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Introduction

Natural materials such as bone, conch shells, spider silk etc. are high-performing biological composites of impressive mechanical properties and superior performance unmatched by human engineered counterparts. What allows natural materials to possess these superior properties are sophisticated hierarchical microstructures [START_REF] Gu | Hierarchically enhanced impact resistance of bioinspired composites[END_REF], [LGQ + 16], [START_REF] Bilal | Intrinsically polar elastic metamaterials[END_REF], [SBR + 15], [GSA + 21], [START_REF] Agnelli | Design and testing of 3D-printed microarchitectured polymer materials exhibiting a negative Poisson's ratio[END_REF], [START_REF] Agnelli | Design of thin micro-architectured panels with extension-bending coupling effects using topology optimization[END_REF]. This is not a surprise as Nature, after all, has had billions of years to perfect its designs. On the other hand, many engineering applications have been limited to the use of homogeneous materials in the past, either due to simplicity of design or limitations of manufacturing capabilities. However, the contemporary progression and developments in additive manufacturing technology, has led to a widespread adoption of composites. A composite is a material formed by two (or more) constituent materials with very different physical (or chemical) properties. Typical engineered composites include ceramic matrix composites, fiber-reinforced polymers, and many other advanced composite materials. What makes composites appealing for applications is that 1 the composite material product usually has characteristics different from the individual constituent components [START_REF] Ostoja-Starzewski | Microstructural Randomness and Scaling in Mechanics of Materials[END_REF]. These characteristics that result from the combination of preferred constituent properties allow one to make microstructured composites with programmable properties i.e. low weight to strength ratio, desired buckling modes, auxeticity, etc.. The underlying theme of composite materials is that they are characterized by a hierarchical microstructure. Generalized continuum theories [START_REF] Toupin | Elastic materials with couple-stresses[END_REF], [START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF], [START_REF] Toupin | Theory of elasticity with couple-stress[END_REF], [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], [START_REF] Eringen | Nonlinear theory of simple microelastic solids-I[END_REF], [START_REF] Eringen | Nonlinear theory of simple microelastic solids-II[END_REF], [START_REF] Mindlin | On the equations of elastic materials with micro-structure[END_REF], [START_REF] Eringen | Linear theory of micropolar elasticity[END_REF], [START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF], [START_REF] Nowacki | The Theory of Micropolar Elasticity[END_REF] are thought to have applications in the modeling of materials with microstructure, such as granular or fibrous materials, or materials with a lattice structure.

One of the earliest generalized continuum theories is that of the Cosserat brothers [START_REF] Cosserat | Théorie des Corps Déformables[END_REF]. Cosserat materials have seen a recent resurgence as certain materials with microstructures have been shown experimentally to obey Cosserat (sometimes referred to as micropolar) elasticity rather than classical elasticity [START_REF] Lakes | Size effects and micromechanics of porous solids[END_REF], [START_REF] Park | Cosserat micromechanics of human bone: strain redistribution by a hydration-sensitive constituent[END_REF], [START_REF] Lakes | Strongly Cosserat elastic lattice and foam materials for enhanced toughness[END_REF], [START_REF] Lakes | On the torsional properties of single osteons[END_REF], [START_REF] Rueger | On the torsional properties of single osteons[END_REF]. Moreover, Cosserat elasticity predicts size effects which, in contrast, classical elasticity theory has no mechanism to describe size effects [START_REF] Lakes | On the torsional properties of single osteons[END_REF], [START_REF] Eringen | Microcontinuum Field Theories: I. Foundations and Solids[END_REF], [START_REF] Ha | Chiral three-dimensional lattices with tunable Poissons ratio[END_REF], [START_REF] Ostoja-Starzewski | Microstructural Randomness and Scaling in Mechanics of Materials[END_REF]. Furthermore, Cosserat elasticity is general enough to allow modelling of chiral type of microstructures. Chiral (or non-centrosymmetric) composite materials lack a center of symmetry; they are not invariant to inversion of coordinates [START_REF] Ha | Chiral three-dimensional lattices with tunable Poissons ratio[END_REF]. Chirality may be present at different scales in the composite and is a characteristic of engineered composites containing twisted fibers [START_REF] Lakes | Noncentrosymmetry in Micropolar Elasticity[END_REF] or a granular microstructure [START_REF] Giorgio | Chirality in 2d Cosserat media related to stretch-micro-rotation coupling with links to granular micromechanics[END_REF].

On the other hand homogenization methods are particularly well suited for the analysis of heterogeneous media with periodic structure [START_REF] Bensoussan | Asymptotic Analysis for Periodic Structures[END_REF], [START_REF] Sanchez-Palencia | Non-homogeneous media and vibration theory[END_REF], [START_REF] Bakhvalov | Homogenisation: averaging processes in periodic media: mathematical problems in the mechanics of composite materials[END_REF], [START_REF] Ciorȃnescu | An Introduction to Homogenization[END_REF], [START_REF] Mei | Homogenization Methods for Multiscale Mechanics[END_REF]. The technique of homogenization has been applied widely to derive effective equations, both of local and non-local nature, in mechanics, physics, chemistry, and in other natural sciences since they can account for the influence of volume fraction, distribution, and morphology. However, the technique of homogenization lacks the ability to predict size effects as they pertain to the mechanical behavior of the heterogeneous media [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF]. The suggested remedies to overcome this impasse is to enrich the continuum. This can be done in multiple ways but two methods appear to be more dominant so far: Enrich the continuum by allowing higher gradients of the displacement field [START_REF] Triantafyllidis | The influence of scale size on the stability of periodic solids and the role of associated higher order gradient continuum models[END_REF],

