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Abstract 

Most state-of-the-art speech systems use deep neural networks (DNNs). These systems require a large amount of data 
to be learned. Hence, training state-of-the-art frameworks on under-resourced speech challenges are difficult tasks. 
As an example, a challenge could be the limited amount of data to model impaired speech. Furthermore, acquiring 
more data and/or expertise is time-consuming and expensive. In this paper, we focus on the following speech pro-
cessing tasks: automatic speech recognition, speaker identification, and emotion recognition. To assess the problem 
of limited data, we firstly investigate state-of-the-art automatic speech recognition systems, as this is the hardest task 
(due to the wide variability in each language). Next, we provide an overview of techniques and tasks requiring fewer 
data. In the last section, we investigate few-shot techniques by interpreting under-resourced speech as a few-shot 
problem. In that sense, we propose an overview of few-shot techniques and the possibility of using such techniques 
for the speech problems addressed in this survey. It is true that the reviewed techniques are not well adapted for large 
datasets. Nevertheless, some promising results from the literature encourage the usage of such techniques for speech 
processing.

Keywords:  Audio processing, Deep learning techniques, Deep neural networks, Few-shot learning, Speech analysis, 
Under-resourced languages
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1  Introduction
Automatic speech processing systems have improved 
dramatically over the past few years, especially automatic 
speech recognition (ASR) systems. This is also the case 
for other speech processing tasks such as speaker identi-
fication or emotion classification. This success was made 
possible by the large amount of annotated data available 
combined with the extensive use of deep learning tech-
niques and the capacity of modern graphics processing 
units. Some modelings are already deployed for every-
day use, such as personal assistants in smartphones and 
connected speakers. Nevertheless, challenges remain 
for automatic speech processing systems. They lack the 

robustness to deal with extensive vocabularies in a real-
world environment: this includes noises, distance from 
the speaker, paucity of robustness to speech variations, 
reverberations, and other alterations [1]. Some chal-
lenges, such as CHiME [2], provide data to let the com-
munity try to handle some of these problems. Ways are 
sought to improve the generalization of modern models 
by avoiding the inclusion of additional annotated data for 
each possible environment.

State-of-the-art (SOTA) techniques for most speech 
tasks require large datasets. Indeed, with modern DNN 
speech processing systems, having more data usually 
implies better performance. The TED-LIUM 3 (from 
[3], with 452 h) provides more than twice the data of 
the TED-LIUM 2 dataset. The authors thus obtain bet-
ter results by training their model on TED-LIUM 3 
than training their model using TED-LIUM 2 data. 
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This improvement in performance for ASR systems is 
also observed with the LibriSpeech dataset, from [4]. V. 
Panayotov et al. obtained better results on the Wall Street 
Journal (WSJ) test set by training a model using the 
LibriSpeech dataset (1000 h) than with the WSJ training 
set (82 h) [4].

This phenomenon, that having more data leads to 
better performance, is also observable in speaker rec-
ognition with the VoxCeleb 2 dataset compared to the 
VoxCeleb dataset [5]: the authors increased the number 
of sentences from 100,000 to one million and increased 
the number of individuals from 1251 to 6112 compared 
to the previous version of VoxCeleb. They thus obtained 
better performance than by training their model with the 
previous VoxCeleb dataset.

We summarized state-of-the-art approaches for auto-
matic speech recognition in Tables 1 and 2, for emotion 
recognition in Table  3, and for speaker recognition in 
Table 4. From these tables, we can see that having more 
data does not always induce better results. Nevertheless, 
using more speech as pretraining of an unsupervised 
model (such as the libri-light [6] 60k hours) and bigger 

models (model having more parameters) helps to obtain 
some state-of-the-art results on unimpaired speech. 
Hence, scaling either the number of parameters or the 
amount of data can be useful when possible.

With under-resourced languages (such as [18]) and/
or some tasks (pathology detection with speech signals), 
we lack large datasets [19]. By under-resourced, we mean 
limited digital resources (limited acoustic and text cor-
pora) and/or a lack of linguistic expertise. For a more pre-
cise definition and details of the problem, see [20]. Some 
non-conventional speech tasks such as disease detection 
(such as Parkinsons, gravity of head and neck cancer and 
others) using audio are examples of under-resourced 
tasks [19]. Training deep neural network models in such 
contexts is a challenge for these under-resourced speech 
datasets. This is especially the case for tasks involving a 
large vocabulary. M. Moore et al. showed that recent ASR 
systems are not well adapted for impaired speech [21], 
and M. B. Mustafa et al. showed the difficulties in adapt-
ing such models with limited amounts of data [22].

Few-shot learning consists of training a model using 
k-shot (where shot means an example per class), where 

Table 1  SOTA results over test-clean set from LibriSpeech and 
quantity of data used. Some self-supervised results are provided 
from [7]

Model type Quantity of data used WER

Pre-training Training

Pase+ [8] 50h 960h 16.62

Wav2Vec2.0 [9] 960h 4.79

60k h 3.10

HuBERT [10] 960h 4.79

60k h 2.94

Hybrid model [11] - 2.7

End to end supervised [12] - 2.44

Wav2Vec2.0 using conformers 
and spec augment [13]

60k h 1.4

Wav2Vec using BERT XXL [14] 60k h 1.4

Table 2  SOTA results over test-other set from LibriSpeech and 
quantity of data used. Some self-supervised results come from 
[7] experiments

Model type Quantity of data used WER

Pre-training Training

End to end supervised [12] - 960h 8.29

Hybrid model [11] - 5.7

Wav2Vec2.0 using conformers 
and spec augment [13]

