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A Random Matrix Analysis of Data Stream Clustering:
Coping With Limited Memory Resources

Hugo Lebeau 1 Romain Couillet 1 Florent Chatelain 2

Abstract
This article introduces a random matrix frame-
work for the analysis of clustering on high-
dimensional data streams, a particularly rele-
vant setting for a more sober processing of large
amounts of data with limited memory and energy
resources. Assuming data x1,x2, . . . arrives as a
continuous flow and a small number L of them
can be kept in the learning pipeline, one has only
access to the diagonal elements of the Gram ker-
nel matrix: [KL]i,j = 1

px
⊤
i xj1|i−j|<L. Under

a large-dimensional data regime, we derive the
limiting spectral distribution of the banded ker-
nel matrix KL and study its isolated eigenvalues
and eigenvectors, which behave in an unfamiliar
way. We detail how these results can be used to
perform efficient online kernel spectral clustering
and provide theoretical performance guarantees.
Our findings are empirically confirmed on image
clustering tasks. Leveraging on optimality results
of spectral methods for clustering, this work offers
insights on efficient online clustering techniques
for high-dimensional data.

1. Introduction
The ever-increasing amount of data coupled with the need
for a more sober use of computational power puts online
learning in the spotlight, as a way to deal with numerous and
very large data with low memory resources. Be it because
the volume of data is too high to be stored or because one is
restricted to the sole use of a regular laptop, online learning
appears as a handy and frugal way to process information.
As data arrives in the learning pipeline, it is processed at a
low computational cost before being discarded altogether,
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thus inducing a limited memory footprint.

Numerous works have proposed various algorithms to clus-
ter data streams in an unsupervised manner (see, e.g., Gh-
esmoune et al. (2016); Zubaroğlu & Atalay (2021) and
references therein). Among standard methods are the con-
struction of a graph (Fritzke, 1995) or a tree of clusters
(Zhang et al., 1996) which is updated as new data arrives,
or else, the formation of clusters using a distance function,
as in k-means, (Aggarwal et al., 2003) or a density-based
method (Ester et al., 1996). Such algorithms are often adap-
tations of existing offline algorithms, like OpticsStream
(Tasoulis et al., 2007), StreamKM++ (Ackermann et al.,
2012), online k-means (Liberty et al., 2015; Cohen-Addad
et al., 2021), etc. These techniques operate on the entire
feature space and their performance deteriorate as the di-
mension of the data increases. Therefore, Aggarwal et al.
(2004) proposed to cluster data streams after a projection
on a lower-dimensional space. Sketching methods (Keriven
et al., 2017; Gribonval et al., 2021) are also convenient to
perform large-scale learning on data streams with a limited
memory budget; the idea being to summarize the dataset
into a single vector computed in one pass over the data.

Adapted from the standard spectral clustering algorithm
(von Luxburg, 2007), techniques like incremental spectral
clustering (Ning et al., 2010; Dhanjal et al., 2014) have been
proposed to handle evolving data. Yet, they become quite
memory-demanding when the number of samples grows
large. Better suited to streaming applications, the spectral
clustering algorithm of Yoo et al. (2016) constructs a spec-
tral embedding of the stream in one pass by adapting ideas
from matrix sketching (Liberty, 2012).

Spectral clustering has indeed remarkably good perfor-
mances on high-dimensional data as it manages to greatly
reduce the dimensionality by keeping just a few leading
spectral components. It is therefore computationally less
demanding than many other classical clustering algorithms.
Moreover, it reaches the optimal phase transition threshold
(i.e., it performs better than random guess as soon as the-
oretically possible) (Onatski et al., 2013) and achieves the
optimal clustering error rate in the Gaussian mixture model
(Löffler et al., 2020).
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From a random matrix theory perspective, spectral clus-
tering is also of particular interest. Following the works
of El Karoui (2010) and Cheng & Singer (2012) on the
spectrum of kernel random matrices, Couillet & Benaych-
Georges (2016) propose an analysis of kernel spectral clus-
tering with numerous high-dimensional data. Then, Mai &
Couillet (2017) demonstrate that many standard machine
learning algorithms in fact suffer from being ill-used when
dealing with such data. Besides, given some data matrix
X =

[
x1 . . . xn

]
∈ Rp×n, Couillet et al. (2021) show

that it is possible to get huge reductions in computational
and storage costs with almost no performance loss by punc-
turing the data, i.e., keeping only a few elements of X and
computing only a few elements of the Gram kernel matrix
K = 1

pX
⊤X. In addition, Liao et al. (2020) demonstrate

that, when carefully employed, sparsification and quantiza-
tion of K incur negligible performance loss, while providing
a great computational gain.

In the light of these numerous benefits of spectral clustering
when dealing with high-dimensional data, of the practicality
of online learning to handle large data streams with limited
memory, and of the promising path shown by random matrix
theory towards resource-efficient learning with performance
guarantees, the present work introduces an “online spectral
learning” algorithm to which we attach a rigorous perfor-
mance analysis using random matrix theory.

The algorithm goes as follows: supposing that, due to mem-
ory limitations, only a small number L of data points can
be kept in the pipeline, the computation of the n× n Gram
kernel matrix is limited to the elements which are in a radius
L around the diagonal of K. This results in the following
punctured kernel matrix model

KL =
X⊤X
p
⊙T

where⊙ denotes the Hadamard product and T ∈ {0, 1}n×n
is a Toeplitz mask: Ti,j = 1|i−j|<L. A careful adaption of
spectral clustering is then performed on KL to retrieve the
class information.

In technical terms, the present analysis derives the limiting
spectral distribution of KL and analyzes the behavior of
a few isolated eigenvalues (called spikes) which carry in-
formation (that is, indicators for the data classes) in their
associated eigenvectors. Two new interesting behaviors
are observed: unlike classical spectral clustering, due to
the Toeplitz filter, the number of informative spikes can
potentially grow very large even in the case of binary classi-
fication. In addition, the eigenvectors are strongly tainted
(in a way “convolved”) by the eigenvectors of the Toeplitz
mask, which then requires some careful post-processing for
classification. Our results particularly shed light on how the
learning performance is altered by the dimension of the data

and the size of the pipeline, thus providing an analysis of
the performance versus cost trade-off of online learning.

In a nutshell, our main contributions may be listed as follows

• we derive the limiting eigenvalue distribution of KL

as n, p, L → +∞ for data arising from a Gaussian
mixture model: xi ∼

∑K
k=1 πkN (µk, Ip);

• for centered data drawn from a two-class mixture
xi ∼ N (±µ, Ip), we show that a phase transition phe-
nomenon occurs: depending on the signal power ∥µ∥,
some eigenvalues of KL isolate and their eigenvectors
carry information about the classes;

• we propose an algorithm to retrieve information
from isolated eigenvectors, thus performing high-
dimensional “online spectral clustering”;

• simulations of online spectral clustering on Fashion-
MNIST and BigGAN-generated images confirm the
predicted good behavior of the algorithm and support
our theoretical findings.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the model and a circulant approximation
of the Toeplitz mask T, which will be used to derive our
main results, presented in section 3. The limiting spectral
distribution of the kernel matrix is studied first (Theorem
3.1) and a closer look is then given to the behavior of its
isolated eigenvalues and associated eigenvectors (Theorem
3.3). Based on the previous results, section 4 presents some
theoretical considerations on the classification performance
achievable on a data stream and proposes an online ker-
nel spectral clustering algorithm, which is tested on image
clustering tasks. Section 5 gives some concluding remarks.

Proofs and simulations All proofs are deferred to the ap-
pendix. Python codes to reproduce simulations are available
in the following GitHub repository https://github.c
om/HugoLebeau/online learning/.

2. Online learning model and problem setting
2.1. General framework

Let X =
[
x1 . . . xn

]
∈ Rp×n be a collection of n data

samples of dimension p. They are noisy observations of K
unknown classes whose centroids are

[
µ1 . . . µK

]
≡

M ∈ Rp×K . Also define the n×K binary matrix J such
that Ji,j = 1 if xi belongs to class j and 0 otherwise.

We make the following assumptions.
Assumption 2.1. The rows of J are independent realiza-
tions of a multinomial distribution with one trial and K
outcomes, i.e., the class of xi does not depend on the class
of {xj}j ̸=i.

https://github.com/HugoLebeau/online_learning/
https://github.com/HugoLebeau/online_learning/
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Assumption 2.2 (Non-triviality condition). M is uniformly
bounded in spectral norm and does not vanish asymptoti-
cally:

0 < lim inf
p→+∞

∥M∥ ⩽ lim sup
p→+∞

∥M∥ < +∞.

Assumption 2.3 (Additive noise model). X = P + Z
where P = MJ⊤ is a deterministic signal matrix and Z is
a random standard Gaussian noise matrix with independent
entries1.

Remark 2.4. The non-triviality condition (assumption 2.2)
places the work under scenarios of practical relevance, in the
sense that the problem is asymptotically (as n, p, L→ +∞)
neither too easy (∥M∥ → +∞) nor too hard (∥M∥ → 0).
The classification error rate is therefore not expected to
vanish asymptotically.

In the considered online setting, only the L previously
seen data points are kept in memory. Thus, the element
Ki,j =

1
px

⊤
i xj of the Gram kernel matrix can be computed

only if |i− j| < L. This is represented by the pointwise
application of a Toeplitz mask T =

[
1|i−j|<L

]
1⩽i,j⩽n

re-
sulting in

KL =
X⊤X
p
⊙T with T =




1 ... 1 0
...

. . . . . .

1
. . . 1

. . . . . .
...

0 1 ... 1



.

As standard (offline) spectral clustering is “optimal”2, we
argue that spectral clustering on KL ought to achieve good
performance at least for not too small (2L− 1) /n ratios.
Our technical goal is thus to first provide a description of the
spectral behavior of KL as n, p and L are large. To this end,
we place ourselves under the regime n, p, L → +∞ with
p/n→ c ∈ ]0,+∞[ and (2L− 1) /n→ ε ∈ ]0,+∞[.3

2.2. The circulant approximation

An important trick to derive our main results lies in
the fact that the Toeplitz matrix T can be approxi-
mated to some extent by its circulant “version” C =[
1|i−j|<L + 1|i−j|>n−L

]
1⩽i,j⩽n

(Gray, 2006). Indeed, de-
noting {τk}0⩽k<n and {ψk}0⩽k<n their respective eigen-
values (which depend on n and L), then for fixed L and any

1The “interpolation trick” from (Lytova & Pastur, 2009) al-
lows to interpolate results to non-Gaussian noise, but we keep the
Gaussian assumption for simplicity of exposition here.

2In that it performs better than random guess as soon as theo-
retically possible (Onatski et al., 2013).

3The provided results are asymptotic for theoretical conve-
nience, modeling the fact that n, p and L are large. The con-
vergence rates being at least O(1/

√
n) as n, p, L → +∞, they

remain valid for a large but finite horizon.
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Figure 1. Graph of νL on [0, 2π[ (one period) with a plot of ψk =
νL(

2kπ
n

) and τk for 0 ⩽ k < n (the eigenvalues of C and T
respectively). Experimental setting: n = 50, L = 10.

continuous function f : R→ R,

lim
n→+∞

1

n

n−1∑

k=0

|f(ψk)− f(τk)| = 0.

