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DIVISIBILITY OF POLYNOMIALS AND DEGENERACY OF INTEGRAL

POINTS

ERWAN ROUSSEAU, AMOS TURCHET, AND JULIE TZU-YUEH WANG

Abstract. We prove several statements about arithmetic hyperbolicity of certain blow-up vari-

eties. As a corollary we obtain multiple examples of simply connected quasi-projective varieties

that are pseudo-arithmetically hyperbolic. This generalizes results of Corvaja and Zannier ob-

tained in dimension 2 to arbitrary dimension. The key input is an application of the Ru-Vojta’s

strategy. We also obtain the analogue results for function fields and Nevanlinna theory with the

goal to apply them in a future paper in the context of Campana’s conjectures.

1. INTRODUCTION

The goal of this project is to generalize the results of our previous paper [RTW21] to higher di-

mensions. In [RTW21] we dealt with two competing conjectures that aim to characterize algebraic

varieties defined over a number field k that have a potentially dense set of k-rational points. On

one hand Campana conjectured that the class of these varieties is the class of special varieties, in-

troduced in [Cam04], while the Weak Specialness Conjecture (see [HT00, Conjecture 1.2]) predicts

that these should be the weakly special varieties, i.e. varieties that do not admit any étale cover

that dominates a variety of general type. In [RTW21, Theorem 4.2] we constructed examples of

quasi-projective threefolds that are not special but weakly-special (see also [BT04, CP07] for other

constructions), and proved in [RTW21, Theorem 6.5] that such examples possess properties that

contradict function field and analytic analogues of the Weak-Specialness conjecture.

In order to generalize these results in higher dimensions we need two ingredients: the first one,

that is the focus of the present paper, is the construction of simply connected varieties X where

we have a good control on the distribution of integral points and entire curves. The second one,

which will be addressed in a forthcoming paper, is the construction of weakly-special varieties Z

fibered over X and the study of the orbifold hyperbolicity of the base X.

In [RTW21] we used as “arithmetic input” a construction of Corvaja and Zannier in [CZ10] of

a simply connected quasi-projective surface whose integral points are not Zariski dense. The key

observation in [CZ10] was that the study of the distribution of integral points in such surfaces is

connected to divisibility problems of polynomials evaluated at S-integers. In fact many classical

problems in Diophantine Geometry, such as Siegel’s finiteness theorem or the S-unit equation, can

be rephrased via divisibility of polynomials. In this paper we use this observation to obtain several

new results that extend [CZ10] to higher dimensions.

The first result is a generalization of [CZ10, Theorem 4] to an arbitrary number of variables.
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Theorem 1.1. Let n ≥ 2. Let k be a number field, let S be a finite set of places including the

Archimedean ones, and let OS be the ring of S-integers. Let F1, . . . , Fr, G ∈ OS [x0, . . . , xn] be

absolutely irreducible homogeneous polynomials of the same degree. Suppose that the hypersurfaces

defined by F1, . . . , Fr and G are in general position, i.e. any intersection of n + 1 hypersurfaces

is empty, and deg(Fi) ≥ deg(G) for i = 1, . . . , r. Then there exists a closed subset Z ⊂ Pn,

independent of k and S, such that there are only finitely many points (x0, . . . , xn) ∈ Pn(OS) \ Z
such that one of the following holds:

(i) r ≥ 2n+ 1 and Fi(x0, . . . , xn) | G(x0, . . . , xn) in the ring OS, for i = 1, . . . , r; or

(ii) r ≥ n+ 2 and
∏r

i=1 Fi(x0, . . . , xn) | G(x0, . . . , xn) in the ring OS.

In [CZ10, Theorem 4] the original Theorem was obtained in the case n = 2. Moreover, in Theo-

rem 1.1, we obtain a stronger conclusion, namely the existence of an exceptional set Z independent

of the field of definition. The above Theorem yields the following Corollary that generalizes the

classical S-unit equation (that is the case g = 1).

Corollary 1.2 (Compare with [CZ10, Corollary 1]). Let g ∈ OS [x1, . . . , xn] be a polynomial of

degree ≤ 1 such that g(0, . . . , 0) 6= 0, g(1, 0, . . . , 0) 6= 0, . . . , g(0, . . . , 0, 1) 6= 0. The n-tuples

(x1, . . . , xn) ∈ On
S such that ((1−∑n

i=1 xi)
∏n

i=1 xi) | g(x1, . . . , xn) are not Zariski-dense in An.

Proof. Apply Theorem 1.1 (ii) to the linear forms X0,. . . ,Xn, and X0 −
∑n

i=1Xi. �

As we will see, both results follow from a more general statement, Theorem 4.1 in Section 4.

We mentioned above that divisibility results as the ones of Theorem 1.1 and Corollary 1.2, are

related to degeneracy of integral points on varieties. The first statement in this direction is the

following theorem that studies certain blow up of Pn along intersections of hypersurfaces.

Theorem 1.3. Let n ≥ 2, r ≥ 2n + 1 and D0,D1, . . . ,Dr be hypersurfaces in general position on

Pn defined over k. Let π : X → Pn be the blowup of the union of subschemes Di ∩D0, 1 ≤ i ≤ r,

and let D̃i be the strict transform of Di. Let D = D̃1 + · · · + D̃r. Then X \D is arithmetically

pseudo-hyperbolic.

This is the key result needed for the future applications to the study of weakly special varieties.

In fact we can use Theorem 1.3 to construct simply connected varieties whose integral points are

not Zariski dense, thus generalizing Corvaja and Zannier’s construction in arbitrary dimension.

Proposition 1.4 (Compare with [CZ10, Theorem 3]). In the setting of Theorem 1.3, suppose that

the divisor D0 +D1 + · · · +Dr has simple normal crossing singularities. Then the variety X \D
appearing in Theorem 1.3 is simply connected.

Proof. If n = 2 this was done in [RTW21, Example 4.4]. If n ≥ 3, consider a loop around D̃i.

Now observe that, if E is the exceptional divisor over Di ∩D0, the generic fiber of the restriction

π : E \D → Di∩D0 is isomorphic to C. Thus the loop becomes homotopically trivial in X \D. �

Proposition 1.4 will be used in a subsequent paper to discuss analogues of a question of Hassett

and Tschinkel in [HT01, Problem 3.7] for function fields and entire curves.

Along the same lines we generalize to arbitrary dimensions [CZ10, Corollary 2].
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Theorem 1.5. Let n ≥ 2 and let H1, . . . ,H2n be 2n hyperplanes in general position on Pn defined

over k. Choose n + 1 points Pi, 1 ≤ i ≤ n + 1 such that Pi ∈ Hi, 1 ≤ i ≤ n + 1, and Pi /∈ Hj if

i 6= j for 1 ≤ j ≤ 2n. Let π : X → Pn be the blowup of the n+ 1 points Pi, 1 ≤ i ≤ n+ 1, and let

D ⊂ X be the strict transform of H1 + · · ·+H2n. Then X \D is arithmetically pseudo-hyperbolic.

Finally we obtain a generalization of [CZ10, Proposition 1] and [CZ10, Theorem 7] as follows.

Theorem 1.6. Let n ≥ 2 and q ≥ 3n be two integers; for every index i ∈ Z/qZ, let Hi be a

hyperplane in Pn defined over k. Suppose that the Hi’s are in general position. For each index

i ∈ Z/qZ let Pi be the intersection point ∩n−1
j=0Hi+j. Let π : X → Pn be the blow-up of the points

P1, . . . , Pq, let H̃i ⊂ X be the strict transform of Hi, and let D = H̃1 + · · · + H̃q. Then X \D is

arithmetically pseudo-hyperbolic.

Theorem 1.7. Let n ≥ 2, q ≥ 3n be an integer; for every index i ∈ Z/qZ, let Fi, 1 ≤ i ≤ q be

linear form in k[x0, . . . , xn] in general position. Then there exists a Zariski closed subset Z of Pn

such that the set of points [x0 : · · · : xn] ∈ Pn(k) satisfying, for each i ∈ Z/qZ, the equality of ideals

Fi(x0, . . . , xn) · (x0, . . . , xn) =
i∏

j=i−n+1

(Fj(x0, . . . , xn), . . . , Fj+n−1(x0, . . . , xn))

is contained in Z.

We also mention that most of these results can be rephrased as hyperbolicity of complements

of divisors in certain varieties that are higher dimensional analogues of Del Pezzo surfaces. For

example Theorem 1.3 applies to open subsets of the blow up of P3 in r ≥ 7 lines. Interestingly

enough the condition r ≥ 7 characterizes precisely the blow-ups that are not weakly Fano (and

hence not Mori dream spaces).

Ideas of the proof. The main technical tool to obtain the proof of the previous results, as in

our previous paper [RTW21], is to apply (a generalization of) the main theorem of Ru-Vojta (see

Theorem 3.4). In fact in [RTW21] we have already proven that the Ru-Vojta method can be used

to recover the main theorem of [CZ04], that was used in [CZ10] to obtain the degeneracy results

that we are generalizing in this paper. However, in this situation, the computations of the constant

β, which is the crucial part of the proof, is less direct and make use of several ingredients, among

them an adaptation of Autissier’s ideas of [Aut09].