60k h 2.6

Wav2Vec using BERT XXL [14] 60k h 2.5

Table 3  SOTA results over IEMOCAP using 4 emotions 
(happiness, neutral, anger, and sadness) and quantity of data 
used. Self-supervised results come from [7] experiments

Model type Quantity of data used Accuracy

Pre-training Training

Pase+ [8] 50h 12h 57.86

Wav2Vec2.0 [9] 960h 63.43

60k h 65.64

HuBERT [10] 960h 64.92

60k h 67.62

Multitask approach 
[15]

- + labels for 
the other 
task

81.6

DAAN [16] 1 billion words for 
lexical

82.7

Table 4  SOTA results over VoxCeleb1 and quantity of data used. 
Self-supervised results come from [7] experiments

Model type Quantity of data used Accuracy

Pre-training Training

Pase+ [8] 50h 350h 37.99

Wav2Vec2.0 [9] 960h 75.18

60k h 86.14

HuBERT [10] 960h 81.42

60k h 90.33

AutoSpeech [17] - 87.66
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k≥1 and k is a low number. Training an ASR system on 
a new language, adapting an ASR system on pathologi-
cal speech, or performing speaker identification (with 
impaired voice) with few examples are still complicated 
tasks [19, 21]. We think that few-shot techniques may be 
useful for tackling these problems.

This survey will be focused on how to train deep neu-
ral network (DNN) models with low resources for speech 
data with non-overlapping mono signals. Therefore, we 
will first review SOTA ASR techniques that use a large 
amount of data (Section  2). Then, we will review tech-
niques and speech tasks (speaker identification, emotion 
recognition) requiring fewer data than SOTA techniques 
(Section  3). We will also look into pathological speech 
processing for ASR using adaptation techniques (Sec-
tion 3.2). Finally, we will review few-shot techniques for 
audio (Section 4) which is the focus of this survey.

2 � Automatic speech processing
In this section, we will review SOTA ASR, speaker iden-
tification, and emotion recognition systems using multi-
models and end-to-end models. Here, we are focused on 
mono speech sequences x=[x1,x2,…,xn] where xi can be 
speech features or audio samples. ASR systems consist 
in matching x into a sequence of words y=[y1,y2,…,yu] 
(where u≤n), while speaker and emotion recognition 
systems map the sequence x into a single outcome y rep-
resenting a class. The reviewed systems were evaluated 
using word error rate (WER) as a measure for ASR sys-
tems and the accuracy of recognition for speaker identifi-
cation and emotion recognition.

2.1 � Multi‑models
A multi-model approach consists in solving a prob-
lem using multiple models. These models are designed 
to solve sub-tasks (related to the problem) and the tar-
geted task. The minimum configuration is with two mod-
els (let us say f and g) to solve a given task. Classically 
for the ASR task, we can first train an acoustic model (a 
phoneme classifier or equivalent sound unit) then train 
on top of it a language model that output the desired 
sequence of words. Hence, we have: 

with f being the language model predicting the out-
put sequence ŷ (which can be different from the real 
sequence y) and g being the acoustic model. Note that 
for emotion and speaker recognition, the output of f is ŷ 
instead of ŷ and is not necessarily a language model. Both 
can be trained separately or conjointly. Usually, hybrid 
models are used as acoustic models.

Hybrid models consist in using probabilistic models 
with deterministic ones. Probabilistic models involve 

(1)ŷ = f (g(x)),

randomness using random variables combined with 
trained parameters. Hence, every prediction is slightly 
different on a given example x. Gaussian mixture models 
(GMMs) are an example of such models. Deterministic 
models do not involve randomness and every prediction 
is the same, given an input x. DNNs are an example of 
such models. A popular and efficient hybrid model is the 
DNN-hidden Markov model (DNN-HMM). DNN-HMM 
consists in replacing the GMMs that estimate the prob-
ability density functions by DNNs. The DNNs can be 
trained as phoneme classifiers. They form the acoustic 
model. This acoustic model is combined with a language 
model (LM) that maps the phonemes into a sequence of 
words. Lüscher et al. used DNN-HMMs combined with 
a LM to obtain SOTA on the LibriSpeech test-other set 
(official augmented test set) [11]. This model processes 
mel frequency cepstral coefficients (MFCCs), which are 
computed on the audio signals. Their best LM approach 
consisted in the use of transformer from [23]. Transform-
ers are autoregressive models (depending on the previous 
outputs of the models) using soft attention mechanisms. 
Soft attention consists in determining a glimpse g, which 
is a selection of characteristics from the input x that help 
to filter non-useful information. Their best hybrid model 
got a WER of 5.7% for the test-other set and 2.7% for test-
clean set.

Hybrid model is also used in emotion recognition and 
obtains SOTA on IEMOCAP using context-dependent 
domain adversarial neural network (DAAN) [16]. The 
IEMOCAP database [24] here was modified to obtain in 
a four-class emotion problem. Those emotions are angry, 
happy, neutral, and sad.

DAAN consists in using a lexical model (pretrained 
over one billion words) and audio features (such as 
MFCC and energy) that represent 6373 features for each 
input frame. They fuse these inputs using attention. Then, 
multiple GRU layers are used. Note that their approach 
use two tasks to be learned (emotion recognition and 
domain recognition). Such approach requires multiple 
labels, which IEMOCAP database provides. Doing so, 
they achieved an accuracy of 82.7% over all the emotions.

2.2 � End‑to‑end systems
In end-to-end approaches, the goal is to determine a 
model f that can do the mapping: 

It will be trained to directly map x to ŷ (which can be 
different from the real sequence y) with a single learnable 
function. Only supervised methods can function end-to-
end to solve the speech tasks we are focused on.

