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projective, and nonuniruled varieties.
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1 INTRODUCTION

Interconnections between topological, analytic, and algebraic structures of compact complex vari-
eties is a central theme in various branches of geometry and topology. Many of the classical
results in this area use characteristic classes, in particular Chern classes to describe such con-
nections. Apart from the celebrated Hirzebruch–Riemann–Roch theorems, prominent examples
were found by Bogomolov [3] and — in a different direction — Yau [40], as a consequence of his
(andAubin’s) solution toCalabi’s conjecture.More precisely, he established that an𝑛-dimensional
compact Kähler manifold (𝑋,𝑤) with 𝑐1(𝑋) < 0 satisfies the inequality

∫𝑋
(
2(𝑛 + 1)𝑐2(𝑋) − 𝑛𝑐

2
1(𝑋)

)
∧ 𝑤𝑛−2 ⩾ 0. (1.0.1)

In a more general setting, using his generic semipositivity result, Miyaoka [28] showed that any
minimal variety† 𝑋 satisfies the inequality(

3𝑐2(𝑋) − 𝑐
2
1(𝑋)

)
⋅𝐻𝑛−2 ⩾ 0, (1.0.2)

†Here minimal is in the sense of the minimal model program, that is, 𝐾𝑋 is assumed to be nef, with 𝑋 having only
terminal singularities.
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CHERN CLASS INEQUALITIES FOR NON-UNIRULED PROJECTIVE VARIETIES 2857

for every ample divisor 𝐻 ⊂ 𝑋. The combination of the two inequalities ((1.0.1) and (1.0.2)) and
their analogs are nowadays referred to as theMiyaoka–Yau inequalities.
The purpose of this article is to establish that, as long as 𝑋 is not covered by rational curves, it

satisfies a Chern class inequality generalizing (1.0.2). Throughout this paper, all varieties will be
over ℂ.

Theorem 1.1. Let 𝑋 be a smooth, projective, and nonuniruled variety of dimension 𝑛, and 𝐻 any
ample divisor. There is a decomposition 𝐾𝑋 = 𝑃 + 𝑁 into ℚ-divisors, with 𝑃 ⋅𝑁 ⋅𝐻𝑛−2 = 0, such
that (

3𝑐2(𝑋) − 𝑐
2
1(𝑋)

)
⋅𝐻𝑛−2 ⩾ 𝑁2 ⋅𝐻𝑛−2. (1.1.1)

Moreover, we have𝑁 = 0, when 𝐾𝑋 is nef.

A few remarks about the statement of Theorem 1.1 are as follows. First, we note that it is
well known that, for a nonuniruled variety, Chern class inequalities of the form (1.1.1) cannot
be gleaned from the ones for its minimal models, when they exist. Second, as is evident from the
statement of the theorem, the quantity on the right-hand side of (1.1.1) (which we may think of as
an error term) is forced on us by the negative part of Zariski decomposition. More precisely, given
a complete intersection surface 𝑆 ⊂ 𝑋 defined by very general members of very ample linear sys-
tems, the divisor𝑁 is an extension of the negative part of the Zariski decomposition for 𝐾𝑋|𝑆 (see
Section 3 for the details). This extension is in the sense of the Noether–Lefschetz-type theorems
(Proposition 3.1).
Theorem 1.1 is a special case of the following more general result that we obtain in this article,

which is, in fact, needed for the proof of Theorem 1.1.

Theorem 1.2. Let (𝑋, 𝐷) be a log-smooth pair of dimension 𝑛, with 𝐷 being a rational divisor.
Assume that𝐻 is an ample divisor. If 𝐾𝑋 + 𝐷 is pseudoeffective, then there is a decomposition 𝐾𝑋 +
𝐷 = 𝑃 + 𝑁, that is𝐻-orthogonal in the sense that 𝑃 ⋅𝑁 ⋅𝐻𝑛−2 = 0, and for which the inequality(

3𝑐2(𝑋, 𝐷) − 𝑐
2
1(𝑋, 𝐷)

)
⋅𝐻𝑛−2 ⩾ 𝑁2 ⋅𝐻𝑛−2 (1.2.1)

holds. Furthermore, when 𝐾𝑋 + 𝐷 is nef, we have𝑁 = 0.

The Chern classes 𝑐𝑖(⋅) in Theorem 1.2 are in the sense of orbifolds (see (2.10.1)), and when 𝐷 is
reduced, they coincide with the usual notion of Chern classes.

1.1 General strategy of the proof

For simplicity, we will focus mostly on Theorem 1.1; the case where 𝐷 = 0.
As was observed by Miyaoka [28] and later on Simpson [33], it is sometimes possible to use the

Bogomolov inequality [3] to establish Miyaoka–Yau inequalities. But the Bogomolov inequality
is generally valid when the polarization is defined by ample or nef divisors, which is applicable
— for the purpose of Miyaoka–Yau inequalities — when the variety is minimal. But for a general
nonuniruled variety 𝑋, no such polarization exists. On the other hand, we show in the current
article that, thanks to the result of Boucksom–Demailly–Păun–Peternell [1], after cutting down by
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2858 ROUSSEAU and TAJI

hyperplanes, the above divisor𝑃 defines a so-calledmovable cycle; a potentially natural choice for a
polarization. But in general there is no topological Bogomolov-type inequality for sheaves that are
semistable with respect to a movable class 𝛾. At best, assuming that ℰ is locally free, one can use
a Gauduchon metric 𝑤𝐺 constructed in [6, Append.], with 𝑤𝑛−1

𝐺
≡ 𝛾, and Li–Yau’s result on the

existence of Hermitian–Einstein metrics [24] to establish the Bogomolov inequality with respect
to 𝑤𝑛−2

𝐺
. But since 𝑤𝑛−2

𝐺
is not closed, this would not yield a topological inequality. However,

thanks to a fundamental result of Langer [21, Thm. 3.4], semistability with respect to a certain
subset of movable classes does lead to the classical Bogomolov inequality. Having this important
fact in mind, we use the definition of the Zariski decomposition to show that the intersection of
𝑃 with 𝐻𝑛−2 belongs to this smaller subset, as long as 𝑋 is of general type, which is the content
of in Proposition 3.8. With this observation, and using further properties of 𝑃, we then show that,
thanks toCampana–Păun’s result on positivity properties of the (log-)cotangent sheafwith respect
tomovable cycles [7],much ofMiyaoka’s original approach can then be adapted to establish (1.1.1).
In the more general setting of nonuniruled varieties, that is, when 𝐾𝑋 is pseudoeffective [1],

given an ample divisor 𝐴 and any 𝑚 ∈ ℕ, we consider the pair (𝑋, 1
𝑚
𝐴), which is now of log-

general type. Here, the log-version of Theorem 1.1 is needed, forcing us to resort to orbifolds (in
the sense of Campana) and their Chern classes as was defined in [14, Sect. 2], following [30]. With
the inequality (1.2.1) at hand, one can then extract the inequality (1.1.1) through a limiting process,
which is reminiscent of [14], but employed for somewhat different reasons.

1.2 Related results

Chern class inequalities for surfaces and their connection to the Zariski decomposition were first
studied by Miyaoka in [27] and later on by Wahl [39], Megyesi [25], Langer [20], and others. In
higher dimensions, when 𝐾𝑋 + 𝐷 is movable and dim𝑋 = 3, the inequality (1.2.1) is established
in [32] for (mildly) singular pairs. Under the assumption that 𝐾𝑋 + 𝐷 is nef and big, such Chern
class inequalities have a rich history and were discovered by Kobayashi [19], Tsuji [37], and Tian
[36], to name a few. More recently, and in a more general setting, they have been studied in joint
papers with Greb–Kebekus–Peternell [12] and with Guenancia [14]. Further results have been
established by Deng [8] and Hai–Schreieder [16]. Finally, we note that the methods that we use
in this article show that coefficient of 𝑁 in (1.2.1) can be sharpened. In Section 4, we make some
predictions about possibly optimal versions of Theorem 1.2.

