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GRADED RINGS ASSOCIATED TO VALUATIONS AND DIRECT

LIMITS

SILVA DE SOUZA, C. H., NOVACOSKI, J. A. AND SPIVAKOVSKY, M.

Abstract. In this paper, we study the structure of the graded ring associated

to a limit key polynomial Qn in terms of the key polynomials that define Qn.

In order to do that, we use direct limits. In general, we describe the direct limit

of a family of graded rings associated to a totally ordered set of valuations. As

an example, we describe the graded ring associated to a valuation-algebraic

valuation as a direct limit of graded rings associated to residue-transcendental

valuations.

1. Introduction

The graded ring structure associated to a valuation ν, denoted by Gν (see

Definition 3.1), has proved to be an important object on Valuation Theory. For

example, the graded ring describes information of the value group νK and the

residue field Kν simultaneously. It was proved in [1] that Gν is isomorphic to the

semigroup ring Kν[tνK] with a suitable multiplication. Also, this structure is re-

lated to the program developed by Teissier to prove local uniformization, an open

problem in positive characteristic with applications in resolution of singularities.

This program is based on the study of the spectrum of certain graded rings (see

[15]).

Other important objects, which are also linked with programs to prove local

uniformization, are key polynomials (see Definition 2.5). These polynomials were

introduced by Mac Lane in [8] and generalized years later by Vaquié in [16], using

the structure of graded ring. We will refer to them as Mac Lane-Vaquié key poly-

nomials. After that, Novacoski and Spivakovsky in [13] and Decaup, Mahboub and

Spivakovsky in [5] introduced a new notion of key polynomials, which is the one we

use in this paper. These two definitions can be well understood by using graded

rings, as one can see in [3] and [11].

Among key polynomials, the so called limit key polynomials are of great interest

to us. Limit key polynomials were introduced in [16] and are one of the main

aspects of the generalization of Mac Lane’s original key polynomials by Vaquié.

Here we use a formulation similar to the one presented in [13] (see Definition 5.2).
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These polynomials are related to the existence of defect, which is an obstacle when

dealing with valuations and local uniformization. For example, in the case where

the valuation has a unique extension, the defect is the product of the relative degrees

of limit key polynomials (see [9], [14] or [17]).

For a valuation ν on K[x], we consider the set Ψn of all key polynomials for ν of

degree n. In this paper, we study the structure of the graded ring associated to a

limit key polynomial Qn for Ψn, denoted by GQn
, in terms of the key polynomials

Q ∈ Ψn. A related problem was studied in [16]. Here, we approach this problem

by describing GQn as the direct limit of a direct system defined by the graded rings

GQ and the maps presented in Section 3.

Take a valuation ν0 on K with value group Γ0. Fix a totally ordered divisible

group Γ containing Γ0. Take Γ∞ := Γ ∪ {∞} with the usual extension of addition

and order. Let

V = {ν0} ∪ {ν : K[x]→ Γ∞ | ν is a valuation extending ν0}.

Consider the partial order on V given by ν0 ≤ ν for every ν ∈ V and, for ν, µ ∈
V \ {ν0}, we set ν ≤ µ if and only if ν(f) ≤ µ(f) for every f ∈ K[x]. Our first

result deals with an arbitrary totally ordered subset v = {νi}i∈I ⊂ V such that

there exists ν ∈ V satisfying νi ≤ ν for every i ∈ I. Theorem 4.7 will give us

that lim
−→
Gνi is isomorphic to the additive subgroup R of Gν generated by the set

{inν(f) | f is v-stable} (v-stability is defined in Section 4).

Next, we divide the totally ordered subsets v = {νi}i∈I ⊂ V into three types:

the ones with maximum, the ones without maximum such that every f ∈ K[x] is v-

stable and the ones without maximum such that there exists at least one polynomial

that is not v-stable. We show that in the first and second cases there exists ν ∈ V,

that we will denote by sup
i∈I

νi, satisfying ν ≥ νi for every i ∈ I and R = Gν (Propo-

sition 4.9 and Corollary 4.11). In the third case, we show that for a polynomial Q

of smallest degree that is not v-stable we can define µ ∈ V such that µ is equal to

its truncation at Q (see Definition 2.7), µ ≥ νi for every i ∈ I and R = RQ, where

RQ = 〈{inµ(f) | deg(f) < deg(Q)}〉 ⊂ Gµ (Proposition 4.12 and Corollary 4.13).

We then give two applications of the previous results. The first one concerns limit

key polynomials, our main interest. We prove that, given a limit key polynomial

Qn for Ψn, the subset v = {νQ}Q∈Ψn
⊂ V is totally ordered without a maximum

and Qn is a polynomial of smallest degree that is not v-stable (Corollary 5.5).

Therefore, lim
−→
Gνi ∼= RQn

(Corollary 5.6).

The second application concerns valuation-algebraic valuations (see Definition 6.2).

We prove that, given a valuation-algebraic valuation ν, there exists a totally or-

dered subset v = {νQ}Q∈Q ⊂ V without maximum with each Q a key polynomial
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for ν, νQ a residue-transcendental valuation and ν = sup
Q∈Q

νQ (Proposition 6.9).

Therefore, lim
−→
GQ ∼= Gν (Corollary 6.10).

This paper is organized as follows. In Section 2, we present the main defi-

nitions and results that will be used throughout the paper. In Section 3, we

present the main results about graded rings associated to a valuation that will

be useful in our discussions. In Section 4, for a given totally ordered subset

v = {νi}i∈I ⊂ V, we begin presenting some properties of the direct limit of

the direct system {(Gνi , φij)}
i,j∈I
i≤j and prove Theorem 4.7. Then we prove Corol-

lary 4.11 and Corollary 4.13 in Subsections 4.1 and 4.2, respectively. In Section 5, we

describe the graded ring associated to a limit key polynomial via Corollary 5.6. In

Section 6, we describe the graded ring associated to a valuation-algebraic valuation

via Corollary 6.10.

