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Spectral gap and strict outerness
for actions of locally compact groups on full factors

by Amine Marrakchi1 and Stefaan Vaes2

Abstract

We prove that an outer action of a locally compact group G on a full factor M is automat-
ically strictly outer, meaning that the relative commutant of M in the crossed product is
trivial. If moreover the image of G in the outer automorphism group OutM is closed, we
prove that the crossed product remains full. We obtain this result by proving that the in-
clusion of M in the crossed product automatically has a spectral gap property. Such results
had only been proven for actions of discrete groups and for actions of compact groups, by
using quite different methods in both cases. Even for the canonical Bogoljubov actions on
free group factors or free Araki-Woods factors, these results are new.

1 Introduction and main results

To every strongly continuous action Gyα M of a locally compact group G on a von Neumann
algebra M is associated the crossed product von Neumann algebra M oG. Questions on how
properties of the group action G yα M are reflected by properties of the crossed product
M o G or the inclusion M ⊂ M o G are among the most fundamental questions in operator
algebras. When G is a discrete group, several of the basic questions are easy to answer. For
instance, for discrete groups G, we have that the relative M ′ ∩M oG is as small as possible,
i.e. equal to the center Z(M), if and only if the action Gyα M is properly outer : if g ∈ G\{e}
and b ∈ M are such that bαg(a) = ab for all a ∈ M , then b = 0. In particular, for an action
G yα M of a discrete group G on a factor M , we have that M ′ ∩M oG = C1 if and only if
the action α is outer, meaning that αg is an outer automorphism for every g ∈ G \ {e}.
When the acting group G is no longer discrete, even these simple questions turn out to be
quite subtle. Following [Vae02], a strongly continuous action Gyα M on a factor M is called
strictly outer if M ′ ∩M o G = C1. It is easy to see that a strictly outer action α must be
outer. The converse is however by no means true (see e.g. Example 8 below). The main reason
why crossed products by discrete groups are easier to study is the availability of a Fourier
series decomposition for elements x ∈ M o G : denoting by E : M o G → M the canonical
conditional expectation and denoting by (ug)g∈G the canonical unitary elements in M oG, we
can define (x)g = E(xu∗g) and formally write x =

∑
g∈G(x)gug. When G is no longer discrete,

there typically is no normal conditional expectation of M oG onto M and there is no way to
define a Fourier series decomposition.

To illustrate the subtleness of strict outerness, we mention here one of the fundamental results
in modular theory for von Neumann algebras: by [CT76, Theorem 5.1], a trace scaling action
R yθ N of the group R on a II∞ factor N is strictly outer. Because an inner automorphism is
obviously trace preserving, a trace scaling action is outer, but its strict outerness is one of the
deepest results in modular theory, established in [CT76].

In our first main result, we prove that outerness and strict outerness are equivalent for actions of
a locally compact second countable (lcsc) groupG on a full factor with separable predual. Recall
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that a factor M with separable predual is called full if the group InnM of inner automorphisms
of M is closed in the group of all automorphisms AutM . When G is discrete, this result is
trivial, as mentioned above. When G is compact, this result was obtained recently in [BMO19]
using a method that is very specific for compact groups, making use of the subalgebra MG of
G-invariant elements, which could very well be trivial when G is noncompact.

Our second main result concerns the fullness of the crossed product M o G when G is a lcsc
group acting on a full factor M with separable predual. For such full factors, one considers the
Polish group OutM = AutM/ InnM . When G is discrete and M is a II1 factor, this question
was solved by Vaughan Jones in [Jon81, Theorem 1]. Jones proved that if Gyα M is an outer
action of a discrete group G on a II1 factor M and if the image of G in OutM is closed, then
M oG is full. More precisely, Jones proved that the inclusion M ⊂M oG has w-spectral gap
(see below) if and only of the image of G in OutM is closed. For arbitrary full factors M , not
necessarily of type II1, the same equivalence was proven when G is discrete in [Mar16, HMV16]
(see also [Mar18a]), and when G is compact in [BMO19]. The methods that were used in the
discrete case and in the compact case were rather disjoint. In our second main result, we prove
the equivalence in complete generality, for arbitrary full factors and locally compact groups,
concluding the line of research that started in [Jon81].

Let N ⊂ M be an inclusion of von Neumann algebras with separable predual. Generalizing
[Pop09, Section 2] beyond the II1 setting, we say that N ⊂ M has w-spectral gap if for every
bounded sequence an ∈ M satisfying anb − ban → 0 ∗-strongly for all b ∈ N , there exists a
bounded sequence dn ∈ N ′ ∩M satisfying an − dn → 0 ∗-strongly. We say that N ⊂ M has
stable w-spectral gap if 1⊗N ⊂ B(`2(N))⊗M has w-spectral gap.

Theorem A. Let G yα M be a strongly continuous action of a lcsc group G on a factor M
with separable predual. Assume that M is full. Denote by π : AutM → OutM the quotient
homomorphism.

1. If the action α is outer, then α is strictly outer.

2. The following three properties are equivalent.

(a) The action α is outer and the subgroup π(α(G)) of OutM is closed.

(b) The action α is strictly outer and M ⊂M oG has w-spectral gap.

(c) The action α is strictly outer and M ⊂M oG has stable w-spectral gap.

In particular, if α is outer and π(α(G)) is a closed subgroup of OutM , then M oG is a full
factor.

Given an ultrafilter ω on N, we denote by Pω the Ocneanu ultrapower of a von Neumann
algebra P with separable predual. So, whenever Gyα M is an outer action on a full factor with
π(α(G)) being a closed subgroup of OutM , Theorem A says in particular that M ′∩(MoG)ω =
C1. But the result of Theorem A is stronger, because it says that all bounded sequences
an ∈ M o G that asymptotically commute with M must be asymptotically scalar, without
requiring that (an)n∈N belongs to (M oG)ω.

A wide class of examples to which Theorem A applies is given by the free Bogoljubov actions
on free Araki-Woods factors. To every orthogonal representation U : R y HR is associated
Shlyakhtenko’s free Araki-Woods factor M = Γ(HR, U)′′, see [Shl96]. Whenever dimRHR ≥
2, the von Neumann algebra M is a full factor. When U is the trivial representation, this
construction coincides with Voiculescu’s free Gaussian functor and M ∼= L(FdimRHR). The
construction is functorial: to every orthogonal transformation v ∈ O(HR) that commutes with
U is associated the free Bogoljubov automorphism αv of M .
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We can then use Theorem A to provide the following sufficient condition for the fullness of a free
Bogoljubov crossed product. For discrete groups, this result was proven in [Hou12, Theorem
A] for the free Gaussian case, and in [HT18, Theorem B] for free Araki-Woods factors.

Corollary B. Let U : R y HR be a strongly continuous action of R by orthogonal transfor-
mations of a separable real Hilbert space HR with dimRHR ≥ 2. Denote by M = Γ(HR, U)′′

the associated free Araki-Woods factor. Let G be a lcsc group. To every strongly continuous
orthogonal representation π : G → O(HR) that commutes with U is associated the canonical
action Gyαπ M by free Bogoljubov automorphisms.