2 PRELIMINARIES

In this section, we review certain cones of divisors and curves that are needed for the rest of the
article. Relevant notions of (slope) stability, orbifolds, and Chern classes will also be introduced.
By a variety, we mean a reduced, irreducible complex scheme of finite type. Given a variety

𝑋 of dimension 𝑛, by Div(𝑋) and Pic(𝑋), we denote the group of Cartier divisors and isomor-
phism classes of line bundles, respectively. N1(𝑋) denotes the Néron–Severi group consisting of
numerical classes of elements ofDiv(𝑋), that is,N1(𝑋) = Div(𝑋)∕ ≡. We useDiv(𝑋)ℚ,N1(𝑋)ℚ to
denote Div(𝑋) ⊗ ℚ and N1(𝑋) ⊗ ℚ, respectively. The spaces Div(𝑋)ℝ and N1(𝑋)ℝ are similarly
defined. We recall that via intersection products, N1(𝑋) is dual to the Abelian group of classes of
curvesN1(𝑋), which extends to cycle classes with rational or real coefficients (see [22, Sects.1.1,1.3]
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CHERN CLASS INEQUALITIES FOR NON-UNIRULED PROJECTIVE VARIETIES 2859

for more details). The notation 𝐴𝑖(𝑋) (and 𝐴𝑖(𝑋)) refers to the Chow group of 𝑖-cocycles (resp.
𝑖-cycles) in 𝑋.

Notation 2.1. Given 𝐷𝑖 ∈ Div(𝑋)ℚ, for 1 ⩽ 𝑖 ⩽ 𝑛 − 1, by [𝐷1 ⋅ … ⋅ 𝐷𝑛−1], we denote the 1-cycle
in 𝑁1(𝑋)ℚ canonically defined by 𝐷𝑖 ’s, that is, the image of (𝑐1(𝒪𝑋(𝐷1) ⋅ … ⋅ 𝑐1(𝒪𝑋(𝐷𝑛)) ∩ [𝑋]) ∈
𝐴1(𝑋) ⊗ ℚ under the cycle map, with [𝑋] denoting the fundamental cycle.

2.1 Cones of curves and divisors and stability notions

Assuming that𝑋 is projective, letNE1(𝑋)ℚ ⊂ N1(𝑋)ℚ denote the convex cone of classes of effective
ℚ-divisors and set NE1(𝑋)ℚ to be its closure, called the pseudoeffective cone.
We define the notion of slope stability in the following general setting.

Definition 2.2 (Slope stability). Given a torsion free sheaf ℱ on a smooth projective variety 𝑋
and 𝛾 ∈ N1(𝑋)ℚ, we define the slope 𝜇𝛾(ℱ) ofℱ with respect to 𝛾 by 1

rank(ℱ)
𝑐1(ℱ) ⋅ 𝛾. A torsion

free sheaf ℰ is said to be stable (or semistable) with respect to 0 ≠ 𝛾, if 𝜇𝛾(ℱ) < 𝜇𝛾(ℰ) (resp.
𝜇𝛾(ℱ) ⩽ 𝜇𝛾(ℰ)), for every nontrivial torsion free subsheafℱ ⊂ ℰ.

Through the Harder–Narasimhan filtration, semistable sheaves form the building blocks of
coherent, torsion-free sheaves. But to ensure the existence of such (unique) filtrations, we gen-
erally need more assumptions on 𝛾 in Definition 2.2. In this article, we require the existence
of Harder–Narasimhan filtration under the assumption that 𝛾 ∈ 𝑁1(𝑋)ℚ ismovable. Thankfully,
such filtrations are known to exist for such classes [11, Sect.2].

Definition 2.3 (Movable classes). We say 𝛾 ∈ N1(𝑋)ℚ is strongly movable, if there are a projec-
tive birational morphism 𝜋 ∶ 𝑋 → 𝑋 and a set of ample divisors 𝐻1,… ,𝐻𝑛−1 on 𝑋 such that 𝛾 =
𝜋∗[𝐻1 ⋅ … ⋅𝐻𝑛−1]. The convex cone in 𝑁1(𝑋)ℚ generated by such classes is denoted byMov1(𝑋).
We call its closureMov1(𝑋) the movable cone. Nontrivial members ofMov1(𝑋) are referred to as
movable or mobile classes.

As discussed in the introduction, for semistability to lead to a suitable Bogomolov inequality, we
need to work with a smaller set of 1-cycles than those inMov1(𝑋). To do so, we use the following
definition.

Definition 2.4. Given an ample class 𝐻 ∈ N1(𝑋)ℚ, we define

𝐾+
𝐻
(𝑋) ∶= {𝐷 ∈ N1(𝑋)ℚ

|| 𝐷2 ⋅𝐻𝑛−2 > 0 and 𝐷 ⋅𝐻𝑛−1 > 0} ⊂ N1(𝑋)ℚ.

Furthermore, we set

𝐵+
𝐻
(𝑋) ∶= {[𝐷 ⋅𝐻𝑛−2] ∈ N1(𝑋)ℚ

|| 𝐷 ∈ 𝐾+
𝐻
(𝑋)} ⊂ N1(𝑋)ℚ.

A key property of 𝐾+
𝐻
is its “self-duality” in the sense that

𝐾+
𝐻
(𝑋) = {𝐷 ∈ N1(𝑋)ℚ

|| 𝐷 ⋅ 𝐵 ⋅𝐻𝑛−2 > 0, for all 0 ≠ 𝐵 ∈ 𝐾
+

𝐻(𝑋)}, (2.4.1)
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2860 ROUSSEAU and TAJI

cf. [21, p. 261] and [15, 7.4]. In particular, 𝐵+
𝐻
(𝑋) ∪ {0} forms a convex cone. The next theorem of

Langer explains our interest in 𝐵+
𝐻
(𝑋).

Theorem 2.5 [21, Thm. 3.4]. For any torsion-free sheafℱ of rank 𝑟 on 𝑋, satisfying the inequality(
2𝑟𝑐2(ℱ) − (𝑟 − 1)𝑐21(ℱ)

)
⏟⎴⎴⎴⎴⎴⎴⎴⏟ ⎴⎴⎴⎴⎴⎴⎴⏟

Δ𝐵(ℱ)

⋅𝐻𝑛−2 < 0,

there is a saturated subsheaf 0 ≠ ℱ′ ⊂ ℱ of rank 𝑟′ such that(
1

𝑟′
𝑐1(ℱ

′) −
1

𝑟
𝑐1(ℱ)

)
∈ 𝐾+

𝐻
(𝑋).

Here 𝑐1(ℱ) is thought of as the dual of its image under the cycle map, represented by the
reflexivization of det(ℱ) (similarly for 𝑐1(ℱ′)).

Remark 2.6. We note that by the self-duality property (2.4.1), the subsheafℱ′ in Theorem 2.5 is
a properly destabilizing subsheaf with respect to any 𝛾 ∈ 𝐵+

𝐻
(𝑋). That is, ifℱ is semistable with

respect to some 𝛾 ∈ 𝐵+
𝐻
(𝑋), then it verifies the Bogomolov inequality Δ𝐵(ℱ) ⋅𝐻𝑛−2 ⩾ 0.