In ASR systems, Kim et  al. got SOTA on LibriSpeech 
test-clean official set [12]. Compared to [11], they used 

(2)ŷ = f (x).



Page 4 of 15Roger et al. EURASIP Journal on Audio, Speech, and Music Processing         (2022) 2022:19 

vocal tract length perturbation as the input of their 
end-to-end model. The model is based on the encoder-
decoder architecture using stacked long short-term 
memory (LSTM) for the encoder and LSTM combined 
with soft attention for the decoder [12]. They obtained a 
WER of 2.44% on test-clean set and 8.29% on test-other 
set. Those results are close to [11] (best hybrid model 
results) and show that end-to-end approaches are com-
petitive compared to multi-model approaches.

In emotion recognition, Lian et  al. got SOTA results 
with a the same modified version of the IEMOCAP data-
base [24] as other methods mentioned for [16]. They used 
an end-to-end multi-task system with only supervised 
tasks: gender identification and emotion identification 
[15]. The resulting model achieved an overall accuracy 
for the emotion task (which is the main target) of 81.6% 
and an average accuracy of each emotion category of 
82.8%. Using such an approach allowed them to achieve 
balanced results from unbalanced data. Furthermore, 
their results are similar to hybrid SOTA approach from 
[16]. Nevertheless, using only supervised tasks requires 
multiple ground truths for the targeted dataset.

In speaker identification, autoSpeech [17] architecture 
is SOTA over the VoxCeleb1 dataset [25]. Their approach 
consists in an algorithm that automatically search the 
best convolutional neural network architecture to solve 
the task. With their approach, they obtained an accuracy 
of 87.66%.

3 � Techniques requiring fewer data
Some techniques require fewer data than the techniques 
of the previous section. In this section, we will enumer-
ate the principal ways to leverage (to our best knowledge) 
the lack of large datasets such as impaired speech. We 
will not discuss semi-supervised techniques that use a 
large amount of unsupervised data.

3.1 � Data augmentation
The first way to leverage the lack of data is to artifi-
cially augment the number of samples. To do so, the 
classic approach consists in adding noise or deforma-
tion, as in [26]. The authors obtain near SOTA results 
on LibriSpeech (1000 hours from [4]) with an end-to-
end model. Nevertheless, they obtain SOTA results on 
SwitchBoard (300 h from [27]) with a WER of 6.8% on 
Switchboard and 14.1% on the CallHome portion using 
shallow fusion and their data augmentation. But these are 
handcrafted augmentations, and some of them require 
additional audio (such as adding noise).

Some other approaches use generative models to have 
new samples, as in [28, 29]. Chatziagapi et al. used con-
ditional generative adversarial networks (GANs) to gen-
erate new samples [28]. With conditional GANs, we can 

control the mode of the generated samples [30]. By doing 
so, they balanced their initial dataset and obtained better 
results. Jiao et al. used deep convolutional GANs to gen-
erate dysarthric speech and improved their results [29].

3.2 � Domain transposition
Another way to leverage the lack of data is to use data 
domain transposition. The idea consists of mapping 
speech features from one domain (such as spectrogram 
containing speech and noises) to another domain to 
reduce the data complexity (such as spectrogram with 
only speech). In machine learning, data complexity is 
defined by the size of the model needed to replicate the 
data, the size of the shortest encoding possible (that let 
the reconstruction of the initial data), and the error rate 
of the best model possible given a task [31]. Here are 
some recent examples on speech: 

•	 Wang et  al. used GAN to dereverberate speech sig-
nals [32]. In their work, the generator is used as a 
mapping function for converting reverberated signals 
into dereverberated speech signals.

•	 Chen et  al. performed vocal conversion using GAN 
with a controller mapping impaired speech to a rep-
resentation space z [33]. z is the input of the genera-
tor that is used as a mapping function to have unim-
paired speech signals.

•	 Zhao et  al. used Cycle GAN (framework designed 
for domain transfer) as an audio enhancer [34]. Their 
resulting model is SOTA on the CHiME-4 dataset.

3.3 � Models requiring fewer parameters
Having fewer data means that overfitting can occur if 
neural network models require too many parameters. 
This is why some experimental techniques tried mod-
els requiring fewer parameters. Here, we highlight some 
recent techniques that we find interesting: 

•	 The use of SincNet layers, from [35], to replace clas-
sic 1D convolutions over raw audio. Here, instead of 
requiring window_size parameters (with window_size 
being the window size of the 1D convolution) per fil-
ter, we only need two parameters per filter for every 
window size. These two parameters indirectly rep-
resent the values of the bandwidth at high and low 
energy.

•	 The use of LightGRU (LiGRU), from [36], based on 
the gated recurrent unit (GRU) framework. LiGRU 
is a simplification of the GRU framework given some 
assumptions concerning the speech signal. They 
removed the reset gate of the GRU and used the 
ReLU activation function (combined with Batch Nor-
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malization [37]) instead of the tanh activation func-
tion.

•	 The use of quaternion neural networks, from [38], 
for speech processing. The quaternion formulation 
allows 4 dimensions to be fused into one inducing 
a drastic reduction of required parameters in their 
experiments (almost 4 times fewer).

3.4 � Multi‑task approach
Multi-task models can be viewed as an extension of the 
Encoder-Decoder architecture where you have a decoder 
per task with a shared encoder (as in Fig. 1). These tasks 
are then trained conjointly with classic feed-forward 
algorithms. The goal of multi-task learning is to obtain an 
encoder that outputs sufficient information for each task. 
It can thus potentially improve the performance of each 
task compared to mono-task architectures. It is a way 
to have a more representative encoder given the same 
amount of data.