Remark 2.5. Keep in mind that, in our case, n and L grow
together at the same rate. Therefore, approximating T by
C is only reasonable if ε is sufficiently small.

The core advantage of C is that, unlike T, its eigendecom-
position is well-known:

C = FΨF∗ with Fi,j =
1√
n
e−

2iπ
n (i−1)(j−1),

i.e., F is the n×n Fourier matrix and Ψ = diag (ψk)0⩽k<n
is the diagonal matrix of eigenvalues. The latter are a sam-
pling of the Dirichlet kernel:

ψk = νL

(
2kπ

n

)
with νL(x) =

sin((2L− 1) x2 )

sin(x2 )
.

In Figure 1 are superimposed to the graph of νL the eigen-
values of C and T.4 The τk’s roughly follow the graph of
νL, as if they were noisy versions of the ψk’s.

3. Main results
Following standard methods in random matrix theory (Couil-
let & Liao, 2021), the large dimensional spectral behavior of
KL is accessible through an analysis of the resolvent matrix

Q(z) = (KL − zIn)−1

defined for all z ∈ C \ sp(KL), where sp(KL) denotes the
set of eigenvalues of KL. Notably, the Stieltjes transform

4Although there is a natural order for the eigenvalues of C
given by ψk = νL(

2kπ
n

), we use a small trick to get the corre-
sponding order for the eigenvalues of T: after numerically comput-
ing them in ascending order, we apply the same permutation that
maps the eigenvalues of C in ascending order to (ψ0, . . . , ψn−1).
This yields the corresponding (τ0, . . . , τn−1).



A Random Matrix Analysis of Data Stream Clustering

of the empirical spectral measure µn = 1
n

∑
ξ∈sp(KL)

δξ of
KL (from which the spectral measure itself can be recov-
ered) is the normalized trace of its resolvent:

mn(z) ≡
∫

R

µn(dt)

t− z =
1

n
trQ(z).

The resolvent also encapsulates information about the eigen-
vectors of KL: given a closed positively-oriented complex
contour Γ circling around an eigenvalue ξ of KL and leaving
all the other eigenvalues outside, − 1

2iπ

∮
Γ
Q(z) dz = uu∗,

where u is a unit eigenvector associated to ξ.5

3.1. Large dimensional spectral behavior

Our main theorem provides a deterministic equivalent of
the resolvent when the Toeplitz mask T is approximated
by its circulant version C, i.e., Q̃(z) = (K̃L − zIn)

−1

with K̃L = X⊤X
p ⊙ C. Namely, we find a determinis-

tic matrix Q̄(z) such that, for any sequence of determin-
istic matrices An ∈ Rn×n and vectors an,bn ∈ Rn of
unit norm (spectral norm and Euclidean norm respectively),
1
n trAn(Q̃(z)−Q̄(z))→ 0 and a⊤n (Q̃(z)−Q̄(z))bn → 0
almost surely as n, p, L → +∞. This will be simply de-
noted Q̃(z)↔ Q̄(z).

Theorem 3.1 (Deterministic equivalent of Q̃(z)). Under
assumptions 2.1 – 2.3, K̃L admits a limiting spectral dis-
tribution µ as n, p, L → +∞. Its Stieltjes transform m is
solution to

1 + zm(z) =
p

n

n−1∑

k=0

m(z)ψkp

1 +m(z)ψkp
z ∈ C \ suppµ. (1)

Moreover, if dist(z, suppµ) > 2L−1
p , then

Q̃(z)↔ Q̄(z) ≡ m(z)
(
In +P⊤P⊙ FΛ(z)F∗)−1

where Λ(z) = m(z)Ψp

(
In +m(z)Ψp

)−1

is a diagonal

matrix, thus FΛ(z)F∗ is circulant.

Proof. See appendix B.

A first observation from Theorem 3.1 is that Q̄(z) is the
inverse of a perturbation of the identity which is not low
rank. This strikingly differs from standard spiked random
matrix models (Baik & Silverstein, 2006; Benaych-Georges
& Nadakuditi, 2011) where a low-rank perturbation of the
identity in the “population” matrix (here P) usually results
in the presence of only a few isolated eigenvalues in the
“sample” matrix (here K̃L). This being said, here, in stan-
dard settings, most eigenvalues of P⊤P ⊙ FΛ(z)F∗ are

5In fact, this is only true if ξ has multiplicity 1. In the general
case, the integral equals the projection matrix on the eigenspace
associated to ξ.

0 2 4

c = 0.5 ε = 0.6

0 10 20

c = 0.03 ε = 0.6

ESD
LSD

0 2 4 6 0 40 80

Figure 2. Empirical spectral distribution (ESD) and limiting spec-
tral distribution (LSD) of K̃L. The y-axis is in log scale.
Top: noise only, xi ∼ N (0, Ip). Bottom: two-class mixture,
xi ∼ N (±µ, Ip) with ∥µ∥ = 2. Green dashed lines are the
asymptotic positions of the spikes ξ̄k. Experimental setting:
n = 2500, L = 750 and p = 1250 (left) or p = 75 (right).

small enough for only a few number of corresponding iso-
lated eigenvalues in the spectrum of K̃L to appear.
Remark 3.2 (Link with Marčenko & Pastur (1967)). In the
particular case n = 2L− 1 (i.e., ε = 1), the mask becomes
C = 1n1

⊤
n and K̃L = K. Thus, since ψ0 = n and ψk = 0

for 1 ⩽ k < n, equation 1 becomes

zc−1m2(z)−
(
1− c−1 − z

)
m(z) + 1 = 0

which is the canonical equation defining the Stieltjes trans-
form of the Marčenko-Pastur distribution. In other words,
the closer ε is to 1, the closer to the Marčenko-Pastur distri-
bution is the limiting spectral distribution of K̃L.

In practice, rather than computing m(z) directly from equa-
tion 1, it is easier to solve numerically the following fixed-
point equation in η0

η0 =
p

n

n−1∑

k=0

ψ2
k/p

2

(1− z − η0) + ψk
p

and deduce m(z) = 1
1−z−η0 .

Figure 2 displays, in log scale, the empirical spectral dis-
tribution of K̃L under two different settings6 with its limit-
ing spectral distribution computed by inverting the Stieltjes
transform given by Theorem 3.1. Two kinds of data are
presented: noise-only, xi ∼ N (0, Ip), (top row) and a two-
class mixture, xi ∼ N (±µ, Ip), (bottom row). Notice how

6Recall that c = lim p/n and ε = lim (2L− 1) /n.
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the shape of the distribution on the left column resembles the
Marčenko-Pastur one (yet, some eigenvalues are negative
here) while the second distribution has a completely differ-
ent shape (there even are several bulks) for the same value of
ε. This reveals that the parameter c also affects the closeness
of the limiting spectral distribution to the Marčenko-Pastur
one. Also note that, under the two-class mixture setting,
more than one isolated eigenvalue pops out of the limiting
support. It now remains to give a close look to their associ-
ated eigenvectors to understand how to exploit the latter in
a spectral clustering perspective.

3.2. Phase transition and spike behavior

In this section, we focus back on our original clustering
objective. We consider two classes C± whose centroids are
±µ, i.e.7, P = µj⊤ with ji = +1 if xi ∈ C+ and ji = −1
if xi ∈ C−. This corresponds to a two-class mixture with
globally empirically centered data.

Because of the rank-one structure, using the relation M⊙
ab∗ = [diag a]M [diagb]

∗, the deterministic equivalent of
the resolvent (Theorem 3.1) has a much simpler expression:

Q̄(z) = m(z) [DjF]
(
In + ∥µ∥2 Λ

)−1

[DjF]
∗

where Dj = diag j is the diagonal matrix induced by vector
j. Now, Q̄(z) no longer involves a Hadamard product and
we already have its eigendecomposition since In + ∥µ∥2 Λ
is diagonal and DjF is unitary. Note that the columns of
DjF are simply the vectors of the Fourier basis with their
signs switched at coordinates i such that xi ∈ C−.

With a deeper analysis of the resolvent Q̄(z), the following
theorem provides the position of the isolated eigenvalues
and the shape of their associated eigenvectors.

Theorem 3.3 (Phase transition, isolated eigenvalues and
eigenvector alignments.). Given an integer 0 ⩽ k < n, let

ξ̄k =
(
∥µ∥2 + 1

) ψk
p


1 +

p

n

n−1∑

l=0

1(
∥µ∥2 + 1

)
ψk
ψl
− 1




and

ζ̄k =
∥µ∥2

∥µ∥2 + 1


1− p

n

n−1∑

l=0

1
[(
∥µ∥2 + 1

)
ψk
ψl
− 1
]2


 .

The following propositions are equivalent.

1. ψk ̸= 0 and ξ̄k ̸∈ suppµ.

2. ζ̄k > 0.

7Consistently with the previous setting, M =
[
+µ −µ

]
and

Ji,· =
[
1xi∈C+ 1xi∈C−

]
.

3. Almost surely, ξ̄k is the asymptotic position of an iso-
lated eigenvalue of K̃L.

Then, in this case, the matrix Uk =
[
ul
]
ψk=ψl
0⩽l<n

gathers

all the eigenvectors of K̃L whose associated eigenvalues
converge a.s. to ξ̄k and

UkU
∗
k ↔ ζ̄k [DjF]Dk [DjF]

∗

where Dj = diag j and Dk = diag (1ψk=ψl)0⩽l<n.

Proof. See appendix C.

To better understand this theorem, recall that, in Theorem
3.1, we predicted the presence of a few isolated eigenvalues
in the spectrum of K̃L. Theorem 3.3 details this assertion
by specifying the number of spikes (#

{
ζ̄k > 0

}
) and their

position ξ̄k. The quantity ζ̄k can really be seen as an “indica-
tor of spike” as it tells whether an isolated eigenvalue exists
for index k and, if it does, the closer ζ̄k is to 1, the better is
the “quality” of the information carried in the corresponding
eigenvector, i.e., the greater is the signal-to-noise ratio (see
Figure 3).

Another difference with classical spiked random matrix
models is that each asymptotic spike ξ̄k, which has the same
multiplicity as the population spike ψk, is rarely simple8.
However, for finite values of n, p and L, the corresponding
eigenvalues of K̃L are not necessarily degenerate (with
probability one, they are not), but they have the same limit9.

One also notices from Theorem 3.3 that the number of
isolated eigenvalues could potentially grow very large as
∥µ∥ increases. Indeed, the value of ∥µ∥ at which ζ̄k changes
sign (i.e, when one or more eigenvalues isolate from the
bulk around ξ̄k during the phase transition) is given by

1− p

n

n−1∑

l=0

1
[(
∥µ∥2 + 1

)
ψk
ψl
− 1
]2 = 0.

Therefore, potentially any eigenvalue could leave the bulk,
but this is prevented by the non-triviality condition (assump-
tion 2.2): ∥µ∥ = On,p,L→+∞(1). Moreover, since most
ψk’s are small (see Figure 1), the corresponding ξ̄k’s fall
into the bulk and there are only a few spikes visible in prac-
tice. Yet, it is common to see negative isolated eigenvalues
(see Figure 2). Indeed, since ψk can be negative, there can
be spikes on both sides of the spectrum.