2.2 Orbifold sheaves and Chern classes

We follow the definitions and constructions of [14, Sects. 2,3] in the generally simpler context
of log-smooth pairs. We refer to [4, 17, 35] and [5] for more examples and details on pairs and
associated notions of adapted morphisms.
A pair (𝑋, 𝐷) consists of a variety𝑋 and𝐷 =

∑
𝑑𝑖 ⋅ 𝐷𝑖 ∈ Div(𝑋)ℚ, with𝑑𝑖 = 1 −

𝑏𝑖
𝑎𝑖
∈ [0, 1] ∩ ℚ,

for some 𝑎𝑖, 𝑏𝑖 ∈ ℕ. A pair (𝑋, 𝐷) is said to be log-smooth, if𝑋 is smooth and𝐷 has simple normal
crossing support. We say that (𝑋, 𝐷) is (quasi-)projective, if 𝑋 is so.
We now recall a few basic notions regarding morphisms, sheaves, and Chern classes encoding

the fractional part of 𝐷 in (𝑋, 𝐷).

Definition 2.7 (Adapted morphisms). Given a quasi-projective pair (𝑋, 𝐷), a finite, Galois,
and surjective morphism 𝑓 ∶ 𝑌 → 𝑋 of schemes is called adapted (to (𝑋, 𝐷)), if the following
conditions are satisfied.

(2.7.1) 𝑌 is normal and quasi-projective.
(2.7.2) For every𝐷𝑖 , with 𝑑𝑖 ≠ 1, there are𝑚𝑖 ∈ ℕ and a reduced divisor𝐷′

𝑖
⊂ 𝑌 such that 𝑓∗𝐷𝑖 =

(𝑚 ⋅ 𝑎𝑖) ⋅ 𝐷
′
𝑖
.

(2.7.3) The morphism 𝑓 is étale at every generic point of ⌊𝐷⌋.
Furthermore, if𝑚𝑖 = 1, for all 𝑖, we say that 𝑓 is strictly adapted.

Example 2.8. Constructions of Bloch–Gieseker [2] and Kawamata [22, Prop.4.12] provide prime
examples of strictly adapted morphisms with the following additional property: the ramification
locus of 𝑓 is equal to supp(⌊𝐷⌋ + 𝐴), for some general member 𝐴 of a very ample linear system.
Moreover, when (𝑋, 𝐷) is log-smooth, from their construction, it follows that so is (𝑌, (𝑓∗𝐷)red).
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CHERN CLASS INEQUALITIES FOR NON-UNIRULED PROJECTIVE VARIETIES 2861

Notation 2.9. Given a log-smooth pair (𝑋, 𝐷), let 𝑓 ∶ 𝑌 → (𝑋,𝐷 =
∑
𝑑𝑖 ⋅ 𝐷𝑖) be strictly adapted.

Assume that 𝑌 is smooth. With 𝑑𝑖 = 1 − (𝑎𝑖∕𝑏𝑖), let 𝐷
𝑖𝑗
𝑌
be the collection of prime divisors in

supp(𝑓∗𝐷𝑖) and define

𝐷̂
𝑖𝑗
𝑌
∶= 𝑏𝑖 ⋅ 𝐷

𝑖𝑗
𝑌
.

Let 𝐺 ∶= Gal(𝑌∕𝑋).

Definition 2.10 (Orbifold cotangent sheaf). In the setting of Notation 2.9, we define the orbifold
cotangent sheaf Ω1

(𝑌,𝑓,𝐷)
of (𝑋, 𝐷) with respect to 𝑓 by the kernel of the morphism

𝑓∗Ω1
𝑋(log⌈𝐷⌉)⟶⨁

𝑖,𝑗

𝒪
𝐷̂
𝑖𝑗
𝑌

,

which is naturally defined using the residue map.

We note that Ω1
(𝑌,𝑓,𝐷)

naturally has a structure of a 𝐺-sheaf [5] (see [15, Def. 4.2.5] for the defi-
nition). Such objects are studied in a much more general setting (called orbifold sheaves) in [14,
Subsect. 2.6].

2.3 Orbifold Chern classes

Let 𝑓 ∶ 𝑌 → (𝑋,𝐷) be a strictly adapted morphism for a log-smooth pair (𝑋, 𝐷). Assume that𝑌 is
smooth and set𝐺 ∶= Gal(𝑌∕𝑋). Given a coherent𝐺-sheafℰ on𝑌, we have 𝑐𝑖(ℰ) ∈ 𝐴𝑖(𝑌)𝐺 . Here
𝑐𝑖(⋅) denotes the 𝑖th Chern class and 𝐴𝑖(𝑌)𝐺 the group of 𝐺-invariant, 𝑖-cocycles in 𝑌. We define
the 𝑖th orbifold Chern class of ℰ by

𝑐𝑖(ℰ) ∶=
1|𝐺| ⋅ 𝜓𝑖(𝑐𝑖(ℰ)) ∈ 𝐴𝑛−𝑖(𝑋) ⊗ ℚ, (2.10.1)

where 𝜓𝑖 is the natural map 𝜓𝑖 ∶ 𝐴𝑖(𝑌)𝐺 ⊗ ℚ → 𝐴𝑛−𝑖(𝑋) ⊗ ℚ defined by the composition of cap
product with [𝑌] and pushforward.
With the above definition, when 𝑋 is projective, 𝑐𝑖(ℰ) defines a multilinear form on𝑁1(𝑋)𝑛−𝑖

ℚ
.

Furthermore, with 𝑓 being flat, from [30, Thm. 3.1], it follows that 𝜓 is in fact a group isomor-
phism. Thus, similar to [30] (or [14, Append.]), we can use this isomorphism to equip 𝐴∗(𝑋) ⊗ ℚ

with a ring structure compatible with that of𝐴∗(𝑌)𝐺 ⊗ ℚ. In this way, products of orbifold Chern
classes can also be consistently defined in 𝐴∗(𝑋) ⊗ ℚ.
One can check that for 𝐺-sheaves on 𝑌, defined by pullback of sheaves on 𝑋, the above notion

of orbifold Chern classes is consistent with the projection formula, when applicable.

Remark 2.11. Let 𝑓 ∶ 𝑌 → (𝑋,𝐷) be strictly adapted to the log-smooth projective pair as in Exam-
ple 2.8 and𝐻 an ampleℚ-divisor. Let 𝛾 ∈ 𝐵+

𝐻
(𝑋) andℱ a torsion free, 𝐺-sheaf of rank 𝑟 on 𝑌 that

is (𝑓∗𝛾)-semistable. Then, by Theorem 2.5 and Remark 2.6, we know that Δ𝐵(ℱ) ⋅ 𝑓∗𝐻𝑛−2 ⩾ 0.
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2862 ROUSSEAU and TAJI

Using (2.10.1), we can then deduce that(
2𝑟𝑐2(ℱ) − (𝑟 − 1)𝑐21(ℱ)

)
⏟⎴⎴⎴⎴⎴⎴⎴⏟ ⎴⎴⎴⎴⎴⎴⎴⏟

Δ̂𝐵(ℱ)

⋅𝐻𝑛−2 ⩾ 0.

Notation 2.12. Given a strictly adapted morphism 𝑓 ∶ 𝑌 → (𝑋,𝐷), with log-smooth
(𝑌, (𝑓∗𝐷)red), we define

𝑐𝑖(𝑋, 𝐷) ∶= 𝑐𝑖(Ω
1
(𝑌,𝑓,𝐷)

) ∈ 𝐴𝑛−𝑖(𝑋) ⊗ ℚ. (2.12.1)

Wenote that according to [14, Prop. 3.5 andEx. 3.3], the cycle defined by 𝑐𝑖(Ω1
(𝑌,𝑓,𝐷)

) is independent
of the choice of 𝑓. In this light, the choice of notation in (2.12.1) is unambiguous within the set of
such morphisms.

3 CONSTRUCTINGMOVABLE CYCLES IN 𝑩+
𝑯
VIA ZARISKI

DECOMPOSITION

Our main goal in this section is to use Zariski decomposition on certain complete-intersection
surfaces to construct global moving cycles in 𝐵+

𝐻
, which is the content of Proposition 3.8.