Pascual et  al. used a combination of self-supervised 
tasks to tackle the lack of ground truth and used the 
resulting encoder for transfer learning [39]. They recently 
improved this work in [8] where they use more tasks, 
a recurrent unit on top of the encoder and denoising 
mechanisms using multiple data augmentation tech-
niques on their system.

3.5 � Transfer learning
Transfer learning techniques consist in using a pre-
trained model and using it as a feature extractor or using 
its parameters as initializers (that can be fine-tuned) to 
solve a related problem/task.

Contrastive predictive coding (CPC from [40]) 
is a framework for training self-supervised audio 

representation using a 2-level architecture combined 
with a self-supervised loss. The authors achieved better 
results by transferring the obtained parameters onto a 
speaker identification task and a phoneme classification 
task (on the LibriSpeech dataset) than with the use of 
MFCC features.

Some binary tasks of the multi-task model from Pas-
cual et al. use predictive coding like in CPC. The latter 
developed an unsupervised multi-task model to obtain 
better encoders for transfer learning [39]. They applied 
it on multiple tasks and obtained acceptable results 
on speaker identification (using VTCK [41]), emotion 
recognition (using INTERFACE [42]), and ASR (using 
TIMIT [43]).

Nowadays, CPC approaches such as Wav2Vec [44] 
(last version Wav2Vec2.0 [9]) and HuBERT [10] repre-
sent SOTA self-supervised techniques. Such techniques 
are able to pretrain models over 60k hours of unlabeled 
speech such as libri-light [6]. Wav2Vec and Wav2Vec2.0 
consist in learning representations from the waveform 
using the CPC framework. Wav2Vec2.0 combines con-
volutional layers to process the waveform and obtain a 
low latent representation, which is fed to transformer 
layers to obtain a contextual representation. HuBERT 
is using a BERT encoder (which is a transformer) 
inside the CPC framework and penalizes the loss func-
tion using the BERT loss [45]. These approaches have 
been compared in [7] benchmarks (among others). For 
speaker identification, the best model obtained an accu-
racy of 90.33% over the VoxCeleb test set [46]. Then, for 
emotion recognition, the best model obtained an accu-
racy of 67.62% over the IEMOCAP [47] test set. And 
for ASR, the best model obtained a word error rate of 
2.94% over librispeech [4] test-clean. A more detailed 
overview (with a complete benchmark across several 
speech tasks) of self-supervised approaches is available 

Fig. 1  Illustration of multi-task architecture. The output of the encoder is given to each decoder to produce the prediction for each ti task
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in [7]. Note that this benchmark does not include path-
ological speech data or related tasks.

The benefits of pre-trained networks for transfer learn-
ing decrease as the target task diverges from the origi-
nal task of the pre-trained network [48]. To tackle this, 
Van den Oord et al. attempted to have generic tasks with 
their unsupervised approach, and they obtained prom-
ising results [40]. The benefits of transfer learning also 
decrease when the dissimilarity between the datasets 
increases [48]. This problem can discourage the use of 
transfer learning for some pathological speech. However, 
dysarthric and accented speech seem similar to speech in 
the LibriSpeech dataset, according to [49]. Shor et al. suc-
cessfully used transfer learning to improve their results 
with a 36.7-h dataset.

Nevertheless, Mustapha et  al. showed that the acous-
tic characteristics of unimpaired and impaired speech 
are very different [22]. Where few data are available, fine-
tuning generic representations from unimpaired speech 
to impaired speech can be critical. Furthermore, learn-
ing from scratch could be a hard task. This is why looking 
into few-shot techniques could be helpful as a replace-
ment or combined with generic pre-training.

4 � Few‑shot learning and speech
In the previous sections, we reviewed models that require 
a large amount of data to learn directly a task or to train 
more generic representations (to allow tackling some 
tasks with fewer data). But there is not always enough 
data to train a model from generic representations (by 
using them or adapting them); this is the case for patho-
logical speech [19]. Google is trying to acquire more data 
of that nature1. But acquiring such data can be expensive 
and time consuming. Mustafa et al. recommend the use 
of adaptive techniques to tackle the limited amount of 
data problem in such case [22]. We think few-shot tech-
niques can be another solution to this problem. Never-
theless, some non-common tasks such as pathological 
speech or dialect identification with few examples are 
still hard to train with SOTA techniques based on large 
speech datasets. This is why we investigate the following 
few-shot techniques and see the adaptations required for 
using them on speech datasets.

4.1 � Few‑shot notations
Let us consider a distribution P from which we draw 
independent identically distributed (iid) episodes ( E or 
datasets). E is composed of a support set S , unlabeled 

data x̄ and a query set Q . The support set corresponds to 
the supervised samples to which the model has access: 

with xi being samples and yi being the corresponding 
labels, such as yi∈{1,2,…,K} and K being the number of 
classes appearing in P. The query set is composed of sam-
ples to classify x̂ with ŷ being the corresponding ground 
truth.

To summarize, episodes drawn from P have the follow-
ing form: 

with s, r, and t fixed values that respectively represent 
the number of supervised samples for the support set, 
the number of unsupervised samples, and the number of 
supervised samples for the query set.

In this survey, we will focus on few-shot learning tech-
niques where r=0, t≥1 and s=kn, with n being the num-
ber of times each label appears for the support set and 
k the number of classes selected from P, such as k≤K. 
Hence, we have an n-shot with k-ways (or classes) for 
each episode. One-shot learning is just a special case of 
few-shot learning where n=1. In some few-shot frame-
works, we only sample one episode from P and it repre-
sents our task.

4.2 � Few‑shot learning techniques
In this section, we will review frameworks that impacted 
the few-shot learning field in image processing, frame-
works with a formulation that seems suitable for speech 
processing, and frameworks already successfully used by 
the speech community.