1. If π is faithful, then απ is strictly outer.

2. If π is faithful and π(G) ⊂ O(HR) is closed, then M ⊂M oαπ G has stable w-spectral gap.
In particular, M oαπ G is a full factor.

Note that the hypotheses of point 2 in Corollary B are automatically satisfied when π is a
faithful and mixing representation, e.g. when π is the left regular representation on L2

R(G).
More generally, if there exists a unit vector ξ ∈ HR such that 〈π(g)ξ, ξ〉 → 0 whenever g →∞
in G, then π(G) is a closed subgroup of O(HR). So, when G satisfies the Howe-Moore property,
e.g. when G is a connected noncompact simple real Lie group with finite center like SL(n,R),
then for every orthogonal representation π of G, the subgroup π(G) is closed.

It is very natural to try to generalize Theorem A to factors M that are not full, replacing OutM
in the hypotheses by the Polish group AutM/InnM . We discuss this problem in Section 4
and relate this to several open questions and partial results for outer actions of locally compact
groups on factors M that are no longer full.

2 Proof of Theorem A

To prove Theorem A, we can no longer use Fourier decompositions as in the discrete case,
and we can no longer use the co-amenability approach of [BMO19] which is too specific to the
compact case. Instead, we make substantial use of Hilbert bimodules. Fix a factor M with
separable predual.

Recall that a Hilbert M -M -bimodule MHM gives rise to the unital ∗-representation πH of
M ⊗max M

op on H given by
πH(a⊗ bop)ξ = aξb .

Recall that MHM is said to be weakly contained in MKM if ‖πH(T )‖ ≤ ‖πK(T )‖ for all T ∈
M ⊗max M

op.

Denote by L2(M) the standard Hilbert space ofM , which we view as the trivialM -M -bimodule.
View AutM as a Polish group. Whenever (X,µ) is a standard σ-finite measure space and
ρ : X → AutM is a Borel map, we define the M -M -bimodule H(ρ) by

H(ρ) = L2(M)⊗L2(X,µ) with (a · ξ · b)(x) = ρ(x)−1(a) ξ(x) b for all a, b ∈M , x ∈ X. (1)

When X is a singleton, and ρ is thus determined by a single α ∈ AutM , we denote by H(α)
the corresponding M -M -bimodule. Its carrier Hilbert space is L2(M) and the bimodule action
is given by a · ξ · b = α−1(a)ξb.

The following is the main technical lemma that is needed to prove Theorem A.
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Lemma 1. Let M be a full factor with separable predual. Denote by π : AutM → OutM
the quotient homomorphism. Let (X,µ) be a standard σ-finite measure space and let ρ : X →
AutM be a Borel map.

If α ∈ AutM is such that π(α) does not belong to the support of (π ◦ ρ)∗µ inside OutM ,
meaning that there exists an open set V ⊂ OutM with π(α) ∈ V and µ((π ◦ ρ)−1(V)) = 0, then
H(α) is not weakly contained in H(ρ).

Proof. SinceH(α−1)⊗MH(α) ∼= L2(M) andH(α−1)⊗MH(ρ) ∼= H(ρ′) where ρ′(x) = α−1◦ρ(x),
we may assume that α = id. We can then choose a neighborhood V of the identity in OutM
such that π(ρ(x)) ∈ OutM \ V for µ-almost every x ∈ X.

We distinguish three cases according to the type of M .

Type II1. By [Jon81, Lemma 4], we can take ε > 0 and a finite subset F ⊂ M such that for
all θ ∈ AutM \ π−1(V) and all b ∈M , we have

ε‖b‖22 ≤
∑
a∈F
‖ba− θ(a)b‖22.

By taking θ = ρ(x)−1, x ∈ X, and integrating this inequality with respect to µ, we obtain

ε‖ξ‖2 ≤
∑
a∈F
‖ξ · a− a · ξ‖2

for all ξ ∈ H(ρ). But, since L2(M) has an M -central vector, if L2(M) was weakly contained in
H(ρ), we would find a sequence of unit vectors ξn ∈ H(ρ) such that ‖ξn · a− a · ξn‖ → 0. This
contradicts the inequality above. We conclude that L2(M) is not weakly contained in H(ρ).

Type II∞. Take p ∈ M such that τ(p) = 1 where τ is the semifinite trace of M . By
[HMV16, Theorem 3.3], we can take ε > 0 and a finite subset F ⊂ pMp such that for all
θ ∈ AutM \ π−1(V) and all b ∈ θ(p)Mp, we have

ε‖b‖22 ≤
∑
a∈F
‖ba− θ(a)b‖22.

By taking θ = ρ(x)−1, x ∈ X, and integrating this inequality with respect to µ, we obtain

ε‖ξ‖2 ≤
∑
a∈F
‖ξ · a− a · ξ‖2

for all ξ ∈ p · H(ρ) · p. If L2(M) was weakly contained in H(ρ), then pL2(M)p = L2(pMp)
would also be weakly contained in p · H(ρ) · p as pMp-pMp-bimodules. Thus, we would find a
sequence of unit vectors ξn ∈ p · H(ρ) · p such that ‖ξn · a − a · ξn‖ → 0. This contradicts the
previous inequality. We conclude that L2(M) is not weakly contained in H(ρ).

Type III. This case is much more delicate and we need to use the technique of [Mar18b]. For
every faithful normal state ω on M , we denote by ξω ∈ L2(M) the canonical positive vector
that implements ω. Given two faithful normal states ψ and ϕ on M , we denote by ∆ψ,ϕ the
relative modular operator (see [Tak03, Theorem VIII.3.2 and Lemma IX.1.5]). Recall that ∆ψ,ϕ

is a positive nonsingular operator and that ∆
1/2
ψ,ϕ is the closure of the linear map bξϕ 7→ ξψb,

b ∈M . Also, using Connes’ cocycle derivative,

∆it
ψ,ϕ = [Dψ : Dϕ]t ∆it

ϕ = J [Dϕ : Dψ]tJ ∆it
ψ .

In particular, ∆it
ψ,ϕb∆

−it
ψ,ϕ = σψt (b) and ∆it

ψ,ϕJbJ∆−itψ,ϕ = Jσϕt (b)J for all b ∈ M , t ∈ R. Given a

state ϕ on M and θ ∈ AutM , we write θ(ϕ) = ϕ ◦ θ−1.
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By [HMV16, Theorem 3.2], there exists a faithful normal state ϕ ∈ M∗, a constant ε > 0
and a finite set F ⊂ M with aξϕ = ξϕa

∗ for all a ∈ F such that for all b ∈ M and all
θ ∈ AutM \ π−1(V), we have

ε‖bξϕ‖2 ≤
∑
a∈F
‖baξϕ − θ(a)bξϕ‖2 + inf

λ∈R+

‖bξϕ − λξθ(ϕ)b‖2 .

Denote ∆θ = ∆θ(ϕ),ϕ. It follows that

ε‖ξ‖2 ≤
∑
a∈F
‖ξa∗ − θ(a)ξ‖2 + inf

λ∈R+

‖ξ − λ∆
1/2
θ ξ‖2

for all θ ∈ AutM \ π−1(V) and all ξ in the domain of ∆
1/2
θ .

