final 

maximum wear depth of the shaft. In the running-in 

wear stage, the size of the time step had more 

influence on the maximum wear depth. Multiplying 

by two the time step (from 0.1 h to 0.2 h) during the 

first hour of simulation induced a difference of 1.4% 

on final maximum wear depth. By using smaller time 

steps, the total computational time increased: from 20 

to 30 iterations in total increased the computational 

time of about 50%. 

Based on these conclusions, a non-uniform 

discretization of time was made for all the 

computations results in this paper. During the 

running-in wear stage time step of 0.2 h until 1 h and 

0.8 h between 1 h and 6 h were taken. It increased 

when it approached stable wear stage with a time step 

of 2 h between 6 h and 15 h. And then, time step of 5 

h between 15 h and 25 h and 17 h between 25 h and 

60 h were used. 

 

4. Conclusion  

In this work, a model to predict the wear of a 

plain bearing system under dynamic off-centred loads 

was developed. The model predicts the characteristics 

of the pressure and the wear fields: maximum wear 

depths of the shaft and the bearings, maximum 

contact pressure, contact length and contact area. In 

this work, the rotational speed was constant for each 

test. In other case studies, the developed model can 

be used to predict wear with non-constant rotational 

speed. It can be also enhanced to consider frictional 

contacts to better determine the location of maximum 

wear depth on bearing as represented in Fig. 15. 

The dynamic off-centred loading considered was 

represented by an unbalanced mass fixed to a shaft. 

This configuration of loads generates a wear located 

always on the same area of the shaft but distributed 
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on the entire inner face of the bearings. This spatial 

repartition of wear was taken into account.   

 A test rig was used to determine the wear 

coefficients of the shaft and the bearings. The test rig 

was also used to validate the model but with different 

speed and loads conditions. The experimental results 

of the wear depths of the shaft and the bearings were 

good agreement with the model results.  

These kinds of specific numerical models are less 

time consuming than finite element analysis, so it 

represents a good alternative for describing the wear 

progression in the frame of digital twin applications 

for helicopters. 
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