4.2.1 � Siamese technique
Siamese neural networks are designed to be used per epi-
sode [50]. They involve measuring the distance between 
two samples and judging whether or not they are similar. 
Hence, a siamese network uses the samples from the sup-
port set S as references for each class. It is then trained 
using all the combinations of samples from S Q which 
provides much more training than having only s+t sam-
ples in classical feedforward frameworks. Siamese Net-
works take two samples (x1 and x2) as input and compute 
a distance between them, as follows: 

with Enc being a DNN encoder that represents the 
signal input, σ being the sigmoid function, α learnable 

(3)S = {(x1, y1), . . . (xs, ys)},

(4)
E = {S = {(x1, y1), . . . , (xs, ys)},

x̄ = (x̄1, . . . , x̄r),

Q = {(x̂1, ŷ1), . . . , (x̂t , ŷt)}

(5)φ(x1, x2) = σ(
∑

α|Enc(x1)− Enc(x2)|),

1  https://​blog.​google/​outre​ach-​initi​atives/​acces​sibil​ity/​impai​red-​speech-​recog​
nition/

https://blog.google/outreach-initiatives/accessibility/impaired-speech-recognition/
https://blog.google/outreach-initiatives/accessibility/impaired-speech-recognition/
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parameters that weight the importance of each compo-
nent of the encoder, and x1 and x2 sampled from either 
the support set or the queries set.

To define the class of a new sample from Q or any new 
data, we must compute the distance between each refer-
ence from S and the new sample. An example of compar-
ison between a reference and a new example is shown in 
Fig. 2. The class of the reference with the lowest distance 
then becomes the prediction of the model. To train such 
a model, [50] used this loss function: 

 with x̃ = [x1, . . . , xs, x̂1, . . . , x̂t ] from S and Q . y(x) 
is a function that returns the label corresponding to 
the example x. The last layer of φ should be a softmax 
function.

Eloff et  al. used a modified version of this framework 
for multimodal learning with the modalities being speech 
and image signals [51], but to our knowledge, there is no 
study yet concerning just speech processing. The speech 
signals used consist of 11-digit numbers (zero to nine and 
the ‘‘oh’’ used in phone numbers) with the correspond-
ing 10 images (‘‘oh’’ and zero give the same images). The 
problem is to associate speech signals with the corre-
sponding images. In their experiment, the model shows 
some invariance to speakers (accuracy of 70.12% ±0.68) 
using only a one-shot configuration, which is a promising 
result.

Siamese neural networks are not very suitable when the 
number of classes K or the number of shots q become too 
high. It increases the number of references to be com-
pared and the computation time to forward the model. 
The primary problem concerns training the model. Once 
the model has been trained, we can reduce this effect by 
pre-calculating all encodings of the examples of the sup-
port set. This also dramatically increases the number 
of combinations for the training phase, which can be 
viewed as a positive point. This framework does not seem 

L = Ey(xi)=y(x̃j) log(φ(xi, x̃j))+ Ey(xi)�=y(x̃j) log(1− φ(xi, x̃j))

appropriate for end-to-end ASR with large vocabularies, 
such as in English (around 470,000 words), though it may 
be sufficient for languages such as Esperanto (around 
16,780 words). The other way to use such a framework in 
ASR systems is to use it in hybrid models as an acous-
tic model, where we can train it on every phoneme 
(for example 44 phonemes/sounds in English) or more 
refined sound units.

The siamese framework seems interesting for tasks 
such as speaker identification, as a new speaker can 
be added without retraining the model (supposing the 
model had generalized) or changing the architecture of 
the model. We only have to add at least one sample of the 
new speaker to the references. Furthermore, the siamese 
formulation seems well adapted for speaker verification. 
We only need to replace the pair (x,speaker_id) by the 
pair (x,Stop5) , where Stop5 is a support set composed of 
signals from the top 5 predictions of the identification 
sub-task.

Nevertheless, this framework will be of limited use if 
the number of speakers to identify become too high. Even 
so, it is possible to use such techniques in an end-to-end 
ASR system when the vocabulary is limited, such as in 
the experiment described in [51]. Also, this framework 
was used in emotion recognition [52]. In their experi-
ments, they used their approach over the IEMOCAP 
[47] using a 3-way task (which is different from all other 
papers reviewed in this work that use 4 classes). Never-
theless, they managed to obtain an unweighted average 
recall of 67.4% using a 10-shot configuration, which is an 
encouraging result.

4.2.2 � Matching network
The matching networks system described in [53] is a 
few-shot framework designed to be trained with a set 
of multiple episodes (with typically 5-ways to 25-ways), 
which consists of a single model φ. This model evaluates 

Fig. 2  Example of comparison between a reference (xi) and a new example ( ̂xj ) from the query set, where Enc is the same network applied to both 
xi and x̂j . The model outputs the distance between the classes xi and x̂j
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new examples given the support set S as in the siamese 
framework: 

In matching learning, φ is as follows: 

with, a being the attention kernel.
In [53], this attention kernel is as follows: 

where c is the cosine distance, and  f and g are embed-
ding functions.

Vinyals et al. used a recurrent architecture to modulate 
the representation of f using the support set S [53]. The 
goal is to have f following the same type of representation 
as g. To do this, the g function is as follows: 

where 
−→
hi  and 

←−
hi  represent a bi-LSTM output over g′(xi), 

which is a DNN.
The f function is as follows: 

with attLSTM being an LSTM requiring a fixed num-
ber of recurrences (here m) and  g(S) representing the 
application of g to each xi from the S set. f′ is a DNN with 
the same architecture as g′, but not necessarily sharing 
the parameter values.