Acknowledgements. We would like to thank the anonymous referee for care-

fully reading, providing useful suggestions and pointing out a few mistakes in an

earlier version of this paper.

2. Preliminaries

Definition 2.1. Take a commutative ring R with unity. A valuation on R is

a mapping ν : R −→ Γ∞ := Γ ∪ {∞} where Γ is a totally ordered abelian group

(and the extension of addition and order to ∞ is done in the natural way), with the

following properties:

(V1): ν(ab) = ν(a) + ν(b) for all a, b ∈ R.

(V2): ν(a+ b) ≥ min{ν(a), ν(b)} for all a, b ∈ R.

(V3): ν(1) = 0 and ν(0) =∞.

Let ν : R −→ Γ∞ be a valuation. The set supp(ν) = {a ∈ R | ν(a) = ∞} is

called the support of ν. The value group of ν is the subgroup of Γ generated by

{ν(a) | a ∈ R\supp(ν)} and is denoted by νR. A valuation ν is a Krull valuation

if supp(ν) = {0}. If ν is a Krull valuation, then R is a domain and we can extend

ν to K = Quot(R) on the usual way. In this case, define the valuation ring as

Oν := {a ∈ K | ν(a) ≥ 0}. The ring Oν is a local ring with unique maximal ideal

mν := {a ∈ K | ν(a) > 0}. We define the residue field of ν to be the field Oν/mν
and denote it by Kν. The image of a ∈ Oν in Kν is denoted by aν.

Remark 2.2. Take a valuation ν on a field K and a valuation ν on K, the algebraic

closure of K, such that ν|K = ν. Then νK is a divisible group. Additionally,

νK = νK⊗Z Q (see [4], p.79). About the residue fields, it is known that Kν is the

algebraic closure of Kν (see [4], p.66).

Fix a valuation ν on K[x], the ring of polynomials in one indeterminate over the

field K. Our main definition of key polynomial relates to the one in [13], which is
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related to the one in [6]. Fix an algebraic closure K for K and fix a valuation ν on

K[x] such that ν|K[x] = ν.

Definition 2.3. Let f ∈ K[x] be a non-zero polynomial.

• If deg(f) > 0, set

δ(f) := max{ν(x− a) | a ∈ K and f(a) = 0}.

• If deg(f) = 0, set δ(f) = −∞.

Remark 2.4. According to [10], δ(f) does not depend on the choice of the algebraic

closure K or the extension ν of ν.

Definition 2.5. A monic polynomial Q ∈ K[x] is a key polynomial of level δ(Q)

if, for every f ∈ K[x],

δ(f) ≥ δ(Q) =⇒ deg(f) ≥ deg(Q).

Let q ∈ K[x] be a non-constant polynomial. Then there exist uniquely deter-

mined polynomials f0, . . . , fs ∈ K[x] with deg(fi) < deg(q) for every i, 0 ≤ i ≤ s,

such that

(1) f = f0 + f1q + . . .+ fsq
s.

We call this expression the q-expansion of f .

Proposition 2.6. (Lemma 2.3 (iii) of [13] + Corollary 3.52 of [7]) Let Q ∈ K[x]

be a monic polynomial. The following assertions are equivalent.

(i): Q is a key polynomial for ν.

(ii): For every f, g ∈ K[x] with deg(f) < deg(Q) and deg(g) < deg(Q), if

fg = lQ+ r is the Q-expansion of fg, then ν(fg) = ν(r) < ν(lQ).

Definition 2.7. Let q ∈ K[x] be a non-constant polynomial and ν a valuation on

K[x]. The map

νq(f) := min
0≤i≤s

{ν(fiq
i)},

for f ∈ K[x] as in (1), is called the truncation of ν at q.

This map is not always a valuation, as we can see in Example 2.4 of [13].

Proposition 2.8. (Proposition 2.6 of [10]) If Q is a key polynomial, then νQ is a

valuation on K[x].

In the next lemmas, we state some properties of key polynomials and truncations.

In what follows, we denote by ΓQ := ν(K[x])⊗Z Q the divisible hull of ν(K[x]).
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Lemma 2.9. (Proposition 2.10 of [13]) Let Q,Q′ ∈ K[x] be key polynomials for ν.

We have the following.

(1) If deg(Q) < deg(Q′), then δ(Q) < δ(Q′).

(2) If δ(Q) < δ(Q′), then νQ(Q′) < ν(Q′).

(3) If deg(Q) = deg(Q′), then

ν(Q) < ν(Q′)⇐⇒ νQ(Q′) < ν(Q′)⇐⇒ δ(Q) < δ(Q′).

Lemma 2.10. (Corollaries 3.9, 3.10, 3.11 and 3.13 of [11]) Let Q,Q′ ∈ K[x] be

key polynomials such that δ(Q) ≤ δ(Q′).
(1) We have νQ′(Q) = ν(Q).

(2) For every f ∈ K[x], we have νQ(f) ≤ νQ′(f). In particular, if δ(Q) = δ(Q′)

then νQ = νQ′ .

(3) For every f ∈ K[x], if νQ(f) = ν(f), then νQ′(f) = ν(f).

(4) For every f ∈ K[x], if δ(Q) < δ(Q′) and νQ′(f) < ν(f), then

νQ(f) < νQ′(f).