Moreover, by carefully tracing the exceptional set, and following a strategy already discussed by

Levin in [Lev09], we can obtain a stronger result, namely pseudo-arithmetic hyperbolicity instead

of degeneracy of integral points. In particular, this shows that in our statements, the closed subset

outside of which the integral points are finite, does not depend on the field of definition (as expected

in the stronger versions of the conjectures of Lang and Vojta); we refer to [RTW21, Section 3] for

more details and discussions. In fact our results are indeed instances of the Lang-Vojta conjecture

for integral points.

The paper is organized as follows: in Section 2 we collect some preliminary definitions and

properties of local heights and we link divisibility problems with integral points. In Section 3 we

state the Main Theorem of Ru-Vojta with better control of the exceptional set. In Section 4 we

prove Theorems 1.1 and Theorem 1.3. In Section 5 we compute β in several cases and we prove
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Theorem 1.5. In Section 6 we prove Theorem 1.6 and Theorem 1.7. In Section 7 we collect the

analogue results for holomorphic maps, while in Section 8 we present the results over function

fields, together with the proof of the key Ru-Vojta statement.

Divisibility and Integral Points. As observed in [CZ10], there is a connection between dis-

tribution of integral points on certain rational quasi-projective varieties, and divisibility problems.

In fact, Corvaja and Zannier show the following: given points P1, . . . , Pn ∈ P2 that are the inter-

section of two curves C1, C2, let π : X → P2 be the blow up along P1, . . . , Pn. Then, for a point

Q ∈ P2, Q 6= Pi, one can relate the condition that π−1(Q) is integral on X with respect to the strict

transform of C1, with a divisibility condition for the polynomials defining C1 and C2 (locally).

We formalize this in Lemma 2.4, where we generalize to arbitrary dimensions [CZ10, Lemma 1].

In fact, divisibility conditions are connected to the celebrated Vojta’s conjectures (as in [Voj87,

Conjecture 3.4.3]) in many ways: Silverman in [Sil05] observed that GCD results for S-units in

number fields, as in the seminal paper [BCZ03], are related to Vojta’s conjecture on certain blow-

ups. Since then, a number of articles have been devoted to exploit this connection. We cite for

example [BCT21, CT19, CZ13, GSW21, GW19, Lev19, LW20, PW17, Tur17, WY21, Yas11, Yas12].
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2. HEIGHTS AND INTEGRAL POINTS

We collect here standard facts and definitions on local and global Weil heights and integral

points. We refer to [Lan83, Chapter 10], [HS00, B.8], [Lev19, Section 2.3] or [Sil87, Section 2] for

more details about this section. We have decided to avoid the use of integral models to discuss

integral points since it is more natural in the arithmetic context of the Ru-Vojta method.

Let k be a number field and Mk be the set of places, normalized so that it satisfies the product

formula
∏

v∈Mk

|x|v = 1, for x ∈ k×.

For a point [x0 : · · · : xn] ∈ Pn(k), the standard logarithmic height is defined by

h([x0 : · · · : xn]) =
∑

v∈Mk

log max{|x0|v, . . . , |xn|v},

and it is independent of the choice of coordinates x0, . . . , xn by the product formula.

A Mk-constant is a family {γv}v∈Mk
of real numbers, with all but finitely many equal to zero.

Equivalently it is a real-valued function γ : Mk → R which is zero almost everywhere. Given

two families {λ1v} and {λ2v}, we say λ1v ≤ λ2v holds up to an Mk-constant if there exists an
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Mk-constant {γv} such that λ2v−λ1v ≥ γv for all v ∈ Mk. We say λ1v = λ2v up to an Mk-constant

if λ1v ≤ λ2v and λ2v ≤ λ1v up to Mk-constants.

Let V be projective variety defined over a number field k. The classical theory of heights

associates to every Cartier divisor D on V a height function hD : V (k) → R and a local Weil

function (or local height function) λD,v : V (k) \ Supp(D) → R for each v ∈ Mk, such that

∑

v∈Mk

λD,v(P ) = hD(P ) +O(1)

for all P ∈ V (k) \ Supp(D).

We also recall some basic properties of local Weil functions associated to closed subschemes from

[Sil87, Section 2]. Given a closed subscheme Y on a projective variety V defined over k, we can

associate to each place v ∈ Mk a function

λY,v : V \ Supp(Y ) → R.

Intuitively, for each P ∈ V and v ∈ Mk, we think of

λY,v(P ) = − log(v-adic distance from P to Y ).

To describe λY,v more precisely, we use (see for example [Sil87, Lemma 2.5.2]) that for a closed

subscheme Y of V , there exist effective divisors D1, . . . ,Dr such that Y = ∩Di. Then, the function

λY,v can be described as follows:

Definition-Theorem 2.1 ([Voj87, Lemma 2.5.2], [Sil87, Theorem 2.1 (d)(h)]). Let k be a number

field, and Mk be the set of places on k. Let V be a projective variety over k and let Y = ∩Di ⊂ V

be a closed subscheme of V . We define the (local) Weil function for Y with respect to v ∈ Mk as

λY,v = min
i
{λDi,v},(2.1)

This is independent of the choices of the Di’s up to an Mk-constant, and satisfies

λY1,v(P ) ≤ λY2,v(P )

up to an Mk-constant whenever Y1 ⊆ Y2. Moreover, if π : Ṽ → V is the blowup of V along Y with

the exceptional divisor E, λY,v(π(P )) = λE,v(P ) up to an Mk-constant as functions on Ṽ (k) \ E.

The height function for a closed subscheme Y of V is defined, for P ∈ V (k) \ Y , by

hY (P ) :=
∑

v∈Mk

λY,v(P ).

We also define two related functions for a closed subscheme Y of V , depending on a finite set of

places S of k: the proximity function mY,S and the counting function NY,S, for P ∈ V (k) \ Y , as

mY,S(P ) :=
∑

v∈S
λY,v(P ) and NY,S(P ) :=

∑

v∈Mk\S
λY,v(P ) = hY (P )−mY,S(P ).

We can now define the notion of (D,S)-integral points following Vojta.
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Definition 2.2 ([Voj11, Definition 13.1]). Let k be a number field and Mk be the set of places on

k. Let S ⊂ Mk be a finite subset containing all Archimedean places. Let X be a projective variety

over k, and let D be an effective divisor on X. A set R ⊆ X(k) \ SuppD is a (D,S)-integral set

of points if there is a Weil function {λD,v} for D and an Mk-constant {γv} such that for all v /∈ S,

λD,v(P ) ≤ γv for all P ∈ R.

By the uniqueness (up to an Mk-constant) of Weil functions for a Cartier divisor D (see [Voj11,

Theorem 9.8 (d)]), one can use a fixed Weil function λD in Definition 2.2 (after adjusting {γv}).
Finally we recall the definition of arithmetic hyperbolicity.

Definition 2.3. Let X and D as above. We say that X \D is arithmetically pseudo-hyperbolic

if there exists a proper closed subset Z ⊂ X such that for any number field k′ ⊃ k, every finite

set of places S of k′ containing the Archimedean places, and every set R of (k′-rational) (D,S)-

integral points on X, the set R \ Z is finite. We say that X \D is arithmetically hyperbolic if it

is pseudo-arithemtically hyperbolic with Z = ∅.

The main tool for relating questions of divisibility between values of polynomials to integrability

for points on varieties is established in the following lemma. We state it in terms of local heights

since it is more convenient and it admits an explicit analogue using local equations as in [CZ10].

Lemma 2.4 (Compare to [CZ10, Lemma 1]). Let X be a projective variety over a number field k,

and let S ⊂ Mk be a finite subset containing all Archimedean places. Let D be an effective Cartier

divisor of X and W be a closed subscheme of X such that the codimension of D ∩ W is at least

2. Let π : X̃ → X be the blowup along some closed subscheme of X containing D ∩W such that

π∗D = D̃ + π−1(D ∩W ), where D̃ is the strict transform of D. Let R be a set of points in X̃(k).

Then the following are equivalent.

(i) λD̃,v(P ) = 0 up to a Mk-constant for P ∈ R and v /∈ S,

(ii) λD,v(π(P )) ≤ λW,v(π(P )) up to a Mk-constant for P ∈ R and v /∈ S.

Proof. Let Y = D ∩W . The functorial property of Weil functions implies that

λD,v(π(P )) = λπ∗D,v(P ) = λ
D̃,v

(P ) + λY,v(π(P ))(2.2)

up to a Mk-constant. On the other hand, it follows from (2.1) that

λY,v(π(P )) = min{λD,v(π(P )), λW,v(π(P ))}(2.3)

up to a Mk-constant for any v ∈ Mk. Then the equivalence of (i) and (ii) can be easily deduced

from (2.2) and the (2.3). �

3. RU–VOJTA THEOREM AND SOME BASIC PROPOSITIONS

We first recall the following definitions and geometric properties from [RV20].

Definition 3.1. Let L be a big line sheaf and let D be a nonzero effective Cartier divisor on a

projective variety X. We define

βL,D := lim
N→∞

∑∞
m=1 h

0(V,LN (−mD))

N · h0(V,LN )
.
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If A is a big (Cartier) divisor we let βA,D := βO(A),D.

The constant β is the crucial ingredient in Ru–Vojta’s main Theorem. Before stating it we recall

the following definition.

Definition 3.2. Let D1, . . . ,Dq be effective Cartier divisors on a variety X of dimension n.

(i) We say that D1, . . . ,Dq are in general position if for any I ⊂ {1, . . . , q}, we have

dim(∩i∈I SuppDi) ≤ n−#I with dim ∅ = −∞.