Training this framework therefore consists in the maxi-
mization of the log likelihood of φ given the parameters 
of g and f.

Figure  3 illustrates forward time of the matching net-
work model. For forward time on new samples, g(S) can 
be pre-calculated to gain computation time. Neverthe-
less, matching networks have the same disadvantages 
as siamese networks when q and/or K become too high. 

(6)ϕ(x̂,S) :→ ŷ.

(7)ϕ(x̂,S) =
∑

(xi ,yi)∈S

a(x̂, xi)yi,

(8)a(x̂, xi) = softmax(c(f (x̂), g(xi))),

(9)g(xi) =
−→
hi +

←−
hi + g ′(xi),

(10)f (x̂) = attLSTM(f ′(x̂), g(S),m),

Furthermore, adding new classes to a trained match-
ing network model is not as easy as for siamese network 
models. As this requires retraining the matching network 
model to add an element to the support set. Despite these 
disadvantages, matching learning showed better results 
than the siamese framework on image datasets [53]. This 
is why it should be investigated in speech processing to 
see if it is still the case.

4.2.3 � Prototypical networks
Prototypical networks [54] are designed to work with 
multiple episodes. In the prototypical framework, the 
model φ makes its predictions given the support set S 
of an episode such as the previously seen frameworks. 
This framework uses training episodes as mini-batches 
to obtain the final model. This model is formulated as 
follows: 

where ck is the prototype of the class k, d being a Breg-
man divergence (for their useful properties in optimi-
zation, see [54] for more details), which also has the 
following property: Rn×Rn→[0,+ inf[.

Snell et  al. used the Euclidean distance for d instead 
of the cosine distance used in meta learning and match-
ing learning papers [54]. As a result, they obtain better 
results in their experiments. Next, they go further by 
reducing the Euclidean distance to a linear function.

In the prototypical framework, there is only one proto-
type for each class k as illustrated in Fig. 4. It is computed 
as follows: 

with f being a mapping function such as RD → R
M and 

Sk being the samples with k of the support set.
Prototypical networks require only one comparison per 

class and not q per class for q-shot learning as in siamese 

(11)ϕ(x̂, S) = softmaxk(−d(f (x̂), ck)),

(12)ck =
1

|Sk |

∑

(xi ,yi)∈Sk

f (xi),

Fig. 3  Illustration of the matching network model to predict the class of a new example x̂i
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and matching learning networks. That is why this frame-
work is less subject to the high computation problem for 
prediction of new samples, as it is only influenced by high 
K. It will certainly be insufficient for end-to-end ASR sys-
tems on the English language due to the large vocabulary 
issues described in Section 4.2.1, but it is a step towards 
it.

In speaker recognition, prototypical networks were 
used over a portion of Voxceleb1 [25] by [55]. They 
obtained under 20-ways and using 5-shot an accuracy of 
72.77 which are promising results.

4.2.4 � Meta‑learning
Meta-learning systems [56] are designed to be trained 
over multiple episodes (also called datasets). In this 
framework, a trainee model ( T  ) with parameters θT  
trained from the start of every episode, usually has a clas-
sic DNN architecture. The support set and the query set 
in the episodes are considered as the training set and the 
test set for the trainee model.

Along with this trainee model, a second model is 
trained: the meta model ( M ) with θM parameters. This 
meta model is the key of meta learning, it consists in 

monitoring the trainee model by updating θT  param-
eters. To train this meta model, Ravi et al. suggests sam-
pling iid episodes from P to form the meta-dataset ( D ) 
[56]. This meta-dataset is composed of a training set 
( Dtrain ), a validation set ( Dvalid ), and a testing set ( Dtest).

While the trainee model is training on an episode Ej , 
the meta model is used to update its parameters: 

with LTj being the loss function of the trainee model 
learned with the episode Ej and θTjt−1 being the parameters 
of the trainee model at step t−1. Also, M has to guess 
initial weights of the trainee models at step t=0 ( θTj0 ).

The learning curve (loss) of the trainee model with Ej is 
viewed in [56] as a sequence that can be the input of the 
meta model M . For simplicity, we will use the notation 
of T  instead of Tj for the next few paragraphs. Figure 5 
illustrates the learning steps of the trainee using the meta 
model.

(13)θ
Tj

t = M(θ
Tj

t−1,L
Tj ,∇

θ
Tj
t−1

LTj ),

Fig. 4  Illustration of the prototypical network model to predict class of a new example x̂i

Fig. 5  Illustration of Meta-Learning for training with episode Ej at step t. Here the Meta model M processes the different training steps of the 
trainee T  as a sequence
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4.2.4.1  Trainee parameters update  Ravi and Larochelle 
identify the learning process of T  using classic feedfor-
ward update on the episode Ej to be similar to the ct update 
gate of the LSTM framework [56]. In the meta learning 
framework, ct is used as the θTt  estimator, as follows: 

with ˜θTt = −αt∇θTt−1
LT
t  being the update term of the 

parameters θTt−1 , ft being the forget gate, and it the update 
gate.

4.2.4.2  Parameters of the meta model  Both it and ft are 
part of the meta learner. In the meta-learning framework, 
the update gate is formulated as follows: 

with WI and bI being parameters of M . The update gate 
is used to control the update term in equation 14, like the 
learning rate in the classic feedforward approach.

Next, the forget gate in the meta-learning framework is 
formulated as follows: 

with WF and bF parameters of M.
This gate is here to decide whether the training of the 

trainee should restart or not. This can be useful to avoid 
the problem of a sub-optimal local minimum. Note that 
this gate is not present in classic feedforward approaches 
(where this gate is equal to one).