Remark 2.11. In [13] and [11] the definition of key polynomial and the above

results are stated using the notion of ε(f) instead of δ(f). For a non-zero polynomial

f 6∈ supp(ν) with deg(f) > 0, one defines

ε(f) := max
1≤b≤deg(f)

{
ν(f)− ν(∂bf)

b

∣∣∣∣ ∂bf 6∈ supp(ν)

}
∈ ΓQ,

where ∂bf is the formal Hasse-derivative of order b of f . If f 6∈ supp(ν) and

deg(f) = 0, then we set ε(f) := −∞ and if f ∈ supp(ν), then we set ε(f) := ∞.

Proposition 3.1 of [10] shows that δ(f) = ε(f) for all f ∈ K[x].

3. Graded ring associated to a valuation

Let ν be a valuation on K[x]. For each γ ∈ ν(K[x]), we consider the abelian

groups

Pγ = {f ∈ K[x] | ν(f) ≥ γ} and P+
γ = {f ∈ K[x] | ν(f) > γ}.

Definition 3.1. The graded ring associated to ν is defined by

Gν = grν(K[x]) :=
⊕

γ∈ν(K[x])

Pγ/P+
γ .

The sum on Gν is defined coordinatewise and the product is given by extending

the product of homogeneous elements, which is described by(
f + P+

β

)
·
(
g + P+

γ

)
:=
(
fg + P+

β+γ

)
,

where β = ν(f) and γ = ν(g).
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For f 6∈ supp(ν), we denote by inν(f) the image of f in Pν(f)/P+
ν(f) ⊆ Gν .

If f ∈ supp(ν), then we define inν(f) = 0. The next lemma follows from the

definitions above.

Lemma 3.2. Let f, g ∈ K[x]. We have the following.

(1) Gν is an integral domain.

(2) inν(f) · inν(g) = inν(fg).

(3) inν(f) = inν(g) if and only if ν(f − g) > ν(f) = ν(g).

Let νi and νj be valuations on K[x] such that νi(f) ≤ νj(f) for all f ∈ K[x]. Let

Pγ(K[x], νi) = {f ∈ K[x] | νi(f) ≥ γ} (analogously we define Pγ(K[x], νj),P+
γ (K[x], νi)

and P+
γ (K[x], νj)). We have the inclusions

Pγ(K[x], νi) ⊆ Pγ(K[x], νj)

and

P+
γ (K[x], νi) ⊆ P+

γ (K[x], νj)

for any γ ∈ νi(K[x]) ⊆ νj(K[x]). We consider the following map:

φij : Gνi −→ Gνj(2)

inνi(f) 7−→

{
inνj (f) if νi(f) = νj(f)

0 if νi(f) < νj(f),

and we extend this map naturally for an arbitrary element. This map is well-defined

(Corollary 5.5 of [3]) and, by construction, it is a homomorphism of graded rings.

Suppose that q ∈ K[x] is such that νq is a valuation. Let Rq be the additive

subgroup of Gνq generated by the set

{inνq (f) | f ∈ K[x]d},

where d = deg(q) and K[x]d = {f ∈ K[x] | deg(f) < d}. We set yq := inνq (q). The

next propositions say that a non-zero yq can be seen as a transcendental element

over Rq and that Rq is a subring of Gνq if and only if q is a key polynomial for ν.

Proposition 3.3. (Proposition 4.5 of [11]) We have

Gνq = Rq[yq].

Moreover, if q ∈ supp(ν), then Gνq = Rq. If q 6∈ supp(ν), then yq is such that if

a0 + a1yq + . . .+ asy
s
q = 0

for some a0, . . . , as ∈ Rq, then ai = 0 for every i, 0 ≤ i ≤ s.

Proposition 3.4. (Theorem 5.7 of [12]) Suppose νq is a valuation on K[x]. Then

the following assertions are equivalent.

(i): q is a key polynomial for ν.

(ii): The set Rq is a subring of Gνq .
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4. Totally ordered sets of valuations and direct limits

Take V as in the introduction, that is,

V = {ν0} ∪ {ν : K[x]→ Γ∞ | ν is a valuation extending ν0}.

Consider the partial order on V given by ν0 ≤ ν for every ν ∈ V and, for ν, µ ∈
V \ {ν0}, we set ν ≤ µ if and only if ν(f) ≤ µ(f) for every f ∈ K[x]. We say that

ν < µ if ν ≤ µ and there exists g ∈ K[x] such that ν(g) < µ(g). In V we have the

following property.

Proposition 4.1. (Proposition 2.2 of [2]) Assume η, ν, µ ∈ V are such that

η < ν < µ. For f ∈ K[x], if η(f) = ν(f), then ν(f) = µ(f).

Let v = {νi}i∈I ⊂ V be a totally ordered set. Consider a total order on the index

set I induced from the order on v. Since we have a total order, (I,≤) is a directed

set.1

Lemma 4.2. Let v = {νi}i∈I be a totally ordered set in V. Consider the family of

graded rings {Gνi}i∈I . For νi ≤ νj, let φij be the map

φij : Gνi −→ Gνj

inνi(f) 7−→

{
inνj (f) if νi(f) = νj(f)

0 if νi(f) < νj(f),

extended in a natural way to arbitrary (that is, not necessarily homogeneous) ele-

ments of Gνi . Then {(Gνi , φij)}
i,j∈I
i≤j is a direct system over I.

Proof. We need to check that φii is the identity map and φik = φjk ◦ φij for all

i ≤ j ≤ k.

• By definition, φii(inνi(f)) = inνi(f) for every f ∈ K[x], hence φii is the

identity map on Gνi .
• Take i ≤ j ≤ k, that is,

(3) νi(f) ≤ νj(f) ≤ νk(f)

for all f ∈ K[x]. If the strict inequality holds in some of the inequalities of

(3), then

(φjk ◦ φij)(inνi(f)) = 0 = φik(inνi(f)).

If νi(f) = νj(f) = νk(f), then

(φjk ◦ φij)(inνi(f)) = inνk(f) = φik(inνi(f)).