When positive, the quantity ζ̄k is the asymptotic alignment
between the empirical eigenvector uk and the corresponding

8In fact, the only simple eigenvalues of C are ψ0, and ψn/2

when n is even.
9In this case, ξ̄k = ξ̄l for all l such that ψk = ψl.
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Figure 3. Asymptotic alignment ζ̄+k versus ∥µ∥ for three values of
k. The empirical alignment is computed as the mean of |u∗

0v0|2
on 10 realizations (error bars indicate the standard deviation). Ex-
perimental setting: n = 2500, p = 75, L = 750.

information vector vk = [DjF]·,k = F·,k ⊙ j, i.e.,

|u∗
kvk|2

a.s.−−−−−−−→
n,p,L→+∞

ζ̄k.

Thus, ζ̄k measures the quality of the empirical eigenvector
uk. Said differently, uk is a noisy version of the vector
vk = F·,k ⊙ j and the noise level is indicated by 0 ⩽
1 − ζ̄k ⩽ 1. In fact, vk is the vector j — the information
sought — modulated by the (k + 1)-th Fourier mode.10

Figure 3 displays the value of ζ̄+k = max(ζ̄k, 0) as a func-
tion of ∥µ∥ for the setting corresponding to the bottom right
part of Figure 2. The empirical alignment of the dominant
eigenvector u0 with v0 = 1√

n
j fits perfectly with the curve

of ζ̄+0 predicted by Theorem 3.3. Moreover, notice the in-
teresting fact that ξ̄1 has several phase transitions: as ∥µ∥
grows, it appears once, then disappears and appears once
again! This is due to the limiting spectral distribution hav-
ing several bulks under this setting (see Figure 2). The first
time this spike appears, it is located between two bulks. It
then goes through the rightmost bulk (so it is no longer an
isolated eigenvalue thus ζ̄1 ⩽ 0), and finally goes out on the
right edge of the distribution.

This last result may sound awkward and possibly testify of
the suboptimality of our approach (when the signal-to-noise
ratio increases, the information attached to some eigenvec-
tors vanishes). This conclusion is not so immediate though,
as the classification information is still contained within
other eigenvectors which, as ∥µ∥ increases, do carry in-
creasingly clearer information.

10Recall that Fourier modes are the eigenvectors of C.

3.3. Discussion on the circulant approximation

The approximation of the Toeplitz mask T by the circulant
mask C used in the previous Theorems 3.1 and 3.3 can be
seen as a way to remove undesired edge effects, whose size
is governed by L.11 If L is chosen small compared to n,
edge effects are expected to be negligible and the previous
results can plausibly be extended to the original setting, as
observed empirically.

To adapt the previous results from C to T, one only needs
to change the eigenvalues and eigenvectors, i.e., replace
ψk by τk — the eigenvalues of T — and replace F by
G ≡

[
g0 . . . gn−1

]
— an eigenbasis of T.

Very precise predictions on the original model can be made
with these simple changes. Comparisons between these and
observations are provided in appendix D.

4. Online spectral clustering of large data
The previous results find direct applications to the online
clustering of high-dimensional data streams.

4.1. Performance vs. cost trade-off in online learning

The phase transition position provided by Theorem 3.3 lets
us determine under which setting classification is possible
or not. Consider the dominant eigenvector u0. If ζ̄0 ⩽ 0
then no eigenvalue isolates from the bulk and classification
cannot be performed. After the phase transition, ζ̄0 > 0
and the closer it is to 1 the closer u0 is to v0 = 1√

n
j. The

fluctuations of the entries of u0 happen to be asymptoti-
cally Gaussian and pairwise independent (Kadavankandy
& Couillet, 2019) with — for equal-size classes — mean
±
√
ζ̄0/n and variance

(
1− ζ̄0

)
/n. Thus, the asymptotic

classification error is given byQ
(√

ζ̄+0 /
(
1− ζ̄+0

))
, where

Q is the Gaussian tail function: Q(x) = 1√
2π

∫ +∞
x

e−
t2

2 dt.

Figure 4 shows the phase transition position ∥µ∥2 as a func-
tion of ε = 2L−1

n (green curve), with the asymptotic clas-
sification error of online kernel spectral clustering (orange
density map), when n/p = 100. For comparison, the phase
transition curves of the following two methods are also
represented.

• Batch clustering, i.e., standard L× L kernel spectral
clustering with the L data points available in memory
(red curve).

• Punctured kernel spectral clustering (Zarrouk et al.,
2020; Couillet et al., 2021), i.e., offline clustering per-
formed with a sparsified kernel matrix Kε =

X⊤X
p ⊙B,

11One can notice that removing the first and last L− 1 rows and
columns of C and T yields the same two Toeplitz matrices.
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Figure 4. Phase transition position (∥µ∥2) of the dominant eigen-
vector of the kernel matrix against the sparsity parameter (ε) with
n/p = 100. Classification is only possible above the curve corre-
sponding to the method used. The black dashed line is the optimal
phase transition (with all the data available). Green: online kernel
spectral clustering (circulant mask). Red: regular kernel spectral
clustering with L = nε+1

2
points. Blue: punctured (offline) kernel

spectral clustering (Bernoulli mask).

where Bi,j = Bj,i ∼ Bern(ε) and Bi,i = 1 (blue
curve).12

As ε grows, the phase transition position of online spectral
clustering reaches the optimal threshold ∥µ∥2 =

√
c under

which no information can be recovered (regardless of the
method used and the data available). This is expected, since
increasing the memory size allows to encapsulate more
information. Still, the green curve specifies how memory
limitations impair performance. Although we lack some
information-theoretic result, the distance between the green
curve and the black dashed line yields an upper bound on
the difference between the performances of our method
and an optimistic optimum (which, as wee see, can get
very close to 0). Moreover, with ε fixed (fixed memory
size), the classification error vanishes as ∥µ∥ increases (the
signal becomes more powerful). In order to keep L — the
memory usage — small without impairing too much the
performance under this setting, a good compromise appears
to be 0.1 ⪅ ε ⪅ 0.2, i.e., n

20 ⪅ L ⪅ n
10 .

Our method performs better (i.e., the phase transition occurs
earlier) than any method based on batches of the L points
available in memory. It is also able to classify the n previ-

12This of course is not doable with a memory bank of size L
since the computation of Kε requires the (almost) full knowledge
of X. Still, the comparison is interesting as the number of entries
in Kε and KL is the same.

ous points (and not only the L previous ones) at any time,
although the corresponding data points have left memory.
It is instructive to see that, under the same sparsity level of
the kernel matrix (i.e., the same value of ε), the puncturing
method performs better. Yet, this requires the access to
n data points to compute Kε, which is not possible in an
online fashion.

4.2. Online clustering algorithm

Before diving into the simulations, we detail a clustering
algorithm based on our previous results. We now use the
banded version of the kernel matrix: KL = X⊤X

p ⊙ T
(the circulant mask is only useful for theoretical consid-
erations) and recall the notation of the eigenbasis of T:[
g0 . . . gn−1

]
≡ G.

We consider a data stream of length T (possibly infinite).
At each time step, a new vector xt arrives while xt−L is
discarded. The kernel matrix is then updated:

[
K

(t)
L

]
i,j

=
1

p
x⊤
t−n+ixt−n+j1|i−j|<L.

Remark 4.1 (Memory management policy). A different
memory management policy — not restricted to only choos-
ing the previous L points to keep in memory — could be
considered. However, we found that having points spread
over a greater period of time (i.e., discarding newer ones to
keep older ones) does not bring more information. To get
a grasp, remark that the mean leaving time of the pipeline
cannot be different than L, whatever the policy.

Remark 4.2 (Choice of n and eigenvector localization). It is
important to emphasize that n is not the length of the data
stream (given by the newly-introduced parameter T ⩾ n).
As KL has size n × n, one can “only” classify the last n
points of the stream, even when discarded from the length-L
memory (older points are no longer classified though).

The parameter n is left for the user to choose, accounting for
L, our previous considerations on the performance (Figure
4) and memory limitations: O(Lp+Ln) space is needed to
store the data and the kernel matrix. Moreover, as the graph
associated to KL becomes sparser (n ≫ L or ε → 0), its
eigenvectors tend to localize (Hata & Nakao, 2017), making
classification more challenging.

As per standard kernel spectral clustering, we use the domi-
nant eigenvectors of K(t)

L to estimate the classes. The last n
points of the stream are classified at each time step so each
point is classified n times. Then, the final class estimate can
be chosen by a majority vote. However, standard clustering
algorithms such as k-means — which are usually employed
on spectral embeddings — perform poorly here, because
of the particular shape of the eigenvectors caused by the



A Random Matrix Analysis of Data Stream Clustering

Toeplitz mask13 (see Figure 6).
Remark 4.3. The eigenvectors of K(t)

L can be quickly com-
puted at a low cost with a warm start of the power iteration
algorithm from the previously computed eigenvectors of
K

(t−1)
L .

In a binary setting with globally centered data, classification
can be performed using only the dominant eigenvector u(t)

0

of K
(t)
L . Relying on the alignment of u

(t)
0 with v

(t)
0 =

g0 ⊙ j(t) (Theorem 3.3) and the fact that the coordinates of
g0 have constant sign, the class of xt−n+i can be estimated
from the sign of

[
u
(t)
0

]
i
. This online clustering procedure

is summarized in Algorithm 1.

Algorithm 1 Online kernel spectral clustering (binary)

Output: class estimators
{
Ĉ+t , Ĉ−t

}
n⩽t⩽T

.

for t = 1 to T do
Get a new point xt into the pipeline.
Compute x∗

txt−l for l = 0 to L− 1.
Update K

(t−1)
L into K

(t)
L .

if t ⩾ n then
u
(t)
0 ← PowerIteration(K(t)

L ,u
(t−1)
0 ).

Ĉ±t ←
{
xt−n+i |

[
u
(t)
0

]
i
≷ 0
}

.
end if

end for

The careful reader may wonder here whether the perfor-
mance of the algorithm could be improved by using eigen-
vectors other than just the top one. In fact, the top eigen-
vector already contains all the information that can be
retrieved. Since the classification is performed very eas-
ily with the signs of the coordinates in the binary setting
xi ∼ N (±µ, Ip), the use of other spike eigenvectors does
not bring more information. However, in a general setting
xi ∼

∑K
k=1 πkN (µk, Ip), we no longer have an alignment

result such as Theorem 3.3 and it can become much harder
to distinguish the classes from just the top eigenvector. In
this case, the combination of several spike eigenvectors can
make the classification easier. The interested reader is re-
ferred to appendix E, where we propose a — more complex
and heuristic — online spectral clustering algorithm capable
of handling K-class mixtures and test it on Fashion-MNIST
images.

Note that these algorithms can easily be adapted to a setting
where more than one vector xt arrives at each time step (and
this quantity does not need to be constant in time). This will
nonetheless modify the structure of the kernel matrix KL

and additional work may be necessary to recover theoretical
grounds.