The trainee model ( T  ) of this framework can be any 
kind of model, such as a siamese neural network. It can 
therefore have the advantages of this framework. It can 
also avoid the disadvantages of the siamese neural net-
work, as it can use any other framework (usually classic 

(14)θTt = ft ⊙ θTt−1 + it ⊙
˜θTt ,

(15)it = σ(WI .[∇θTt−1
LT
t ,L

T
t , θ

T
t−1, it−1] + bI ),

(16)ft = σ(WF .[∇θTt−1
LT
t ,L

T
t , θ

T
t−1, ft−1] + bF ),

DNN). This framework is interesting to training efficient 
models for speech processing (in terms of learning speed) 
when we have multiple ASR tasks with different vocabu-
laries. For example, suppose we have the following kinds 
of speech episodes: dialing numbers, commands to a 
robot A, and commands to a robot B. The model can ini-
tialize good filters for the first layers (as this still involves 
speech processing). Another example could be training 
acoustic models for multiple languages (with each epi-
sode corresponding to a language).

4.2.5 � Graph neural network
Graph neural networks (GNNs) are used by Garcia and 
Bruna to introduce their few-shot framework [57]. This 
framework is designed to be used with multiple episodes, 
they called tasks. In this framework, one model is used 
over a complete graph G: G=(V,E) and every node cor-
responds to an example. For few-shot learning, a GNN 
consists in applying graph convolution layers over the 
graph G.

Initial vertices to guess the ground truth of a query x̃i 
from the query set Q are constructed as follows: 

where Enc is an embedding extraction function (a neu-
ral network or any classic feature extraction technique), h 
the one-hot encoding function, and u=K−11K a uniform 
distribution for examples with unknown labels (the unsu-
pervised ones from x̄ and/or from the query set Q).

The vertices at each layer l (with 0 being the initial ver-
tices) will henceforth be denoted: 

(17)
V (0) = ((Enc(x1), h(y1)), . . . , (Enc(xs), h(ys)),

(Enc(x̄1),u), . . . , (Enc(x̄r),u)

(Enc(x̃i),u))

,

Fig. 6  Illustration of the input of the first layer (here a graph convolution) of a GNN. Here, we have three samples (represented by vertices vi, vj and 
vk) in the support set and one query (represented by the vertex vu)
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where n=s+r+1 and V (l) ∈ R
n∗dl.

Every layer (with an illustration of a layer in Fig. 6) in 
a GNN is computed as follows: 

with A(l) being the adjacency operators constructed 
from V(l) and Gc being the graph convolution.

4.2.5.1  Construction of  the  adjacency operators  The 
adjacency operator uses a set: 

with Ã(l) being the adjacency matrix of V(l).
For every (i,j)∈E (remember that we have complete 

graphs), we compute the values of the adjacency matrix 
as follows: 

where: 

with f being a multi-layer perceptron with its param-
eters denoted θf. Ã(l) is then normalized using the soft-
max function over each line.

4.2.5.2  Graph convolution  The graph convolution 
requires the construction of the adjacency operators set 
and is computed as follows: 

with B being an adjacency operator from A, 
θ
(k)
B,l ∈ R

dl−1,dl learnable parameters and ρ being a point-
wise linearity (usually leaky ReLU).

4.2.5.3  Training the model  The output of the resulting 
GNN model is a mapping of the vertices to a K-simplex 
that gives the probability of x̃i being in class k. V. Garcia 
and J. Bruna used the cross-entropy to train the model 
using all other samples in the query set Q [57]. Hence, 
the GNN few-shot framework consists in learning θf 
and θ1,l…θcard(A),l parameters with all episodes.

4.2.5.4  Few‑shot GNN on  audio  This framework was 
used by [58] on 5-way audio classification problems. The 
5-way episodes are randomly selected from the initial 
dataset: AudioSet [59] for creating the 5-ways training 

(18)V (l) = (v1, . . . , vn),

(19)V (l+1) = Gc(V (l),A(l)),

(20)A(l) = {Ã(l), 1},

(21)Ã
(l)
i,j = φ(v

(l)
i , v

(l)
j ),

(22)φ(v
(l)
i , v

(l)
j ) = f (|v

(l)
i − v

(l)
j |),

(23)Gc(V (l),A(l)) = ρ(
∑

B∈A

BV (l)θ
(k)
B,l ),

episodes and TV program (from [60]) data to create the 
5-ways test episodes.

Zhang et al. compare the use of per class (or intra-class) 
attention and global attention, which gave the best results 
[58]. They applied it for each layer. Their experiments 
were performed for 1-shot, 5-shots, and 10-shots with 
the respective accuracy of 69.4% ± 0.66, 78.3% ± 0.46, 
and 83.6% ± 0.98. Such results are an encouragement for 
the use of few-shot learning for speech signals. Neverthe-
less, this framework does not allow the use of multiple 
classes and shots per episode, which increase the num-
ber of nodes and thus the computations in forward time. 
Hence, it is not suitable for large vocabulary problems.

5 � Preliminary results on phoneme recognition
Following this review of few-shot techniques, we imple-
mented our first approach of a few-shot solution for 
phoneme recognition on TIMIT. We did not try word 
recognition due to the large vocabulary issues described 
in Section 4.2.1. To select our architecture, we reused the 
five first layers of the PyTorch-Kaldi model using MFCC 
[61]. We use this architecture as an encoder for the sia-
mese framework and the prototypical framework, as they 
require the same type of architecture. To evaluate our 
results, we used the phone accuracy (where PER=1−
phone accuracy) to match the usual metric used in few-
shot learning. Note that this is only a first attempt; more 
complete experiments (including all frameworks, speaker 
recognition, and emotion recognition) will be done in 
our future work. Nevertheless, our initial results may 
help others to avoid some difficulties.