Hence, φik = φjk ◦ φij for all i ≤ j ≤ k.

Therefore, {(Gνi , φij)}
i,j∈I
i≤j is a direct system over I.

�

1That is, ≤ is reflexive and transitive relation on v such that, for every νi, νj ∈ v, there exists

νk ∈ v satisfying νi ≤ νk and νj ≤ νk.
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Remark 4.3. We do not gain in generality if we suppose v = {νi}i∈I simply a

directed set, because every directed set in V is totally ordered. Indeed, if v ⊂ V is a

directed set, then given ν, µ ∈ v there exists η ∈ v such that ν ≤ η and µ ≤ η. By

Theorem 2.4 of [9], the set (−∞, η) = {ρ ∈ V | ρ < η} is totally ordered. Therefore,

ν and µ are comparable.

We want to describe the direct limit of the direct system {(Gνi , φij)}
i,j∈I
i≤j . We

are going to use the characterization of lim
−→
Gνi as a disjoint union. The direct limit

of the direct system {(Gνi , φij)}
i,j∈I
i≤j is defined as

lim
−→
Gνi :=

⊔
i∈I
Gνi /∼ ,

where ∼ is the following equivalence relation: for ai ∈ Gνi and aj ∈ Gνj with i ≤ j,

ai ∼ aj ⇐⇒ φij(ai) = aj .

We denote by [ai] the equivalence class of ai in lim
−→
Gνi . The operations on lim

−→
Gνi

are induced from each Gνi . Denoting by 0i the additive identity of Gνi , it is easy

to see that [0i] = [0j ] for all i, j ∈ I. We write only [0] to denote [0i], which is

the additive identity of lim
−→
Gνi . Similarly, if inνi(1) is the multiplicative identity of

Gνi , it is easy to see that [inνi(1)] = [inνj (1)] for all i, j ∈ I. The equivalence class

[inνi(1)] is the multiplicative identity of lim
−→
Gνi . We also have the following.

Lemma 4.4. For fixed k ∈ I and f ∈ K[x], consider [inνk(f)] ∈ lim
−→
Gνi .

(1) We have νk(f) < νj(f) for some j > k if and only if [inνk(f)] = [0].

(2) For j ≥ k, if νk(f) = νj(f), then [inνk(f)] = [inνj (f)]. Moreover, if

νk(f) = νj(f) for every j ≥ k, then [inνk(f)] 6= [0].

Proof.

(1) If νk(f) < νj(f) for some j > k, then

φkj(inνk(f)) = 0j .

Hence, [inνk(f)] = [0]. On the other hand, if [inνk(f)] = [0], then there

exists j ≥ k such that

φkj(inνk(f)) = 0j .

By the definition of φkj , this implies νk(f) < νj(f) and k < j.

(2) For j ≥ k, if νk(f) = νj(f), then

φkj(inνk(f)) = inνj (f).

Hence, we have [inνk(f)] = [inνj (f)]. Moreover, if νk(f) = νj(f) for every

j ≥ k, then by the preceding item we have [inνk(f)] 6= [0].

�
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Let v = {νi}i∈I be a totally ordered subset of V. For every f ∈ K[x], we say

that f is v-stable if there exists if ∈ I such that

(4) νi(f) = νif (f) for every i ∈ I with i ≥ if .

In the following, let v = {νi}i∈I be a totally ordered subset of V and suppose

there exists ν ∈ V such that νi ≤ ν for every i ∈ I.

Lemma 4.5. Fix k ∈ I. We have the following.

(1) If νk(f) < ν(f), then νk(f) < νj(f) for every j > k.

(2) We have νk(f) = ν(f) if and only if νk(f) = νj(f) for every j ≥ k. In

other words, f is v-stable if and only if νk(f) = ν(f) for some k ∈ I.

Proof.

(1) If there exists j > k such that νk(f) = νj(f), then νk(f) = νj(f) < ν(f)

and νk < νj < ν, contradicting Proposition 4.1.

(2) Suppose νk(f) = ν(f). If there exists j > k such that νk(f) < νj(f),

then ν(f) = νk(f) < νj(f), which is a contradiction. Conversely, suppose

νk(f) = νj(f) for every j ≥ k. If νk(f) < ν(f), then by the preceding item

we would have νk(f) < νj(f) for every j > k, contradicting our assumption.

�

Let S ⊂ Gν be any subset. We denote by 〈S〉 the additive subgroup of Gν
generated by S. We define

R = 〈{inν(f) | f is v-stable}〉 ⊆ Gν .

Lemma 4.6. We have the following.

(1) R is a subring of Gν .

(2) Let d ∈ N∪{∞} be the smallest positive integer for which some polynomial

of degree is not v-stable (if there is no such polynomial, set d =∞). Then

R = 〈{inν(f) | f ∈ K[x]d}〉.

Proof.

(1) By construction, R is an additive subgroup of Gν and clearly inν(1) ∈ R.

For inν(f), inν(g) ∈ R, we take k = max{if , ig}. Then, for every j ≥ k, it

follows that

νj(fg) = νj(f) + νj(g) = νk(f) + νk(g) = νk(fg).

That is, fg is v-stable and then inν(fg) ∈ R. This shows that R is a subring

of Gν .

(2) If d = ∞, then K[x]d = K[x] and every f is v-stable. Hence, the result

follows. Suppose d < ∞ and take Q ∈ K[x] not v-stable and deg(Q) = d.