[ZZA97], [START_REF] Smyshlyaev | On rigorous derivation of strain gradient effects in the overall behaviour of periodic heterogeneous media[END_REF], [START_REF] Nika | Effective medium theory for second-gradient nonlinear elasticity with chirality[END_REF] or enrich the continuum by allowing higher order of additional degrees of freedom [START_REF] Forest | Cosserat overall modeling of heterogeneous material[END_REF], [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], [START_REF] Forest | Micromorphic media[END_REF], [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF]. The latter is a point of focus in this article. Specifically, we are interested in heterogeneous non-centrosymmetric Cosserat media with a periodic microstructure. To be more precise, in this work we examine the asymptotic behavior of a noncentrosymmetric heterogeneous periodic Cosserat elastic solid Ω with period that is governed by the system of equations,

-div σ = f f f in Ω, -div µ -:σ = g g g in Ω,
(1.1) with σ the non-symmetric stress tensor, µ the couple-stress tensor, the Levi-Civita tensor with :σ = 3 j,k=1 ijk σ jk for i ∈ {1, 2, 3}, f f f are body forces, and g g g are body couples. Moreover, for i, j ∈ {1, 2, 3}, the constitutive relations are given by,

σ ji = 3 k, =1 (E jik γ k + C jik κ k ), (1.2) µ ji = 3 k, =1 (C k ji γ k + M jik κ k ). (1.3)
Here we have defined non-symmetric strain tensor and the torsion tensor (or curvature-twist tensor or curvature tensor or curvature) respectively, by,

γ ji :=∂ xj u i - 3 k=1 kji ϕ k and κ ji :=∂ xj ϕ i for i, j ∈ {1, 2, 3}, (1.4)
where u u u is the displacement and ϕ ϕ ϕ is the rotation. Additionally, thermodynamic relations impose the following symmetry on the tensors E jik and M jik ;

E jik = E k ji and M jik = M k ji .
(1.5)

The tensor C jik , which expresses the chirality effects and, in general, does not possess this type of symmetry [START_REF] Nowacki | The Theory of Micropolar Elasticity[END_REF]. If C jik ≡ 0 then the material is called centrosymmetric and there is a vast literature addressing this type of materials [START_REF] Nowacki | The Theory of Micropolar Elasticity[END_REF], [START_REF] Forest | Cosserat overall modeling of heterogeneous material[END_REF], [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF].

The paper is organized as follows: In Section 2 we perform a dimensional analysis of the problem and we define the two Cosserat intrinsic lengths of the constituents coss and chiral . Moreover, we list five different cases on how the four characteristic length scales, coss , chiral , , and L, compare and provide a list of notation employed throughout the article. In Section 3 we introduce the model in the ε periodic framework and set up the different homogenization schemes. In Section 4 we carry out the asymptotic expansions and derive the effective equations (and the corresponding local problems) for each considered case. Finally, in Section 5 we provide some conclusions, commentary, and some perspective.

Dimensional analysis

Using the dimensional analysis introduced in [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF] we extend the work in [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF] by allowing chirality effects. In doing so, we obtain a hierarchy of models based on the scaling of the Cosserat intrinsic length, coss , and the chirality length scale, chiral , with respect to the overall length of the domain or the length of the periodic cell.

Let L be the characteristic length of the domain Ω and the characteristic length of the periodic cell. We define the dimensionless coordinates, displacement, and rotation,

x x x * = x x x L , u u u * (x x x * ) = u u u(x x x) L , ϕ ϕ ϕ * (x x x * ) = ϕ ϕ ϕ(x x x).
(2.1)

In non-centrosymmetric Cosserat media there are two additional scale parameters that important, namely, the Cosserat intrinsic length coss of the constituents [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF], [START_REF] Forest | Cosserat overall modeling of heterogeneous material[END_REF], and the chirality coefficient chiral . The Cosserat intrinsic length and the chiral intrinsic length are defined as follows,

M = E 2 coss , C = E chiral , (2.2) 
where

E = max z z z∈Y |E jikl (z z z)|, C = max z z z∈Y |C jikl (z z z)|, M = max z z z∈Y |M jikl (z z z)| for i, j, k, l ∈ {1, 2, 3}
, and Y = (-/2, /2] d is the periodic cell characterizing the body Ω. Additionally, the non-symmetric strain and curvature non-dimensionalize, respectively, as, γ * = γ and κ * = L κ.

(2.3) Moreover, we define the non-dimensional stress, couple-stress, and fourth order material tensors as follows,

σ * = E -1 σ, µ * = (EL) -1 µ, (2.4) E * (x x x * ) = E -1 E(x x x), C * (x x x * ) = C -1 C(x x x), M * (x x x * ) = M -1 M(x x x) (2.5)
We remark that the fourth order material tensors,

E * = {E * jik (x x x * )} 3 j,i,k, =1 , C * = {C * jik (x x x * )} 3 j,i,k, =1 , M * = {M * jik (x x x * )} 3 j,i,k, =1 (2.6) 
are Y * periodic where,

Y * = L Y, Y := - 1 2 , 1 2 3 .
(2.7) Hence, the system of equations in (1.1) scales as,

-div σ * = f f f * in Ω, -div µ * -:σ * = g g g * in Ω, (2.8)
where f f f * , and g g g * are the appropriately scaled body forces and body couples (see [FPS01, Eq. ( 14), pg. 4589]) and with constitutive laws,

σ * ji = 3 k, =1 E * jik γ * k + chiral L C * ijk κ * k for i, j ∈ {1, 2, 3}.
(2.9)

µ * ji = 3 k, =1 chiral L C * k ij γ * k + coss L 2 M * jik κ * k for i, j ∈ {1, 2, 3}.
(2.10) Thus, one can generate an ε periodic problem by defining the nondimensional number ε as the ratio of /L and let ε → 0 to obtain an effective medium. However, different cases ought to be considered depending on how coss and chiral scale with and L, respectively. Here we consider the cases,

coss /L ∼ ε, chiral / ∼ ε, (HS 1) coss /L ∼ ε, chiral / ∼ 1, (HS 2) coss /L ∼ ε, chiral /L ∼ 1, (HS 3) coss /L ∼ 1, chiral / ∼ 1, (HS 4) coss /L ∼ 1, chiral /L ∼ 1. (HS 5)

Physical interpretation of the scalings

Different cases are considered when passing to the limit, depending on the relative ratios representing the constitutive intrinsic lengths coss and chiral with respect to the characteristic lengths and L. Five cases are considered in this work. The first case corresponds to a limiting process for which the Cosserat intrinsic length is of the same magnitude as the heterogeneities, namely, coss / remains constant ( coss / ∼ 1 or, equivalently, coss /L ∼ ε), with three sub-cases chiral /L ∼ ε 2 , chiral /L ∼ ε, and chiral /L ∼ 1, when ε goes to zero. These correspond to homogenization schemes (HS 1), (HS 2), (HS 3), respectively.