13The dominant eigenvector of T, for example, is not constant,
contrary to the first Fourier mode with the circulant mask.

Figure 5. Examples of BigGAN-generated images: collie (top)
and tabby (bottom).

0

B
igG

A
N

im
ages

collie
tabby

1 250 500 750 1 000

0

Fashion-M
N

IST

coat
ankle boot

Figure 6. Dominant eigenvector of K(t)
L with BigGAN-generated

images (top) and Fashion-MNIST images (bottom). Experimen-
tal setting: T = 20 000, n = 1000, p = 4096, L = 100 (Big-
GAN images) and T = 14 000, n = 1000, p = 784, L = 100
(Fashion-MNIST).

4.3. Simulations on real-world images

We illustrate our findings with two applications on image
clustering tasks. We first apply Algorithm 1 on globally
centered and scaled VGG-features (Simonyan & Zisser-
man, 2015) of randomly BigGAN-generated images (Brock
et al., 2019) of tabby cats and collie dogs (see Figure
5). The vectors thus generated have dimension p = 4096
and simulate a stream of length T = 20 000 with evenly
likely cats and dogs. In addition, our algorithm is applied
to a stream made of T = 14 000 centered raw-images from
the Fashion-MNIST dataset (Xiao et al., 2017). Their di-
mension is p = 784 and we want to discriminate coat
versus ankle boot in an online fashion. In both cases,
we choose n = 1000 and L = 100. This means that, at
each time step, 100 images are kept in memory and, from
the n× n kernel matrix, we are able to classify the previous
1 000 images. This is a realistic choice of parameters (it can
easily be run on most standard laptops) from which good
performances are expected (ε ≃ 0.2).
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Figure 7. Classification error against delay ∆t on BigGAN-
generated images (top) and Fashion-MNIST images (bottom).
This is the mean classification error at time t0 + ∆t of a point
arrived at t0. The green dashed line indicates the overall classifica-
tion error when the class is chosen by a majority vote. The black
dotted line is the classification error obtained with a T × T offline
kernel spectral clustering. Experimental setting: as in Figure 6.

Figure 6 shows the shape of the dominant eigenvector u(t)
0

at a given time during the execution of the algorithm. We
clearly see a separation between the classes. For both
settings, Figure 7 depicts the mean classification error at
t0+∆t of a data point seen at t014, as well as the overall clas-
sification error obtained after a majority vote (green dashed
line), to be compared with the classification error obtained
with a standard T × T offline kernel spectral clustering15

(black dotted line). The mean classification error remains
constant with ∆t, thus showing that our algorithm does not
lose any discriminative power between t0 and t0+n−1. The
classification performances of our algorithm are very close
to those of the standard (offline and costly) spectral cluster-
ing but require much less memory resources: O(Lp+ Ln)
against O(Tp + T 2) space for the storage of the data and
the kernel matrix.

5. Concluding remarks
Leveraging tools from random matrix theory, the article
shows that, under limited memory resources, near-optimal
performances on high-dimensional data can be achieved us-
ing an online kernel spectral clustering algorithm. By means

14Recall that a data point arriving at t0 is classified at each time
step between t0 and t0 + n− 1.

15For which optimality results are known.

of a thorough asymptotic analysis, we specify the optimal
performances achievable when learning on a data stream,
which we exploit to propose a novel efficient clustering
algorithm adapted to memory-limited systems.

The article does not only introduce a new algorithm for on-
line clustering, but also paves the path towards the question
of large-dimensional learning on data streams with theoreti-
cal guarantees. Still, here we miss an information-theoretic
result of optimality for the proposed approach (which exists
in the standard unbanded case), a key direction we currently
investigate.
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D., Miller, R. J., Blakeley, J. A., and Schiefer, B. (eds.),
Proceedings 2004 VLDB Conference, pp. 852–863. Mor-
gan Kaufmann, St Louis, January 2004. ISBN 978-0-12-
088469-8. doi: 10.1016/B978-012088469-8.50075-9.
URL https://www.sciencedirect.com/sc
ience/article/pii/B97801208846985007
59.

Bai, Z. and Silverstein, J. W. Spectral analysis of large di-
mensional random matrices, volume 20. Springer, 2010.

Baik, J. and Silverstein, J. W. Eigenvalues of large sample
covariance matrices of spiked population models. Journal
of Multivariate Analysis, 97(6):1382–1408, July 2006.

https://doi.org/10.1145/2133803.2184450
https://doi.org/10.1145/2133803.2184450
https://www.sciencedirect.com/science/article/pii/B9780127224428500161
https://www.sciencedirect.com/science/article/pii/B9780127224428500161
https://www.sciencedirect.com/science/article/pii/B9780120884698500759
https://www.sciencedirect.com/science/article/pii/B9780120884698500759
https://www.sciencedirect.com/science/article/pii/B9780120884698500759


A Random Matrix Analysis of Data Stream Clustering

ISSN 0047-259X. doi: 10.1016/j.jmva.2005.08.003.
URL https://www.sciencedirect.com/sc
ience/article/pii/S0047259X0500134X.

Benaych-Georges, F. and Nadakuditi, R. R. The eigenvalues
and eigenvectors of finite, low rank perturbations of large
random matrices. Advances in Mathematics, 227(1):494–
521, May 2011. ISSN 0001-8708. doi: 10.1016/j.aim.20
11.02.007. URL https://www.sciencedirect.
com/science/article/pii/S00018708110
00570.

Brock, A., Donahue, J., and Simonyan, K. Large Scale
GAN Training for High Fidelity Natural Image Synthe-
sis. arXiv:1809.11096 [cs, stat], February 2019. URL
http://arxiv.org/abs/1809.11096. arXiv:
1809.11096.

Cheng, X. and Singer, A. The Spectrum of Random
Inner-product Kernel Matrices. arXiv:1202.3155 [math],
March 2012. URL http://arxiv.org/abs/1202
.3155. arXiv: 1202.3155.

Cohen-Addad, V., Guedj, B., Kanade, V., and Rom, G.
Online k-means Clustering. In Proceedings of The 24th
International Conference on Artificial Intelligence and
Statistics, pp. 1126–1134. PMLR, March 2021. URL
https://proceedings.mlr.press/v130/c
ohen-addad21a.html. ISSN: 2640-3498.

Couillet, R. and Benaych-Georges, F. Kernel spectral clus-
tering of large dimensional data. Electronic Journal of
Statistics, 10(1):1393–1454, 2016. doi: 10.1214/16-EJS
1144. URL https://hal.archives-ouvertes.
fr/hal-01215343. Publisher: Shaker Heights, OH :
Institute of Mathematical Statistics.

Couillet, R. and Liao, Z. Random Matrix Methods for
Machine Learning: When Theory meets Applications.
2021.

Couillet, R., Chatelain, F., and Le Bihan, N. Two-way
kernel matrix puncturing: towards resource-efficient PCA
and spectral clustering. arXiv:2102.12293 [cs, stat], May
2021. URL http://arxiv.org/abs/2102.122
93. arXiv: 2102.12293.

Dhanjal, C., Gaudel, R., and Clémençon, S. Efficient Eigen-
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A. Toolbox
A.1. Useful results

For the reader’s convenience, we recall here some standard results.

Proposition A.1 (Jensen’s inequality). Let

• φ be a real convex function,

• {x1, . . . ,xn} be n points in the domain of φ,

• λ1, . . . , λn ∈ [0, 1] be such that
∑n
i=1 λi = 1.

Then,

φ

(
n∑

i=1

λixi

)
⩽

n∑

i=1

λiφ(xi).

Proposition A.2 (Resolvent identity). Given two invertible matrices A and B,

A−1 −B−1 = A−1 (B−A)B−1.

Proposition A.3 (Cauchy’s integral formula). Let

• U be a simply connected open subset of C,

• f : U → C be a holomorphic function,

• Γ be a positively-oriented closed contour inside U ,

• Γ̊ be the open domain enclosed by Γ.

For z0 ∈ C,

− 1

2iπ

∮

Γ

f(z)

z0 − z
dz =

{
f(z0) if z0 ∈ Γ̊
0 otherwise

.

A.2. Singular value inequalities

We recall here two useful inequalities which can be found in Corollary A.12 and Theorem A.14 of Bai & Silverstein (2010).

For a matrix A, we denote by si(A) its i-th singular value in descending order.

Proposition A.4. For any n× n complex matrix A,

|trA| ⩽
n∑

i=1

si(A).

Proposition A.5. Let A and B be two complex matrices of size p× n and n×m respectively. For any integer 1 ⩽ k ⩽
min(m,n, p),

k∑

i=1

si(AB) ⩽
k∑

i=1

si(A)si(B).

A.3. Puncturing identities

Let P + Z = X ∈ Rp×n where P is a deterministic matrix and Z is a random matrix with independent entries Zi,j ∼
N (0, 1).

Let Q =
(

X⊤X
p ⊙R− zIn

)−1

where R ∈ Rn×n is symmetric with bounded entries and z ∈ C \ sp
(

X⊤X
p ⊙R

)
.
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Proposition A.6.
∂Qk,l

∂Zi,j
= −1

p

([
XDR·,jQ

]
i,k

Qj,l +Qk,j

[
XDRj,·Q

]
i,l

)
.

Proof.

∂Qk,l

∂Zi,j
=

[
∂Q

∂Zi,j

]

k,l

= −1

p

[
Q
∂
(
X⊤X⊙R

)

∂Zi,j
Q

]

k,l

= −1

p

n∑

r,s=1

Qk,rQs,l
∂

∂Zi,j

n∑

t=1

Xt,rXt,sRr,s

= −1

p

n∑

r,s,t=1

Qk,rQs,lRr,s

[
∂Xt,r

∂Zi,j
Xt,s +Xt,r

∂Xt,s

∂Zi,j

]

= −1

p

(
n∑

s=1

Qk,jQs,lRj,sXi,s +

n∑

r=1

Qk,rQj,lRr,jXi,r

)

∂Qk,l

∂Zi,j
= −1

p

(
Qk,j

[
XDRj,·Q

]
i,l

+Qj,l

[
XDR·,jQ

]
i,k

)
since Q⊤ = Q.

Lemma A.7 ((Stein, 1981)). Let Z ∼ N (0, 1) and f : R → R be a differentiable function such that E [|f ′(Z)|] < +∞
and f(z) = oz→±∞(ez

2

). Then,
E [Zf(Z)] = E [f ′(Z)] .

Proof. Using integration by parts,

E [Zf(Z)] =
1√
2π

∫

R
zf(z)e−

z2

2 dz =
1√
2π

[
−f(z)e− z2

2

]+∞

−∞
+

1√
2π

∫

R
f ′(z)e−

z2

2 dz.

In the right-hand side, the first term vanishes since f(z) = oz→±∞(ez
2

) and the second term equals E [f ′(Z)].

Proposition A.8. Let A ∈ Rn×n be a matrix with bounded entries.

1.

E
[(

Z⊤Z
p
⊙A

)
Q

]

i,j

= E [Ai,iQi,j ]− E

[
1

p
tr

(
Q

(
(P+ Z)

⊤
Z

p
⊙ [R·,iAi,·]

))
Qi,j

]
+ O
n,p→+∞

(
1

p

)

2.