(ii) We say that D1, . . . ,Dq intersect properly if for any I ⊂ {1, . . . , q}, x ∈ ∩i∈I SuppDi, and

local equations φi for Di in x, the sequence (φi)i∈I is a regular sequence in the local ring OX,x.

Remark 3.3. If D1, · · · ,Dq intersect properly, then they are in general position. By [Mat86,

Theorem 17.4], the converse holds if X is Cohen-Macaulay.

The following is the main arithmetic Theorem of Ru and Vojta.

Theorem 3.4. [RV20, General Theorem (Arithmetic Part)] Let k be a number field and Mk be the

set of places on k. Let S ⊂ Mk be a finite subset containing the Archimedean places. Let X be a

projective variety defined over k. Let D1, . . . ,Dq be effective Cartier divisors intersecting properly

on X. Let L be a big line sheaf on X. Then for any ǫ > 0, there exists a proper Zariski-closed

subset Z ⊂ X, independent of k and S, such that
q∑

i=1

βL,Di
mDi,S(x) ≤ (1 + ǫ)hL(x)(3.1)

holds for all but finitely many x in X(k) \ Z.

We stress that the result is in fact stronger than the original statement, since the exceptional

set Z does not depend on k and S. This can be obtained by carefully tracing the exceptional sets

in the proof with the following version, due to Vojta in [Voj89], of Schmidt’s subspace theorem,

which gives a better control on the exceptional sets.

Theorem 3.5. Let k be a number field and Mk be the set of places on k. Let S ⊂ Mk be a finite

subset containing the Archimedean places. Let H1, . . . ,Hq be hyperplanes in Pn defined over k with

the corresponding Weil functions λH1
, . . . , λHq . Then there exist a finite union of hyperplanes Z,

depending only on H1, . . . ,Hq (and not on k or S), such that for any ǫ > 0,
∑

v∈S
max

I

∑

i∈I
λHi,v(P ) ≤ (n+ 1 + ǫ)h(P )(3.2)

holds for all but finitely many points P in Pn(k) \ Z, where the maximum is taken over subsets

{1, . . . , q} such that the linear forms defining Hi for i ∈ I are linearly independent.

We end this section with a useful lemma about local height functions.

Lemma 3.6. [WY21, Lemma 5.2] Let D1, · · · ,Dq be effective divisors of a projective variety V of

dimension n, defined over k, in general position. Then
q∑

i=1

λDi,v(P ) = max
I

∑

j∈I
λDj ,v(P ),(3.3)
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up to a Mk- constant, where v ∈ Mk, I runs over all index subsets of {1, · · · , q} with n elements

for all x ∈ V (k).

4. PROOF OF THEOREM 1.1 AND THEOREM 1.3

In this section we will prove Theorem 1.1 and Theorem 1.3. These will be obtained as a

consequence of the following more general statement. From now on, we denote by k a number

field, and by S a finite set of places of k.

Theorem 4.1. Let V be a Cohen–Macaulay projective variety of dimension n defined over k. Let

D0,D1, . . . ,Dr, r ≥ n + 1, be effective Cartier divisors of V defined over k in general position.

Suppose that there exist an ample Cartier divisor A on V and positive integers di such that Di ≡ diA

and di ≥ d0 for all 0 ≤ i ≤ r. Then there exists a proper Zariski closed subset Z of V , independent

of k and S, such that for any Mk constant {γv}, there are only finitely many P ∈ V (k) \ Z such

that the following holds.

(i) r ≥ 2n+ 1 and 1
di
λDi,v(P ) ≤ 1

d0
λD0,v(P ) + γv for v /∈ S and 1 ≤ i ≤ r; or

(ii) r ≥ n+ 2 and
∑r

i=1
1
di
λDi,v(P ) ≤ 1

d0
λD0,v(P ) + γv for v /∈ S.

Here, ≡ denotes numerical equivalence of divisors, and λDi,v is a Weil function of Di at v.

The following theorem can be deduced from Theorem 4.1 using Lemma 2.4.

Theorem 4.2. Let V be a Cohen–Macaulay projective variety of dimension n defined over k. Let

D0,D1, . . . ,Dr, r ≥ 2n + 1, be effective Cartier divisors of V defined over k in general position.

Suppose that there exist an ample Cartier divisor A on V and positive integers di such that Di ≡ diA

for all i. Let π : Ṽ → V be the blowup long the union of subschemes Di∩D0, 1 ≤ i ≤ r, and let D̃i

be the strict transform of Di. If D = D̃1+ · · ·+ D̃r, then Ṽ \D is arithmetically pseudo-hyperbolic.

It is clear that Theorem 1.3 is a direct consequence of Theorem 4.2. We now show that Theorem

4.1 implies Theorem 1.1.

Proof of Theorem 1.1. Let Di := [Fi = 0] for 1 ≤ i ≤ r, and D0 = [G = 0]. Recall the following

standard local Weil function for Di

λDi,v(P ) := − log
|Fi(x0, . . . , xn)|v

max{|x0|div , . . . , |xn|div }
,

where P = [x0 : · · · : xn] ∈ Pn(k) \Di, F0 = G and di = degFi, 0 ≤ i ≤ r. Since the coefficients of

Fi and G are in OS , for integral points P = (x0, . . . , xn) ∈ On+1
S , the condition that Fi(x0, . . . , xn)

divides G(x0, . . . , xn) in the ring OS implies that |G(x0, . . . , xn)|v ≤ |Fi(x0, . . . , xn)|v ≤ 1 for v /∈ S.

Then |G(x0, . . . , xn)
di |v ≤ |Fi(x0, . . . , xn)

d0 |v for v /∈ S as di ≥ d0, and hence for v /∈ S,

1

di
λDi,v(P )− 1

d0
λD0,v(P ) = − 1

d0di
log

∣∣∣∣
Fi(x0, . . . , xn)

d0

G(x0, . . . , xn)di

∣∣∣∣
v

≤ 0

Therefore, Theorem 1.1 (i) is a consequence of Theorem 4.1 (i). The proof for (ii) is the same. �
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4.1. Basic properties and one technical lemma

We will recall some basic results and one technical lemma from [WY21]. We start with [WY21,

Proposition 2.4], which is an immediate consequence of [HS00, Theorem B.3.2.(f)].

Proposition 4.3. Let X be a projective variety defined over k, and A be an ample Cartier divisor

on X defined over k. Let D be a Cartier divisor D defined over k with D ≡ A. Let ǫ > 0. Then

there exists a constant cǫ such that for all P ∈ X(k)

(1− ǫ)hA(P )− cǫ ≤ hD(P ) ≤ (1 + ǫ)hA(P ) + cǫ.

The following theorem is a reformulation of [Lev14, Theorem 3.2] by applying Proposition 4.3.

Theorem 4.4. Let X be a projective variety of dimension n defined over k. Let D1, . . . ,Dq be

effective Cartier divisors on X, defined over k, in general position. Suppose that there exists an

ample Cartier divisor A on X and positive integer di such that Di ≡ diA for all i and all v ∈ S.

Let ǫ > 0. Then there exists a proper Zariski-closed subset Z ⊂ X, independent of S and k, such

that for all points P ∈ X(k) \ Z,

q∑

i=1

1

di
mDi,S(P ) > (q − n− 1− ǫ)hA(P ).

The following proposition follows from [Kov20, Proposition 5.5].

Proposition 4.5. Let X be a Cohen-Macaulay scheme over k and Y ⊂ X be a locally complete

intersection subscheme. Let π : X̃ 7→ X be the blowup of X along Y . Then X̃ is a Cohen-Macaulay

scheme. Moreover, if Z is an irreducible subscheme of Y ,

dimπ−1(Z) = dimZ + codimY − 1.

Finally, we need the technical lemma [WY21, Lemma 4.7].

Lemma 4.6. Let V be a projective variety of dimension n. Let D1, . . . ,Dn+1 be effective Cartier

divisors of V defined over k in general position. Suppose that there exists an ample Cartier divisor

A on V such that Di ≡ A for all 1 ≤ i ≤ n+ 1. Let Y be a closed subscheme of V of codimension

at least 2. Let π : Ṽ → V be the blowup along Y , and E be the exceptional divisor. Let D :=

D1 + · · ·+Dn+1. Then, for all sufficiently large ℓ, L = O(ℓπ∗D − E) is ample and

β−1
L,π∗Di

≤ 1

ℓ

(
1 +O

(
1

ℓ2

))
≤ 1

ℓ

(
1 +

1

ℓ
√
ℓ

)
.

4.2. Proof of Theorem 4.1

We begin with the following proposition on general position for pullbacks.

Proposition 4.7. Let V be a Cohen–Macaulay projective variety, and let D0,D1, . . . ,Dr be ample

effective Cartier divisors of V in general position. Let Yi = Di ∩ D0, and let π : Ṽ → V be the

blowup along Y , where Y = ∪r
i=1Yi. Finally let E = E1 + . . .+Er be the exceptional divisor of π.

Then, the following holds:

(i) π∗Di = D̃i + Ei for each 1 ≤ i ≤ r, where D̃i is the strict transform of Di.
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(ii) π∗D1, . . . , π
∗Dr are in general position.

Proof. Since D0, . . . ,Dr are in general position, for every i 6= j the intersection D0 ∩Di ∩Dj has

codimension at least 3, which implies (i).