The remaining cases correspond to the situation for which coss /L remains constant with two subcases where chiral /L ∼ ε (or chiral / ∼ 1), and chiral /L ∼ 1 corresponding to schemes (HS 4) and (HS 5), respectively, as ε goes to zero. These assumptions lead to different homogenization schemes with complex local problems even in the case where a classical Cauchy medium is recovered.

Naturally, one could consider different scalings than the ones proposed above (see [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF]). We will not address other type of scalings here. Rather we will leave their treatment to future work.

Lastly, we remark that we are mostly concerned in deriving effective constitutive laws and not so much on existence and uniqueness of solutions for each of the aforementioned cases. For a rigorous treatment, for some of the schemes mentioned above, we refer the interested reader to the work in [START_REF] Nika | On a hierarchy of effective models for the biomechanics of human compact bone tissue[END_REF].

Notation

To expedite the presentation of our results, here onwards we will make use of the following notation:

-Throughout the article we employ the Einstein summation notation of repeated indices unless otherwise stated.

-The third order tensor ijk is the Levi-Civita symbol that is equal to 1 if (i, j, k) is an even permutation of (1, 2, 3), -1 if it is an odd permutation, and zero if any index is repeated.

-Tensor contraction: Let v v v be a vector, A and B be second order tensors, C a third order tensor, and D a fourth order tensor. We define the following combinations of tensor-tensor or tensor-vector contractions:

1. A:B = A ij B ij (Frobenius inner product for second order tensors) 2. :A = ijk A jk (contraction leads to a vector) Hence, we can define the following subsets of Ω: The exterior boundary of Ω will be denoted by Γ 0 and n n n will denote the unit normal on Γ 0 pointing in the outward direction. Therefore, the heterogeneous Cosserat continuum is characterized by the following coupled system,

3. C•v v v = C ijk v i (
Ω 1ε := m∈Nε T ε m , Ω 2ε :=Ω\Ω 1ε , Ω:=Ω 1ε ∪ Ω 2ε .
-div σ ε = f f f in Ω, -div µ ε -:σ ε = g g g in Ω, u u u ε = 0 0 0 on Γ 0 , ϕ ϕ ϕ ε = 0 0 0 on Γ 0 . (3.1)
Here σ ε is the stress, µ ε is the couple-stress, u u u ε is the displacement, and ϕ ϕ ϕ ε is the rotation.

The system of equations (3.1) characterizes the mechanical deformation that the body undergoes.

The equations are fully coupled and the system is closed with homogeneous Dirichlet boundary conditions on Γ 0 .

Constitutive relations

The stress and couple-stress are related to the strain and curvature-twist, respectively, though the fourth order material tensors E ε (x x x), C ε (x x x), and M ε (x x x) by the relation (see [START_REF] Nowacki | The Theory of Micropolar Elasticity[END_REF]),

σ ε µ ε = E ε C ε C ε M ε γ ε κ ε (3.2)
3.1.1 Form of the tensors when the material is isotropic

When the material is isotropic, the tensors E ε , M ε , and C ε , have the following form,

E ε jik (x x x):=E jik ( x x x ε ) = (ϑ( x x x ε ) + α( x x x ε )) δ jk δ i + (ϑ( x x x ε ) -α( x x x ε )) δ j δ ik + ( x x x ε ) δ ij δ k , (3.3) M ε jik (x x x):= M jik ( x x x ε ) = (θ( x x x ε ) + β( x x x ε )) δ jk δ i + (θ( x x x ε ) -β( x x x ε )) δ j δ ik + ρ( x x x ε ) δ ij δ k , (3.4) C ε jik (x x x):= C jik ( x x x ε ) = c 1 ( x x x ε ) δ k δ ij + c 2 ( x x x ε ) δ ik δ j + c 3 ( x x x ε ) δ i δ jk .
(3.5)

The parameters ϑ and are the classic Lamé constants (usually denoted by µ and λ in linear elasticity) that one encounters in a typical Cauchy medium, while α is often referred to as the micropolar couple modulus [START_REF] Hassanpour | Micropolar elasticity theory: a survey of linear isotropic equations, representative notations, and experimental investigations[END_REF]. The parameters θ, ρ, and β are the remaining Cosserat parameters that one must determine when the medium is assumed to be centrosymmetric. Lastly, the parameters c 1 , c 2 , and c 3 correspond to chirality. Therefore, in comparison with classical Cauchy material, one has to compute 9 parameters instead of 2 for a non-centrosymmetric Cosserat medium.