E
[(

Z⊤P
p
⊙A

)
Q

]

i,j

= −E
[
1

p
tr

(
Q

(
(P+ Z)

⊤
P

p
⊙ [R·,iAi,·]

))
Qi,j

]
+ O
n,p→+∞

(
1

p

)

3.

E
[(

P⊤Z
p
⊙A

)
Q

]

i,j

= −E
[
P⊤ (P+ Z)

p
D(i)

A,RQ

]

i,j

+ O
n,p→+∞

(
1

p

)

where D(i)
A,R is a diagonal matrix such that

[
D(i)

A,R

]
k,k

= 1
p

∑n
l=1 Ql,lAi,lRl,k = 1

p trDR·,kQDAi,· .
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Proof. We start with the first equation.

E
[(

Z⊤Z
p
⊙A

)
Q

]

i,j

=
1

p

n∑

r=1

p∑

s=1

E [Zs,iZs,rAi,rQr,j ]

=
1

p

n∑

r=1

p∑

s=1

E
[
∂ (Zs,rQr,j)

∂Zs,i
Ai,r

]
using Stein’s lemma

=
1

p

n∑

r=1

p∑

s=1

E
[
∂Zs,r
∂Zs,i

Ai,rQr,j + Zs,rAi,r
∂Qr,j

∂Zs,i

]

E
[(

Z⊤Z
p
⊙A

)
Q

]

i,j

= E [Ai,iQi,j ] +
1

p

n∑

r=1

p∑

s=1

E
[
Zs,rAi,r

∂Qr,j

∂Zs,i

]
.

From Proposition A.6, we know that

∂Qr,j

∂Zs,i
= −1

p

([
XDR·,iQ

]
s,r

Qi,j +Qr,i

[
XDRi,·Q

]
s,j

)

therefore,

1

p

n∑

r=1

p∑

s=1

E
[
Zs,rAi,r

∂Qr,j

∂Zs,i

]
= −1

p

n∑

r=1

p∑

s=1

E
[
1

p
Zs,rAi,r

[
XDR·,iQ

]
s,r

Qi,j

]

− 1

p

n∑

r=1

p∑

s=1

E
[
1

p
Zs,rAi,rQr,i

[
XDRi,·Q

]
s,j

]
.

Moreover,

n∑

r=1

p∑

s=1

Zs,rAi,r

[
XDR·,iQ

]
s,r

=

n∑

r=1

p∑

s=1

n∑

t=1

Zs,rAi,rXs,tRt,iQt,r

=

n∑

r=1

n∑

t=1

Qt,r

[
X⊤Z

]
t,r

Rt,iAi,r

n∑

r=1

p∑

s=1

Zs,rAi,r

[
XDR·,iQ

]
s,r

= tr
(
Q
(
X⊤Z⊙ [R·,iAi,·]

))

and

n∑

r=1

p∑

s=1

Zs,rAi,rQr,i

[
XDRi,·Q

]
s,j

=

n∑

r=1

Qi,rAi,r

[
Z⊤XDRi,·Q

]
r,j

n∑

r=1

p∑

s=1

Zs,rAi,rQr,i

[
XDRi,·Q

]
s,j

=
[
QDAi,·Z

⊤XDRi,·Q
]
i,j
.

So we finally have

E
[(

Z⊤Z
p
⊙A

)
Q

]

i,j

= E [Ai,iQi,j ]−
1

p
E
[
tr

(
Q

(
X⊤Z
p
⊙ [R·,iAi,·]

))
Qi,j

]
− 1

p
E
[
QDAi,·

Z⊤X
p

DRi,·Q

]

i,j︸ ︷︷ ︸
=On,p→+∞( 1

p )

.
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The second equation can be shown in the same way.

E
[(

Z⊤P
p
⊙A

)
Q

]

i,j

=
1

p

n∑

r=1

p∑

s=1

E [Zs,iPs,rAi,rQr,j ]

=
1

p

n∑

r=1

p∑

s=1

E
[
Ps,rAi,r

∂Qr,j

∂Zs,i

]
using Stein’s lemma

E
[(

Z⊤P
p
⊙A

)
Q

]

i,j

= −1

p
E
[
tr

(
Q

(
X⊤P
p
⊙ [R·,iAi,·]

))
Qi,j

]
− 1

p
E
[
QDAi,·

P⊤X
p

DRi,·Q

]

i,j︸ ︷︷ ︸
=On,p→+∞( 1

p )

.

We are left to show the third equation.

E
[(

P⊤Z
p
⊙A

)
Q

]

i,j

=
1

p

n∑

r=1

p∑

s=1

E [Ps,iZs,rAi,rQr,j ]

=
1

p

n∑

r=1

p∑

s=1

E
[
Ps,iAi,r

∂Qr,j

∂Zs,r

]
using Stein’s lemma

= −1

p

n∑

r=1

p∑

s=1

E
[
1

p
Ps,iAi,r

([
XDR·,rQ

]
s,r

Qr,j +Qr,r

[
XDRr,·Q

]
s,j

)]

= −1

p

n∑

r=1

p∑

s=1

n∑

t=1

E
[
1

p
Ps,iAi,r (Xs,tRt,rQt,rQr,j +Qr,rXs,tRr,tQt,j)

]

= −1

p

n∑

r=1

n∑

t=1

E
[
1

p

[
P⊤X

]
i,t

Ai,r (Rt,rQt,rQr,j +Qr,rRr,tQt,j)

]

= −1

p

n∑

t=1

E
[[
P⊤X

]
i,t

(
1

p

[
(Q⊙R)DAi,·Q

]
t,j

+
[
D(i)

A,R

]
t,t

Qt,j

)]

E
[(

P⊤Z
p
⊙A

)
Q

]

i,j

= −E
[
P⊤X
p
D(i)

A,RQ

]

i,j

− 1

p
E
[
P⊤X
p

(Q⊙R)DAi,·Q

]

i,j︸ ︷︷ ︸
=On,p→+∞( 1

p )

.

B. Proof of Theorem 3.1
The study the spectral behavior of K̃L = X⊤X

p ⊙C is made through its resolvent

Q =
(
K̃L − zIn

)−1

where we have dropped the dependence in z to ease notations.

B.1. Analysis of the model with noise only: X = Z

In order to find the limiting spectral distribution of K̃L = X⊤X
p ⊙C, we first consider the simpler model with noise only,

i.e.,

X = Z, K̃L =
Z⊤Z
p
⊙C, Q =

(
Z⊤Z
p
⊙C− zIn

)−1

.
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B.1.1. A FIRST EQUIVALENT OF THE RESOLVENT

Let us first consider the following expression of the resolvent

Q = −1

z
In +

1

z

(
Z⊤Z
p
⊙C

)
Q

which is a rewriting of Q−1Q = In.

In order to find a deterministic equivalent of Q, we study its expected value

E [Qi,j ] = −
1

z
δi,j +

1

z
E
[(

Z⊤Z
p
⊙C

)
Q

]

i,j

.

Taking A = C in the first equation of Proposition A.8, we have

zE [Qi,j ] = −δi,j +Ci,iE [Qi,j ]− E
[
ηi,iQi,j

]
+ O
n,p,L→+∞

(
1

p

)

with η ∈ Cn×n such that

ηr,s =
1

p
tr

(
Q

(
Z⊤Z
p
⊙ [C·,rCs,·]

))
.

Thus, denoting Dη = η ⊙ In, we have the matrix equivalence zQ↔ −In +Q−DηQ from which we deduce that the
resolvent is equivalent to a diagonal matrix:

Q↔ (In − zIn −Dη)
−1
.

B.1.2. ANALYSIS OF THE MATRIX η

Now taking A = C·,rCs,· in the first equation of Proposition A.8, we have

E
[
ηr,s

]
=

1

p

n∑

t=1

Ct,rCs,tE [Qt,t]−
1

p

n∑

t=1

E
[
1

p
tr

(
Q

(
Z⊤Z
p
⊙ [C·,tCs,·]

))
Ct,rQt,t

]
+ O
n,p,L→+∞

(
1

p

)

=
1

p

n∑

t=1

Ct,r

(
Cs,tE [Qt,t]− E

[
ηt,sQt,t

])
+ O
n,p,L→+∞

(
1

p

)

and, using the previous matrix equivalent of Q, we can write η ↔ η̄ where η̄ is a deterministic matrix such that

η̄r,s =
1

p

n∑

t=1

Ct,r

Cs,t − η̄t,s
1− z − η̄t,t

.

Therefore, η̄ has a circulant structure. Indeed, for all d ∈ Z,

η̄r+d,s+d =
1

p

r+L−1∑

t=r−L+1

Cs+d,t+d − η̄t+d,s+d
1− z − η̄t+d,t+d

d ∈ Z.

where we write η̄i,j for any i, j ∈ Z to represent η̄(i mod n),(j mod n).

B.1.3. FROM η̄ TO THE LIMITING SPECTRAL DISTRIBUTION

Since η̄ is circulant, it has a constant diagonal: η̄k,k = η0. Then, we can recognize a matrix product in the expression of
η̄r,s:

η̄r,s =
1

p

1

1− z − η0

n∑

t=1

Ct,r

(
Cs,t − η̄t,s

)
=

1

p

1

1− z − η0
[C (C− η̄)]r,s

thus, η̄ = (p (1− z − η0) In +C)
−1

C2 and, since η0 = 1
n tr η̄,

η0 =
1

n

n−1∑

k=0

ψ2
k

p (1− z − η0) + ψk
.
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Remark B.1. To perform the previous matrix inversion, we must check that 1
1−z−η0 ̸= −

p
ψk

for any given 0 ⩽ k < n such
that ψk ̸= 0. This can be proven by contradiction: assuming that 1

1−z−η0 = − p
ψk

, we have C2 = (C− ψkIn) η̄. Since
rank (C− ψkIn) = rankC− 1, we conclude that rankC2 < rankC, which is a contradiction.

Recalling that Q↔ (In − zIn −Dη)
−1, we can state the following theorem.

Theorem B.2 (Deterministic equivalent of Q when X = Z). Let z ∈ C \ lim supn,p,L→+∞ sp(K̃L). Then,

Q↔ m(z)In with m(z) =
1

1− z − η0
and η0 is solution to the fixed-point equation

η0 =
p

n

n−1∑

k=0

ψ2
k/p

2

(1− z − η0) + ψk
p

.

m is the Stieljes transform of the limiting spectral distribution of K̃L = Z⊤Z
p ⊙C.

Remark B.3. Notice that m(z) ̸= 0. Indeed, for a given z ∈ C \ lim supn,p,L→+∞ sp(K̃L), (1− z − η0)m(z) = 1 and
the fixed-point equation prevent η0 from going to ±∞.

Proposition B.4 (Fixed-point equation for m(z)). Under the setting of Theorem B.2, m(z) is also solution to a fixed-point
equation:

1 + zm(z) =
p

n

n−1∑

k=0

m(z)ψkp

1 +m(z)ψkp
.