To show (ii), we first note that if r ≥ n, then the intersection of any n + 1 of π∗Di, 0 ≤ i ≤ r,

is empty since D0,D1, . . . ,Dr are in general position. Next, let I ⊂ {1, . . . , r} with #I ≤ n. We

claim that dim(∩i∈I Supp π∗Di) ≤ n−#I. Let W be an irreducible component of ∩i∈I Supp π∗Di.

If π(W ) ⊂ Y , then π(W ) is a subset of (∩i∈IDi) ∩ D0 and hence dimπ(W ) < n − #I. Then

dimW ≤ n − #I by Proposition 4.5. It remains to consider when π(W ) is not a subset of Y ,

which implies that W \ π−1(Y ) is not empty and is contained in ∩i∈I Supp D̃i \ π−1(Y ). Since

(∩i∈ID̃i) \ π−1(Y ) and (∩i∈IDi) \ Y are isomorphic, this shows that dimW ≤ n−#I. �

We can now prove Theorem 4.1.

Proof of Theorem 4.1. Let c be the least common multiple of d0, d1, . . . , dr. Let A0 = cA, D′
i :=

c
di
Di ≡ A0, for 0 ≤ i ≤ r. For P ∈ V (k) satisfying (i) and v /∈ S, we have

λD′

i,v
(P ) =

c

di
λDi,v(P ) ≤ d0

di
λD′

0
,v(P ) ≤ λD′

0
,v(P ),

up to a Mk constant since di ≥ d0. Similarly, if P ∈ V (k) satisfies (ii), then

r∑

i=1

λD′

i,v
(P ) =

r∑

i=1

c

di
λDi,v(P ) ≤ c

d0
λD0,v(P ) = λD′

0
,v(P )

up to a Mk constant. Therefore, by replacing Di by D′
i, 0 ≤ i ≤ r, and A by A0, we may assume

that Di ≡ A for each 0 ≤ i ≤ r and replace (i) by

λDi,v(P ) ≤ λD0,v(P ) + γv, for 1 ≤ i ≤ r;(4.1)

and, when v /∈ S, replace (ii) by

r∑

i=1

λDi,v(P ) ≤ λD0,v(P ) + γv.(4.2)

Let Yi = Di ∩ D0 and Y = ∪r
i=1Yi. Since D0 is in general position with each Di, 1 ≤ i ≤ r,

D0 and each Di intersect properly by Remark 3.3. Hence, Y is a local complete intersection. Let

π : Ṽ → V be the blowup along Y , and E = E1 + . . . + Er, Ei = π−1(Yi), be the exceptional

divisors. Then by Proposition 4.7, π∗Di = D̃i + Ei for each 1 ≤ i ≤ r. Furthermore, since Y is

a local complete intersection, by Proposition 4.5, Ṽ is Cohen-Macaulay and hence by Proposition

4.7, π∗D1, . . . , π
∗Dr intersect properly. Let ℓ be a fixed sufficiently large integer such that the line

sheaf L = O(ℓ(n+ 1)π∗A− E) is ample and Lemma 4.6 holds true, i.e.

β−1
L,π∗Di

≤ 1

ℓ

(
1 +

1

ℓ
√
ℓ

)
.(4.3)

Let ǫ′ = ℓ−5/2. Theorem 3.4 applied with ǫ′, Ṽ , L and π∗Di = D̃i + Ei (for 1 ≤ i ≤ r), gives a

proper Zariski closed subset Z̃ ⊂ Ṽ , independent of k and S such that
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r∑

i=1

mπ∗Di,S(x) ≤
(
1

ℓ
(1 +

1

ℓ
√
ℓ
) + ǫ′

)
hℓ(n+1)π∗A−E(x)

≤
(
1 +

2

ℓ
√
ℓ

)
(n + 1)hπ∗A(x)−

1

ℓ
hE(x)(4.4)

holds for all x outside the proper Zariski-closed subset Z̃ of Ṽ (k). By the functorial properties of

the local height functions, hD = mD,S +ND,S , and hE = hY ◦ π, we have

(r − n− 1− 2(n + 1)

ℓ
√
ℓ

) · hA(π(x)) +
1

ℓ
hY (π(x)) ≤

r∑

i=1

NDi,S(π(x))(4.5)

holds for all π(x) outside the proper Zariski-closed subset Z = π(Z̃) of V (k).

For all P = π(x) ∈ V (k) such that r ≥ 2n+1 and (4.1) holds, i.e. λDi,v(P ) ≤ λD0,v(P ) + γv for

each 1 ≤ i ≤ r, we have

hY (P ) ≥ NY,S(P ) =

r∑

i=1

∑

v/∈S
min{λDi,v(P ), λD0,v(P )}

=

r∑

i=1

NDi,S(P )−
r∑

i=1

∑

v/∈S
max{0, γv}.(4.6)

Furthermore, it follows from Lemma 3.6 and Proposition 4.3 with ǫ = 1
ℓ2

that for all P ∈ V (k),

r∑

i=1

NDi,S(P ) ≤ nND0,S(P ) +O(1) ≤ (n+
1

ℓ2
)hA(P ) +O(1).(4.7)

Apply Theorem 4.4 with ǫ = 1
ℓ2 , then there exists a proper Zariski-closed subset Z ′ of V (k),

independent of S and k, such that, for all P ∈ V (k) \ Z ′,
r∑

i=1

NDi,S(P ) ≥ (r − n− 1− 1

ℓ2
)hA(P ).(4.8)

We now use (4.7) to get an upper bound for the right hand side of (4.5) and use (4.6) and (4.8)

for the left hand side. Then we have that

(r − 2n− 1 +
1

ℓ
− 2(n + 1)

ℓ
√
ℓ

− 2

ℓ2
) · hA(π(x)) ≤ O(1)(4.9)

holds for all but finitely many P ∈ V (k) outside Z ∪ Z ′. Since A is ample, r ≥ 2n + 1, and
1
ℓ −

2(n+1)

ℓ
√
ℓ

− 2
ℓ2

> 0, there are only finitely many P ∈ V (k) such that (4.9) holds. This shows (i).

We are left considering when r ≥ n+ 2 and (4.2) holds. In this case, we have similarly to (4.7)

r∑

i=1

NDi,S(P ) ≤ ND0,S(P ) +O(1) ≤ (1 +
1

ℓ2
)hA(P ) +O(1)(4.10)

for all P ∈ V (k). Together with (4.5), (4.6) and (4.8), we have that

(r − n− 2 +
1

ℓ
− 2(n+ 1)

ℓ
√
ℓ

− 2

ℓ2
) · hA(π(x)) ≤ O(1)(4.11)

holds for all but finitely many P ∈ V (k) outside a proper Zariski-closed Z ∪Z ′. Since A is ample,

r ≥ n+ 2, and 1
ℓ −

2(n+1)

ℓ
√
ℓ

− 2
ℓ2

> 0, this implies (ii).
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�

Proof of Theorem 4.2. Since the property of arithmetically pseudo-hyperbolic is independent of

the multiplicity of the divisors, we may assume that there exists a positive constant such that

Di ≡ dA for 0 ≤ i ≤ r.

Let Yi = Di ∩D0, Y = ∪r
i=1Yi, and π : Ṽ → V be the blowup along Y , and E = E1 + . . .+ Er,

Ei = π−1(Yi), be the exceptional divisors. By Proposition 4.7, π∗Di = D̃i + Ei. Let R be a set of

(D,S)-integral points, where D = D̃1 + · · · + D̃r. Then there exists Mk-constant {γv} such that

for all v /∈ S, λD,v(P ) ≤ γv for all P ∈ R. By Lemma 2.4, we have for each 1 ≤ i ≤ r

λDi,v(π(P )) ≤ λD0,v(π(P )) up to a Mk-constant for P ∈ R and v /∈ S.(4.12)

Since r ≥ 2n+ 1, Theorem 4.1 (i) implies that there exists a proper Zariski closed subset Z of V ,

independent of k and S, such that there are only finitely many π(P ) ∈ V (k) \Z, i.e. P /∈ π−1(Z),

satisfying (4.12). Since the choice of Z is independent of the Mk-constant, it implies that Ṽ \D is

arithmetically pseudo-hyperbolic. �

5. PROOF OF THEOREM 1.5

In this section we prove Theorem 1.5. The main technical result is a computation of the constant

β. To this end we generalize some construction of Autissier removing some hypotheses.

5.1. Background Results and computing β

We start by recalling some basic properties on global sections of line bundles, and refer to [Lev09,

Section 7.3] for further references and proofs.

Lemma 5.1. Suppose D is a nef divisor on a nonsingular projective variety X. Let n = dimX.

Then h0(X,O(ND)) = (Dn/n!)Nn +O(Nn−1). In particular, Dn > 0 if and only if D is big.

We will also make use of two basic exact sequences.(See [Lev09, Lemma 7.7].)

Lemma 5.2. Let D be an effective divisor on a projective variety X with inclusion map i : D → X.

Let L be an invertible sheaf on X. Then we have exact sequences

0 → L⊗O(−D) → L → i∗(i
∗L) → 0,

0 → H0(X,L ⊗O(−D)) → H0(X,L) → H0(D, i∗L).

Lemma 5.3 ([Lev09, Lemma 7.9]). Let X be a nonsingular projective variety of dimension n. Let

D and E be any divisor on X, and let F be a nef divisor on X. Then we have

h0(X,O(ND + E −mF )) ≤ h0(X,O(ND)) +O(Nn−1) for all m,N ≥ 0,

where the implied constant is independent of m and N .