Let ∆ be the decomposable operator on H(ρ) obtained by integrating x 7→ ∆ρ(x)−1 . Then, we
can integrate the previous inequality to obtain

ε‖ξ‖2 ≤
∑
a∈F
‖ξ · a∗ − a · ξ‖2 + inf

λ∈R+

‖ξ − λ∆1/2ξ‖2 (2)

for all ξ ∈ H(ρ) in the domain of ∆1/2.

Assume that L2(M) is weakly contained in H(ρ). We then find a state ωϕ on B(H(ρ)) such
that

ωϕ(πH(ρ)(a⊗ bop)) = 〈aξϕb, ξϕ〉 for all a, b ∈M .

Since ∆it
θ θ(b)∆

−it
θ = σ

θ(ϕ)
t (θ(b)) = θ(σϕt (b)), while ∆it

θ JbJ∆−itθ = Jσϕt (b)J for all b ∈M , t ∈ R
and θ ∈ AutM , we get that

∆it πH(ρ)(a⊗ bop) ∆−it = πH(ρ)(σ
ϕ
t (a)⊗ σϕt (b)op) .

We also have that 〈σϕt (a)ξϕσ
ϕ
t (b), ξϕ〉 = 〈aξϕb, ξϕ〉. We can thus apply the method of [Mar18b,

Lemma 4.1] and may assume that ωϕ is strongly invariant under Ad ∆it.

By [Mar18b, Theorem 3.2], this means that ωϕ belongs to the weak∗ closed convex hull of
E ⊂ B(H(ρ))∗, where E is defined as the set of states ω on B(H(ρ)) for which there exists a
net of unit vectors ξi ∈ H(ρ) and a net of positive numbers λi > 0 such that ξi belongs to the
domain of ∆1/2 for every i and

〈Tξi, ξi〉 → ω(T ) for all T ∈ B(H(ρ)), and ‖ξi − λi∆1/2ξi‖ → 0 . (3)

Define the operator T ∈ B(H(ρ)) by

T =
∑
a∈F

πH(ρ)

(
a⊗ 1− 1⊗ (a∗)op

)∗
πH(ρ)

(
a⊗ 1− 1⊗ (a∗)op

)
.

Since aξϕ = ξϕa
∗ for all a ∈ F , we get that ωϕ(T ) = 0. Since ωϕ belongs to the weak∗ closed

convex hull of E , we can take ω ∈ E such that ω(T ) ≤ ε/2, where ε > 0 is as in (2). Take a
net of unit vectors ξi ∈ H(ρ) and a net of positive numbers λi > 0 such that ξi belongs to the
domain of ∆1/2 for every i and such that (3) holds. It follows that

lim
i

∑
a∈F
‖ξi · a∗ − a · ξi‖2 = ω(T ) ≤ ε/2 and ‖ξi − λi∆1/2ξi‖ → 0 .

But then (2) leads to the contradiction that ε ≤ ε/2.

The following lemma is an easy observation.
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Lemma 2. Let M be a factor with separable predual. Let X be a locally compact second
countable Hausdorff space and let ρ : X → AutM be a continuous map. Let µ be a σ-finite
Borel measure on X. If x ∈ X belongs to the support of µ, meaning that µ(U) > 0 for all open
sets U with x ∈ U , then H(ρ(x)) is weakly contained in H(ρ).

Proof. Choose a decreasing family of open sets Un ⊂ X that form a neighborhood basis of
x ∈ X. Since µ(Un) > 0, we can choose Borel sets Vn ⊂ Un such that 0 < µ(Vn) < +∞.
For every n, consider the unit vector ηn ∈ L2(X,µ) given by ηn = µ(Vn)−1/21Vn . Whenever
ξ ∈ L2(M) and a, b ∈M , it follows from the continuity of ρ that

lim
n
〈πH(ρ)(a⊗ bop)(ξ ⊗ ηn), ξ ⊗ ηn〉 = 〈πH(ρ(x))(a⊗ bop)ξ, ξ〉 .

Therefore, ‖πH(ρ(x))(T )ξ‖ ≤ ‖πH(ρ)(T )‖ ‖ξ‖, for every T ∈ M ⊗max M
op and ξ ∈ L2(M), so

that H(ρ(x)) is weakly contained in H(ρ).

Also the following lemma is straightforward.

Lemma 3. Let M be a von Neumann algebra, H a Hilbert space and an ∈M⊗B(H) a bounded
sequence satisfying an(1⊗T )− (1⊗T )an → 0 ∗-strongly for every compact operator T ∈ K(H).

Then for any unit vector ξ ∈ H with associated vector state ωξ on B(H), the bounded sequence
dn = (id⊗ ωξ)(an) in M satisfies an − dn ⊗ 1→ 0 ∗-strongly.

Proof. Fix a unit vector ξ ∈ H. Assume that M ⊂ B(K). Take µ ∈ K and η ∈ H arbitrary.
Define the rank one operator T ∈ K(H) by T (ζ) = 〈ζ, ξ〉 η. Then,

an(µ⊗ η) = an(1⊗ T ) (µ⊗ ξ) and (dn ⊗ 1)(µ⊗ η) = (1⊗ T )an (µ⊗ ξ) .

It follows that ‖(an − dn ⊗ 1)(µ ⊗ η)‖ → 0. So, an − dn ⊗ 1 → 0 strongly. By symmetry, also
a∗n − d∗n ⊗ 1→ 0 strongly and the lemma is proven.

We are then ready to prove Theorem A.

Proof of Theorem A. We define α : M → M ⊗ L∞(G) : α(a)(g) = αg−1(a), so that M o G is
realized as the von Neumann subalgebra of M ⊗B(L2(G)) generated by α(M) and the unitary
operators 1 ⊗ λg, g ∈ G, where λg is the left translation by g. We thus denote by α(M) the
canonical copy of M inside M oG. We also denote by λ the left Haar measure on G.

For every nonnegligible Borel set A ⊂ G, we denote by H(A) the M -M -bimodule associated
with the map A → AutM : g 7→ αg and the Haar measure λ on A, as in (1). We denote by
πA : M ⊗max M

op → B(H(A)) the corresponding ∗-homomorphism.

1. WriteN = α(M)′∩M⊗B(L2(G)). We claim thatN = 1⊗L∞(G). Note that 1⊗L∞(G) ⊂ N
and

(1⊗ L∞(G))′ ∩N = α(M)′ ∩M ⊗ L∞(G) = 1⊗ L∞(G) , (4)

because M is a factor. In particular, Z(N ) ⊂ 1⊗ L∞(G). To prove the claim, it thus suffices
to show that 1⊗ L∞(G) ⊂ Z(N ), because it then follows from (4) that

N ⊂ Z(N)′ ∩N ⊂ (1⊗ L∞(G))′ ∩N ⊂ 1⊗ L∞(G) .

Fix a compact subset K ⊂ G. It thus suffices to prove that 1⊗ 1K ∈ Z(N ).