Proof. A rewriting of η̄ = (p (1− z − η0) In +C)
−1

C2 yields another interesting formula:

η̄ =

(
p

m(z)
In +C

)−1(
p

m(z)
In +C− p

m(z)
In

)
C

η̄ = C−
(
In +m(z)

C

p

)−1

C

therefore,

η0 =
1

n
trC

︸ ︷︷ ︸
=1

− 1

n

n−1∑

k=0

ψk

1 +m(z)ψkp

and, since 1− η0 = 1
m(z) + z, we get the result.

B.2. Analysis of the full model: X = P+ Z

So far, we have been able to find a deterministic equivalent of the resolvent under the setting where X = Z, i.e., when the
observations are composed of noise only.

Now, we consider the setting where the observations are composed of a signal corrupted with additive noise:

X = P+ Z, K̃L =
X⊤X
p
⊙C, Q =

(
X⊤X
p
⊙C− zIn

)−1

.

Let us first prove that the limiting spectral distribution is unchanged.

Proposition B.5.
∣∣∣∣∣∣
1

n
tr

(
(P+ Z)

⊤
(P+ Z)

p
⊙C− zIn

)−1

− 1

n
tr

(
Z⊤Z
p
⊙C− zIn

)−1
∣∣∣∣∣∣

a.s.−−−−−−−→
n,p,L→+∞

0.
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Proof.
(P+ Z)

⊤
(P+ Z)

p
⊙C =

Z⊤Z
p
⊙C+A⊙C

with A = Z⊤P
p + P⊤Z

p + P⊤P
p . Notice that, Z⊤P

p , P⊤Z
p and P⊤P

p are uniformly bounded in spectral norm (from the
non-triviality condition) and their rank is at most K. Thus A is also uniformly bounded in spectral norm and has rank at
most 3K.

Let QA =
(

Z⊤Z
p ⊙C+A⊙C− zIn

)−1

and Q0 =
(

Z⊤Z
p ⊙C− zIn

)−1

.

∣∣∣∣
1

n
trQA −

1

n
trQ0

∣∣∣∣ =
1

n
|trQ0 (A⊙C)QA| from the resolvent identity (Proposition A.2)

⩽
1

n
∥Q0∥ ∥QA∥

n∑

i=1

si(A⊙C) from Proposition A.4 and A.5

⩽
1

n
∥Q0∥ ∥QA∥

√√√√n

n∑

i=1

s2i (A⊙C) from Jensen’s inequality (Proposition A.1)

⩽
1

n
∥Q0∥ ∥QA∥

√√√√n

n∑

i=1

s2i (A) since ∥A⊙C∥F ⩽ ∥A∥F
∣∣∣∣
1

n
trQA −

1

n
trQ0

∣∣∣∣ ⩽
√

3K

n
∥Q0∥ ∥QA∥ ∥A∥ = O

n,p,L→+∞

(
1√
n

)
since A has rank at most 3K.

Since
(

Z⊤Z
p ⊙C− zIn

)−1

↔ m(z)In according to Theorem B.2, Proposition B.5 justifies that the limiting spectral
distribution is unchanged by the presence of signal.

Let us now seek a deterministic equivalent of Q =
(

X⊤X
p ⊙C− zIn

)−1

.

As previously, we consider a rewriting of Q−1Q = In,

Q = −1

z
In +

1

z

(
(P+ Z)

⊤
(P+ Z)

p
⊙C

)
Q

and we study the expected value of Qi,j ,

E [Qi,j ] = −
1

z
δi,j +

1

z
E
[(

Z⊤Z
p
⊙C

)
Q

]

i,j

+
1

z
E
[(

Z⊤P
p
⊙C

)
Q

]

i,j

+
1

z
E
[(

P⊤Z
p
⊙C

)
Q

]

i,j

+
1

z
E
[(

P⊤P
p
⊙C

)
Q

]

i,j

.

P⊤P is deterministic so there is no work to do on the last term of the sum. Expanding the other terms yields (see Proposition
A.8)

zE [Qi,j ] = −δi,j+E [Ci,iQi,j ]−E [κi,iQi,j ]−E
[
P⊤ (P+ Z)

p
D(i)

C,CQ

]

i,j

+E
[(

P⊤P
p
⊙C

)
Q

]

i,j

+ O
n,p,L→+∞

(
1

p

)

with κ ∈ Cn×n such that

κr,s =
1

p
tr

(
Q

(
(P+ Z)

⊤
(P+ Z)

p
⊙ [C·,rCs,·]

))

and D(i)
C,C is a diagonal matrix such that

[
D(i)

C,C

]
k,k

= 1
p

∑n
l=1 Ql,lCi,lCl,k.
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Proposition B.6.
κ↔ η̄.

Proof. Similarly to the proof of Proposition B.5, we consider a matrix A uniformly bounded in spectral norm whose rank is
at most K, representing Z⊤P

p , P⊤Z
p or P⊤P

p and we make use of singular-value inequalities.

1

p
|tr (Q (A⊙ [C·,rCs,·]))| =

1

p

∣∣tr
(
QDC·,rADCs,·

)∣∣

⩽
1

p

n∑

i=1

si(QDC·,rADCs,·)

⩽
1

p

n∑

i=1

si(Q)si(DC·,rADCs,·)

⩽
1

p
∥Q∥

n∑

i=1

si(DC·,rADCs,·)

⩽
K

p
∥Q∥

∥∥DC·,rADCs,·

∥∥ since A has rank at most K

1

p
|tr (Q (A⊙ [C·,rCs,·]))| ⩽

K

p
∥Q∥ ∥A∥ = O

n,p,L→+∞

(
1

p

)
since

∥∥DC·,r

∥∥ =
∥∥DCs,·

∥∥ = 1.

Hence,

κr,s =
1

p
tr

(
Q

(
Z⊤Z
p
⊙ [C·,rCs,·]

))

︸ ︷︷ ︸
=ηr,s

+ O
n,p,L→+∞

(
1

p

)
.

Thus κ↔ η ↔ η̄.

So far, we have

zQ↔ −In +Q− η0Q+

(
P⊤ (P+ Z)

p
⊙C

)
Q.

The analysis of
(

P⊤(P+Z)
p ⊙C

)
Q is summarized in the following proposition.

Proposition B.7. (
P⊤ (P+ Z)

p
⊙C

)
Q↔

(
P⊤P⊙ F

Ψ

p

(
In +m(z)

Ψ

p

)−1

F∗
)
Q.

Proof. From assumption 2.1, all diagonal entries of Q are statistically equivalent. Thus, we can have a simple matrix
equivalent of D(i)

Ct,C for all integer t ⩾ 1:

[
D(i)

Ct,C

]
k,k

=
1

p

n∑

l=1

Ql,l

[
Ct
]
i,l
Cl,k ↔

1

p

trQ

n

n∑

l=1

[
Ct
]
i,l
Cl,k ↔

m(z)

p

[
Ct+1

]
i,k

where the last equivalence is justified by Proposition B.5.

Now, using the third equation of Proposition A.8, we can notice the following recurrence relation
[(

P⊤ (P+ Z)

p
⊙Ct

)
Q

]

i,j

↔ −
[
P⊤ (P+ Z)

p
D(i)

Ct,CQ

]

i,j

+

[(
P⊤P
p
⊙Ct

)
Q

]

i,j

↔ −m(z)

p

n∑

k=1

[
P⊤ (P+ Z)

p

]

i,k

[
Ct+1

]
i,k

Qk,j +

[(
P⊤P
p
⊙Ct

)
Q

]

i,j
[(

P⊤ (P+ Z)

p
⊙Ct

)
Q

]

i,j

↔ −m(z)

p

[(
P⊤ (P+ Z)

p
⊙Ct+1

)
Q

]

i,j

+

[(
P⊤P
p
⊙Ct

)
Q

]

i,j

.
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In particular, for all integer T ⩾ 1,

(
P⊤ (P+ Z)

p
⊙C

)
Q↔ (−m(z))

T

[
P⊤ (P+ Z)⊙

(
C

p

)T+1
]
Q+

T−1∑

t=0

(−m(z))
t

[
P⊤P⊙

(
C

p

)t+1
]
Q.

We know that ∥C∥ = (2L− 1) and, using the fact that the spectral norm of a pointwise product (as well as a regular matrix
product) can be bounded by the product of the spectral norms (see Theorem A.19 of (Bai & Silverstein, 2010)), we have

∥∥∥∥∥(−m(z))
T

[
P⊤ (P+ Z)⊙

(
C

p

)T+1
]
Q

∥∥∥∥∥ ⩽ |m(z)|T
∥∥P⊤ (P+ Z)

∥∥
∣∣∣∣
2L− 1

p

∣∣∣∣
T+1

∥Q∥ .

Thus, if
∣∣∣ 2L−1

p m(z)
∣∣∣ < 1,

(
P⊤ (P+ Z)

p
⊙C

)
Q↔

(
P⊤P⊙

[
C

p

+∞∑

t=0

(
−m(z)

C

p

)t])
Q.

And, since C = FΨF∗,
C

p

+∞∑

t=0

(
−m(z)

C

p

)t
= F

Ψ

p

(
In +m(z)

Ψ

p

)−1

F∗

which completes the proof.

We can now state the following theorem.

Theorem B.8 (Deterministic equivalent of Q when X = P+Z). Let z ∈ C\lim supn,p,L→+∞ sp(K̃L). If
∣∣∣ 2L−1

p m(z)
∣∣∣ < 1,

then

Q↔ m(z)
(
In +P⊤P⊙ FΛF∗)−1

with Λ = m(z)
Ψ

p

(
In +m(z)

Ψ

p

)−1

.

Remark B.9. This is coherent with the result of Theorem B.2 when P = 0.
Remark B.10. From Proposition B.4, we see that 1 + zm(z) = p

n trΛ.
Remark B.11. As m is a Stieltjes transform, we know that |m(z)| ⩽ 1

dist(z,suppµ) for all z ∈ C \ suppµ. Therefore

dist(z, suppµ) > 2L−1
p =⇒

∣∣∣ 2L−1
p m(z)

∣∣∣ < 1.

Remark B.12. It is strongly believed that the condition
∣∣∣ 2L−1

p m(z)
∣∣∣ < 1 can be removed by means of analytic continuation.

C. Proof of Theorem 3.3
In this section, we use the following notation:

sp∞(K̃L) ≡ lim sup
n,p,L→+∞

sp(K̃L).

C.1. Spikes

Here, P = µj⊤. Let us state a much more tractable expression of the deterministic equivalent of the resolvent.

Theorem C.1 (Deterministic equivalent of Q when P = µj⊤). Let z ∈ C \ sp∞(K̃L). If
∣∣∣ 2L−1

p m(z)
∣∣∣ < 1, then

Q↔ Q̄ = m(z) [DjF]
(
In + ∥µ∥2 Λ

)−1

[DjF]
∗

where Dj = diag j is the diagonal matrix induced by vector j.
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Proof. From Theorem B.8,

Q↔ m(z)
(
In + ∥µ∥2 jj⊤ ⊙ FΛF∗

)−1

↔ m(z)
(
In + ∥µ∥2 DjFΛF∗Dj

)−1

Q↔ m(z) [DjF]
(
In + ∥µ∥2 Λ

)−1

[DjF]
∗ since DjF is a unitary matrix.