Multiscale asymptotic method

In the context of asymptotic homogenization we have two spatial variables characterizing slow and fast scales under the assumption of scale separation and enough smoothness of all functions involved. All fields are regarded as functions of the slow, x x x, and fast, y y y, variables and are expanded in a two-scale series as follows,

u u u ε (x x x) = ∞ i=0 ε i u u u (i) (x x x, y y y), φ φ φ ε (x x x) = ∞ i=0 ε i φ φ φ (i) (x x x, y y y) with y y y = x x x ε . (4.1)
Likewise, any derivative is split in a way to represent the two scales as follows,

∇ ∇ x + ε -1 ∇ y . (4.2)
The above rule is very general and can be applied to all first order differential operators such as the divergence or curl operators. Hence, using the above two-scale expansions we have,

γ ε = ε -1 ∇ y u u u (0) +ε 0 ∇ x u u u (0) + ∇ y u u u (1) -•ϕ ϕ ϕ (0) +ε 1 ∇ x u u u (1) + ∇ y u u u (2) -•ϕ ϕ ϕ (1) + O(ε 2 ), (4.3) 
κ ε = ε -1 ∇ y ϕ ϕ ϕ (0) +ε 0 ∇ x ϕ ϕ ϕ (0) + ∇ y ϕ ϕ ϕ (1) +ε 1 ∇ x ϕ (1) + ∇ y ϕ (2) + O(ε 2 ).
(4.4)

Effective equations under HS 1

If coss / ∼ 1 and chiral / ∼ ε then coss /L ∼ ε and chiral /L ∼ ε 2 , respectively. Hence, the stress and couple-stress expand as follows:

σ ε = ε -1 σ (0) + ε 0 σ (1) + ε 1 σ (2) + O(ε 2 ), (4.5) 
µ ε = ε 1 µ (0) + ε 2 µ (1) + ε 1 µ (2) + O(ε 3 ), (4.6) 
where

σ (0) = E:∇ y u u u (0) , (4.7) 
σ (1) = E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) , (4.8)

σ (2) = E: ∇ x u u u (1) +∇ y u u u (2) -•ϕ ϕ ϕ (1) + C:∇ y ϕ ϕ ϕ (0) , (4.9) 
µ (0) = C:∇ y u u u (0) +M:∇ y ϕ ϕ ϕ (0) , (4.10)

µ (1) = C:(∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) ) + M:(∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) ). (4.11)
This leads to the following two-scale expansion of the balance of momentum and moment of momentum of (3.1):

div σ ε = ε -2 div y σ (0) +ε -1 div x σ (0) + div y σ (1) +ε 0 div x σ (1) + div y σ (2) + O(ε), (4.12) div µ ε + :σ ε = ε -1 :σ (0) + ε 0 div y µ (0) + :σ (1) + O(ε). (4.13)
By substituting the above expansions in (3.1) and matching powers of ε we obtain a cascade of equations.

At order ε -2 : We obtain the following elliptic system,

-div y E:∇ y u u u (0) = 0 in Y, u u u (0) (x x x, y y y) is Y -periodic.
(4.14)

The above equation has a unique solution up to a constant in x x x which implies that u u u (0) (x x x, y y y) ≡ u u u (0) (x x x) and in effect σ (0) ≡ 0.

At order ε -1 : Making use of the previous result that σ (0) ≡ 0, we are left with the equation,

-div y E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) = 0 in Y, u u u (1) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (0) (x x x, y y y) is Y -periodic.
(4.15)

From here we recognize the form u u u (1) and ϕ ϕ ϕ (0) to be the following (written in component form),

u (1) i (x x x, y y y) = ζ k i (y y y) ∂ x u (0) k (x x x) + c i (x x x), (4.16 
) 

ϕ (0) ν (x x x, y y y) = ξ k ν (y y y) ∂ x u (0) k (x x x), (4.17 
for all v v v ∈ H 1 per (Y ; R 3 ). ξ ξ ξ pq ∈ H 1 per (Y ; R 3 ), Y ξ ξ ξ pq dy y y = 0, Y E jik (y y y) 1 2 δ kp δ q + νk ξ pq ν ∂ yi v j dy y y = 0, (4.19) for all v v v ∈ H 1 per (Y ; R 3 ).
At order ε 0 : At this order we obtain the system of effective equations,

-div y σ (2) -div x σ (1) = f f f in Ω × Y,
-div y µ (0) -:σ (1) = g g g in Ω × Y, u u u (1) (x x x, y y y), u u u (2) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (0) (x x x, y y y), ϕ ϕ ϕ (1) (x x x, y y y) is Y -periodic.

(4.20)

Averaging over Y and using the periodicity of the displacement and rotation fields in Y we obtain the following system,

-div x σ (1) = f f f in Ω, -: σ (1) = g g g in Ω.
(4.21)

In order to render the above system in a more familiar form, we rewrite the vector field g g g using the Levi-Civita tensor as follows: g i = 1 2 iηλ pηλ g p . Moreover, using the decomposition of the vector fields at order ε -1 we obtain,

                           -div x σ eff = F F F in Ω, σ eff :=E eff :∇ x u u u (0) + 1 2 •g g g, E eff jipq := Y E jik δ kp δ q +∂ yk ξ pq -νpq ζ pq ν dy y y, F F F :=f f f + 1 2 curl x g g g, σ eff = σ eff (4.22)
This is precisely the model that was recovered in [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF] by two-scale expansions under their HS 1 scheme and rigorously proved in [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF] by the method of periodic unfolding. We remark, however, that both works [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF] and [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF] started from a centrosymmetric heterogenous Cosserat solid.

The reason why we arrived at exactly the same effective model as [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF] and [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF] is due to the scaling of the chirality coefficient.

Effective equations under HS 2

If coss / ∼ 1 and chiral / ∼ 1 then coss /L ∼ ε and chiral /L ∼ ε, respectively. Hence, the stress and couple-stress expand as follows:

σ ε = ε -1 σ (0) + ε 0 σ (1) + ε 1 σ (2) + O(ε 2 ), (4.23) µ ε = ε 0 µ (0) + ε 1 µ (1) + O(ε 2 ), (4.24) 
where

σ (0) = E:∇ y u u u (0) , (4.25) 
σ (1) = E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) +C:∇ y ϕ ϕ ϕ (0) , (4.26)

σ (2) = E: ∇ x u u u (1) +∇ y u u u (2) -•ϕ ϕ ϕ (1) +C: ∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) , (4.27) µ (0) = C:∇ y u u u (0) , (4.28) µ (1) = C:(∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) )+M:∇ y ϕ ϕ ϕ (0) . (4.29) div σ ε = ε -2 div y σ (0) +ε -1 div x σ (0) + div y σ (1)
+ε 0 div x σ (1) + div y σ (2) + O(ε),

(4.30) div µ ε + :σ ε =ε -1 div y µ (0) + :σ (0)
+ε 0 div x µ (0) + div y µ (1) + :σ (1) + O(ε).