Since Z(N ) ⊂ 1⊗L∞(G), we can take a Borel set A ⊂ G such that K ⊂ A and such that 1⊗1A
is the central support of 1⊗ 1K in N . We have to prove that λ(A \K) = 0. Define the closed
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set L ⊂ G as the support of the measure λ|A on G. By definition λ(A \L) = 0. Choose g ∈ L.
By Lemma 2, the M -M -bimodule H(g) is weakly contained in H(A) ∼= H(G,λ|A). Viewing N
as the algebra of bounded M -M -bimodular maps on H(G), it follows that the M -M -bimodules
H(K) and H(A) are quasi-equivalent. Thus, H(g) is weakly contained in H(K). Since K ⊂ G
is compact, (π ◦α)(K) ⊂ OutM is compact, and thus closed. By Lemma 1, we must have that
π(αg) ∈ π(α(K)). Since π ◦ α is injective, it follows that g ∈ K. Since g ∈ L was arbitrary, we
have proven that L ⊂ K. Since λ(A \ L) = 0, also λ(A \K) = 0 and the claim is proven.

To prove the first part of the theorem, take T ∈ α(M)′∩MoG. By the claim above, T = 1⊗F
for some F ∈ L∞(G). Denote by Ug ∈ U(L2(M)) the canonical unitary implementation of the
automorphism αg. By definition, the elements of M oG commute with the unitary operators
Uh⊗ρh, where ρh denotes the right regular representation on L2(G). It follows that F ∈ L∞(G)
commutes with all right translations, so that F ∈ C1.

2. The implication (c) ⇒ (b) is trivial. To prove that (b) ⇒ (a), assume that (a) does not
hold. If α is not outer, we find a unitary a ∈ U(M) and an element g ∈ G \ {e} such
that d = α(a)(1 ⊗ λg) commutes with α(M). Then the constant sequence d says that (b)
does not hold. If α is outer, but π(α(G)) is not closed in OutM , we can choose a sequence
gn → ∞ in G such that π(αgn) → id in OutM . So we find a sequence an ∈ U(M) such that
βn = Ad an ◦ αgn → id in AutM . Write dn = α(an)(1 ⊗ λgn). Let b ∈ M be arbitrary. Since
βn → id in AutM , we have that β−1

n (b)− b→ 0 strongly. Then also

α(b)dn − dnα(b) = dn α(β−1
n (b)− b)→ 0 strongly.

Also, βn(b∗)→ b∗ strongly, so that

(α(b)dn − dnα(b))∗ = d∗n α(b∗ − βn(b∗))→ 0 strongly.

We have thus proven that dnα(b)− α(b)dn → 0 ∗-strongly for all b ∈ M . Assume that tn ∈ C
such that dn− tn1→ 0 ∗-strongly. Choose an arbitrary unit vector ξ ∈ L2(M) and an arbitrary
compact neighborhood K of e in G. Since gn → ∞, we get that gnK ∩K = ∅ for all n large
enough. So, for large enough n, we get that 〈dn(ξ⊗1K), ξ⊗1K〉 = 0. We conclude that tn → 0.
So, dn → 0 ∗-strongly. This is impossible because dn is a sequence of unitary operators. So,
(b) does not hold.

We now prove the difficult implication (a) ⇒ (c). So, assume that α is outer and that π(α(G))
is closed in OutM . Let H be a separable Hilbert space and an ∈ B(H)⊗ (M oG) a sequence
such that ‖an‖ ≤ 1 for all n and an(1 ⊗ α(b)) − (1 ⊗ α(b))an → 0 ∗-strongly for all b ∈ M .
We have to prove the existence of a bounded sequence fn ∈ B(H) such that an − fn ⊗ 1 → 0
∗-strongly. We again make use of the bimodules H(A) as introduced in the beginning of the
proof, together with the corresponding ∗-representations πA of M⊗maxM

op on L2(M)⊗L2(A).

Since G and OutM are Polish groups and π ◦ α : G→ OutM is a continuous homomorphism
with closed range, the map π ◦ α is closed.

Step A. We prove that for every open subset U ⊂ G with complement L = G\U , the sequence
Xn ∈ B(H)⊗M⊗B(L2(G)) defined by Xn = (1⊗1⊗1L)an(1⊗1⊗1U ) converges to 0 strongly.

Fix a unit vector η ∈ H and write Yn = Xn(η ⊗ 1 ⊗ 1). Note that ‖Yn‖ ≤ 1 for all n. We
have to prove that Y ∗n Yn converges to 0 weakly. Assume that this is not the case. After
passage to a subsequence, we may assume that Y ∗n Yn converges weakly to a nonzero S ∈
M ⊗ B(L2(U)). Because an(1 ⊗ α(a)) − (1 ⊗ α(a))an → 0 ∗-strongly for all a ∈ M , we have
that (1⊗ πL(T ))Yn − YnπU (T )→ 0 ∗-strongly for all T ∈M ⊗max M

op.

For all ξ, µ ∈ L2(M)⊗ L2(U), we have that

〈(Y ∗n YnπU (T )− πU (T )Y ∗n Yn)ξ, µ〉
= 〈(YnπU (T )− (1⊗ πL(T ))Yn)ξ, Ynµ〉+ 〈Ynξ, ((1⊗ πL(T ∗))Yn − YnπU (T ∗))µ〉 ,
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so that Y ∗n YnπU (T ) − πU (T )Y ∗n Yn → 0 weakly for all T ∈ M ⊗max M
op. It follows that S

commutes with πU (T ), so that S ∈ M ⊗ B(L2(G)) ∩ α(M)′. By 1, we get that M = 1 ⊗ F ,
where F ∈ L∞(U) is not essentially zero. We can then choose a compact subset K ⊂ U and a
C > 0 such that λ(K) > 0 and F (x) ≥ C−1 for all x ∈ K.

Define Zn = Yn(1 ⊗ 1KF
−1/2). Note that ‖Zn‖ ≤ C1/2 for all n. We still have that (1 ⊗

πL(T ))Zn−ZnπK(T )→ 0 ∗-strongly for all T ∈M⊗maxM
op. By construction, Z∗nZn → 1⊗1K

weakly. For any T ∈M ⊗max M
op and every ξ ∈ L2(M)⊗ L2(K,λ), we have

|〈πK(T )ξ, ξ〉 = |〈(1⊗ 1K)πK(T )ξ, ξ〉| = lim
n
|〈Z∗nZnπK(T )ξ, ξ〉|

≤ lim sup
n

C1/2 ‖ZnπK(T )ξ‖ ‖ξ‖ = lim sup
n

C1/2 ‖(1⊗ πL(T ))Znξ‖ ‖ξ‖

≤ C ‖πL(T )‖ ‖ξ‖2 .

So, the homomorphism πL(T ) 7→ πK(T ) is well defined and continuous. We thus conclude
that H(K) is weakly contained H(L). Choose k ∈ K in the support of λ|K , meaning that
λ(K ∩ W) > 0 for every open subset W ⊂ G with k ∈ W. By Lemma 2, H(αk) is weakly
contained in H(K) and is thus weakly contained in H(L).

Since L ⊂ G is a closed subset and π ◦ α is a closed map, π(α(L)) is a closed subset of OutM
and π(αk) 6∈ π(α(L)). The weak containment of H(αk) in H(L) thus contradicts Lemma 1.
This concludes the proof that Xn converges to 0 strongly.

Step B. If U ⊂ G is open and λ(U \U) = 0, then an(1⊗1⊗1U )−(1⊗1⊗1U )an → 0 ∗-strongly.