We denote R′ = 〈{inν(f) | f ∈ K[x]d}〉. We have R′ ⊆ R since deg(f) < d

implies f is v-stable (by the minimality of d = deg(Q)).
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Consider inν(f) ∈ R, hence f is v-stable. Let f = gQ+ f0 the euclidean

division of f by Q. Thus, deg(f0) < d and f0 is also v-stable. By Lemma 4.5

and the fact that Q is not v-stable, we have that ν(Q) > νi(Q) for every

i ∈ I. Take k = max{if , if0}. Hence, νk(f) = νj(f) and νk(f0) = νj(f0)

for every j ≥ k. By Lemma 4.5, ν(f) = νk(f) and ν(f0) = νk(f0). Thus,

ν(f − f0) = ν(gQ)

> νk(gQ)

≥ min{νk(f), νk(f0)}

= min{ν(f), ν(f0)}.

Hence, ν(f −f0) > ν(f) = ν(f0), that is, inν(f) = inν(f0) ∈ R′. Therefore,

R = R′.

�

Now we present our main result.

Theorem 4.7. We have

lim
−→
Gνi ∼= R.

Proof. Consider the map given by

τ : R −→ lim
−→
Gνi

inν(f) 7−→ [inνif (f)],

where we extend τ naturally to arbitrary (that is, not necessarily homogeneous)

elements of R by additivity. This map is well defined. Indeed, take inν(f) ∈ R. By

assumption, f is v-stable, so there exists if ∈ I such that (4) is satisfied. If jf is

another index such that νi(f) = νjf (f) for every i ∈ I with i ≥ jf , then without loss

of generality we can take if ≤ jf . Hence, by Lemma 4.4 (2), [inνif (f)] = [inνjf (f)].

Also, suppose f, g ∈ K[x] are such that inν(f) = inν(g) ∈ R. By Lemma 3.2

(3), this means that ν(f − g) > ν(f) = ν(g). By Lemma 4.6 (2), we can consider

f, g ∈ K[x]d. Hence, f − g ∈ K[x]d and f, g and f − g are v-stable. Take k =

max{if , ig, if−g}. By Lemma 4.5,

νk(f) = ν(f), νk(g) = ν(g) and νk(f − g) = ν(f − g).

Then,

νk(f − g) = ν(f − g)

> min{ν(f), ν(g)}

= min{νk(f), νk(g)}.

We conclude that inνk(f) = inνk(g). Therefore, using Lemma 4.4 we have

τ(inν(f)) = [inνif (f)] = [inνk(f)] = [inνk(g)] = [inνig (g)] = τ(inν(g))

and we see that τ is well defined.
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Since we extended τ to arbitrary elements of R via finite sums, this map is a

group homomorphism by construction. We now check that τ is a ring isomorphism.

• τ is injective: since it is a group homomorphism, it is enough to check that

ker(τ) = {0}. Given a non-zero element inν(f) ∈ R, we know that νif (f) =

νj(f) for every j ≥ if . By Lemma 4.4 (2), τ(inν(f)) = [inνif (f)] 6= [0].

Hence, ker(τ) = {0} and τ is injective.

• τ is surjective: take any [inνk(f)] ∈ lim
−→
Gνi . If there exists j > k such that

νk(f) < νj(f), then by Lemma 4.4 (1) we have [inνif (f)] = [0] = τ(0). On

the other hand, if νk(f) = νj(f) for every j ≥ k, then we can take if = k

and [inνk(f)] = [inνif (f)] = τ(inν(f)). Therefore, τ is surjective.

• τ is a ring homomorphism: for any inν(f), inν(g) ∈ R, we can take j ∈ I
sufficiently large so that j ≥ max{ifg, if , ig}. We have

τ(inν(f) · inν(g)) = τ(inν(fg))

= [inνj (fg)]

= [inνj (f) · inνj (g)]

= [inνj (f)] · [inνj (g)]

= τ(inν(f)) · τ(inν(g)).

Also, τ preserves the multiplicative identity since, by definition, τ(inν(1)) =

[inνi(1)] (for any i ∈ I), which is the unity of lim
−→
Gνi .

Therefore, we have lim
−→
Gνi ∼= R as commutative rings with unity.

�

We will classify the totally ordered subsets v ⊂ V in three classes using the

following proposition.

Proposition 4.8. (Corollary 2.3 of [2]) Let {νi}i∈I be a totally ordered set in V.

For every f ∈ K[x], either {νi(f)}i∈I is strictly increasing, or there exists i0 ∈ I
such that νi(f) = νi0(f) for every i ∈ I with i ≥ i0.

We consider three cases:

• v has maximum νm.

• v has no maximum and every f ∈ K[x] is v-stable.

• v has no maximum and there exists q ∈ K[x] not v-stable.

4.1. First and second cases.

Proposition 4.9. Let v = {νi}i∈I be a totally ordered set in V such that every

f ∈ K[x] is v-stable. Define ν = sup
i∈I

νi : K[x] → Γ∞ by ν(f) = νif (f). Then ν is

a valuation on K[x] such that νi ≤ ν. Moreover, if ν′ ∈ V is such that ν′ ≤ ν and

νi ≤ ν′ for every i ∈ I, then ν′ = ν.
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Proof. Take f, g ∈ K[x]. Then, by assumption, there exist if , ig, if+g and ifg
satisfying (4). Take j = max{if , ig, if+g, ifg}. Hence,

ν(fg) = νj(fg) = νj(f) + νj(g) = ν(f) + ν(g)

and

ν(f + g) = νj(f + g) ≥ min{νj(f), νj(g)} = min{ν(f), ν(g)}.
Also, ν(0) = νi0(0) =∞ and ν(1) = νi1(1) = 0. Therefore, ν is a valuation on K[x].

In addition, for each f ∈ K[x] and i ∈ I, we have νi(f) ≤ νif (f) = ν(f). Hence,

νi ≤ ν.

Moreover, suppose ν′ ∈ V is such that ν′ ≤ ν and νi ≤ ν′ for every i ∈ I. Thus,

for every f ∈ K[x] we have

ν(f) ≥ ν′(f) ≥ νif (f) = ν(f).