We will use the following lemma and its corollary, which are modification of [Aut09, Lemma

4.2] and [Aut09, Corollary 4.3] where we weaken the original hypothesis on B.
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Lemma 5.4. Let X be a nonsingular projective variety of dimension n ≥ 2. Let B be a nonsingular

subvariety of X of codimension 1 that is also a nef Cartier divisor. Let A be a nef Cartier divisor

on X such that A − B is also nef. Let δ > 0 be a positive real number. Then, for any positive

integers N and m with 1 ≤ m ≤ δN , we have

h0(X,O(NA −mB)) ≥ An

n!
Nn − An−1.B

(n− 1)!
Nn−1m

+
(n− 1)An−2.B2

n!
Nn−2min{m2, N2} −O(Nn−1),(5.1)

where the implicit constant depends on δ.

Proof of Lemma 5.4. We will follow the proof of [Aut09, Lemma 4.2] with necessary modification.

We first note when m ≤ N , (5.1) follows from the proof in [Aut09, Lemma 4.2], since this part of

proof only need the assumption that A, B and A−B are nef.

For the case that m > N , we let N ≤ j ≤ m. Let i : B → X be the inclusion map. From

Lemma 5.2, we have an exact sequence

0 → H0(X,O(NA − (j + 1)B)) → H0(X,O(NA − jB)) → H0(B, i∗O(NA− jB)).

Therefore, we have

h0(X,O(NA − (j + 1)B)) ≥ h0(X,O(NA − jB))− h0(B, i∗O(NA− jB)).

Hence,

h0(X,O(NA −mB)) ≥ h0(X,O(NA −NB))−
m−1∑

j=N

h0(B, i∗O(NA− jB)).(5.2)

Since B is a nef divisor on X, i∗O(B) is nef. Applying Lemma 5.3 to B, which is a non-singular

subvariety of X, and the divisors corresponding to i∗O(A) and i∗O(B), we have

h0(B, i∗O(NA− jB)) ≤ h0(B, i∗O(NA)) +O(Nn−2) =
An−1B

(n− 1)!
Nn−1 +O(Nn−2).(5.3)

Then, from (5.2), (5.3), Lemma 5.1, and the estimate of h0(X,O(NA −NB)) in the first case, it

follows that

h0(X,O(NA −mB)) ≥ h0(X,O(NA −NB))− (m−N)
An−1B

(n − 1)!
Nn−1 −O(Nn−2)

≥ An

n!
Nn − An−1.B

(n− 1)!
Nn−1m+

(n− 1)An−2.B2

n!
Nn −O(Nn−1).

This shows (5.1) for the case that m > N . �

We use Lemma 5.4 to obtain a lower bound on the β constant in terms of intersection numbers.

Corollary 5.5. Let X be a nonsingular projective variety of dimension n ≥ 2. Let B be a

nonsingular subvariety of X of codimension 1 that is also a nef Cartier divisor on X. Let A be a

big and nef Cartier divisor on X such that A−B is nef. Then

βA,B ≥ An

2nAn−1.B
+

(n− 1)An−2.B2

An
g(

An

nAn−1.B
),
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where g : R+ → R+ is the function given by g(x) = x3/3 if x ≤ 1 and g(x) = x− 2/3 for x ≥ 1.

Proof. Let

b =
An

nAn−1.B
and a = (n− 1)An−2.B2.

For N sufficiently large and such that bN is an integer, Lemma 5.4 implies that
∞∑

m=1

h0(NA−mB)

≥
bN∑

m=1

(
An

n!
Nn − An−1.B

(n − 1)!
Nn−1m+

a

n!
Nn−2min{m2, N2}

)
+O(Nn)

≥
(
An

n!
b− An−1.B

(n− 1)!
· b

2

2
+

a

n!
g(b)

)
Nn+1 +O(Nn)

=

(
b

2
+

a

An
g(b)

)
AnN

n+1

n!
+O(Nn).

�

5.2. Proof of Theorem 1.5

We apply Corollary 5.5 to the setting of Theorem 1.5.

Lemma 5.6. Let H1, . . . ,H2n be 2n hyperplanes in general position on Pn and choose n+1 points

Pi such that Pi ∈ Hi, 1 ≤ i ≤ n + 1, and Pi /∈ Hj if i 6= j for 1 ≤ j ≤ 2n. Let π : X → Pn

be the blowup of the n + 1 points Pi, and let H̃i be the strict transform of Hi. Finally, let ℓ be a

sufficiently large integer and let A =
∑n+1

i=1 ℓH̃i + H̃n+2. Then A is big and nef and

βA,H̃1
= · · · = βA,H̃n+1

>
(n+ 1)ℓ

2n
+ o(ℓ),(5.4)

β
A,H̃n+2

= · · · = β
A,H̃2n

>
(n+ 1)ℓ

2n
− ℓ

2n(n + 1)n−2
+ o(ℓ).(5.5)

Proof. Let π : X → Pn be the blowup of the points Pi, as in the hypotheses. Let Ei = π−1(Pi), be

the exceptional divisors. Then

π∗Hi =

{
H̃i + Ei, for 1 ≤ i ≤ n+ 1

H̃i, for n+ 2 ≤ i ≤ 2n.
(5.6)

Moreover,

A :=
n+1∑

i=1

ℓH̃i + H̃n+2 ∼ (ℓ(n + 1) + 1)π∗H − ℓE,(5.7)

where E = E1 + · · ·+ En+1 and H is a (generic) hyperplane in Pn. Then

An = ((ℓ(n + 1) + 1)π∗H − ℓE)n =
(
(n+ 1)n − (n+ 1)

)
ℓn +O(ℓn−1).(5.8)

We now show that H̃i is nef for 1 ≤ i ≤ 2n. Let C be an irreducible curve on X. Then

H̃i.C =

{
π∗H.C − Ei.C, for 1 ≤ i ≤ n+ 1

π∗H.C, for n+ 2 ≤ i ≤ 2n.

}
.(5.9)
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If C ⊂ E, then C is contained in exactly one of the Ei. Let us assume that C ⊂ Ej for some

1 ≤ j ≤ n+ 1. Then Ej.C < 0, Ei.C = 0 if i 6= j and π∗H.C = H.π∗C = 0. Hence, H̃j.C > 0 and

H̃i.C = 0 for 1 ≤ i 6= j ≤ 2n. Otherwise, π∗(C) is a curve in Pn. Then for 1 ≤ i ≤ n+ 1,

H̃i.C = π∗H.C − Ei.C = H.π∗C −multiPi
π∗(C)

= deg π∗C − multiPi
π∗(C) ≥ 0,

since multiPi
π∗(C) ≤ deg π∗C; and for n+ 1 ≤ i ≤ 2n,

H̃i.C = π∗H.C = H.π∗C = deg π∗C > 0.

Therefore, H̃i is nef for each 1 ≤ i ≤ 2n and hence A is also nef. Since A is nef and An > 0 by

(5.8) as n ≥ 2, Lemma 5.1 implies that A is big.

Our assertions (5.4) and (5.5) can be easily obtained from Corollary 5.5 by noting that for

i ≤ n+ 2, A− H̃i, is still nef and by (5.8) and estimating the following intersection numbers.

An−1.H̃i = ((ℓ(n + 1) + 1)π∗H − ℓE)n−1.(π∗H − Ei)

= ((n+ 1)n−1 − 1)ℓn−1 +O(ℓn−2) for 1 ≤ i ≤ n+ 1,

and

An−1.H̃i = ((ℓ(n + 1) + 1)π∗H − ℓE)n−1.π∗H

= (n+ 1)n−1ℓn−1 +O(ℓn−2) for n+ 2 ≤ i ≤ 2n.

�

We can now prove Theorem 1.5.

Proof of Theorem 1.5. Let π : X → Pn be the blowup of the n+ 1 points Pi, 1 ≤ i ≤ n + 1, such

that Pi ∈ Hi, and Pi /∈ Hj if j 6= i. Let Ei = π−1(Pi), 1 ≤ i ≤ n + 1, be the exceptional divisors.

We note that X is smooth and the strict transforms H̃1, . . . , H̃2n are in general position.