Write V = G \ U . Applying step A to the open sets U and V, we get that the sequences
(1 ⊗ 1 ⊗ 1V)an(1 ⊗ 1 ⊗ 1U ) and (1 ⊗ 1 ⊗ 1U )an(1 ⊗ 1 ⊗ 1V) converge to 0 strongly. Since
1V = 1− 1U in L∞(G), it follows that

an(1⊗ 1⊗ 1U )− (1⊗ 1⊗ 1U )an = (1⊗ 1⊗ 1V)an(1⊗ 1⊗ 1U )− (1⊗ 1⊗ 1U )an(1⊗ 1⊗ 1V)→ 0

strongly. The same holds for the sequence a∗n, so that step B is proven.

Step C. For every bounded continuous function F : G→ C, we have that an(1⊗ 1⊗F )− (1⊗
1⊗ F )an → 0 ∗-strongly.

Fix a continuous function F : G→ (0, 1). It suffices to prove that an(1⊗1⊗F )−(1⊗1⊗F )an →
0 ∗-strongly. Choose a probability measure λ1 on G such that λ1 ∼ λ. Define the probability
measure µ on R by µ = F∗(λ1). Fix an arbitrary ε > 0. Since µ has at most countably
many atoms, which all belong to (0, 1), we can choose 0 = t0 < t1 < · · · < tk = 1 such that
µ({ti}) = 0 for all 0 ≤ i ≤ k and ti − ti−1 < ε for all 1 ≤ i ≤ k. Define, for 1 ≤ i ≤ k, the open
subsets

Ui = {g ∈ G | ti−1 < F (g) < ti} .

Since µ({ti}) = 0 for all i and since λ1 ∼ λ, we get that λ(Ui \ Ui) = 0 for all 1 ≤ i ≤ k. Also,
defining

F0 =

k∑
i=1

ti 1Ui ,

we get that ‖F − F0‖ < ε. By step B, an(1⊗ 1⊗ F0)− (1⊗ 1⊗ F0)an → 0 ∗-strongly. So, for
every ε > 0, the sequence an(1 ⊗ 1 ⊗ F ) − (1 ⊗ 1 ⊗ F )an → 0 lies at operator norm distance
less than 2ε of a sequence that converges to 0 ∗-strongly. So, step C is proven.

Step D. Define the unitary U ∈ B(L2(M))⊗L∞(G) by U(h) = Uh for all h ∈ G. Then, there
exists a sequence dn ∈ B(H ⊗ L2(M)) such that ‖dn‖ ≤ 1 for all n and (1 ⊗ U)an(1 ⊗ U∗) −
dn ⊗ 1→ 0 ∗-strongly.
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Write bn = (1⊗ U)an(1⊗ U∗). Let F ∈ C0(G). Since U commutes with 1⊗ F , it follows from
step C that bn(1 ⊗ 1 ⊗ F ) − (1 ⊗ 1 ⊗ F )bn → 0 ∗-strongly. Since an ∈ B(H) ⊗ (M o G), we
have that an commutes with 1⊗ Ug ⊗ ρg for every g ∈ G and n ∈ N. Thus, bn commutes with
1 ⊗ 1 ⊗ ρg for all n ∈ N and g ∈ G. Denoting by C∗ρ(G) the reduced C∗-algebra given by the
right regular representation of G, we find that bn(1⊗ 1⊗T ) = (1⊗ 1⊗T )bn for all T ∈ C∗ρ(G).
Since the operator norm closed linear span of C0(G)C∗ρ(G) equals K(L2(G)), it follows that
bn(1⊗ 1⊗ T )− (1⊗ 1⊗ T )bn → 0 ∗-strongly for all T ∈ K(L2(G)). Step D then follows from
Lemma 3.

Step E. With U and dn as in step D, the sequence cn ∈ B(H ⊗ L2(M)) ⊗ L∞(G) given by
cn = (1⊗U∗)(dn⊗ 1)(1⊗U) satisfies cn(1⊗ b⊗ 1)− (1⊗ b⊗ 1)cn → 0 ∗-strongly for all b ∈M .

Since an(1 ⊗ α(b)) − (1 ⊗ α(b))an → 0 ∗-strongly and α(b) = U∗(b ⊗ 1)U , the sequence dn
satisfies dn(1⊗b)− (1⊗b)dn → 0 ∗-strongly for all b ∈M . Take µ ∈ H⊗L2(M) and η ∈ L2(G)
arbitrary. Then,

‖(cn(1⊗ b⊗ 1)− (1⊗ b⊗ 1)cn)(µ⊗ η)‖2

=

∫
G
|η(g)|2 ‖((1⊗ U∗g )dn(1⊗ Ug b)− (1⊗ b U∗g )dn(1⊗ Ug))µ‖2 dg .

(5)

For every fixed g ∈ G and b ∈ M , we have that dn(1 ⊗ αg(b)) − (1 ⊗ αg(b))dn → 0 strongly.
Conjugating with U∗g , also

(1⊗ U∗g )dn(1⊗ Ug b)− (1⊗ b U∗g )dn(1⊗ Ug)→ 0 strongly.

It then follows from the dominated convergence theorem that the sequence in (5) tends to 0.
We have proven that cn(1 ⊗ b ⊗ 1) − (1 ⊗ b ⊗ 1)cn → 0 strongly for all b ∈ M . By symmetry,
also c∗n(1⊗ b⊗ 1)− (1⊗ b⊗ 1)c∗n → 0 strongly and step E follows.

End of the proof. By step D, the sequence cn in step E satisfies an − cn → 0 ∗-strongly.
Since an ∈ B(H) ⊗ (M o G) ⊂ B(H) ⊗ M ⊗ B(L2(G)), we have that an commutes with
1 ⊗ JbJ ⊗ 1 for all b ∈ M . Therefore, cn(1 ⊗ JbJ ⊗ 1) − (1 ⊗ JbJ ⊗ 1)cn → 0 ∗-strongly for
every b ∈ M . Since M is a full factor, [Mar18b, Theorem A] says that the operator norm
closed linear span of M JMJ contains K(L2(M)). The previous observation and step E then
imply that cn(1 ⊗ T ⊗ 1) − (1 ⊗ T ⊗ 1)cn → 0 ∗-strongly for every T ∈ K(L2(M)). Since
cn ∈ B(H ⊗ L2(M)) ⊗ L∞(G), Lemma 3 provides a sequence Fn ∈ B(H) ⊗ 1 ⊗ L∞(G) such
that ‖Fn‖ ≤ 1 for all n and cn − Fn → 0 ∗-strongly.

Then also an − Fn → 0 ∗-strongly. Conjugating with 1 ⊗ U , which commutes with Fn, and
using step D, we find that dn ⊗ 1 − Fn → 0 ∗-strongly. Fix a unit vector ξ ∈ L2(G) and
denote by ωξ the corresponding vector state on B(L2(G)). Define the sequence fn ∈ B(H)
such that fn ⊗ 1 = (id ⊗ id ⊗ ωξ)(Fn). Then, ‖fn‖ ≤ 1 for all n ∈ N. Since dn ⊗ 1 − Fn → 0
∗-strongly, also dn − fn ⊗ 1 → 0 ∗-strongly. Conjugating with 1 ⊗ U∗, it follows from step D
that an − fn ⊗ 1⊗ 1→ 0 ∗-strongly. So (c) holds.