Proposition 3.1. Let𝑋 be a smooth projective variety of dimension𝑛 ⩾ 3and𝐻 a very ample divisor.
For a sufficiently large 𝑚, there are a (Zariski) dense subset 𝑉NL ⊆ |𝑚𝐻| and a smooth complete
intersection surface

𝑆NL = 𝐻1 ∩ … ∩ 𝐻𝑛−3 ∩ 𝐴,

where each𝐻𝑖 is a general members of |𝐻| and 𝐴 ∈ 𝑉NL, satisfying the following properties.

(3.1.1) The restriction map Pic(𝑋) → Pic(𝑆NL) is an isomorphism.
(3.1.2) The isomorphism in (3.1.1) extends to an isomorphism N1(𝑋) → N1(𝑆NL).

Proof. By a repeated application of the Grothendieck–Lefschetz theorem [13, Exp. XII, Cor. 3.6]
(see also [22, Ex. 3.1.25] and further references therein), there are general members𝐻𝑖 of |𝐻| such
that 𝑌 ∶= 𝐻1 ∩ … ∩ 𝐻𝑛−3 is a smooth projective threefold for which the natural map Pic(𝑋) →
Pic(𝑌) is an isomorphism. Furthermore, for any𝑚 ∈ ℕ, after restricting to an open subset of |𝑚𝐻|,
if necessary, the complete-intersection surface 𝑆 = 𝑌 ∩ 𝐴 is smooth, for every 𝐴 ∈ |𝑚𝐻|.
Now, consider the short exact sequence

which is naturally defined by using adjunction. By the Kodaira vanishing 𝐻1(𝐾𝑌 + 𝑆) = 0, the
induced exact cohomology sequence partially reads

 14692120, 2023, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12898 by C

ochrane France, W
iley O

nline L
ibrary on [10/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHERN CLASS INEQUALITIES FOR NON-UNIRULED PROJECTIVE VARIETIES 2863

Claim 3.2. We have ℎ2,0(𝑌) < ℎ2,0(𝑆), if and only if 𝑖 is a strict inclusion.

Proof of Claim 3.2. Noting that

ℎ2,0(𝑌) = ℎ0,2(𝑌) = ℎ2(𝒪𝑌) = ℎ1(𝐾𝑌) , ℎ
2,0(𝑆) = ℎ0,2(𝑆) = ℎ2(𝒪𝑆) = ℎ0(𝐾𝑆)

and the surjectivity of 𝛼, we find that ℎ2,0(𝑌) < ℎ2,0(𝑆), if and only if ker(𝛼) ≠ 0. The rest now
follows from a straightforward diagram chasing. □

Now, let𝑚 be sufficiently large so that 𝑖 ∶ 𝐻0(𝐾𝑌) → 𝐻0(𝐾𝑌 + 𝑆) is a strict injection. Thanks to
a theorem of Moishezon [29, Thm. 7.5], after removing a countable number of closed subschemes
from |𝑚𝐻|, we find a subset 𝑉NL ⊆ |𝑚𝐻| such that, for every 𝐴 ∈ 𝑉NL and 𝑆NL ∶= 𝑌 ∩ 𝐴, the
natural map Pic(𝑌) → Pic(𝑆NL) is an isomorphism.
For Item (3.1.2), we will keep the notations for the proof of Item (3.1.1). Again, since N1(𝑋) ≅

𝑁1(𝑌) (see, e.g., [22, Ex. 3.1.29]), it suffices to proveN1(𝑌) ≅ N1(𝑆NL). As 𝑆NL is reduced, we have
a commutative diagram of long exact cohomology sequences arising from the two exponential
sequences on 𝑌 and 𝑆NL. In particular, we have

Now, with the vertical arrow on the left being an isomorphism by Item (3.1.1) and the one on
the right being an injection by the Lefschetz hyperplane theorem ([22, Thm. 3.1.17] or [38, 2.3.2]),
the isomorphism Pic(𝑌) → Pic(𝑆NL) descends to an isomorphism (Pic(𝑌)∕ ≡) → (Pic(𝑆NL)∕ ≡),
as required. □

Before stating the application of Proposition 3.1 that we need, we briefly review Nakayama’s
𝜎-decomposition.

3.1 𝝈-Decomposition

According to [31, Chapt. III], given a smooth projective variety and a big divisor 𝐵 ∈ Div(𝑋)ℝ, for
every prime divisor Γ ⊂ 𝑋, we define

𝜎Γ(𝐵) ∶= inf {multΓ(𝐵
′) || 𝐵′ ≡ℝ 𝐵, 𝐵

′ ⩾ 0}, (3.2.1)

and set 𝑁𝜎(𝐵) ∶=
∑

prime Γ
𝜎Γ(𝐵) ⋅ Γ. We further define 𝑃𝜎(𝐵) ∶= 𝐵 − 𝑁𝜎(𝐵). Now, let 𝐷 be a pseu-

doeffective divisor. For any ample divisor 𝐴, according to [31, Lem. III. 1.5] and [31, Lem. III. 1.7],
lim𝜖→0+ 𝜎Γ(𝐷 + 𝜖𝐴) exists and is independent of the choice of 𝐴. We now set

𝜎Γ(𝐷) ∶= lim
𝜖→0+

𝜎Γ(𝐷 + 𝜖𝐴).
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2864 ROUSSEAU and TAJI

When𝐷 is big, this is consistent with (3.2.1), cf. [31, Lem. III. 1.7]. Further, define the negative part
of 𝐷 by

𝑁𝜎(𝐷) ∶=
∑

prime Γ
𝜎Γ(𝐷) ⋅ Γ, (3.2.2)

which by [31, Cor. III.1.11] is a finite sum.We set 𝑃𝜎(𝐷) ∶= 𝐷 − 𝑁𝜎(𝐷) and call the decomposition
𝐷 = 𝑁𝜎(𝐷) + 𝑃𝜎(𝐷) the 𝜎-decomposition of 𝐷. We sometimes refer to 𝑃𝜎 as the positive part of
this decomposition.
Next, we establish the fact that negative parts behave well under taking limits.

Proposition 3.3.

lim
𝜖→0+

𝑁𝜎(𝐷 + 𝜖𝐴) = 𝑁𝜎(𝐷). (3.3.1)

Proof. First, let us observe that for any two pseudoeffective divisors 𝐷1 and 𝐷2, we have

𝜎Γ(𝐷1 + 𝐷2) ⩽ 𝜎Γ(𝐷1) + 𝜎Γ(𝐷2).

Indeed, by definition, we have

𝜎Γ(𝐷1 + 𝐷2) = lim
𝜖→0+

𝜎Γ

(
𝐷1 +

𝜖

2
𝐴 + 𝐷2 +

𝜖

2
𝐴
)
. (3.3.2)

By [31, Chapt. III, p. 79], we have

𝜎Γ

(
𝐷1 +

𝜖

2
𝐴 + 𝐷2 +

𝜖

2
𝐴
)
⩽ 𝜎Γ

(
𝐷1 +

𝜖

2
𝐴
)
+ 𝜎Γ

(
𝐷2 +

𝜖

2
𝐴
)
.

Therefore, after taking the limit and using (3.3.2), we find

𝜎Γ(𝐷1 + 𝐷2) ⩽ lim
𝜖→0+

(
𝜎Γ

(
𝐷1 +

𝜖

2
𝐴
)
+ 𝜎Γ

(
𝐷2 +

𝜖

2
𝐴
))

= 𝜎Γ(𝐷1) + 𝜎Γ(𝐷2).