(4.31)

At order ε -2 : As in the case under the scheme HS 1 we obtain that u u u (0) is a function of x x x alone and that σ (0) ≡ 0. Moreover, under this scheme the fact that u u u (0) is a function of x x x implies additionally that µ (0) ≡ 0 as well.

At order ε -1 : Making use of the previous results obtained at order ε -2 , namely that σ (0) ≡ 0 and µ (0) ≡ 0, we are left with,

-div y E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) +C:∇ y ϕ ϕ ϕ (0) = 0 in Y, u u u (1) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (0) (x x x, y y y) is Y -periodic. (4.32)
We recognize the form u u u (1) and ϕ ϕ ϕ (0) to be the following (written in component form),

u (1) i (x x x, y y y) = θ k i (y y y) ∂ x u (0) k (x x x) + c i (x x x), (4.33) ϕ (0) ν (x x x, y y y) = ϑ k ν (y y y) ∂ x u (0) k (x x x), (4.34)
where the correctors θ θ θ k and ϑ ϑ ϑ k are the local solutions satisfying the following variational problems,

θ θ θ pq ∈ H 1 per (Y ; R 3 ), Y θ θ θ pq dy y y = 0, Y E jik (y y y) 1 2 δ kp δ q +∂ y θ pq k ∂ yi v j dy y y = 0, (4.35) for all v v v ∈ H 1 per (Y ; R 3 ). ϑ ϑ ϑ pq ∈ H 1 per (Y ; R 3 ), Y ϑ ϑ ϑ pq dy y y = 0, Y C jik (y y y) ∂ yk ϑ pq +E jik (y y y) 1 2 δ kp δ q + νk ϑ pq ν ∂ yi v j dy y y = 0, (4.36) for all v v v ∈ H 1 per (Y ; R 3 ).
At order ε 0 : Using the fact that u u u 0 is independent of y y y we obtain the system of effective equations,

-div y σ (2) -div x σ (1) = f f f in Ω × Y,
-div y µ (1) -:σ (1) = g g g in Ω × Y, u u u (1) (x x x, y y y), u u u (2) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (0) (x x x, y y y), ϕ ϕ ϕ (1) (x x x, y y y) is Y -periodic.

(4.37)

Averaging over Y and using the periodicity of the displacement and rotation fields in Y we obtain the following system,

-div x σ (1) = f f f in Ω, -: σ (1) = g g g in Ω.
(4.38)

As in the previous scheme, we rewrite g g g using the Levi-Civita tensor and using the decomposition of the vector fields at order ε -1 we obtain,

                           -div x σ eff = F F F in Ω, σ eff :=D eff :∇ x u u u (0) + 1 2 •g g g in Ω, D eff jipq := Y E jik δ kp δ q + ∂ yk θ pq + C jik ∂ yk ϑ pq -E jik νk ϑ pq ν dy y y, F F F :=f f f + 1 2 curl x g g g, σ eff = σ eff .
(4.39)

The resulting model generalizes the model under the scheme HS 1 by allowing for chiral effects to be present in the microscale. This can be readily seen if one sets the tensor C ≡ 0 then D eff ≡ E eff from HS 1.

Effective equations under HS 3

If coss / ∼ 1 and chiral /L ∼ 1 then coss /L ∼ ε. Hence, the stress and couple-stress expand as follows:

σ ε = ε -1 σ (0) + ε 0 σ (1) + ε 1 σ (2) + O(ε 2 ), (4.40) µ ε = ε -1 µ (0) + ε 0 µ (1) + ε 1 µ (2) + O(ε 2 ), (4.41)
where

-div y E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) +C: ∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) =0 in Y, -div y C :(∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) ) =0 in Y, u u u (1) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (1) (x x x, y y y) is Y -periodic.
(4.52)

From the second and fourth equations of system (4.52) we obtain,

u (1) (x x x, y y y)=w pq (y y y)γ (0) pq (x x x)+c (x x x) with γ (0) pq (x x x):=∂ xp u (0) q (x x x)-νpq ϕ (0) ν (x x x), (4.53) 
where w w w pq solves,

w w w pq ∈ H 1 per (Y ; R 3 ), Y w w w pq dy y y = 0, Y C k ji (y y y) (δ kp δ q +∂ y w pq k ) ∂ yi v j dy y y = 0, (4.54) for all v v v ∈ H 1 per (Y ; R 3 ).
Once we have determined w w w pq for p, q = 1, 2, 3 we can use the first and third equations of system (4.52) to obtain, ϕ (1) (x x x, y y y)=w pq (y y y)γ (0) pq (x x x)+χ pq (y y y)κ 0 pq (x x x)+c (x x x) with κ (0) pq (x x x):=∂ xp ϕ (0) q (x x x), (4.55)

where χ χ χ pq solves,

χ χ χ pq ∈ H 1 per (Y ; R 3 ), Y χ χ χ pq dy y y=0, Y E jik (y y y) (δ kp δ q +∂ y w pq k ) +C jik (y y y)∂ yk χ pq ∂ yi v j dy y y=0, (4.56) 
for all v v v ∈ H 1 per (Y ; R 3 ).

We note that systems (4.54) and (4.56) form a one-way coupled system of equations, unlike the previous cases so far.

At order ε 0 : The effective system under this scheme has the following form,

-div y σ (2) -div x σ (1) =f f f in Ω × Y, -div y µ (2) -div x µ (1) -:σ (1) =g g g in Ω × Y, u u u (1) (x x x, y y y), u u u (2) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (1) (x x x, y y y), ϕ ϕ ϕ (2) (x x x, y y y) is Y -periodic.
(4.57)

Integrating over the cell Y we have,

-div x σ (1) = f f f in Ω,
-div x µ (1) -: σ (1) = g g g in Ω.