3 Free Bogoljubov actions and proof of Corollary B

Corollary B is an immediate consequence of Theorem A and the following result on free Araki-
Woods factors. We expected that Proposition 4 would be well known and available in the
literature, but this does not seem to be the case, not even in the case of the free Gaussian
functor (i.e. Bogoljubov transformations of free group factors).

Proposition 4. Let U : R y HR be a strongly continuous action by orthogonal transforma-
tions of a separable real Hilbert space HR with dimRHR ≥ 2. Denote by M = Γ(HR, U)′′ the
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associated free Araki-Woods factor, which is a full factor. Denote by π : AutM → OutM the
canonical quotient homomorphism.

Define the closed subgroup G = {v ∈ O(HR) | vUt = Utv for all t ∈ R } of O(HR). For every
v ∈ G, denote by αv the associated Bogoljubov automorphism of M . Then, the homomorphism
G → OutM : v 7→ π(αv) is injective, has closed range and is a homeomorphism onto this range.

Note that Proposition 4 covers in particular the case where Ut = 1 for all t ∈ R. Then, M =
Γ(HR, U)′′ ∼= L(FdimRHR) and every v ∈ O(HR) defines the free Bogoljubov automorphisms αv
of M . Proposition 4 then says that O(HR) → OutM is injective, with closed range and is a
homeomorphism onto this range.

Also note that, with the notation of Proposition 4, the transformations Ut belong to G. There-
fore, Proposition 4 also reproves the result that Connes’ τ -invariant of a free Araki-Woods
factor Γ(HR, U)′′ equals the weakest topology on R that makes the map t 7→ Ut continuous.
This was proven in [Shl97, Corollary 8.6] when U is not weakly mixing and in [Vae04, Théorème
2.7] in general.

Before proving Proposition 4, we need a few elementary lemmas.

The first lemma is proven by Popa’s spectral gap method. The proof is very similar to the
proof of [Pop06, Lemma 2.2]. For completeness, we provide the details adapting the proof to a
type III setting.

Lemma 5. For i ∈ {1, 2}, let (Mi, ϕi) be von Neumann algebras with a faithful normal state,
and with a separable predual. Define (M,ϕ) = (M1, ϕ1) ∗ (M2, ϕ2) and let E1 : M → M1 be
the canonical ϕ-preserving conditional expectation. Let P ⊂M1 be a von Neumann subalgebra
that is the range of a faithful normal conditional expectation. Assume that P has no amenable
direct summand.

If xn ∈ M is a bounded sequence and αn : P → M1 is a sequence of faithful, unital, normal
∗-homomorphisms such that xna− αn(a)xn → 0 strongly for all a ∈ P , then xn − E1(xn)→ 0
strongly.

Proof. For every von Neumann algebra (Q,ω) with a faithful normal state, we denote by
L2(Q,ω) the standard Hilbert space for Q realized by completing Q w.r.t. the scalar product
〈x, y〉 = ω(y∗x). As a Q-bimodule, we have a · b · c = abσω−i/2(c) for all a, b, c ∈M with c being
sufficiently analytic.

Fix a faithful normal conditional expectation E : M1 → P and choose a faithful normal state
ψ1 on M1 satisfying ψ1 ◦ E = ψ1. Define the faithful normal state ψ on M by ψ = ψ1 ◦ E1.
Denote M 	M1 = {x ∈M | E1(x) = 0}. We also write M◦i = {a ∈Mi | ϕi(a) = 0}. Whenever
w ∈ M is defined as an alternating product of elements in M◦1 and M◦2 , starting and ending
with a ‘letter’ from M◦2 , we have, for all a, b ∈M1,

E1(w∗awb) = ϕ1(a)ϕ(w∗w) b so that 〈awb,w〉ψ = ψ(w∗awb) = ϕ1(a)ψ1(b)ϕ(w∗w) .

It follows that there exists an M1-bimodular isometry

U : L2(M 	M1, ψ)→ K = (L2(M1, ϕ1)⊗ L2(M1, ψ1))⊕∞ ,

where the M1-bimodule structure on K is given by the left action in the first tensor factor
L2(M1, ϕ1) and the right action in the second tensor factor L2(M1, ψ1).

Write yn = xn − E1(xn) ∈ M 	M1. Note that yn is still a bounded sequence in M satisfying
yna− αn(a)yn → 0 strongly for all a ∈ P . Define the bounded linear maps

Yn : L2(P,ψ1)→ K : Yn(a) = U(yna) .
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Note that supn ‖Yn‖ ≤ supn ‖yn‖ < +∞. Take κ > 0 such that ‖Yn‖ ≤ κ for all n ∈ N. By
construction, Yn(ξ · a) = Yn(ξ) · a for all ξ ∈ L2(P,ψ1) and a ∈ P . Also by construction,
‖αn(a) · Yn(b)− Yn(a · b)‖ → 0 for all a, b ∈ P . Given a ∈ P , the sequences ‖αn(a)‖ and ‖Yn‖
are bounded, so that ‖αn(a) · Yn(ξ)− Yn(a · ξ)‖ → 0 for all a ∈ P and ξ ∈ L2(P,ψ1).

Define the ∗-representations πn : P ⊗alg P
op → B(K) by πn(a⊗ bop)ξ = αn(a) · ξ · b. Note that

‖πn(T )‖ = ‖λ(T )‖ for every T ∈ P ⊗alg P
op, where λ is given by the coarse P -bimodule. Also

define ε : P ⊗alg P
op → B(L2(P,ψ1)) : ε(a⊗ bop)ξ = a · ξ · b. We have proven that

πn(T )Yn − Ynε(T )→ 0 strongly for every T ∈ P ⊗alg P
op. (6)

We claim that Yn → 0 strongly. Let S ∈ B(L2(P,ψ1))+ be any weak limit point of the bounded
sequence Y ∗n Yn. Since

〈(Y ∗n Ynε(T )− ε(T )Y ∗n Yn)ξ, µ〉 = 〈(Ynε(T )− πn(T )Yn)ξ, Ynµ〉+ 〈Ynξ, (πn(T ∗)Yn − Ynε(T ∗))µ〉 ,

it follows from (6) that S commutes with ε(T ) for all T ∈ P ⊗alg P
op. Thus, S ∈ Z(P ). For

all ξ, η ∈ L2(P,ψ1) and T ∈ P ⊗alg P
op, we get that

|〈Sε(T )ξ, η〉| ≤ lim sup
n
|〈Y ∗n Ynε(T )ξ, η〉| = lim sup

n
|〈Ynε(T )ξ, Ynη〉|

≤ κ ‖η‖ lim sup
n
‖Ynε(T )ξ‖ = κ ‖η‖ lim sup

n
‖πn(T )Ynξ‖ ≤ κ2 ‖ξ‖ ‖η‖ ‖λ(T )‖ .

We conclude that ‖Sε(T )‖ ≤ κ2 ‖λ(T )‖ for all T ∈ P ⊗alg P
op. If S is nonzero, it follows that

P has an amenable direct summand. So, S = 0 and the claim that Yn → 0 strongly is proven.

Since yn = Yn(1), we have proven that ‖yn‖2,ψ → 0. Thus, yn → 0 strongly.