Therefore, ν′ = ν.

�

Remark 4.10. If v = {νi}i∈I has maximum νm, then every f is v-stable (take

if = m). Hence, ν in Proposition 4.9 coincides with νm.

We have the following corollary, which covers the first and second cases.

Corollary 4.11. Let v = {νi}i∈I be a totally ordered set in V such that every

f ∈ K[x] is v-stable. Consider the direct system {(Gνi , φij)}
i,j∈I
i≤j . Take ν = sup

i∈I
νi

as in Proposition 4.9. Then lim
−→
Gνi ∼= Gν as commutative rings with unity.

Proof. It follows from Theorem 4.7 because R = Gν .

�

4.2. Third case. Now we treat the third case. Let v = {νi}i∈I be a totally ordered

set in V such that v has no maximum and there is at least one polynomial that is

not v-stable. Consider the set

C(v) := {f ∈ K[x] | f is v-stable }.

For every f ∈ C(v) we set v(f) = νif (f). Let Q be a monic polynomial of smallest

degree d not v-stable and take γ ∈ Γ∞ such that γ > νi(Q) for every i ∈ I.

Consider the map

µ(f0 + f1Q+ . . .+ frQ
r) = min

0≤j≤r
{v(fj) + jγ},

where f0 + f1Q+ . . .+ frQ
r is the Q-expansion of f .

Proposition 4.12. We have the following.

(1) We have µ ∈ V.

(2) We have νi < µ for every i ∈ I.

(3) We have µ = µQ and Q is a key polynomial for µ.
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Proof.

(1) By Theorem 2.4 of [2], µ is valuation. It follows from the definition that

ν0 = µ |K.

(2) Using Proposition 1.21 of [16] and Theorem 5.1 of [8], one can prove that

νi(f) ≤ µ(f) for every f ∈ K[x]. Also, νi(Q) < γ = µ(Q) for every i ∈ I.

Hence, νi < µ for every i ∈ I.

(3) It follows immediately from the definition of µ that µ = µQ. We now prove

that Q is a key polynomial for µ. Take f, g ∈ K[x] with deg(f) < deg(Q)

and deg(g) < deg(Q) and suppose fg = lQ+r is the Q-expansion of fg. We

will prove that µ(fg) = µ(r) < µ(lQ). Since deg(f),deg(g),deg(l),deg(r) <

deg(Q), by the minimality of deg(Q) all f, g, l and r are v-stable. Since

µ(Q) = γ > νi(Q) for every i ∈ I, we take k > max{if , ig, il, ir} and then

µ(lQ) = µ(l) + µ(Q)

> νk(l) + νk(Q)

≥ min{νk(r), νk(fg)}

= min{µ(r), µ(fg)}.

By Proposition 2.6, Q is a key polynomial for µ.

�

Let RQ be the additive subgroup of Gµ generated by the set {inµ(f) | f ∈ K[x]d}.
Since Q is a key polynomial for µ, Proposition 3.4 guarantees that RQ is a subring

of Gµ.

Corollary 4.13. Let v = {νi}i∈I be a totally ordered set in V such that v has

no maximum and there is at least one polynomial that is not v-stable. Let Q be a

monic polynomial of smallest degree d that is not v-stable and take γ ∈ Γ∞ such

that γ > νi(Q) for every i ∈ I. Take µ as in Proposition 4.12 and RQ as in the

above paragraph. Consider the direct system {(Gνi , φij)}
i,j∈I
i≤j . Then lim

−→
Gνi ∼= RQ

as commutative rings with unity.

Proof. By Theorem 4.7 and Lemma 4.6, we have lim
−→
Gνi ∼= R = RQ.

�

Corollary 4.14. We have

Gµ ∼= (lim
−→
Gνi)[Y ],

where Y is an indeterminate over lim
−→
Gνi .

Proof. By Proposition 3.3, Gµ = RQ[yQ], with yQ = inµ(Q). Then, we extend the

isomorphism lim
−→
Gνi ∼= RQ to an isomorphism (lim

−→
Gνi)[Y ] ∼= Gµ by sending Y to

yQ.

�
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5. Limit key polynomials and direct limits

Let ν be a valuation on K[x] extending ν0. Take n ∈ N and let Ψn denote the

set of all key polynomials for ν with degree n. Assume that Ψn 6= ∅ and that

{ν(Q) | Q ∈ Ψn} does not have a maximum. Consider the set

Kn := {f ∈ K[x] | νQ(f) < ν(f) for all Q ∈ Ψn}.

Lemma 5.1. Take Qn ∈ Kn a monic of polynomial of least degree. Then Qn is a

key polynomial for ν.

Proof. Consider f1, f2 ∈ K[x] with deg(f1),deg(f2) < deg(Qn) and suppose f1f2 =

f3Qn + f4 is the Qn expansion of f1f2. Since each fl, 1 ≤ l ≤ 4, has degree smaller

than deg(Qn), it follows by the minimality of deg(Qn) that fl 6∈ Kn. Hence, for each

l, 1 ≤ l ≤ 4, there exists Ql ∈ Ψn such that νQl
(fl) = ν(fl). Since {ν(Q) | Q ∈ Ψn}

does not have a maximum, there exists Q ∈ Ψn such that ν(Ql) < ν(Q) for all l,

1 ≤ l ≤ 4. By Lemma 2.9 (iii) and Lemma 2.10 (iii), it follows that νQ(fl) = ν(fl)

for every l, 1 ≤ l ≤ 4. Thus,

ν(f3Qn) = ν(f3) + ν(Qn)

> νQ(f3) + νQ(Qn)

= νQ(f1f2 − f4)

≥ min{νQ(f1f2), νQ(f4)}

= min{ν(f1f2), ν(f4)}.