Let ℓ be a sufficiently large integer to be determined later. Let A =
∑n+1

i=1 ℓH̃i + H̃n+2 ∼
(ℓ(n + 1) + 1)π∗H − ℓE, where E = E1 + · · · + En+1. By Lemma 5.6, A is big and nef and there

exist constants β and β̃ such that

β · ℓ = βA,H̃1
= · · · = βA,H̃n+1

,

β̃ · ℓ = βA,H̃n+2
= · · · = βA,H̃2n

,(5.10)

and

δ := (n− 1)β̃ + 2β − 2 >
(n− 1)

2n

(
n− 1− 1

(n+ 2)n−2

)
≥ 0(5.11)

since n ≥ 2. Then we let

ǫ :=
δ

4(n + 3)
> 0.
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Applying Theorem 3.4 to ǫ, X, L = O(A) and H̃i, 1 ≤ i ≤ 2n, there exists a proper Zariski closed

subset Z ⊂ X, independent of k and S, such that

β

n+1∑

i=1

mH̃i,S
(x) + β̃

2n∑

i=n+2

mH̃i,S
(x) ≤ (1 + ǫ) (n + 1 +

1

ℓ
)hπ∗H(x)− (1 + ǫ)hE(x)(5.12)

holds for all x in X(k) \ Z. For the set R of (D,S)-integral points, with D = H̃1 + . . . + H̃2n, let

cR :=
∑

v/∈S max{0, γv} , where {γv} is the Mk constant from Definition 2.2. Then for x ∈ R,

2n∑

i=1

Nπ∗Hi,S(x)−NE,S(x) =

2n∑

i=1

NH̃i,S
(x) ≤ cR,

and hence

NE,S(x) ≥
2n∑

i=1

NHi,S(π(x)) −O(1).(5.13)

Moreover, since x ∈ R,

n+1∑

i=1

mH̃i,S
(x) ≥

n+1∑

i=1

hH̃i
(x)−O(1) = (n+ 1)hπ∗H(x)− hE(x)−O(1),(5.14)

and
2n∑

i=n+2

mH̃i,S
(x) ≥

2n∑

i=n+2

hH̃i
(x)−O(1) = (n − 1)hπ∗H(x)−O(1).(5.15)

Using (5.14) and (5.15), and assuming ℓ > 1
ǫ , we can rewrite (5.12) as

(1− β)hE(x) ≤
(
n+ 1− (n + 1)β − (n− 1)β̃ + (n+ 3)ǫ

)
hπ∗H(x) +O(1).(5.16)

On the other hand, by Lemma 3.6 and the fact thatmHi,S(π(x))+NHi,S(π(x)) = h(π(x))+O(1),

we can derive from Theorem 3.5 that there exists a finite union of hyperplanes W , independent of

k and S, such that for any ǫ′ > 0

2n∑

i=1

NHi,S(π(x)) ≥ (n − 1− ǫ′)h(π(x)) −O(1)(5.17)

for all but finitely many π(x) in Pn(k) \W .

Since hE(x) ≥ NE(x), we can deduce from (5.13) and (5.17) that for all but finitely many π(x)

in Pn(k) \W

hE(x) ≥ (n− 1− ǫ′)h(π(x)) −O(1).(5.18)

Then we derive from (5.11), (5.16), and (5.18) that

(δ − (1− β)ǫ′ − (n + 3)ǫ)h(π(x)) ≤ O(1)

for all but finitely x ∈ R outside Z ∪ π∗(W ) ∪ E. Let ǫ′ ≤ δ/4(1 − β). Then, by definition of ǫ,

δ

2
h(π(x)) ≤ O(1),

which can only be satisfied for finitely many π(x) ∈ Pn(k). Therefore, there are only finitely many

x ∈ R outside Z ∪ Suppπ∗(W ) ∪ SuppE. �
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6. PROOF OF THEOREM 1.6 AND THEOREM 1.7

We fix the notation we will use throughout this section. Let n ≥ 2, q ≥ 3n be integers. For every

index i ∈ Z/qZ, let Hi be a hyperplane in Pn defined over k. Suppose that H1, . . . ,Hq are in general

position. For each index i ∈ Z/qZ, let Pi be the intersection point ∩n−1
j=0Hi+j. Let π : X → Pn be

the blow-up over the points P1, . . . , Pq and Ei = π−1(Pi), 1 ≤ i ≤ q, be the exceptional divisors.

Let H̃i ⊂ X be the corresponding strict transform of Hi and let D = H̃1 + · · · + H̃q. Since Pi is

the intersection point ∩n−1
j=0Hi+j, we have

π∗Hi = H̃i +
i∑

j=i−n+1

Ej ,(6.1)

and

D =

q∑

i=1

H̃i ∼ qπ∗H − n

q∑

i=1

Ei.(6.2)

6.1. Key Lemmas

We collect here the key lemmas for computing the constant β.

Lemma 6.1. Let n ≥ 2, q ≥ 3n and let D and H̃i be as defined above. Then, for every 1 ≤ i ≤ q

and 0 ≤ m ≤ n, the divisor D −mH̃i is nef.

Proof. Recall that π : X → Pn is the blowup of the points Pi, as described above.

It is clear that it suffices to show D −mH̃q is nef if q ≥ 3n and 0 ≤ m ≤ n by rearranging the

index. By (6.1) and (6.2), we have

D −mH̃q ∼ (q −m)π∗H − n

q−n∑

i=1

Ei − (n−m)

q∑

i=q−n+1

Ei.(6.3)

Let C be an irreducible curve on X. If π∗(C) is not a curve in Pn, then π∗(C) = Pi for some i.

Hence, π∗H.C = H.π∗C = 0, Ej.C = 0 for 1 ≤ j 6= i ≤ q and Ei.C > 0. Therefore, (6.3) gives

(D −mH̃q).C ≥ 0 if 0 ≤ m ≤ n.

If π∗(C) is a curve in Pn and π∗(C) is not in any of the Hi, from (6.3) we have

(D −mH̃q).C

= (q −m)H.π∗(C)− n

q−n∑

i=1

multiPi
π∗(C)− (n−m)

q∑

i=q−n+1

multiPi
π∗(C).(6.4)

It suffices to find q −m hyperplanes passing through P1, . . . , Pq with described multiplicity as the

equation above. We note that each Hi contains exactly n points, Pi−n+1, . . . , Pi, among the Pj ’s;

and each point Pi is contained in exactly n hyperplanes, Hi, . . . ,Hn+i−1, among the Hj’s. We first

consider the points Pi’s contained in Hn, . . . ,Hq−n and denote these points with multiplicities as

a formal sum below.

n

q−2n+1∑

i=n

Pi +

n−1∑

i=1

i(Pi + Pq−n+1−i) = n

q−n∑

i=1

Pi −
n−1∑

i=1

(n− i)(Pi + Pq−n+1−i)(6.5)
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Recall that q ≥ 3n. The last sum in the right hand side of (6.5) contains n(n− 1) points counting

multiplicity and the multiplicities of these points range from one to n − 1. Therefore, we may

choose n − 1 hyperplanes L1, . . . , Ln−1 containing these n(n − 1) points (counting multiplicity).

Then together with (6.5), we have

(q − n)H.π∗(C) =

q−n∑

i=n

Hi.π∗(C) +
n−1∑

i=1

Li.π∗(C) ≥ n

q−n∑

i=1

multiPi
π∗(C).(6.6)

Finally, since Pq−n+1, . . . , Pq ∈ Hq, we have

(n−m)H.π∗(C) = (n−m)Hq.π∗(C) ≥ (n−m)

q∑

i=q−n+1

multiPi
π∗(C).(6.7)

Then (D −mH̃q).C ≥ 0 if q ≥ 3n and 0 ≤ m ≤ n by (6.4), (6.6) and (6.7).

Finally, we consider the case where π∗(C) is contained in some Hb, where 1 ≤ b ≤ q.

Suppose that π∗(C) ⊂ ∩a
t=0Hb−t and π∗(C) 6⊂ Hb−a−1. Clearly, 0 ≤ a ≤ n − 2 since the Hi are

in general position and π∗(C) is a curve. Then π∗(C) ∩ {P1, . . . , Pq} ⊆ {Pb−n+1, . . . , Pb−a}, which
is contained in Hb−a−1 ∪ Hb−a+j, for a + 1 ≤ j ≤ n − 1. Since π∗(C) ⊂ ∩a

t=0Hb−t, it cannot be

contained in every Hb−a+j , a + 1 ≤ j ≤ n − 1. Suppose that π∗(C) is not contained in Hj0 , for

some b− a+ 1 ≤ j0 ≤ b− a+ n− 1. Then we have

2H.π∗(C) = (Hb−a−1 +Hj0).π∗(C) ≥
q∑

i=1

multiPi
π∗(C).(6.8)

Then, by (6.4) since m ≤ n and q ≥ 3n, we have (D −mH̃q).C ≥ (q − 2n−m)H.π∗(C) ≥ 0. �

Lemma 6.2. Let n ≥ 2 and q ≥ 3n. Let D and H̃i, be as above. Then D is big and

β
D,H̃1

= · · · = β
D,H̃q

> 1.

Proof. Since D is nef by Lemma 6.1, we have

h0(X,O(ND)) =
Dn

n!
·Nn +O(Nn−1)

by Lemma 5.1. It follows from (6.2) that

Dn = (qπ∗H − n

q∑

i=1

Ei)
n = qn − nnq.(6.9)

Therefore, D is big if qn−1 > nn, which is satisfied when n ≥ 2 and q ≥ 3n.

By the Hirzebruch-Riemann-Roch theorem, adapting the arguments in [Aut09, Lemma 4.2], we

obtain

χ(X;ND −mH̃i) =
1

n!
(ND −mH̃i)

n +O(Nn−1),

where χ(X; ·) is the Euler characteristic.

Since D and D − bH̃i are nef for 0 ≤ b ≤ n, hi(X,O(ND −mH̃i) = O(Nn−i) if m ≤ nN (see

e.g. [Laz04, Theorem 1.4.40]). Therefore,

h0(X,O(ND −mH̃i)) =
(ND −mH̃i)

n

n!
·Nn +O(Nn−1), for m ≤ nN.(6.10)
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By (6.1) and (6.2), we can compute

Dk.H̃n−k
i = qk − nk+1, for k ≤ n− 1.(6.11)

Then

(ND −mH̃i)
n = (qn − nnq)Nn +

n−1∑

k=0

(
n

k

)
(qk − nk+1)(−1)n−kNkmn−k

= (qN −m)n − n(nN −m)n − nn(q − n)Nn.(6.12)

In particular, for m = nN

(ND − nH̃i)
n = (q − n)

(
(q − n)n−1 − nn

)
Nn ≥ 0(6.13)

since q ≥ 3n and n ≥ 2. Since (6.12) is a decreasing function in m, the right hand side of (6.12)

is nonnegative for m ≤ nN . By (6.10) and (6.12), we have

n!

nN∑

m=0

h0(X,O(ND −mH̃i))

=
nN∑

m=0

(qN −m)n − n(nN −m)n − nn(q − n)Nn +O(Nn)

=
(
qn+1 − (q − n)n+1 − nn+2 − nn+1(n+ 1)(q − n)

)Nn+1

n + 1
+O(Nn).