It now follows that 𝑁𝜎(𝐷1 + 𝐷2) ⩽ 𝑁𝜎(𝐷1) + 𝑁𝜎(𝐷2). In particular, for every real 𝜖 > 0, we
have: 𝑁𝜎(𝐷 + 𝜖𝐴) ⩽ 𝑁𝜎(𝐷).
Next, define the set 𝑆 ∶= {Γ prime | 𝜎Γ(𝐷) ≠ 0}, which is finite by [31, Cor. III.1.11]. By

definition, we now have

𝑁𝜎(𝐷) =
∑
Γ∈𝑆

𝜎Γ(𝐷) ⋅ Γ

=
∑
Γ∈𝑆

lim
𝜖→0+

𝜎Γ(𝐷 + 𝜖𝐴) ⋅ Γ

= lim
𝜖→0+

(∑
Γ∈𝑆

𝜎Γ(𝐷 + 𝜖𝐴

)
⋅ Γ ).
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CHERN CLASS INEQUALITIES FOR NON-UNIRULED PROJECTIVE VARIETIES 2865

On the other hand, for every 𝜖 > 0, we have∑
Γ∈𝑆

𝜎Γ(𝐷 + 𝜖𝐴) ⋅ Γ ⩽
∑
Γ

𝜎Γ(𝐷 + 𝜖𝐴) ⋅ Γ

⏟⎴⎴⎴⎴⏟ ⎴⎴⎴⎴⏟
𝑁𝜎(𝐷+𝜖𝐴)

⩽ 𝑁𝜎(𝐷).

Now, taking the limit 𝜖 → 0+ finishes the proof. □

Remark 3.4. For a pseudoeffective integral divisor 𝐷 on a smooth projective surface, the 𝜎-
decomposition of 𝐷 coincides with the usual Zariski decomposition, cf. [31, Rem. 1.17.(1)]. In
particular, in this case, 𝑃𝜎 and 𝑁𝜎 are ℚ-divisors.

Corollary 3.5. Let 𝑆NL be the smooth projective surface in the setting of Proposition 3.1.

(3.5.1) Let {𝐷NL,𝑚} ∈ N1(𝑆NL)ℚ be a sequence converging to𝐷NL ∈ N1(𝑆NL)ℚ. Then, lim𝑚→∞ 𝐷𝑚 ≡
𝐷, where 𝐷𝑚 and 𝐷 are extensions of 𝐷NL,𝑚 and 𝐷NL under the isomorphism in Item (3.1.2).

(3.5.2) Assuming that 𝐷NL ∈ N1(𝑆NL)ℚ is pseudoeffective and 𝐴 ⊂ 𝑋 is ample, let𝑁 1
𝑚

be the exten-

sion of 𝑁𝜎(𝐷NL +
1

𝑚
𝐴|𝑆NL). Then, we have lim𝑚→∞𝑁 1

𝑚

= 𝑁, where 𝑁 is the extension of
𝑁𝜎(𝐷NL).

Proof. Item (3.5.1) immediately follows from Item (3.1.2). Item (3.5.2) follows from (3.5.1) and
(3.3.1). □

3.2 From positive parts to movable cycles in 𝑩+
𝑯

Notation 3.6. Let𝑋 be a quasi-projective variety of dimension 𝑛with a very ample divisor𝐻. For
any subset𝑊 ⊆

∏𝑛−2
𝑗=1 |𝐻|, we use the notation 𝑆 ∈ 𝑊 to say that 𝑆 = 𝑇1 ∩ … ∩ 𝑇𝑛−2 is a complete-

intersection surface defined by some element (𝑇1, … , 𝑇𝑛−2) ∈ 𝑊.

Lemma 3.7. Let𝑋 be a smooth projective variety of dimension 𝑛 ⩾ 3 and𝐻 a very ample divisor. Let
𝐷 ∈ N1(𝑋)ℚ be a divisor class such that, for some 𝑆 ∈

∏𝑛−2
𝑗=1 |𝐻|, the restriction 𝐷|𝑆 is nef. Then,

(3.7.1) after removing a countable number of closed subsets of
∏𝑛−2

𝑗=1 |𝐻|, there is a (Zariski dense)
subset𝑊◦

𝐷
⊆
∏𝑛−2

𝑗=1 |𝐻| such that for every 𝑆𝜂 ∈ 𝑊0
𝐷
, the restriction 𝐷|𝑆𝜂 is nef, and

(3.7.2) [𝐷 ⋅𝐻𝑛−2] ∈ Mov1(𝑋)ℚ.

Proof. Let 𝑖|𝐻| ∶ 𝑋 ⟶ ℙ𝑙 be the embedding defined by |𝐻|, so that 𝑖∗𝒪ℙ𝑙 (1) ≅ 𝒪𝑋(𝐻). We set

𝜒𝑛−2 ⊂ ℙ𝑙 ×

𝑛−2∏
𝑗=1

ℙ
(
𝐻0(ℙ𝑙,𝒪ℙ𝑙 (1))

∗
)

⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟
∶=Γ𝑛−2

to be the (universal) family of complete-intersection surfaces cut out by hyperplanes in |𝒪ℙ𝑙 (1)|.
More precisely, with {𝑎𝑖𝑗}0⩽𝑗⩽𝑙 being the homogenous coordinates for the 𝑖th factor of Γ𝑛−2 and
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2866 ROUSSEAU and TAJI

{𝑓𝑗}0⩽𝑗⩽𝑙 a basis for𝐻0(𝒪ℙ𝑙 (1)), the variety 𝜒𝑛−2 is defined by the vanishing locus of{
g𝑖 ∶=

∑
0⩽𝑗⩽𝑙

𝑎𝑖𝑗𝑓𝑗

}
1⩽𝑖⩽𝑛−2

.

Next, set 𝜒𝑛−2
𝑋

to be the pullback of 𝜒𝑛−2 via the natural injection

with the isomorphism arising from the one for the vector spaces𝐻0(𝑋,𝒪𝑋(𝐻)) → 𝐻0(ℙ𝑙,𝒪ℙ𝑙 (1)),
as defined by 𝑖|𝐻|. Let

be the resulting commutative diagram. We define 𝜇 ∶= pr1 ◦𝜎 and use 𝑓 ∶= pr2 ◦𝜎 ∶ 𝜒
𝑛−2
𝑋

→∏𝑛−2
𝑗=1 |𝐻| to denote the induced proper morphism, with pr𝑘 denoting the natural projection map

to the 𝑘th factor.
Now, let𝐹0 be the fiber of𝑓 corresponding to 𝑆. By assumption,𝜇∗𝐷|𝐹0 is nef. Therefore, thanks

to openness of amplitude for projective morphisms (not necessarily flat) to Noetherian schemes
[18, Prop. 1.41], we find that 𝜇∗𝐷|𝐹𝑡 is also nef, for the very general fiber 𝐹𝑡, proving Item (3.7.1).

For Item (3.7.2), let 𝐵 ∈ NE1(𝑋)ℚ be any pseudoeffective class. With the above construction
of 𝑊0

𝐷
, we can find general, inductively constructed 𝑆′ ∈ 𝑊0

𝐷
such that 𝐵|𝑆′ is pseudoeffective.

Therefore,

𝐵 ⋅ 𝐷 ⋅𝐻𝑛−2 = 𝐵|𝑆′ ⋅ 𝐷|𝑆′ ⩾ 0.
Now, since the inequality 𝐵 ⋅ 𝐷 ⋅𝐻𝑛−2 ⩾ 0 holds for any 𝐵 ∈ NE1(𝑋)ℚ, this means that

[𝐷 ⋅𝐻𝑛−2] ∈
(
NE1(𝑋)ℚ

)∗
,

that is, the cycle [𝐷 ⋅𝐻𝑛−2] is dual† to the movable cone. On the other hand, by [1, Thm. 0.2]
(and standard facts in convex geometry), we know that (NE1(𝑋)ℚ)∗ = Mov1(𝑋), which finishes
the proof. □

Proposition 3.8. In the setting of Proposition 3.1, let 𝑃NL ∈ N1(𝑆NL)ℚ be a nef and big class with
the extension 𝑃 ∈ N1(𝑋)ℚ. Then, [𝑃 ⋅𝐻𝑛−2] ∈ Mov1(𝑋) ∩ 𝐵

+
𝐻
(𝑋).