(4.58)

Here, σ

ji = E jik (δ kp δ q + ∂ yk w pq ) + C jik ∂ yk w pq γ 0 pq + C jik δ kp δ q + ∂ yk χ pq κ 0 pq (4.59) µ (1) ji = C k ji (δ kp δ q + ∂ yk w pq )κ 0 pq . (4.60) (1) 
Hence, the effective system is of Cosserat type,

                                         -div x σ eff = f f f in Ω, -div x µ eff -:σ eff = g g g in Ω, σ eff µ eff = E eff C eff C eff 0 γ 0 κ 0 in Ω, E eff jipq = Y E jik (δ kp δ q +∂ yk w pq )+C jik ∂ yk w pq dy y y, C eff jipq = Y
C jik (δ kp δ q +∂ yk χ pq ) dy y y,

C eff jipq = Y C k ji (δ kp δ q +∂ yk w pq ) dy y y. (4.61) 
We remark that since the local problems are one-way coupled, the systems of equations in (4.54) and (4.56) can be solved iteratively in order to build the effective tensors E eff , C eff , and C eff .

Moreover, the moments appearing in this scheme seem to be a property of the chiral geometry alone.

Effective equations under HS 4

If coss /L ∼ 1 and chiral / ∼ 1 then chiral /L ∼ ε. Hence, the stress and couple-stress expand as follows:

σ ε = ε -1 σ (0) + ε 0 σ (1) + ε 1 σ (2) + O(ε 2 ), (4.62) 
µ ε = ε -1 µ (0) + ε 0 µ (1) + ε 1 µ (2) + O(ε 2 ), (4.63) 
where

-div y E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) =0 in Y, -div y M: ∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) =0 in Y, u u u (1) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (1) (x x x, y y y) is Y -periodic.
(4.74)

From (4.74) we obtain,

u (1) (x x x, y y y)=η pq (y y y)γ (0) pq (x x x)+c (x x x) with γ (0) pq (x x x):=∂ xp u (0) q (x x x)-νpq ϕ (0) ν (x x x), (4.75) and u 
(1) (x x x, y y y)= pq (y y y)κ (0) pq (x x x)+c (x x x) with κ (0) pq (x x x):=∂ xp ϕ (0) q (x x x), (4.76)

where η η η pq solves, At order ε 0 : The effective system under this scheme has the following form,

w w w pq ∈ H 1 per (Y ; R 3 ), Y w w w pq dy y y=0, Y E jik (y y y) (δ kp δ q +∂ y η pq k ) ∂ yi v j dy y y=0 for all v v v ∈ H 1 per (Y ; R 3 ),
-div y σ (2) -div x σ (1) =f f f in Ω × Y, -div y µ (2) -div x µ (1) -:σ (1) =g g g in Ω × Y, u u u (1) (x x x, y y y), u u u (2) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (1) (x x x, y y y), ϕ ϕ ϕ (2) (x x x, y y y) is Y -periodic.
(4.79)

Integrating over the cell Y we have,

-div x σ (1) =f f f in Ω,
-div x µ (1) -: σ (1) =g g g in Ω.

(4.80)

Using the information obtained at the scale ε -1 we can write σ (1) and µ (1) as follows:

σ (1)
ji =E jik (y y y) (δ kp δ q +∂ y η pq k ) γ 0 pq , (4.81)

µ (1)
ji =M jik (y y y) (δ kp δ q +∂ y pq k ) κ 0 pq , (4.82)

Hence, the effective equations are of Cosserat type,

                               -div x σ eff =f f f in Ω,
-div x µ eff -:σ eff =g g g in Ω,

σ eff µ eff = E eff 0 0 M eff γ 0 κ 0 in Ω, E eff jipq = Y E jik δ kp δ q +∂ yk η pq dy y y, M eff jipq = Y
M jik δ kp δ q +∂ yk pq dy y y.

(4.83)

This is precisely the model that was recovered in [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF] under HS 2 by the method of periodic unfolding from a centrosymmetric heterogenous Cosserat solid. Under our current scheme the resulting effective constitutive law is also of a centrosymmetric Cosserat solid, where the chiral effects are no longer present due to the scaling.

Effective equations under HS 5

If coss /L ∼ 1 and chiral /L ∼ 1, the stress and couple-stress expand as follows:

σ ε = ε -1 σ (0) + ε 0 σ (1) + ε 1 σ (2) + O(ε 2 ), (4.84) µ ε = ε -1 µ (0) + ε 0 µ (1) + ε 1 µ (2) + O(ε 2 ), (4.85) 
where σ (0) = E:∇ y u u u (0) +C:∇ y ϕ ϕ ϕ (0) , (4.86)

σ (1) = E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) +C:(∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1)
), (4.87)

σ (2) = E: ∇ x u u u (1) +∇ y u u u (2) -•ϕ ϕ ϕ (1) +C: ∇ x ϕ ϕ ϕ (1) +∇ y ϕ ϕ ϕ (2) , (4.88) 
µ (0) = C :∇ y u u u (0) +M:∇ y ϕ ϕ ϕ (0) , (4.89)

µ (1) = C :(∇ x u u u (0) +∇ y u u u (1) -ε ε ε•ϕ (0) )+M: ∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) , (4.90) µ (2) = C :(∇ x u u u (1) +∇ y u u u (2) -•ϕ ϕ ϕ (0) )+M: ∇ x ϕ ϕ ϕ (1) +∇ y ϕ ϕ ϕ (2) . (4.91)
The corresponding two-scale expansion of the balance of momentum and moment of momentum of (3.1) become, div σ ε = ε -2 div y σ (0) +ε -1 div x σ (0) +div y σ (1) +ε 0 div x σ (1) +div y σ (2) +O(ε), (4.92) div µ ε + :σ ε = ε -2 div y µ (0) +ε -1 div x µ (0) +div y µ (1) + :σ (0) +ε 0 div x µ (1) +div y µ (2) + :σ (1) +O(ε).