Proposition 6. For i ∈ {1, 2}, let (Mi, ϕi) be a von Neumann algebra with a faithful normal
state and separable predual. Assume that (M1, ϕ1) has no amenable direct summand and that
M2 6= C1. Denote by Aut(Mi, ϕi) the Polish group of state preserving automorphisms.

Define (M,ϕ) = (M1, ϕ1) ∗ (M2, ϕ2). Then M is a full factor. Denote by π : AutM → OutM
the natural quotient homomorphism. Then, the homomorphism

θ : Aut(M1, ϕ1)×Aut(M2, ϕ2)→ OutM : θ(α, β) = π(α ∗ β)

is faithful, has closed range and is a homeomorphism onto this range.

Proof. It suffices to prove the following statement: if αn ∈ Aut(M1, ϕ1) and βn ∈ Aut(M2, ϕ2)
are sequences of state preserving automorphisms such that Adu∗n ◦ (αn ∗ βn) → id for some
sequence of unitaries un ∈ M , then αn → id, βn → id and un − ϕ(un)1 → 0 ∗-strongly. By
taking αn = βn = id, this then says in particular that M is full.

Denote by Ei : M →Mi the canonical ϕ-preserving conditional expectation. For every a ∈M1,
we have that una − αn(a)un → 0 strongly. It follows from Lemma 5 that un − E1(un) → 0
strongly.

Write vn = (αn ∗ βn)−1(u∗n). Then also Ad v∗n ◦ (α−1
n ∗ β−1

n ) → id. Applying the previous
paragraph, it follows that ‖vn−E1(vn)‖2,ϕ → 0. Since αn∗βn is state preserving and commutes
with E1, we conclude that ‖u∗n − E1(u∗n)‖2,ϕ → 0, so that u∗n − E1(u∗n) → 0 strongly. In
combination with the previous paragraph, we have proven that un − E1(un)→ 0 ∗-strongly.

Write xn = E1(un). Note that ‖xn‖ ≤ 1 for all n. Since M2 6= C1, we can fix b ∈ M2 with
ϕ2(b) = 0 and ϕ2(b∗b) = 1. Since u∗nβn(b)un → b weakly and un − xn → 0 strongly, we get
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that x∗nβn(b)xn → b weakly and thus E2(x∗nβn(b)xn) → b weakly. The left hand side equals
|ϕ1(xn)|2 βn(b). Therefore,

〈|ϕ1(xn)|2 βn(b), b〉 = 〈E2(x∗nβn(b)xn), b〉 → 〈b, b〉 = 1 .

Since |ϕ1(xn)| ≤ 1 and |〈βn(b), b〉| ≤ 1 because βn is state preserving, we conclude that
|ϕ1(xn)| → 1. Since ‖xn‖ ≤ 1 for all n, this implies that xn − ϕ1(xn)1 → 0 ∗-strongly. It
thus follows that un − ϕ(un)1→ 0 ∗-strongly.

Then also Adun → id, so that αn ∗ βn → id. By restricting to Mi, it follows that αn → id and
βn → id.

Lemma 7. Let HR be a separable infinite dimensional real Hilbert space. Let Vn ∈ O(HR) such
that (Vn)n∈N is weakly convergent. Let N ∈ N.

There exist orthonormal vectors {e1, . . . , eN}, orthonormal vectors {f1, . . . , fN} and Wn ∈
O(HR) such that

Wnei = ei and WnVnei → fi in norm for every i ∈ {1, . . . , N}, and

(Rei + Rfi) ⊥ (Rej + Rfj) for all i, j ∈ {1, . . . , N} with i 6= j.
(7)

An analogous result holds for a weakly convergent sequence of unitaries on a separable infinite
dimensional Hilbert space.

Proof. Let Vn → T weakly. Note that ‖T‖ ≤ 1. Inductively choose unit vectors {e1, . . . , eN}
such that whenever i < j, we have that ej ⊥ {ei, T ei, T ∗ei, T ∗Tei}. Define µk,n = Vnek − Tek
and define αk ≥ 0 such that α2

k = 1− ‖Tek‖2. By construction,

Vnek = Tek + µk,n , µk,n → 0 weakly, and ‖µk,n‖ → αk .

When i 6= j, we have that Vnei ⊥ Vnej . Also, Tei ⊥ Tej by construction. Therefore, for i 6= j,
we have

0 = 〈Vnei, Vnej〉 = 〈Tei, µj,n〉+ 〈µi,n, T ej〉+ 〈µi,n, µj,n〉 .

Since µk,n → 0 weakly, it follows that 〈µi,n, µj,n〉 → 0.

Define K as the linear span of all the vectors ei and Tei with i ∈ {1, . . . , N}. Let L = K⊥.
Since µk,n → 0 weakly, ‖PKµk,n‖ → 0. Put ηk,n = PLµk,n, so that ‖µk,n−ηk,n‖ → 0. It follows
in particular that ‖ηk,n‖ → αk and that 〈ηi,n, ηj,n〉 → 0 when i 6= j.

Choose orthonormal vectors {g1, . . . , gN} in L. By the Gram-Schmidt procedure, we can choose
Wn ∈ O(HR) such that Wnξ = ξ for all ξ ∈ K and Wnηk,n → αkgk in norm. By construction,

WnVnek → Tek + αkgk in norm.

Define fk = Tek + αkgk. By construction, the conclusion of the lemma holds.

Proof of Proposition 4. When HR is finite dimensional, the group G is compact. By [HT18,
Lemma 3.2], every αv with v ∈ O(HR)\{1} is an outer automorphism of M and the proposition
follows. We thus assume that HR is infinite dimensional.

The spectral measure class of the orthogonal representation (Ut)t∈R is a symmetric measure
class on R that we denote by µ.

Case 1 : there is no a ≥ 0 such that the measure class µ is concentrated on {−a, a}. We can
then choose a Borel set U1 ⊂ R such that U1 = −U1 and such that both U1 and its complement
U2 = R \ U1 have positive measure. Make this choice such that 0 ∈ U2. Denote by H i

R ⊂ HR
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the spectral subspace corresponding to Ui. We have HR = H1
R ⊕H2

R and G = G1 × G2. Then
the free Araki-Woods factor (M,ϕ) = Γ(HR, U)′′ is the free product of the free Araki-Woods
factors (Mi, ϕi) = Γ(H i

R, U)′′. Since 0 6∈ U1, we have that dimRH
1
R ≥ 2, so that M1 has

no amenable direct summand. Since G = G1 × G2, we identify G with a closed subgroup of
Aut(M1, ϕ1)×Aut(M2, ϕ2). Proposition 4 then follows from Proposition 6.

Case 2 : the measure class µ is concentrated on {−a, a} for some a ≥ 0. Let Vn ∈ G be
a sequence such that π(αVn) → id. We have to prove that Vn → 1 weakly. Passing to a
subsequence, we may assume that Vn → T weakly and we have to prove that T = 1. Take
unitaries un ∈ U(M) such that Adu∗n ◦ αVn → id.