†We say 𝛼 ∈ N1(𝑋)ℚ is dual to NE1(𝑋)ℚ, if, for every 𝐷 ∈ NE1(𝑋)ℚ, we have 𝐷 ⋅ 𝛼 ⩾ 0.
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CHERN CLASS INEQUALITIES FOR NON-UNIRULED PROJECTIVE VARIETIES 2867

Proof. Since 𝑃NL is nef and big, we have 𝑃2 ⋅𝐻𝑛−2 > 0 and 𝑃 ⋅𝐻𝑛−1 > 0, implying that 𝑃 ∈ 𝐾+
𝐻
,

that is, [𝑃 ⋅𝐻𝑛−2] ∈ 𝐵+
𝐻
(𝑋). The rest follows from (3.7.2). □

4 MIYAOKA–YAU-TYPE INEQUALITIES FOR NONUNIRULED
VARIETIES

We now proceed to the proof of Theorem 1.2.

4.1 The general-type case

Assume that (𝑋, 𝐷) is a log-smooth pair of log-general type. We may assume that𝐻 is very ample
and that the integer𝑚 in Proposition 3.1 is equal to 1. Let 𝑆NL be a smooth complete-intersection
surface as constructed in Proposition 3.1. Note that for a suitable choice of 𝑆NL, we can ensure that
(𝐾𝑋 + 𝐷)|𝑆NL is big.
Let (𝐾𝑋 + 𝐷)|𝑆NL = 𝑃NL + 𝑁NL be the 𝜎-decomposition (which coincides with the Zariski

decomposition by Remark 3.4). Let 𝑃 be the extension of 𝑃NL under the isomorphism N1(𝑋)ℚ →

N1(𝑆NL)ℚ and define 𝑁 ∶= (𝐾𝑋 + 𝐷) − 𝑃. We note that with 𝑃NL being nef and big, using
Proposition 3.8, we have

𝛾 ∶= [𝑃 ⋅𝐻𝑛−2] ∈ Mov1(𝑋) ∩ 𝐵
+
𝐻
(𝑋).

Therefore, thanks to [7, Thm. 1.3], for every strictly adapted morphism 𝑓 ∶ 𝑌 → 𝑋 as in Exam-
ple 2.8, with the ramification locus given by supp(⌊𝐷⌋ + 𝐴), for some very ample divisor 𝐴, the
orbifold cotangent sheaf Ω1

(𝑌,𝑓,𝐷)
is semipositive with respect to 𝑓∗𝛾. This means that for every

torsion-free quotient 𝒬 of Ω1
(𝑌,𝑓,𝐷)

, we have 𝑐1(𝒬) ⋅ 𝑓∗𝛾 ⩾ 0.
Now, if Ω1

(𝑌,𝑓,𝐷)
is semistable with respect to 𝑓∗𝛾, then by Theorem 2.5 and Remark 2.6, we

have Δ̂𝐵(Ω1
(𝑌,𝑓,𝐷)

) ⋅𝐻𝑛−2 ⩾ 0 (see Remark 2.11). Straightforward calculations, using the fact that
𝑁2 ⋅𝐻𝑛−2 < 0, then show that from this inequality, we can deduce (3𝑐2 − 𝑐21)(𝑋, 𝐷) ⋅𝐻

𝑛−2 ⩾ 𝑁2 ⋅
𝐻𝑛−2. We may thus assume that Ω1

(𝑌,𝑓,𝐷)
is not semistable with respect to 𝑓∗𝛾.

Define 𝐺 ∶= Gal(𝑌∕𝑋). Let

(ℰ𝑖)0⩽𝑖⩽𝑡 ⊆ Ω1
(𝑌,𝑓,𝐷)

, with ℰ0 = 0, ℰ𝑡 = Ω1
(𝑌,𝑓,𝐷)

and 𝑡 > 1,

be the increasingHarder–Narasimhan filtrationwith respect to 𝑓∗𝛾 = 𝑓∗(𝑃 ⋅𝐻𝑛−2). For 1 ⩽ 𝑖 ⩽ 𝑡,
denote the torsion-free, semistable quotients of this filtration by 𝒬𝑖 ∶= ℰ𝑖∕ℰ𝑖−1, and set 𝑟𝑖 ∶=
rank(𝒬𝑖). As each ℰ𝑖 is unique, it is equipped with a natural structure of a 𝐺-sheaf, and thus, so
is each 𝒬𝑖 .
According to Theorem 2.5, Remark 2.6, and Remark 2.11, for every 𝑖, we have

Δ̂𝐵(𝒬𝑖) ⋅𝐻
𝑛−2 ⩾ 0. (4.0.1)
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2868 ROUSSEAU and TAJI

For the rest of this subsection, we will closely follow the arguments of [28, Prop. 7.1], adapting
them to our setting by using the results in Section 3.

4.1.1 Step 1: A lower bound for (3𝑐2
2
− 𝑐2

1
)(ℰ𝑡) in terms of (3𝑐22 − 𝑐

2
1
)(ℰ1)

For 1 ⩽ 𝑖 ⩽ 𝑡, define 𝛼𝑖 ∈ ℚ by the equality

𝑟𝑖𝛼𝑖 =
𝑐1(𝒬𝑖) ⋅ 𝛾

𝑃2 ⋅𝐻𝑛−2
.

Using 𝑃 ⋅𝑁 ⋅𝐻𝑛−2 = 0, this implies that

𝑡∑
𝑖=1

𝑟𝑖𝛼𝑖 =
(𝐾𝑋 + 𝐷) ⋅ 𝛾

𝑃2 ⋅𝐻𝑛−2
=
(𝑃 + 𝑁) ⋅ 𝑃 ⋅𝐻𝑛−2

𝑃2 ⋅𝐻𝑛−2
= 1. (4.0.2)

Moreover, as ℰ𝑡 is semipositive with respect to 𝑓∗𝛾, we find 𝛼𝑡 ⩾ 0. On the other hand, with
(ℰ𝑖)0⩽𝑖⩽𝑡 ⊆ Ω1

(𝑌,𝑓,𝐷)
being theHarder–Narasimhan filtration, by construction, we have 𝜇𝑓∗𝛾(𝒬𝑖) >

𝜇𝑓∗𝛾(𝒬𝑖+1), which implies that

𝛼1 > 𝛼2 > … > 𝛼𝑡 ⩾ 0. (4.0.3)

Furthermore, with 𝑊0
𝑃
as in Lemma 3.7, we can find 𝑆 ∈ 𝑊0

𝑃
such that the restriction of every

𝒬𝑖|𝑆 is torsion free and that 𝑆 ∶= 𝑓−1𝑆 is smooth. Using Item (3.7.1), we can then apply the Hodge
index theorem for surfaces to conclude

𝑐21(𝒬𝑖|𝑆) ⋅ (𝑓∗𝑃|𝑆)2 ⩽ (
𝑐1(𝒬𝑖|𝑆) ⋅ 𝑓∗𝑃|𝑆)2.