(4.93)

At order ε -2 : At this order we obtain the following set of equations,

-div y E:∇ y u u u (0) +C:∇ y ϕ ϕ ϕ (0) =0 in Y, -div y C :∇ y u u u (0) +M:∇ y ϕ ϕ ϕ (0) =0 in Y, u u u (0) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (0) (x x x, y y y) is Y -periodic.
(4.94)

Unlike the previous schemes so far, system (4.94) remains fully coupled and must be solved simultaneously. The variational formulation of (4.94) is:

Find (u u u (0) , ϕ ϕ ϕ (0) ) ∈ H 1 per (Y ; R 3 ) × H 1 per (Y ; R 3 ) such that, Y v v v:E:u u u (0) + v v v:C:ϕ ϕ ϕ (0) +u u u (0) :C :w w w+w w w:M:ϕ ϕ ϕ (0) dy y y=0, (4.95) 
for all (v v v, w w w) ∈ H 1 per (Y ; R 3 ) × H 1 per (Y ; R 3 ). The above form is evidently bilinear and coersive on

H 1 per (Y ; R 3 ) × H 1 per (Y ; R 3
) by [HH69, Thm. 3.1] (see also [START_REF] Hlávȃcek | On inequalities of Korn's type. I. Boundary-value problems for elliptic systems of partial differential equations[END_REF]). Hence, by the Lax-Milgram theorem has a unique solution up to a constant function in x x x. Thus, we have u u u (0) (x x x, y y y) = u u u (0) (x x x) and ϕ ϕ ϕ (0) (x x x, y y y) = ϕ ϕ ϕ (0) (x x x), and hence, σ (0) = µ (0) ≡ 0.

At order ε -1 : Using the results obtained above, namely, σ (0) ≡ 0 and µ (0) ≡ 0 we arrive at the following system,

-div y σ (1) =0 in Y, -div y µ (1) =0 in Y, u u u (1) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (1) (x x x, y y y) is Y -periodic. (4.96) Substituting σ (1) = E: ∇ x u u u (0) + ∇ y u u u (1) -•ϕ ϕ ϕ (0) +C:(∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) ) and µ (1) = C :(∇ x u u u (0) + ∇ y u u u (1) -ε ε ε•ϕ (0) )+M: ∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) in (4.96) we obtain, -div y E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) +C:(∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) ) =0 in Y, -div y C :(∇ x u u u (0) +∇ y u u u (1) -ε ε ε•ϕ (0) )+M: ∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) =0 in Y, u u u (1) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (1) (x x x, y y y) is Y -periodic.
(4.97)

From (4.97) we postulate that u u u (1) and ϕ ϕ ϕ (1) have the same structural form, namely,

u (1) = ϕ (1) = ω 1,pq γ (0) pq + ω 2,pq κ (0) pq + c (x x x) (4.98)
where as before γ (0) :=∇ x u u u (0) -•ϕ ϕ ϕ (0) and κ (0) :=∇ x ϕ ϕ ϕ (0) . Moreover, the local solutions (ω ω ω 1,pq , ω ω ω 2,pq ) satisfy,

(ω ω ω 1,pq , ω ω ω 2,pq ) ∈ H 1 per (Y ; R 3 )×H 1 per (Y ; R 3 ), Y ω ω ω 1,pq dy y y=0, Y ω ω ω 2,pq dy y y=0 Y E jik δ kp δ q +∂ y ω 1,pq k +C jik ∂ y ω 1,pq k +C jik δ kp δ q +∂ y ω 2,pq k +E jik ∂ y ω 2,pq k ∂ yi v j dy y y=0, Y C k ji δ kp δ q +∂ y ω 1,pq k +M jik ∂ y ω 1,pq k M jik (y y y) δ kp δ q +∂ y ω 2,pq k +C k ji ∂ y ω 2,pq k ∂ yi w j dy y y=0, (4.99) for all (v v v, w w w) ∈ H 1 per (Y ; R 3 ) × H 1 per (Y ; R 3
). Again, we remark that this system must be solved simultaneously by invoking [HH69, Thm. 3.1] and then the Lax-Milgram lemma.

At order ε 0 : The effective system under this scheme has the following form,

-div y σ (2) -div x σ (1) = f f f in Ω × Y,
-div y µ (2)div x µ (1) -:σ (1) = g g g in Ω × Y, u u u (1) (x x x, y y y), u u u (2) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (1) (x x x, y y y), ϕ ϕ ϕ (2) (x x x, y y y) is Y -periodic.

(4.100)

Integrating over the cell Y we have, -div x σ (1) = f f f in Ω, -div x µ (1) -: σ (1) = g g g in Ω.

(4.101)

Using the information obtain at the scale ε -1 we can write σ (1) and µ (1) as follows: 

                                                 -div x σ eff = f f f in Ω,
-div x µ eff -: σ eff = g g g in Ω, The chiral effects are present at the macroscopic level through the tensors C eff and C eff and manifest themselves in a rather complex way through the coupled system of local problems.

σ eff µ eff = E eff C eff C eff M eff

Conclusions

In this work we derived effective models accounting for various size effects widely observed experimentally in the behavior of elastic materials with microstructure for different scale interactions.

We performed a non-dimensionalization that introduced a new intrinsic length that accounts for microstructures with chiral effects. Moreover, we used the method of multiscale asymptotic expansion to obtain and classify the effective equations into two categories: Classical Cauchy continua or generalized continua. The classification depends on how the characteristic lengths coss and chiral compare with the length of the period and and the overall characteristic length L. The corresponding local problems, upon which the effective coefficients are constructed, are enriched with additional local variables accounting for rotations, and hence chiral effects, hereby, extending the work in [START_REF] Forest | Asymptotic analysis of heterogeneous Cosserat media[END_REF] and [START_REF] Nika | Derivation of effective models from heterogenous Cosserat media via periodic unfolding[END_REF].