Together with (6.9), it yields

βD,H̃i
≥ β :=

qn+1 − (q − n)n+1 − nn+2 − nn+1(n+ 1)(q − n)

(n+ 1)(qn − nnq)
.

We now show that β > 1. Let

f(q) : = (β − 1)(n + 1)(qn − nnq)

= qn+1 − (q − n)n+1 − nn+2 − nn+1(n + 1)(q − n)− (n+ 1)(qn − nnq)

= qn+1 − (q − n)n+1 − (n+ 1)qn − (n2 − 1)nn(q − n) + nn+1.(6.14)

We will need to show that f(q) > 0 if q ≥ 3n.

f ′(q) = (n+ 1)(qn − (q − n)n)− (n + 1)nqn−1 − nn+2 + nn

= n(n+ 1)(qn−1 + qn−2(q − n) + . . .+ (q − n)n−1)− (n+ 1)nqn−1 − nn+2 + nn

= n(n+ 1)(qn−2(q − n) + . . .+ (q − n)n−1)− nn+2 + nn

> (n3 − n)(q − n)n−1 − nn+2 ≥ 0 if q ≥ 3n and n ≥ 2.

Therefore, it suffices to show that f(3n) > 0. By (6.14),

f(3n) = nn
(
(2n − 1) · 3n − n · 2n+1 − (2n2 − 3)n

)
.
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It is easy to check that f(3n) > 0 for n = 2. We now assume that n ≥ 3. Then

(2n − 1) · 3n − n · 2n+1 − (2n2 − 3)n

≥ n · 3n − n · 2n+1 + (n− 1)3n − (3n2 − 3)n

≥ 9n · 3n−2 − 8n · 2n−2 + (n− 1)(3n − 3n(n+ 1)) > 0.

This show that f(3n) > 0 for n ≥ 3 as well. �

6.2. Proof of Theorem 1.6 and Theorem 1.7

Proof of Theorem 1.6. We note that since X is smooth we need to verify that H̃1, . . . , H̃q are in

general position in order to apply Theorem 3.4. Let W = H̃1 ∩ H̃2 ∩ · · · ∩ H̃i (after reindexing)

1 ≤ i ≤ n. Following the proof of Proposition 4.7, it suffices to consider when π(W ) ⊂ {P1, . . . , Pq}.
Since W is irreducible, it implies that π(W ) is some Pj ∈ H1 ∩H2 ∩ · · · ∩Hi. Since H1, . . . ,Hq are

hyperplanes in general position, they intersect transversally. Thus, the codimension of W is i.

Since n ≥ 2 and q ≥ 3n, it follows from Lemma 6.2 that D is big and β := βD,H̃1
= · · · =

βD,H̃q
> 1. Theorem 3.4 with ǫ = 1

2(β − 1) implies that there exists a proper Zariski closed set

Z ⊂ X independent of k and S such that

β ·
q∑

i=1

m
H̃i,S

(x) ≤ (1 + ǫ)hD(x)(6.15)

for all but finitely many x ∈ X(k) \ Z. Let R be a set of (D,S)-integral points. Then

q∑

i=1

mH̃i,S
(x) = hD(x) +O(1),

where the constant depends only on R. Hence,

1

2
(β − 1)hD(x) = (β − 1− ǫ)hD(x) ≤ O(1)(6.16)

for all but finitely many x ∈ R outside Z. Since D is big, for a given ample divisor A, there exists

a proper Zariski closed set Z ′ of X, depending only on A and D such that hA(x) ≤ hD(x) +O(1)

for all x ∈ X(k̄) outside of Z ′ (see [Voj11, Proposition 10.11]). Therefore, (6.16) implies that there

are only finitely many x ∈ R outside Z ∪ Z ′. �

Proof of Theorem 1.7 . Denote by x := [x0 : · · · : xn] ∈ Pn(k). Up to enlarging the set S, we can

suppose that x0, . . . , xn are S-integers and that the ring OS is a unique factorization domain. Let

Hi = [Fi = 0] for 1 ≤ i ≤ q. For each index j ∈ Z/qZ, let Pj be the intersection point ∩n−1
ℓ=0Hj+ℓ.

By Definition 2.1, the identity of ideals in OS

Fi(x0, . . . , xn) · (x0, . . . , xn) =
i∏

j=i−n+1

(Fj(x0, . . . , xn), . . . , Fj+n−1(x0, . . . , xn))(6.17)

implies that for v /∈ S

λHi,v(x) =

i∑

j=i−n+1

λPj ,v(x),(6.18)
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up to a Mk constant. On the other hand, let π : X → Pn be the blow-up over the points P1, . . . , Pq

and let H̃i ⊂ X be the corresponding strict transform of Hi. It follows from (6.1) that

λHi,v(π(Q)) = λ
H̃i,v

(Q) +
i∑

j=i−n+1

λPi,v(π(Q))(6.19)

up to a Mk constant for Q ∈ X, v 6∈ S. If Q /∈ ∪q
i=1 Supp(Ei), then Q = π−1(x) for some x 6= Pi,

1 ≤ i ≤ q. Therefore, for x := [x0 : · · · : xn] ∈ Pn(k) \ {P1, . . . , Pq} satisfying (6.17) we have

λ
H̃i,v

(π−1(x)) = 0 up to a Mk constant for v 6∈ S.(6.20)

By Theorem 1.6, there exists a Zariski closed subset W of X such that the set of points π−1(x)

satisfying (6.20) are contained in W . Therefore, the points x ∈ Pn(k) \ {P1, . . . , Pq} satisfying the

identity (6.17) are contained in the Zariski closure of π(W ). �

7. DEGENERACY OF HOLOMORPHIC MAPS

In this section, we give the analytic versions of the arithmetic statements obtained in the previous

sections. This imply several results on Brody hyperbolicity.

Theorem 7.1. Let n ≥ 2, F1, . . . , Fr, G ∈ C[X1, . . . ,Xn] be polynomials in general position (i.e.

the associated hypersurfaces are in general position) with deg(Fi) ≥ deg(G) for i = 1, . . . , r. Let

h1, . . . , hn be holomorphic functions on C such that one of the following holds

(i) r ≥ 2n and G(h1,...,hn)
F (h1,...,hn)

is holomorphic, for i = 1, . . . , r; or

(ii) r ≥ n+ 1 and G(h1,...,hn)∏r
i=1

Fi(h1,...,hn)
is holomorphic.

Then h1, . . . , hn are algebraically dependent.

This can be seen as a generalization of Borel’s Theorem [Bor97] stating that nowhere vanishing

entire functions h1, . . . , hn+1 satisfying the identity h1 + · · ·+hn+1 = 1 are dependent. Indeed, we

have the following corollary.

Corollary 7.2. Let h1, . . . , hn be holomorphic functions on C such that 1
(h1...hn).(1−

∑n
i=1

hi)
is holo-

morphic. Then h1, . . . , hn are linearly dependent.

We recall the following definition.

Definition 7.3. We say that a complex variety X is Brody pseudo-hyperbolic if there exists a

proper closed subset Z ⊂ X such that any (non-constant) entire curve f : C → X is contained in

Z i.e. f(C) ⊂ Z.

Then we can rephrase in the analytic setting the main theorems of this paper.

Theorem 7.4. Let n ≥ 2, r ≥ 2n + 1 and D0,D1, . . . ,Dr be hypersurfaces in general position on

Pn(C). Let π : X → Pn be the blowup long the union of subschemes Di ∩D0, 1 ≤ i ≤ r, and let

D̃i be the strict transform of Di. Let D = D̃1 + · · ·+ D̃r. Then X \D is Brody pseudo-hyperbolic.

Theorem 7.5. Let n ≥ 2 and H1, . . . ,H2n be 2n hyperplanes in general position on Pn(C). Choose

n+1 points Pi, 1 ≤ i ≤ n+1 such that Pi ∈ Hi, 1 ≤ i ≤ n+1, and Pi /∈ Hj if i 6= j for 1 ≤ j ≤ 2n.
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Let π : X → Pn be the blowup of the n + 1 points Pi, 1 ≤ i ≤ n + 1, and let D ⊂ X be the strict

transform of H1 + · · ·+H2n. Then X \D is Brody pseudo-hyperbolic.

Theorem 7.6. Let n ≥ 2, q ≥ 3n be an integer; for every index i ∈ Z/qZ, let Hi be a hyperplane

in Pn(C). Suppose that Hi’s are in general position. Let for each index i ∈ Z/qZ, Pi be the

intersection point ∩n−1
j=0Hi+j. Let π : X → Pn be the blow-up over the points P1, . . . , Pq and let

H̃i ⊂ X be the corresponding strict transform of Hi and let D = H̃1 + · · · + H̃q. Then X \D is

Brody pseudo-hyperbolic.