By writing this latter inequality in terms of orbifold Chern classes, we get

(
𝑐21(𝒬𝑖) ⋅𝐻

𝑛−2
)
(𝑃2 ⋅𝐻𝑛−2) ⩽

(
𝑐1(𝒬𝑖) ⋅ 𝑃 ⋅𝐻𝑛−2

)2
,

which implies that

−𝑐21(𝒬𝑖) ⋅𝐻
𝑛−2 ⩾ −𝑃2 ⋅𝐻𝑛−2(𝑟𝑖𝛼𝑖)

2. (4.0.4)

We now consider

(
6𝑐2 − 2𝑐

2
1

)
(ℰ𝑡) =

𝑡∑
𝑖=1

6𝑐2(𝒬𝑖) + 6
∑
𝑖<𝑗

𝑐1(𝒬𝑖) ⋅ 𝑐1(𝒬𝑗) − 2𝑐
2
1(ℰ𝑡). (4.0.5)

Using

𝑐21(ℰ𝑡) =
𝑡∑
𝑖=1

𝑐21(𝒬𝑖) + 2
∑
𝑖<𝑗

𝑐1(𝒬𝑖) ⋅ 𝑐1(𝒬𝑗),
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CHERN CLASS INEQUALITIES FOR NON-UNIRULED PROJECTIVE VARIETIES 2869

we can then rewrite (4.0.5) as

(
6𝑐2 − 2𝑐

2
1

)
(ℰ𝑡) =

𝑡∑
𝑖=1

(
6𝑐2 − 3𝑐

2
1

)
(𝒬𝑖) + 𝑐

2
1(ℰ𝑡)

= 3

𝑡∑
𝑖>1

(
2𝑐2 − 𝑐

2
1

)
(𝒬𝑖) +

(
6𝑐2 − 3𝑐

2
1

)
(ℰ1) + 𝑐

2
1(ℰ𝑡).

Consequently, using the Bogomolov inequality (4.0.1), we have

(
6𝑐2 − 2𝑐

2
1

)
(ℰ𝑡) ⋅𝐻

𝑛−2 ⩾

[
−3

𝑡∑
𝑖>1

1

𝑟𝑖
𝑐21(𝒬𝑖) + (6𝑐2 − 3𝑐

2
1)(ℰ1) + 𝑃

2

]
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2.

By (4.0.4), it thus follows that

(
6𝑐2 − 2𝑐

2
1

)
(ℰ𝑡) ⋅𝐻

𝑛−2 ⩾

[
−3

𝑡∑
𝑖>1

1

𝑟𝑖
𝑃2(𝑟𝑖𝛼𝑖)

2 + (6𝑐2 − 3𝑐
2
1)(ℰ1) + 𝑃

2

]
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2.

That is, we have

(
6𝑐2 − 2𝑐

2
1

)
(ℰ𝑡) ⋅𝐻

𝑛−2 ⩾

[
𝑃2

(
1 − 3

𝑡∑
𝑖>1

𝑟𝑖𝛼
2
𝑖

)
+ (6𝑐2 − 3𝑐

2
1)(ℰ1)

]
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2. (4.0.6)

4.1.2 Step. 2: Analysis of (3𝑐2 − 𝑐21)(ℰ1) based on rank(ℰ1)

We now study the inequality (4.0.6) depending on rank(ℰ1).

Claim 4.1. If rank(ℰ1) ⩾ 3, then (3𝑐2 − 𝑐21)(ℰ𝑡) ⋅𝐻
𝑛−2 ⩾

1

2
(𝑁2 ⋅𝐻𝑛−2).

Proof of Claim 4.1. Using (4.0.1) for ℰ1 = 𝒬1 and (4.0.4) for 𝑖 = 1, from (4.0.6), it follows that

(
6𝑐2 − 2𝑐

2
1

)
(ℰ𝑡) ⋅𝐻

𝑛−2 ⩾

[
𝑃2

(
1 − 3

𝑡∑
𝑖=1

𝑟𝑖𝛼
2
𝑖

)]
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2.

On the other hand, by (4.0.3), we have 𝛼1 > 𝛼𝑖 , for every 2 ⩽ 𝑖 ⩽ 𝑡. We thus find(
1 − 3

𝑡∑
𝑖=1

𝑟𝑖𝛼
2
𝑖

)
𝑃2 ⋅𝐻𝑛−2 ⩾

(
1 − 3𝛼1

𝑡∑
𝑖=1

𝑟𝑖𝛼𝑖

)
𝑃2 ⋅𝐻𝑛−2

= (1 − 3𝛼1)𝑃
2 ⋅𝐻𝑛−2 by (4.0.2),
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2870 ROUSSEAU and TAJI

so that (
6𝑐2 − 2𝑐

2
1

)
(ℰ𝑡) ⩾ (1 − 3𝛼1)𝑃

2 ⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2.

Using the assumption 𝑟1 ⩾ 3, the equality (4.0.2), and 𝛼𝑖 ⩾ 0, it follows that 𝛼1 ⩽
1

3
, that is, 1 −

3𝛼1 ⩾ 0, proving the claim. □

It remains to consider the case where rank(ℰ1) ⩽ 2. To do so, we consider the short exact
sequence

(4.1.1)

with 𝒬 being the torsion-free quotient sheaf.

Claim 4.2. Let𝑊0
𝑃
be as in Lemma 3.7. We can find 𝑆 ∈ 𝑊0

𝑃
such that

(4.2.1) the pair (𝑆, (𝐷 + 𝐴)|𝑆) is log-smooth and thus so is (𝑆, 𝐷𝑆 ∶= (𝑓∗𝐷𝑆)red), with 𝑆 ∶= 𝑓−1𝑆,
𝐷𝑆 ∶= 𝐷|𝑆 ,

(4.2.2) ℰ1|𝑆 is locally free, and
(4.2.3) the support of Ω1

(𝑆,𝑓,𝐷𝑆)
∩ 𝒬|𝑆 is a proper subset of 𝑆, where Ω1

(𝑆,𝑓,𝐷𝑆)
is the orbifold

cotangent sheaf associated to 𝑓|𝑆 ∶ 𝑆 → (𝑆, 𝐷𝑆).

Proof of Claim 4.2. As (
∏𝑛−2

𝑗=1 |𝐻|)∖𝑊0
𝑃
consists of a union of only countable number of closed

subsets, by a successive application of the Lefschetz hyperplane theorem, for a general member
of |𝐻|, items (4.2.1) and (4.2.2) are guaranteed to hold (note that ℰ1 is reflexive and thus locally
free in codimension 2). Same is true for Item (4.2.3) by the following observation: after removing
a closed subscheme of 𝑌, the surjection in (4.1.1) defines 𝒬∗, locally analytically, as a sum of rank
one foliations (trivially integrable). Therefore, by choosing 𝑆 transversal to the associated leaves,
and using Nakayama’s lemma, we can ensure that Ω1

(𝑆,𝑓,𝐷𝑠)
∩ 𝒬|𝑆 has proper support. □

Now, by Claim 4.2, the composition

(4.2.4)

is generically injective, where 𝛼𝑁 is naturally defined by the orbifold conormal bundle sequence.
Since ℰ1|𝑆 is torsion free, it follows that the map (4.2.4) is injective over 𝑆. We now consider two
cases depending on 𝑟1.