The sought-after spikes which encapsulate the information about our data are the singular points of the resolvent. Therefore,
their asymptotic position is given by the solution in z to

1 + ∥µ∥2
m(z)ψkp

1 +m(z)ψkp
= 0 0 ⩽ k < n.

Since K̃L is symmetric, all solutions are real. Moreover, there cannot be any spike inside sp∞(K̃L) (the eigenvalue must be
isolated). Therefore, we are only interested in solutions outside sp∞(K̃L).

If ψk = 0, there is no solution, whereas if ψk ̸= 0,

1 + ∥µ∥2
m(z)ψkp

1 +m(z)ψkp
= 0 ⇐⇒ m(z) =

−1(
∥µ∥2 + 1

)
ψk
p

and, supposing z ∈ C \ sp∞(K̃L), we have, from Proposition B.4,

z =
(
∥µ∥2 + 1

) ψk
p

+
1

n

n−1∑

l=0

ψl

1− ψl

(∥µ∥2+1)ψk

.

Proposition C.2 (Singular points of Q̄). Let

ξ̄k =
(
∥µ∥2 + 1

) ψk
p


1 +

p

n

n−1∑

l=0

1(
∥µ∥2 + 1

)
ψk
ψl
− 1


 0 ⩽ k < n.

The set of singular points of Q̄ is
{
ξ̄k | 0 ⩽ k < n, ψk ̸= 0

}
∩
(
C \ sp∞(K̃L)

)
.

C.2. Alignments and phase transition

Let us denote {(ξk,uk)}0⩽k<n the pairs eigenvalue-eigenvector of K̃L. From the definition of the resolvent, we know that

Q =

n−1∑

l=0

ulu
∗
l

ξl − z
.

Therefore, with Cauchy’s integral formula and a positively-oriented closed contour Γk circling around ξk and leaving the
other eigenvalues outside, we can have access to the quantity

∑

0⩽l⩽n−1
ξl=ξk

ulu
∗
l = −

1

2iπ

∮

Γk

Q(z) dz

which is simply uku
∗
k when the associated eigenvalue has multiplicity one. Then, we can calculate the alignment of any

vector v ∈ Cn with the eigenspace associated to ξk:
∑

0⩽l⩽n−1
ξl=ξk

|v∗ul|2 = − 1

2iπ

∮

Γk

v∗Q(z)v dz.
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Using the deterministic equivalent of Q, we have the following result.
Proposition C.3 (Spike alignments). For 0 ⩽ k < n such that ξ̄k is a singular point of Q̄, let Γk be a positively-oriented
closed contour circling around ξ̄k and leaving all the ξ̄l ̸= ξ̄k outside.

− 1

2iπ

∮

Γk

Q̄(z) dz = ζ̄k [DjF]Dk [DjF]
∗

where

ζ̄k =
∥µ∥2

∥µ∥2 + 1


1− p

n

n−1∑

l=0

1
[(
∥µ∥2 + 1

)
ψk
ψl
− 1
]2


 and Dk = diag (1ψk=ψl)0⩽l<n .

Proof. By residue calculus,

− 1

2iπ

∮

Γk

Q̄(z) dz = − [DjF]

[
lim
z→ξ̄k

(
z − ξ̄k

)
m(z)

(
In + ∥µ∥2 Λ(z)

)−1
]
[DjF]

∗
.

Let 0 ⩽ l < n. If ψl ̸= ψk, then

lim
z→ξ̄k

(
z − ξ̄k

)
m(z)

1 + ∥µ∥2 m(z)
ψl
p

1+m(z)
ψl
p

= 0

whereas if ψl = ψk, L’Hôpital’s rule yields

lim
z→ξ̄k

(
z − ξ̄k

)
m(z)

1 + ∥µ∥2 m(z)
ψl
p

1+m(z)
ψl
p

=
m(ξ̄k)

d
dz

[
1 + ∥µ∥2 m(z)

ψl
p

1+m(z)
ψl
p

]

z=ξ̄k

=
m(ξ̄k)

(
1 +m(ξ̄k)

ψl
p

)2

∥µ∥2m′(ξ̄k)
ψl
p

.

Recalling that m(ξ̄k) =
−1

(∥µ∥2+1)ψkp
, we have 1 +m(ξ̄k)

ψk
p = ∥µ∥2

∥µ∥2+1
. Hence,

lim
z→ξ̄k

(
z − ξ̄k

)
m(z)

1 + ∥µ∥2 m(z)
ψl
p

1+m(z)
ψl
p

=
∥µ∥2

∥µ∥2 + 1

1(
∥µ∥2 + 1

)
ψk
p

m(ξ̄k)

m′(ξ̄k)

= − ∥µ∥2

∥µ∥2 + 1

m2(ξ̄k)

m′(ξ̄k)
.

Let us calculate an expression of m
2(ξ̄k)

m′(ξ̄k)
. Differentiating in z the fixed-point equation of Proposition B.4 yields

m(z) + zm′(z) =
p

n

n−1∑

r=0

m′(z)ψrp(
1 +m(z)ψrp

)2

thus,

m2(ξ̄k)

m′(ξ̄k)
= −ξ̄km(ξ̄k) +

p

n

n−1∑

r=0

m(ξ̄k)
ψr
p(

1 +m(ξ̄k)
ψr
p

)2

= 1− p

n

n−1∑

r=0

m(ξ̄k)
ψr
p

1 +m(ξ̄k)
ψr
p

+
p

n

n−1∑

r=0

m(ξ̄k)
ψr
p(

1 +m(ξ̄k)
ψr
p

)2 from Proposition B.4

m2(ξ̄k)

m′(ξ̄k)
= 1− p

n

n−1∑

r=0

[
m(ξ̄k)

ψr
p

1 +m(ξ̄k)
ψr
p

]2
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and we just need to remember that m(ξ̄k) =
−1

(∥µ∥2+1)ψkp
to get the result.

We can now state the following proposition which defines the phase transition position as the value of ∥µ∥ at which ζ̄k
changes sign.

Proposition C.4 (Phase transition). For 0 ⩽ k < n,

ξ̄k is a singular point of Q̄ ⇐⇒ ζ̄k > 0.

Proof. Let us consider a singular point ξ̄k of Q̄.

As a Stieljes transform, m is increasing on all connected components of R \ sp∞(K̃L) and the restriction of its functional
inverse z(·) to the real line, here denoted x(·), is also growing on every connected component of m(R \ sp∞(K̃L)). Then,

as ξ̄k is outside sp∞(K̃L), it implies x′
(

−1

(∥µ∥2+1)ψkp

)
> 0.

We have

x(m) = − 1

m
+
p

n

n−1∑

l=0

ψl/p

1 +mψl/p

x′(m) =
1

m2
− p

n

n−1∑

l=0

[
ψl/p

1 +mψl/p

]2

thus

x′


 −1(
∥µ∥2 + 1

)
ψk
p


 > 0 ⇐⇒ 1− p

n

n−1∑

l=0

1
[(
∥µ∥2 + 1

)
ψk
ψl
− 1
]2 > 0 ⇐⇒ ζ̄k > 0.

Therefore, if ξ̄k is a singular point of Q̄, then ζ̄k > 0.

Conversely, if ξ̄k is not a singular point of Q̄, then either ψk = 0 or ξ̄k ∈ sp∞(K̃L). If ψk = 0, we immediately see that
ζ̄k = ∥µ∥2

∥µ∥2+1
(1− p) < 0.

On the other hand, if ξ̄k ∈ sp∞(K̃L) and ψk ̸= 0 then x′
(

−1
∥µ∥2+1

p ψk

)
⩽ 0 (otherwise ξ̄k would be a spike) and ζ̄k ⩽ 0.

D. Predictions with a Toeplitz mask
Figures 8a and 8b compare simulations with a Toeplitz mask and the predictions of Theorems 3.1 and 3.3 with the ψk’s
replaced by the τk’s and F replaced by G.

Apart from extra mass around 0 in the second setting (c = 0.03 and ε = 0.6), the shape of the limiting spectral distribution
is very well predicted, as well as the position of the isolated eigenvalues. Empirical alignments |u∗

0v0|2 also fit well the
predicted curve.

Note that, contrary to the circulant mask, the eigenvalues of T are mostly simple (see Theorem 5 of (Trench, 1994)). Thus,
we also represent ζ̄+n−1 in Figure 8b, which was confounded with ζ̄+1 in Figure 3 (ψ1 = ψn−1 but τ1 ̸= τn−1).

E. K-classes online kernel spectral clustering algorithm
E.1. General presentation and simulations

We use a set of spike eigenvectors
{
u
(t)
k

}
k∈K

(with a set of indices K) to estimate the |K|-dimensional “trend” of each

class. That is, denoting C[t] the class of xt, we consider the following model
[
u
(t)
k

]
i
=
[
h
(t)
k,C[t−n+i] + ϵ

(t)
k

]
i
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(a) Empirical spectral distribution (ESD) and limiting spectral dis-
tribution (LSD) of KL. Top: noise only, xi ∼ N (0, Ip). Bottom:
two-class mixture, xi ∼ N (±µ, Ip) with ∥µ∥ = 2. The y-axis
is in log scale. Green dashed lines are the asymptotic positions of
the spikes ξ̄k. Experimental setting: n = 2500, L = 750 and
p = 1250 (left) or p = 75 (right).
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(b) Asymptotic alignment ζ̄+k between versus ∥µ∥ for three values
of k. The empirical alignment is computed as the mean of |u∗

0v0|2
on 10 realizations (error bars indicate the standard deviation). Ex-
perimental setting: n = 2500, p = 75, L = 750 (c = 0.03,
ε = 0.6).

Figure 8. Predictions of Theorems 3.1 and 3.3 adapted for a Toeplitz mask.

where, for k ∈ K, h(t)
k,C ∈ Rn is the “trend” of class C and ϵ

(t)
k is a centered noise vector. A deeper analysis of the

deterministic equivalent of Theorem 3.1 is needed to properly understand the behavior of the vectors h(t)
k,C . From our general

understanding so far, it is expected that they are linear combinations of a few dominant eigenvectors of T. Using this
approach, we are able to estimate the trends from

{
u
(t)
k

}
k∈K

(see the left part of Figure 9). Each point is then associated to

the class whose curve is the nearest in the |K|-dimensional space. The details of this algorithm are given in the following
subsection.

This algorithm is tested on a stream made of T = 21 000 centered raw-images from the Fashion-MNIST dataset (Xiao et al.,
2017). Their dimension is p = 784 and we want to discriminate between trouser, coat and ankle boot images in
an online fashion. We choose n = 1000 and L = 100 and we use the 5 dominant eigenvectors of K(t)

L for the estimation
(thus |K| = 5).