Therefore, ν(f1f2) = ν(f4) < ν(f3Qn) and then Qn is a key polynomial for ν by

Proposition 2.6.

�

Definition 5.2. A monic polynomial Qn ∈ K[x] is called a limit key polynomial

for Ψn if Qn ∈ Kn and Qn has the least degree among polynomials in Kn.

Consider the following relation on Ψn:

(5) Q � Q′ ⇔ νQ ≤ νQ′ and Q ≺ Q′ ⇔ νQ < νQ′ .

We note that if we take Q,Q′ ∈ Ψn, then either Q � Q′ or Q′ � Q. Indeed,

considering δ(Q), δ(Q′) ∈ ΓQ, since they belong to a totally ordered group, we have

δ(Q) ≤ δ(Q′) or δ(Q′) ≤ δ(Q). By Lemma 2.10 (2), for every f ∈ K[x] we have

νQ(f) ≤ νQ′(f) or νQ′(f) ≤ νQ(f), that is, Q � Q′ or Q′ � Q. Therefore, with this

pre-order (Ψn,�) is a directed set. It follows also that v = {νQ}Q∈Ψn
is a totally

ordered set.
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Corollary 5.3. Consider the family of graded rings {GQ}Q∈Ψn
and, for Q � Q′,

let φQQ′ be the map

φQQ′ : GQ −→ GQ′

inQ(f) 7−→

{
inQ′(f) if νQ(f) = νQ′(f)

0 if νQ(f) < νQ′(f),

extended naturally to arbitrary (that is, not necessarily homogeneous) elements of

GQ. Then {(GQ, φQQ′)}Q,Q
′∈Ψn

Q�Q′ is a direct system over Ψn.

Proof. This follows from Lemma 4.2 because {νQ}Q∈Ψn is a totally ordered set.

�

In the next lemma we gather some properties of limit key polynomials for Ψn.

These properties will allow us to prove that v = {νQ}Q∈Ψn
has no maximum.

Lemma 5.4. Let Qn be a limit key polynomial for Ψn.

(1) We have δ(Q) < δ(Qn) for every Q ∈ Ψn. Hence, deg(Qn) ≥ n.

(2) For every Q ∈ Ψn, we have νQ(f) ≤ νQn
(f) for all f ∈ K[x] and

νQ(Qn) < νQn
(Qn) = ν(Qn). Also, νQ(Qn) < νQ′(Qn) for every Q ≺ Q′

in Ψn.

(3) If deg(f) < deg(Qn), then there exists Q̄ ∈ Ψn (depending on f) such that

νQ̄(f) = νQn
(f) = ν(f). Moreover, νQ(f) = νQ̄(f) for every Q ∈ Ψn with

Q̄ � Q.

Proof.

(1) Suppose δ(Qn) ≤ δ(Q). Hence, by Lemma 2.10 (2), νQn
(f) ≤ νQ(f) for

every f ∈ K[x]. In particular, ν(Qn) = νQn(Qn) ≤ νQ(Qn). However,

this contradicts Qn ∈ Kn. Therefore, δ(Q) < δ(Qn) for every Q ∈ Ψn.

Now suppose deg(Qn) < n = deg(Q). By Lemma 2.9 (1), we would have

δ(Qn) < δ(Q), a contradiction. Thus, deg(Qn) ≥ n.

(2) By Lemma 2.10, Lemma 2.9 and the preceding item, we have

νQ(f) ≤ νQn
(f) for all f ∈ K[x] and νQ(Qn) < νQn

(Qn) = ν(Qn) for

every Q ∈ Ψn. Also, take Q ≺ Q′, that is, there exists g ∈ K[x] such that

νQ(g) < νQ′(g). Thus, by Lemma 2.10 (2), we must have δ(Q) < δ(Q′).

Since νQ′(Qn) < ν(Qn), we see by Lemma 2.10 (4) that νQ(Qn) < νQ′(Qn).

(3) Take f ∈ K[x] such that deg(f) < deg(Qn). By the preceding item,

νQ(f) ≤ νQn
(f) = ν(f) for every Q ∈ Ψn. Since Qn has the min-

imal degree among polynomials in Kn, there exists Q̄ ∈ Ψn such that

νQ̄(f) = νQn
(f) = ν(f). Now, if Q ∈ Ψn is such that Q̄ � Q, then

νQn
(f) ≥ νQ(f) ≥ νQ̄(f) = νQn

(f).

Hence, νQ(f) = νQ̄(f).

�
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Corollary 5.5. The family v = {νQ}Q∈Ψn
is a totally ordered subset of V with no

maximum. Also, Qn is a polynomial of least degree that is not v-stable. If we take

γ = ν(Qn), then νQn
(f) = min

0≤j≤r
{v(fj) + jγ}, where f0, . . . , fr are the coefficients

of the Qn-expansion of f .

Proof. We already saw that v = {νQ}Q∈Ψn
is a totally ordered set. Suppose,

aiming for a contradiction, that v has maximum νQ′′ . Then νQ(f) ≤ νQ′′(f) for

all Q ∈ Ψn and f ∈ K[x]. Since {ν(Q) | Q ∈ Ψn} does not have a maximum,

there exists Q′ ∈ Ψn such that δ(Q′′) < δ(Q′) (Lemma 2.9). By Lemma 2.10 (2),

νQ′′(f) ≤ νQ′(f), which implies νQ′′(f) = νQ′(f) for all f ∈ K[x]. However, by

Lemma 5.4 (2), we have νQ′(Qn) < ν(Qn) and this, together with Lemma 2.10 (4),

implies νQ′′(Qn) < νQ′(Qn), a contradiction to the maximality of νQ′′ . Therefore,

v has no maximum.