Case I: rank(ℰ1) = 2

Using the injection (4.2.4)
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CHERN CLASS INEQUALITIES FOR NON-UNIRULED PROJECTIVE VARIETIES 2871

according to [27, Rk. 4.18], we either have (3𝑐2 − 𝑐21)(ℰ1,𝑆) ⩾ 0, or 𝜅(ℰ1,𝑆) ∶= 𝜅(detℰ1,𝑆) < 0.
If (3𝑐2 − 𝑐21)(ℰ1) ⋅𝐻

𝑛−2 ⩾ 0, then by (4.0.6), we have

(
6𝑐2 − 2𝑐

2
1

)
⋅𝐻𝑛−2 ⩾

[
𝑃2(1 − 3

𝑡∑
𝑖>1

𝑟𝑖𝛼
2
𝑖 ) − 𝑐

2
1(ℰ1)

]
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2

⩾

[
𝑃2(1 − 3

𝑡∑
𝑖>1

𝑟𝑖𝛼
2
𝑖 ) − 𝑃

2(𝑟1𝛼1)
2

]
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2 by (4.0.4)

=

(
𝑃2

(
1 − 4𝛼2 − 3

𝑡∑
𝑖>1

𝑟𝑖𝛼
2
𝑖

))
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2 as 𝑟1=2

⩾ 𝑃2

(
1 − 4𝛼21 − 3𝛼2

𝑡∑
𝑖>1

𝑟𝑖𝛼𝑖

)
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2 by (4.0.3)

= 𝑃2
(
1 − 4𝛼21 − 3𝛼2(1 − 2𝛼1)

)
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2 by (4.0.2)

= 𝑃2(1 − 2𝛼1)(1 + 2𝛼1 − 3𝛼2) ⋅𝐻
𝑛−2 + 𝑁2 ⋅𝐻𝑛−2. (4.2.5)

On the other hand, using (4.0.3), we have

3𝛼2 ⩽ 2𝛼2 + 𝑟2𝛼2 < 2𝛼1 + 𝑟2𝛼2

⩽ 1 by (4.0.2),

implying that 1 − 3𝛼2 ⩾ 0. Furthermore, again by (4.0.2), we have 2𝛼1 ⩽ 1, that is,
1 − 2𝛼1 ⩾ 0. Going back to (4.2.5), we now find(

6𝑐2 − 2𝑐
2
1

)
⋅𝐻𝑛−2 ⩾ 2𝛼1 ⋅ 𝑃

2 ⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2

⩾ 𝑁2 ⋅𝐻𝑛−2,

establishing our desired inequality.
We now assume that 𝜅(ℰ1,𝑆) < 0. As 𝑆 ∈ 𝑊0

𝑃
, the restriction 𝑃|𝑆 is nef and thus so is 𝑓∗𝑃|𝑆 .

Moreover, as 𝛼1 > 0, we have

𝑐1(ℰ1,𝑆) ⋅ 𝑓
∗𝑃|𝑆 > 0 (4.2.6)

Using Riemann–Roch, we thus get 𝑐2
1
(ℰ1,𝑆) ⩽ 0. Going back to (4.0.6), we get

(
6𝑐2 − 2𝑐

2
1

)
(ℰ𝑡) ⋅𝐻

𝑛−2 ⩾

[
𝑃2

(
1 − 3

𝑡∑
𝑖>1

𝑟𝑖𝛼
2
𝑖

)
+ 3(2𝑐2 − 𝑐

2
1)(ℰ1)

]
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2

by (4.0.1) ⩾

[
𝑃2

(
1 − 3

𝑡∑
𝑖>1

𝑟𝑖𝛼
2
𝑖

)
+ 3

(
−1

𝑟1

)
𝑐21(ℰ1)

]
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2
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2872 ROUSSEAU and TAJI

⩾ 𝑃2

(
1 − 3

𝑡∑
𝑖>1

𝑟𝑖𝛼
2
𝑖

)
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2

⩾ 𝑃2

(
1 − 3𝛼2

𝑡∑
𝑖>1

𝑟𝑖𝛼𝑖

)
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2

= 𝑃2(1 − 3𝛼2(1 − 2𝛼1)) ⋅𝐻
𝑛−2 + N2 ⋅𝐻𝑛−2 by (4.0.2)

by (4.0.3) ⩾ 𝑃2 (1 − 3𝛼1(1 − 2𝛼1))
⏟⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⏟

1−3𝛼1+6𝛼
2
1
=6

(
𝛼1−

1
4

)2
+ 5
8

> 0

⋅ 𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2.

Case II: rank(ℰ1) = 1

Again, by using the injection (4.2.4), we have ℰ1,𝑆 ↪ Ω1

𝑆
(log𝐷𝑆). Therefore, thanks to

Bogomolov–Sommese vanishing [3, 26, 34] (see also [9] and [10] for generalizations), we have
𝜅(𝑆,ℰ1,𝑆) ⩽ 1. On the other hand, we have the inequality (4.2.6). With 𝑓∗𝑃|𝑆 being nef, using
Riemann–Roch, we thus find 𝑐2

1
(ℰ1,𝑆) ⩽ 0. Moreover, as rank(ℰ1,𝑆) = 1, we have 𝑐2(ℰ1,𝑆) = 0.

Now, going back to (4.0.6), we get

(
6𝑐2 − 2𝑐

2
1

)
(ℰ𝑡) ⋅𝐻

𝑛−2 ⩾ 𝑃2

(
1 − 3

𝑡∑
𝑖>1

𝑟𝑖𝛼
2
𝑖

)
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2

⩾ 𝑃2

(
1 − 3𝛼1

𝑡∑
𝑖>1

𝑟𝑖𝛼𝑖

)
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2 by (4.0.3)

= 𝑃2(1 − 3𝛼1(1 − 𝛼1)) ⋅𝐻
𝑛−2 + 𝑁2 ⋅𝐻𝑛−2 by (4.0.2)

= 𝑃2
[
3

((
𝛼1 −

1

2

)2
−
1

4

)
+ 1

]
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2

= 𝑃2
(
3
(
𝛼1 −

1

2

)2
+
1

4

)
⋅𝐻𝑛−2 + 𝑁2 ⋅𝐻𝑛−2

⩾ 𝑁2 ⋅𝐻𝑛−2,

which finishes the proof of the log-general type case.

4.2 The pseudoeffective case

Assuming that 𝐾𝑋 + 𝐷 is pseudoeffective, for any very ample divisor 𝐴 and 𝑚 ∈ ℕ, we consider
the pair (𝑋, 𝐷 + 1

𝑚
𝐴). We may assume that 𝐻 in the setting of Theorem 1.2 is very ample. For

1 ⩽ 𝑖 ⩽ 𝑛 − 3, let 𝐻𝑖 ∈ |𝐻| be general members such that 𝑆NL is a complete-intersection surface
as in Proposition 3.1 and that (𝐾𝑋 + 𝐷)|𝑆NL is pseudoeffective.
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By the general type case, we know that

(
3𝑐2 − 𝑐

2
1

)(
𝑋,𝐷 +

1

𝑚
𝐴
)
⋅𝐻𝑛−2 ⩾ 𝑁2

1
𝑚

⋅𝐻𝑛−2, (4.2.7)

where 𝑁 1
𝑚

denotes the extension of 𝑁𝜎((𝐾𝑋 + 𝐷 + 1

𝑚
𝐴)|𝑆NL). Using the continuity of orbifold

Chern numbers [14, Prop. 3.11] and Item (3.5.2), from (4.2.7), it follows that(
3𝑐2 − 𝑐

2
1

)
(𝑋, 𝐷) ⋅𝐻𝑛−2 ⩾ 𝑁2 ⋅𝐻𝑛−2,

with 𝑁 being the extension of 𝑁𝜎((𝐾𝑋 + 𝐷)|𝑆NL).
4.3 Concluding remarks

As is evident from the proof of Theorem 1.2, the inequality (1.2.1) can be sharpened to

(
3𝑐2(𝑋, 𝐷) − 𝑐

2
1(𝑋, 𝐷)

)
⋅𝐻𝑛−2 ⩾

1

2
𝑁2 ⋅𝐻𝑛−2.

It would be interesting to know, if this can be improved further by the inequality

(
3𝑐2(𝑋, 𝐷) − 𝑐

2
1(𝑋, 𝐷)

)
⋅𝐻𝑛−2 ⩾

1

2

(
1 −

3

𝑛

)
𝑁2 ⋅𝐻𝑛−2. (4.2.8)

We note that (4.2.8) coincides with [27, Rk. 4.18], when dim = 2, and the claimed inequality in
[23, p. 498] in higher dimensions. We refer to [32, Rem. 8.2] for a brief discussion of gaps in the
proof of the latter inequality.
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