The proofs of the above statements are the same as the arithmetic ones replacing Theorem 3.4

by its analytic analogue. Its generalization is obtained using Vojta’s version of Schmidt’s subspace

theorem [Voj89], which gives a better control on the exceptional sets.

Theorem 7.7. Let H1, . . . ,Hq be hyperplanes in Pn(C) with the corresponding Weil functions

λH1
, . . . , λHq . Then there exists a finite union of hyperplanes Z, depending only on H1, . . . ,Hq,

such that for any ǫ > 0, and any (non-constant) entire curve f : C → X with f(C) 6⊂ Z
∫ 2π

0
max
I

∑

i∈I
λHi

(f(reiθ))
dθ

2π
≤exc (n+ 1 + ǫ)Tf (r)(7.1)

holds, where ≤exc means that the inequality holds for all r ∈ R+ except a set of finite Lebesgue

measure., where the maximum is taken over subsets {1, . . . , q} such that the linear forms defining

Hi for i ∈ I are linearly independent.

By carefully tracing the exceptional sets with Theorem 7.7, the general analytic Theorem of Ru

and Vojta can be stated as follows.

Theorem 7.8. [RV20, General Theorem (Analytic Part)] Let X be a complex projective variety

of dimension n and let D1, · · · ,Dq be effective Cartier divisors intersecting properly on X. Let

L be a big line bundle. Let f : C → X be a Zariski dense entire curve. Then, for every ε > 0,

there exists a proper Zariski-closed subset Z ⊂ X, such that for any (non-constant) entire curve

f : C → X with f(C) 6⊂ Z,

q∑

j=1

βL,Dj
mf (r,Dj) ≤exc (1 + ε)TL,f (r)

holds, where ≤exc means that the inequality holds for all r ∈ R+ except a set of finite Lebesgue

measure.

8. FUNCTION FIELDS

In this section we give the analogue statements over function fields of the theorems obtained

in the previous sections. For this section we let κ be an algebraically closed field of characteristic

zero. Let C be a non-singular projective curve defined over κ and let K = κ(C) denote its function
field. We refer to [RTW21, Section 7.2] for the basic definitions of heights and proximity functions

in the function field setting. We recall the definition of algebraic hyperbolicity.
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Definition 8.1. Let (X,D) be a pair of a non-singular projective variety X defined over κ and a

normal crossing divisor D on X. We say that (X,D) is algebraically hyperbolic if there exists an

ample line bundle L on X and a positive constant α such that, for every non-singular projective

curve C and every morphism ϕ : C → X the following holds:

(8.1) degϕ∗L ≤ α ·
(
2g(C) − 2 +N [1]

ϕ (D)
)
,

where N
[1]
ϕ (D) is the cardinality of the support of ϕ∗(D).

We say that (X,D) is pseudo algebraically hyperbolic if there exists a proper closed subvariety

Z of X such that (8.1) holds for every morphism ϕ : C → X such that ϕ(C) is not contained in Z.

We can now rephrase Theorems 1.3, 1.5 and 1.7.

Theorem 8.2. Let n ≥ 2, r ≥ 2n + 1 and D0,D1, . . . ,Dr be hypersurfaces in general position on

Pn defined over κ. Let π : X → Pn be the blowup long the union of subschemes Di∩D0, 1 ≤ i ≤ r,

and let D̃i be the strict transform of Di. Let D = D̃1 + · · · + D̃r. Then X \ D is algebraically

pseudo-hyperbolic.

Theorem 8.3. Let n ≥ 2 and H1, . . . ,H2n be 2n hyperplanes in general position on Pn defined

over κ. Choose n + 1 points Pi, 1 ≤ i ≤ n + 1 such that Pi ∈ Hi, 1 ≤ i ≤ n + 1, and Pi /∈ Hj if

i 6= j for 1 ≤ j ≤ 2n. Let π : X → Pn be the blowup of the n+ 1 points Pi, 1 ≤ i ≤ n+ 1, and let

D ⊂ X be the strict transform of H1 + · · ·+H2n. Then X \D is algebraically pseudo-hyperbolic.

Theorem 8.4. Let n ≥ 2, q ≥ 3n be an integer; for every index i ∈ Z/qZ, let Hi be a hyperplane

in Pn defined over k. Suppose that Hi’s are in general position. Let for each index i ∈ Z/qZ, Pi

be the intersection point ∩n−1
j=0Hi+j. Let π : X → Pn be the blow-up over the points P1, . . . , Pq and

let H̃i ⊂ X be the corresponding strict transform of Hi and let D = H̃1 + · · ·+ H̃q. Then X \D is

algebraically pseudo-hyperbolic.

We remark that, even if we stated the results in the so-called split case, our proofs carry over

almost verbatim to the non-split case as well.

As in the analytic setting, the proofs of the above statements follow the same lines of the

proof of our arithmetic results and the same strategy as in our previous paper [RTW21] with two

modifications. On one hand we can use the results in Section 7 instead of [Lev09, Theorem 8.3 B]

for the case in which 2g(C) − 2 +N
[1]
ϕ (D) ≤ 0. On the other hand we replace the use of Theorem

3.4 with the following analogue that uses a version of the Schmidt subspace theorem over function

fields recently obtained in [GSW21, Theorem 15]. In particular this gives a better control on the

exceptional set.

Theorem 8.5. Let X ⊂ Pm be a projective variety over κ of dimension n, let D1, · · · ,Dq be

effective Cartier divisors intersecting properly on X, and let L be a big line sheaf. Then for

any ǫ > 0, there exist constants c1 and c2, independent of the curve C and the set S, and a

finite collection of hypersurfaces Z (over κ) in Pm of degree at most c2 such that for any map

x = [x0 : · · · : xm] : C → X, where xi ∈ K, outside the augmented base locus of L we have either

q∑

i=1

βL,Di
mDi,S(x) ≤ (1 + ǫ)hL(x) + c1 max {1, 2g(C) − 2 + |S|} ,
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or the image of x is contained in Z .

Proof. The proof is similar to the first part of the proof of [RTW21, Theorem 7.6]. We will follow

its argument and notation and only indicate the modification. Let ǫ > 0 be given. Since L is a

big line sheaf, there is a constant c such that
∑q

i=1 hDi
(x) ≤ chL(x) for all x ∈ X(K) outside the

augmented base locus B of L. By the properties of the local heights, together with the fact that

mDi,S ≤ hDi
+O(1), we can choose βi ∈ Q for all i such that

q∑

i=1

(βL,Di
− βi)mDi,S(x) ≤

ǫ

2
hL(x)

for all x ∈ X \B(K). Therefore, we can assume that βL,Di
= βi ∈ Q for all i and also that βi 6= 0

for each i. From now on we will assume that the point x ∈ X(K) does not lie on B.

Choose positive integers N and b such that

(8.2)
(
1 +

n

b

)
max
1≤i≤q

βiNh0(X,LN )∑
m≥1 h

0(X,LN (−mDi))
< 1 + ǫ .

Then, using [RTW21, Theorem 7.5] with the same notation, we obtain

b

b+ n


 min

1≤i≤q

∑

m≥1

h0(LN (−mDi))

βi




q∑

i=1

βiλDi,p(x)

≤ max
1≤i≤T1

λBi,p(x) +O(1) = max
1≤i≤T1

∑

j∈Ji
λsj ,p(x) +O(1).

(8.3)

Let M = h0(X,LN ), let the set {φ1, . . . , φM} be a basis of the vector space H0(X,LN ), and let

Φ = [φ1, . . . , φM ] : X 99K PM−1(κ)(8.4)

be the corresponding rational map. By [GSW21, Theorem 15], there exists a finite collection of

linear subspaces R over κ such that, whenever Φ ◦ x is not in R, we have the following

(8.5)
∑

p∈S
max
J

∑

j∈J
λsj ,p(x) ≤ M hLN (x) +

M(M − 1)

2
(2g − 2 + |S|),

here the maximum is taken over all subsets J of {1, . . . , T2} for which the sections sj, j ∈ J , are

linearly independent (with the same notation as in the proof of [RTW21, Theorem 7.1]). We first

consider when φ1, . . . , φM are linearly independent over κ. Combining (8.3) and (8.5) gives

q∑

i=1

βimDi,S(x) ≤
(
1 +

n

b

)
max
1≤i≤q

βi∑
m≥1 h

0(LN (−mDi))
M hLN (x) + c′1(2g − 2 + |S|) +O(1),

where c′1 =
M(M−1)

2 . Using (8.2) and the fact that hLN (x) = NhL(x), we have

q∑

i=1

βimDi,S(x) ≤ (1 + ǫ) hL(x) + c′1(2g − 2 + |S|) +O(1),

which implies the first case of the Theorem.

To conclude we note that, if Φ ◦ x is in one of the linear subspace of R over κ in PM−1, then

a1φ1(x)+ · · ·+aMφM (x) = 0, where H = {a1z1+ · · ·+aMzM = 0} is one of the hyperplanes (over

κ) in PM−1 coming from R.
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On the other hand, since φ1, . . . , φM is a basis ofH0(X,LN ), it follows that Φ(X) is not contained

in H, hence x(C) is contained in is the hypersurface coming from a1φ1 + · · · + aMφM = 0 in Pm

(as X ⊂ Pm) whose degree is bounded independently of C and x as wanted. Moreover, since R
is a finite collection of linear subspaces over κ in PM−1, the number of H is finite and hence the

number of hypersurfaces obtained above is also finite.

�
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