By Lemma 5.4 (2), we have νQ(Qn) < νQ′(Qn) for Q ≺ Q′, that is, Qn is not v-

stable. Also, we have νQ(Qn) < ν(Qn) = γ for allQ ∈ Ψn. Moreover, by Lemma 5.4

(3), if deg(g) < deg(Qn), then there exists Q̄ ∈ Ψn such that νQ̄(g) = νQ(g) for

every Q ∈ Ψn with Q̄ � Q. That is, g is v-stable and ν(g) = νQ̄(g) = v(g). Thus,

for every f ∈ K[x], we can write f = f0 + f1Qn + . . .+ frQ
r
n and conclude that

νQn(f) = min
0≤j≤r

{ν(fj) + jν(Qn)} = min
0≤j≤r

{v(fj) + jγ}.

�

Corollary 5.6. We have lim
−→
GQ ∼= RQn

as commutative rings with unity and

GQn
∼= (lim
−→
GQ)[Y ].

Proof. It follows from Corollary 4.13 and Corollary 4.14.

�

6. Valuation-algebraic valuations and direct limits

In this last section, we give an application for Corollary 4.11. We start defining

the concepts of valuation-transcendental and valuation-algebraic valuations.

Definition 6.1. A valuation ν on K[x] extending ν0 is called

value-transcendental if either it is not Krull or the quotient group ν(K[x])/ν0K
is not a torsion group. We say that ν is residue-transcendental if it is Krull

and the field extension K(x)ν | Kν0 is transcendental, where we denote also by ν

the unique extension of ν from K[x] to K(x).

Definition 6.2. A valuation ν on K[x] extending ν0 is called valuation-transcen-

dental if it is value-transcendental or residue-transcendental. We say that ν is

valuation-algebraic if it is not valuation-transcendental.
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Remark 6.3. By Abhyankar’s inequality (see [18], p.330), we see that a valuation

cannot be value-transcendental and residue-transcendental at the same time.

Remark 6.4. Explicitly, a valuation ν on K[x] extending ν0 is valuation-algebraic

if it is a Krull valuation, ν(K[x])/ν0K is a torsion group and K(x)ν | Kν0 is an

algebraic field extension.

Lemma 6.5. Let ν be a valuation-algebraic valuation on K[x] extending ν0 on K.

Suppose that q is a polynomial such that νq is a valuation. Then νq is residue-

transcendental.

Proof. By Theorem 3.1 of [10], we have that νq is valuation-transcendental. Given

f ∈ K[x], f 6= 0, we know that

νq(f) = min
0≤i≤r

{ν(fi) + iν(q)} ∈ ν(K[x]),

where f0, . . . , fr are the coefficients of the q-expansion of f . Since ν is valuation-

algebraic, ν(K[x])/ν0K is a torsion group. Hence, νq(f) is a torsion element in

νq(K[x])/ν0K for every f ∈ K[x], f 6= 0. Therefore, νq is not value-transcendental

and, due to Remark 6.3, we see that νq is a residue-transcendental valuation.

�

To a given valuation-algebraic valuation ν, we are going to associate a totally

ordered subset of V. In order to do that, we use the results of [13] on complete sets,

which we define bellow.

Definition 6.6. Let ν be a valuation on K[x]. A set Q ⊂ K[x] of key polynomials

for ν is called a complete set of key polynomials for ν if for every f ∈ K[x]

with deg(f) ≥ 1 there exists Q ∈ Q with deg(Q) ≤ deg(f) such that νQ(f) = ν(f).

Proposition 6.7. (Theorem 1.1 of [13]) Every valuation ν on K[x] admits a com-

plete set Q of key polynomials.

Remark 6.8. As remarked in [11], the definition of complete set in Theorem 1.1

of [13] does not require that deg(Q) ≤ deg(f). However, the proof of the Theorem

shows that this inequality always holds.

Proposition 6.9. Let ν ∈ V be a valuation-algebraic valuation. Then there exists

a totally ordered subset v = {νi}i∈I ⊂ V without maximum such that every f ∈ K[x]

is v-stable, ν = sup
i∈I

νi and each νi is residue-transcendental.

Proof. By Proposition 6.7, there exists a complete set Q of key polynomials for ν.

Consider v = {νQ}Q∈Q ⊂ V, which is totally ordered due to Lemma 2.10 (2). We
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order the set Q by posing Q � Q′ if and only if νQ ≤ νQ′ . By Lemma 6.5, each νQ
is residue-transcendental.

We now show that every f ∈ K[x] is v-stable. Indeed, for every f ∈ K[x], there

exists Q ∈ Q such that deg(Q) ≤ deg(f) and νQ(f) = ν(f). If Q � Q′, then we

have the following:

• if δ(Q′) ≤ δ(Q), then νQ′(f) ≤ νQ(f) (Lemma 2.10 (2)), that is, νQ′(f) =

νQ(f) = ν(f);

• if δ(Q) < δ(Q′), then by Lemma 2.10 (3) we have that νQ(f) = ν(f) implies

νQ′(f) = ν(f).

Hence, Q � Q′ implies νQ′(f) = νQ(f) = ν(f). That is, f is v-stable and ν =

sup
Q∈Q

νQ as in Proposition 4.9. Moreover, suppose {νQ}Q∈Q has a maximum. Then

ν = sup
Q∈Q

νQ = νQm

for some Qm ∈ Q, which is a contradiction since ν is valuation-algebraic and νQm

is residue-transcendental. Therefore, {νQ}Q∈Q does not have a maximum.

�

Corollary 6.10. Let ν ∈ V be a valuation-algebraic valuation and take v =

{νi}i∈I ⊂ V as in Proposition 6.9. Then lim
−→
Gνi ∼= Gν as commutative rings with

unity.

Proof. It follows from Corollary 4.11.

�
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