In Figure 9 are displayed the shape of the dominant eigenvector u(t)
0 at a given time during the execution of the algorithm

with the estimated trends of each class16 (left) and the mean clustering error at t0 +∆t of a data point seen at t0 with the
overall classification error obtained after a majority vote (right). The classification error curve is U-shaped: classes are better
estimated around t0 + n

2 than t0 or t0 + n− 1. This can be understood by the slightly-localized shape of u(t)
0 (Figure 6,

bottom) — it is easier to discriminate between the trends in the middle of the eigenvector than on its edges. Nevertheless,
the majority vote counteract this weakness and the overall classification error touches the bottom of the U-shape.

Remark E.1. In a binary setting, Algorithm 1 does not suffer this limitation as class estimates are directly given by the sign
of the coordinates of u0 (no trend needs to be estimated).

Here, the overall classification error is 6.638% while a standard T × T offline kernel spectral clustering has only a 3.662%
error rate.

16This is only the first dimension of a 5-dimensional trend.
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Figure 9. Clustering on Fashion-MNIST images (trouser vs. coat vs. ankle boot). Left: dominant eigenvector of K(t)
L . Solid

curves are the estimated trend of each classh(t)
k,C . Right: Classification error against delay ∆t. This is the mean classification error at time

t0 +∆t of a point arrived at t0. The green dashed line indicate the overall classification error when the class is chosen by a majority vote.
Experimental setting: T = 21 000, n = 1000, p = 784, L = 100.

E.2. Details of the algorithm

We consider a set K of indices of spikes and the following model for u(t)
k , k ∈ K,

[
u
(t)
k

]
i
=
[
h
(t)
k,C[t−n+i] + ϵ

(t)
k

]
i

1 ⩽ i ⩽ n

where h
(t)
k,C ∈ Rn is the trend of class C and ϵ

(t)
k is a centered noise vector.

Our goal is to estimate the trend h
(t)
k,C from the eigenvectors

{
u
(t)
k

}
k∈K

. Since we assume they are linear combinations of a

few dominant eigenvectors of T, we define a set of indices K∗ specifying the eigenvectors {gk}k∈K∗
which we expect the

h
(t)
k,C’s to be linear combinations of.

We denote Ĉ(t)[s] the class of xt−n+s estimated at time t.

In order to compute an estimation
{
Ĉ(t)[i]

}
1⩽i⩽n

of the classes at a given time t, we propose a two-step algorithm. Firstly,

we compute a rough estimation
{
Ĉ(t)0 [i]

}
1⩽i⩽n

of the classes by following the K paths with an exponential smoothing in

the coordinates of the eigenvectors
{
u
(t)
k

}
k∈K

, this is called the pre-classification step. Then, we refine this estimation with

projections on span {gk}k∈K∗
, this is the classification step.

In the following, we drop the time dependency when it is not needed to ease notations.

E.2.1. PRE-CLASSIFICATION STEP

Given the number of classes K and the eigenvectors {uk}k∈K, we consider the set of n points in R|K| defined by the
coordinates of each eigenvector: [uK]i = ([uk]i)k∈K for 1 ⩽ i ⩽ n. As i goes from 1 to n, these points draw K paths. The
goal is to guess which path (and therefore which class) each point belong to.

Iteration Let us suppose we have already estimated Ĉ0[1], . . . , Ĉ0[i − 1] and the first i − 1 coordinates of the vectors{
h̃k

}
k∈K

such that
[
h̃k

]
j

is an estimation of
[
hk,Ĉ0[j]

]
j

(initialization is discussed later). As for {uk}k∈K, we see
{
h̃k

}
k∈K

as a set of n points in R|K|, which have to be estimated. The estimation of the i-th point
[
h̃K
]
i

is induced by the
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class estimate Ĉ0[i] — the corresponding path is updated with an exponential smoothing:

[
h̃K
]
i
= Eα(i,uK, h̃K, Ĉ0[i]) ≡

α [uK]i +M
[
h̃K
]
I[Ĉ0[i],i]

α+M

where M =
1− α

i− I[Ĉ0[i], i]

[
1 +

1− α
α

(
1− (1− α)i−I[Ĉ0[i],i]−1

)]
,

I[Ĉ0[i], i] = max
{
1 ⩽ j ⩽ i− 1 | Ĉ0[j] = Ĉ0[i]

}
is the index of the last seen point in Ĉ0[i] and α ∈ [0, 1] is the smoothing

parameter. The reasons for such a formula are detailed in appendix F.

However, Ĉ0[i] is chosen as the class which minimizes the growth of the corresponding path:

Ĉ0[i] = argmin
Ĉ∈{Ĉ1,...,ĈK}

∥∥∥∥Eα(i,uK, h̃K, Ĉ)−
[
h̃K
]
I[Ĉ,i]

∥∥∥∥
i− I[Ĉ, i]

.

Indeed, by doing so, we minimize the Lipschitz constant of the estimated trend and ensure some regularity.

Initialization From the regularity of the true trend, hk,C is almost flat on its very first coordinates. Therefore, we can
initialize the values Ĉ0[i] for 1 ⩽ i ⩽ H with a standard clustering algorithm applied to {[uK]i}1⩽i⩽H . H is a parameter
which should be taken as small as possible to stay in a domain where the trends are almost flat while still having a few
representatives of each class. The computation of

{[
h̃K
]
i

}
1⩽i⩽H

follows from the class estimates, as presented above.

We found that a hierarchical clustering algorithm and H ≈ 10K worked well for the initialization. As for the smoothing
parameter, a good value is α ≈ 0.15.

The pre-classification step is summarized in Algorithm 2.

Algorithm 2 Pre-classification

Input: K, {uk}k∈K.
Parameters: H , α.
Output:

{
Ĉ0[i]

}
1⩽i⩽n

.

Set Ĉ0[i] for i = 1 to H with agglomerative clustering.
for i = 1 to H do[

h̃K
]
i
← Eα(i,uK, h̃K, Ĉ0[i])

end for
for i = H + 1 to n do

Ĉ0[i]← argminĈ∈{Ĉ1,...,ĈK}

∥∥∥Eα(i,uK,h̃K,Ĉ)−[h̃K]
I[Ĉ,i]

∥∥∥
i−I[Ĉ,i][

h̃K
]
i
← Eα(i,uK, h̃K, Ĉ0[i])

end for

E.2.2. CLASSIFICATION STEP

The class estimates obtained after the pre-classification step are usually not very satisfying but still remain a good basis to
estimate hk,C with regressions.

In the second step of the algorithm, we are given a set {gk}k∈K∗
of eigenvectors of T. It is supposed that the trends

{hk,C}k∈K are mixtures of these eigenvectors.

From class estimates
{
Ĉ[i]
}
1⩽i⩽n

, we can compute an estimation ĥK,Ĉ of the trend of each estimated class Ĉ with a linear

regression
ĥk,Ĉ = gK∗βk,Ĉ where βk,Ĉ = argmin

β∈R|K∗|

∥∥[uk]Ĉ − [gK∗ ]Ĉ β
∥∥2
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where we use the notation [·]Ĉ to represent the restriction to Ĉ.

Then, new class estimates can be computed by associating each point to the class whose trend is the closest:

Ĉ[i] = argmin
Ĉ∈{Ĉ1,...,ĈK}

∥∥∥[uK]i −
[
ĥK,Ĉ

]
i

∥∥∥ .

We repeat this process until convergence of the class estimates. The classification step is summarized in Algorithm 3.

Algorithm 3 Classification

Input: K,
{
Ĉ0[i]

}
1⩽i⩽n

, {uk}k∈K, {vk}k∈K∗
.

Output:
{
Ĉ[i]
}
1⩽i⩽n

.

for i = 1 to n do
Ĉ[i]← Ĉ0[i]

end for
repeat

for Ĉ ∈
{
Ĉ1, . . . , ĈK

}
do

ĥK,Ĉ ← gK∗

(
[gK∗ ]

⊤
Ĉ [gK∗ ]Ĉ

)−1

[gK∗ ]
⊤
Ĉ [uK]Ĉ

end for
for i = 1 to n do
Ĉ[i]← argminĈ∈{Ĉ1,...,ĈK}

∥∥∥[uK]i −
[
ĥĈ
K

]
i

∥∥∥
end for

until convergence

E.2.3. FINAL ALGORITHM

Algorithm 4 Online kernel spectral clustering

Input: K, K, {gk}k∈K∗
.

Parameters: H , α.
Output:

{
Ĉt[s]

}
1⩽s⩽n
n⩽t⩽T

.

for t = 1 to T do
Get a new point xt into the pipeline.
Compute x∗

txt−l for l = 0 to L− 1.
Update K

(t−1)
L into K

(t)
L .

u
(t)
K ← PowerIteration(K(t)

L ,u
(t−1)
K ).

if 1 ⩽ t ⩽ n then
Do an iteration as in Algorithm 2.

end if
if t ⩾ n then

Compute
{
Ĉ(t)[s]

}
1⩽s⩽n

according to Algorithm 3 with
{
Ĉ(t−1)[s]

}
1⩽s⩽n−1

.

end if
end for

In an online fashion, pre-classification can be performed as a warm-up during the first n time steps. Then, as t ⩾ n, only the
classification step is needed: the classes

{
Ĉ(t−1)[s]

}
1⩽s⩽n

estimated at t− 1 (or during pre-classification if t = n) serve as

a good basis to estimate the classes at time t (both Ĉ(t−1)[s+ 1] and Ĉ(t)[s] are estimates of the class of xt−n+s). Moreover,
the few interesting eigenvectors u(t)

K of K(t)
L can be quickly computed with a power iteration algorithm starting at u(t−1)

K
(they do not differ much from one time step to another). The final algorithm is presented in Algorithm 4.
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F. Exponential smoothing with missing data
Let (yt)t∈N be a time series. Assume we want to compute its trend (st)t∈N. A common technique is to perform an
exponential smoothing:

s0 = y0 and st+1 = αyt+1 + (1− α) st ∀t ∈ N

where α ∈ [0, 1] is the smoothing parameter. It acts as a low-pass filter which removes high-frequency noise.

Let us now assume that we do not have access to (yt)t∈N at each time step and we want to compute st+h (h ⩾ 1) with yt+h
and st only. Expanding the recurrence relation, we have

st+h = αyt+h + α

h−1∑

k=1

(1− α)k yt+h−k + (1− α)h st.

We propose to replace the unknown values yt+h−k for 1 ⩽ k ⩽ h− 1 by the linear interpolation of the trend:

st+h = αyt+h + α

h−1∑

k=1

(1− α)k
[
k

h
st +

h− k
h

st+h

]
+ (1− α)h st

= αyt+h +
α

h

(
st

h−1∑

k=1

k (1− α)k + st+h

h−1∑

k=1

k (1− α)h−k
)

+ (1− α)h st.

Using the following formulae,

h−1∑

k=1

k (1− α)k =
1− α
α

(
1− h (1− α)h−1

)
+

(
1− α
α

)2 (
1− (1− α)h−1

)

and
h−1∑

k=1

k (1− α)h−k =
1− α
α

(h− 1)−
(
1− α
α

)2 (
1− (1− α)h−1

)

we have
(
α+

1− α
h

[
1 +

1− α
α

(
1− (1− α)h−1

)])
st+h = αyt+h +

1− α
h

[
1 +

1− α
α

(
1− (1− α)h−1

)]
st.