In our experiments, we encountered difficulties in get-
ting these models to learn (the problems being similar 
for the siamese and prototypical networks). In our initial 
experiments, both architectures converged to a decrease 
in the cost function, but this resulted in a decrease in 
the phone accuracy score on the test set (which is the 
unwanted behavior). To solve this problem, we had to 
make the following changes: 

1	 When learning the model, we presented as many 
positive pairs as negative ones for each batch (spe-
cific to siamese networks)

2	 We made sure to balance the classes present for each 
batch (siamese and prototypical networks).

3	 We balanced the numbers of male and female speak-
ers for the reference examples (siamese and proto-
typical networks).

4	 We observed that reducing the number of parame-
ters of the chosen architecture improved the results. 
The new architecture used is in Table 5. Thus, we go 
from an architecture of about 23 million parameters 
to about 5 million parameters. Therefore, we assume 
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that these methods do not allow learning from 
scratch models with a large number of parameters.

5	 The choice of examples from different dialect 
regions2 allows an increase in the scores but is not 
always possible depending on the available data. It 
represents an improvement of 5% in accuracy.

Thus, for the recognition of the 39 English phonemes of 
TIMIT, we obtained at best an accuracy of 32.58% for the 
siamese network and an accuracy of 41.38% for the pro-
totypical network. These initial results are encouraging, 
especially considering that we used 1.1% of the data from 

the TIMIT training set (when we used 40 samples for 
training the model). To compare these two methods, we 
have made two compilation tables (Tables 6 and 7) where 
we used the accuracy as a metric. It should be noted 
that for the siamese network architecture, the computa-
tion time of our implementation was higher (about one 
day for an experiment) than our implementation of the 
prototypical networks (about 6h for an experiment). 
Even if our implementation can be improved, this differ-
ence is due to the nature of the frameworks. In siamese 
networks, each reference is compared to a new sample, 
while in prototypical only, the prototypes are compared 
to new samples. Note that our implementation can be 
improved to diminish the computational time for both 
techniques, but the difference between the two frame-
works will remain. This difference in computational time 
also explains why the number of trials we attempted is 
less important for siamese networks. Considering these 
initial results, we consider that the prototypical architec-
ture is more interesting since the computation times are 
lower and the results are better. Moreover, we notice that 
the prototypical network seems more stable if the num-
ber of supervised examples increases (compared to the 
siamese network).

Nevertheless, these results are just preliminary 
ones. We will include data augmentations in our next 
experiments, hoping it will increase the accuracy, as all 
reviewed few-shot techniques use data-augmentation.

6 � Summary and future directions
In this survey, we investigated few-shot techniques for 
speech usage. In order to do so, we started with state-of-
the-art speech processing systems. These systems require 
a large amount of data and are not suited for under-
resourced speech problems. We also looked into tech-
niques requiring fewer data using data augmentation, 
domain transposition, models requiring fewer parame-
ters, the multi-task approach, and transfer learning. Nev-
ertheless, these techniques are not always sufficient in a 
data-limited context, especially for pathological speech 
[19]. Next, we studied few-shot techniques and how well 
the different frameworks are adapted for classical speech 
tasks.

The main drawback of the reviewed techniques is the 
amount of computation required for large datasets (such 
as LibriSpeech from [4]) compared to SOTA models 
we reviewed in Section  2. Nevertheless, we considered 
some recent works already using few-shot techniques 
on speech with promising results. Such techniques seem 
useful for classical speech tasks on impaired speakers. 
Moreover, we think it can be useful for unconventional 
speech tasks such as measuring the intelligibility of a per-
son (with impaired or unimpaired speakers) to help the 

Table 5  Architecture used for siamese and prototypical 
networks

Layer 
number

Layer type Parameters

0 Input data MFCC with a windowing 
of 25 ms and a 10 ms 
stride

1 Stacked bidirectional GRUs 5 GRUs of 256 cells each

2 Dropout Of 0.2

3 Batch normalization For each direction

4 Linear layer 128 filters

Table 6  Results on the 39 phonemes of TIMIT with the siamese 
network

#shots Accuracy on test

10 22.76

25 32.58

40 27.90

Table 7  Results on the 39 phonemes of TIMIT with the 
prototypical network

#shots #queries Accuracy on test

10 15 39.76

15 15 37.82

10 20 41.16

20 15 41.12

15 20 41.33

20 20 41.38

2  In the TIMIT dataset, data come from eight dialect regions from the United 
States. The dialects are as follows: New England, Northern, North Midland, 
South Midland, Southern, New York City, Western and Army Brat (moved 
around). Note, the authors cannot ensure dialect boundaries for the two last 
ones.
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re-education process (by identifying the problems faster). 
Acquiring a large amount of data is time consuming and 
laborious for some patients (with severe pathologies). We 
believe that few-shot techniques may help the commu-
nity to tackle this problem.

Our initial results over the TIMIT dataset indicate that 
such an approach is adaptable to phoneme recognition. 
Indeed, we managed to obtain an accuracy of 41% using 
only 40 supervised samples per phoneme with the pro-
totypical network over MFCC features. Furthermore, this 
result was obtained without requiring data augmentation, 
which should improve this first result (as all reviewed 
few-shot techniques use data augmentation). To better 
see the potential of such techniques, we will continue our 
work by establishing a benchmark for phoneme recogni-
tion, speaker recognition tasks and emotion recognition. 
Afterwards, we plan to use this technique with the best 
results on this benchmark as a base for teaching the con-
cept of intelligibility.
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