Lastly, we would like to emphasize that the modelling of size effects in a multiscale setting is a subject that should bear a more profound investigation than the one afforded in this article. Recent experimental and computational work has has shown that scale-size effects are prevalent even in myocardium tissue [START_REF] Tueni | On the structural origin of the anisotropy in the myocardium: Multiscale modeling and analysis[END_REF], hence, opening up the possibility of using generalized continuum mechanics in modeling the biomechanics heart tissue.
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  contraction leads to second order tensor) 4. D:A = D ijkl A kl (contraction leads to second order tensor) -The symbol • is defined to be the average of a quantity over the unit cell Y , The microscopic modelWe consider an elastic composite with periodic microstructure of period ε occupying a region Ω. The region Ω, that the composite occupies, is assumed to be a bounded, open set of R 3 . Y = (-1/2, 1/2] 3 is the unit cube in R 3 and Z 3 is the set of all vectors with integer components. For every positive ε, let N ε be the set of all points m ∈ Z 3 such that ε(m + Y ) is strictly included in Ω. Denote by T be the closure of an open subset in Y with sufficiently smooth boundary, while T ε m := ε(m + T ) will represent the region containing one of the material phases (see Fig. 3.1).

Figure 3

 3 Figure 3.1: Schematic of the heterogeneous Cosserat medium with perfect transmission conditions.

  ) where the correctors ζ ζ ζ k and ξ ξ ξ k are the local solutions satisfying the following variational problems, ζ ζ ζ pq ∈ H 1 per (Y ; R 3 ), Y ζ ζ ζ pq dy y y = 0, Y E jik (y y y) 1 2 δ kp δ q + ∂ y ζ pq k ∂ yi v j dy y y = 0, (4.18)

  pq ∈ H 1 per (Y ; R 3 ), Y w w w pq dy y y=0, Y M jik (y y y) (δ kp δ q +∂ y pq k ) ∂ yi v j dy y y=0 for all v v v ∈ H 1 per (Y ; R 3 ), (4.78)

σ ( 1 ) 0 pq+ 0 pq+

 100 ji = E jik (y y y) δ kp δ q + ∂ y ω 1,pqk + C jik (y y y) ∂ y ω 1,pq k γ C jik (y y y) δ kp δ q + ∂ y ω 2,pq k + E jik (y y y) ∂ y ω 2,pq k ji = C k ji (y y y) δ kp δ q + ∂ y ω 1,pq k + M jik (y y y) ∂ y ω 1,pq k γ M jik (y y y) δ kp δ q + ∂ y ω 2,pq k + C k ji (y y y) ∂ y ω 2,pqk effective equations are of Cosserat type,

E

  jik (y y y) δ kp δ q +∂ y ω 1,pq k +C jik (y y y) ∂ y ω 1,pq k dy y y, M eff jipq = Y M jik (y y y) δ kp δ q +∂ y ω 2,pq k +C k ji (y y y) ∂ y ω 2,pq k dy y y, C eff jipq = Y C jik (y y y) δ kp δ q +∂ y ω 2,pq k +E jik (y y y) ∂ y ω 2,pq k dy y y, C eff jipq = Y C k ji (y y y) δ kp δ q +∂ y ω 1,pq k +M jik (y y y) ∂ y ω 1,pq k dy y y.
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σ (0) = E:∇ y u u u (0) +C:∇ y ϕ ϕ ϕ (0) , (4.42) σ (1) = E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) +C: ∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) , (4.43) σ (2) = E: ∇ x u u u (1) +∇ y u u u (2) -•ϕ ϕ ϕ (1) + C: ∇ x ϕ ϕ ϕ (1) +∇ y ϕ ϕ ϕ (2) , (4.44) µ (0) = C :∇ y u u u (0) , (4.45)

The corresponding two-scale expansion of the balance of momentum and moment of momentum of (3.1) become,

+ε 0 div x σ (1) +div y σ (2) + O(ε),

+ε 0 div x µ (1) +div y µ (2) + :σ (1) + O(ε).

(4.49)

At order ε -2 : At this order we obtain the following set of equations,

We can observe from the second equation of (4.50) that u u u (0) (x x x, y y y) = u u u (0) (x x x). Thus, we can conclude iteratively that E:∇ y u u u (0) ≡ 0, leading to div y C:∇ y ϕ ϕ ϕ (0) = 0 with ϕ ϕ ϕ (0) (x x x, y y y) Y -periodic. Hence, we obtain ϕ ϕ ϕ (0) (x x x, y y y) = ϕ ϕ ϕ (0) (x x x).

At order ε -1 : Using the results obtained above, namely, σ (0) ≡ 0 and µ (0) ≡ 0 we arrive at the following system,

) in (4.51) we obtain,

σ (1) = E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) +C:∇ y ϕ ϕ ϕ (0) , (4.65)

+∇ y u u u (2) -•ϕ ϕ ϕ (1) +C: ∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) , (4.66)

µ (1) = C:∇ y u u u (0) +M : ∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) , (4.68)

The corresponding two-scale expansion of the balance of momentum and moment of momentum of (3.1) become,

+ε 0 div x µ (1) +div y µ (2) + :σ (1) +O(ε).

(4.71)

At order ε -2 : At this order we obtain the following set of equations,

-div y M:∇ y ϕ ϕ ϕ (0) =0 in Y, u u u (0) (x x x, y y y) is Y -periodic, ϕ ϕ ϕ (0) (x x x, y y y) is Y -periodic.

(4.72)

Arguing as before, we obtain that u u u (0) (x x x, y y y) = u u u (0) (x x x) and ϕ ϕ ϕ (0) (x x x, y y y) = ϕ ϕ ϕ (0) (x x x). Consequently,

At order ε -1 : Using the results obtained above, namely, σ (0) ≡ 0 and µ (0) ≡ 0 we arrive at the following system,

(4.73) Substituting σ (1) =E: ∇ x u u u (0) +∇ y u u u (1) -•ϕ ϕ ϕ (0) and µ (1) =M: ∇ x ϕ ϕ ϕ (0) +∇ y ϕ ϕ ϕ (1) we obtain,
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