We claim that there exist 2-dimensional real subspaces K1
R,K

2
R ⊂ HR and a sequence Wn ∈ G

with the following properties: the subspaces Kj
R are globally invariant under (Ut)t∈R, we have

K1
R ⊥ K2

R, writing KR = K1
R +K2

R, we have that Wnξ = ξ for all ξ ∈ KR and n ∈ N, and

WnVnξ → Fξ in norm, for all ξ ∈ KR,

where F : KR → HR is an isometry that commutes with (Ut)t∈R and satisfies (K1
R +F (K1

R)) ⊥
(K2

R + F (K2
R)).

When a = 0, we have that Ut = 1 for all t ∈ R. In that case, the claim follows from Lemma 7,
by taking K1

R = Re1 + Re2 and K2
R = Re3 + Re4.

When a > 0, write λ = exp(a). We can then identify the complexification HR + iHR with a
Hilbert space of the form H⊕H, where H is a (complex) Hilbert space, Ut(ξ, η) = (λitξ, λ−itη)
and HR = {(ξ, ξ) | ξ ∈ H}. Then, G is identified with U(H), with every unitary V ∈ U(H)
giving rise to the orthogonal transformation of HR defined by restricting V ⊕ V to HR. So, we
view Vn ∈ G as the sequence Vn ⊕ Vn.

By the complex version of Lemma 7, we can choose orthonormal vectors {e1, e2} and {f1, f2}
in H, and unitaries Wn ∈ U(H) such that Wnei = ei for all n ∈ N and i ∈ {1, 2}, while
WnVnei → fi in norm. Also, (Ce1 + Cf1) ⊥ (Ce2 + Cf2). We can now define Ki

R ⊂ HR by

Ki
R = {(zei, zei) | z ∈ C}

and use the orthogonal transformations Wn ⊕Wn. Again, the claim is proven.

Write LiR = Ki
R + F (Ki

R). Define L0
R = (L1

R + L2
R)⊥. We find the free product decomposition

(M,ϕ) = (M0, ϕ0) ∗ (M1, ϕ1) ∗ (M2, ϕ2), where Mi = Γ(LiR, U)′′. Denote by Ei : M → Mi the
canonical ϕ-preserving conditional expectation. For i ∈ {1, 2}, we also have the subalgebras
Pi ⊂ Mi given by Pi = Γ(Ki

R, U)′′. Note that there exists a faithful normal conditional
expectation of Mi onto Pi. Since Ki

R is 2-dimensional, the von Neumann algebra Pi is a
nonamenable factor.

The restriction of F to Ki
R gives rise to the state preserving embedding βi : Pi → Mi. Write

vn = αWn(un). Since Adu∗n ◦ αVn → id, we get that

‖αVn(a)un − una‖2,ϕ → 0 for all a ∈M .

Since αWn is state preserving and Wnξ = ξ for all ξ ∈ Ki
R, it follows that

‖αWnVn(a)vn − vna‖2,ϕ → 0 for all a ∈ Pi.

Since WnVnξ → Fξ for all ξ ∈ Ki
R, we get that

‖αWnVn(a)− βi(a)‖2,ϕ → 0 for all a ∈ Pi. (8)
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Since ‖ϕ ◦ Adu∗n ◦ αVn − ϕ‖ → 0 and since ϕ is invariant under αWn and αWnVn , we get that
‖ϕ ◦ Ad v∗n − ϕ‖2,ϕ → 0. It then follows from (8) that ‖αWnVn(a)vn − βi(a)vn‖2,ϕ → 0 for all
a ∈ Pi. We thus conclude that

‖βi(a)vn − vna‖2,ϕ → 0 for all a ∈ Pi.

By Lemma 5, we get that ‖vn − Ei(vn)‖2,ϕ → 0. Since E1(E2(x)) = ϕ(x)1 for all x ∈ M ,
we conclude that ‖vn − ϕ(vn)1‖2,ϕ → 0. Since αWn is state preserving, it follows that ‖un −
ϕ(un)1‖2,ϕ → 0. In particular, |ϕ(un)| → 1. This means that un − ϕ(un)1 → 0 ∗-strongly.
Thus, Adun → id. Then also αVn → id, from which it follows that Vn → 1 strongly, so that
T = 1.

4 Questions, comments and counterexamples

We start by providing the following easy examples of outer actions that are not strictly outer.

Example 8. First, if M is a factor of type III0 whose T -invariant is trivial and if ϕ is a faithful
normal state on M , the action R yσϕ M by modular automorphisms is outer, but the crossed
product M oσϕ R is not even a factor. In particular, σϕ is not strictly outer.

Second, if Γ is a countable abelian group and Γ yβ (X,µ) is an essentially free, probability
measure preserving, weakly mixing action, then the dual action α of K = Γ̂ on the crossed
product II1 factor M = L∞(X) oβ Γ is outer, but again, the crossed product M oα K ∼=
L∞(X)⊗B(`2(Γ)) is not even a factor.

Note that in Example 8, the actions on M are by approximately inner automorphisms: in
[Con74, Proposition 3.9] (see also [MT12, Corollary 6.24]), it was proven that every modular
automorphism of a type III0 factor is approximately inner, while in the second example, it
follows from the Rohlin lemma (see [OW79]) that for every ω ∈ K, there exists a sequence of
unitaries un ∈ U(L∞(X,µ)) such that βg(un)− ω(g)un → 0 ∗-strongly for every g ∈ Γ. Then,
Adu∗n → αω in AutM .

In combination with Theorem A, this thus leads naturally to the following question, asking
whether actions by not approximately inner automorphisms are automatically strictly outer.

Question 9. Let Gyα M be a strongly continuous action of a lcsc group G on a factor M with
separable predual. Denote by π : AutM → AutM/InnM the natural quotient homomorphism.

Does the faithfulness of π ◦ α imply that α is strictly outer?

One should not expect to give an easy proof for a positive answer to question 9. Indeed, when
M is a II∞ factor, G = R and R yα M is a trace scaling action, the relative commutant
theorem [CT76, Theorem 5.1] says that the action α is strictly outer. Since α is trace scaling,
it is trivial that the homomorphism from R to AutM/InnM is faithful. Therefore, a positive
answer to question 9 also has to cover the notoriously difficult relative commutant theorem in
modular theory.

In the very specific case of a tensor product action with one of the tensor factors being full,
the following result provides a positive answer to question 9.

Proposition 10. Let Gyα N and Gyβ M be strongly continuous actions of a locally compact
group G on factors N and M . Consider the diagonal action γg = αg ⊗ βg of G on N ⊗M .

If β is strictly outer, then γ is strictly outer.
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Proof. Define γ : N ⊗M → N ⊗M ⊗L∞(G) : γ(d)(g) = γg−1(d), so that (N ⊗M)oγ G is the
von Neumann subalgebra of N ⊗M ⊗ B(L2(G)) generated by γ(N ⊗M) and 1 ⊗ 1 ⊗ L(G).
We similarly define β : M → M ⊗ L∞(G) so that M oβ G is the von Neumann subalgebra of
M ⊗B(L2(G)) generated by β(M) and 1⊗ L(G).

Denote by N ⊂ B(H) the standard representation of N and let (Ug)g∈G be the canonical
implementation of the action α. Define the unitary U ∈ B(H)⊗ 1⊗L∞(G) by U(g) = Ug ⊗ 1.
Then,

θ : (N ⊗M) oγ G→ B(H)⊗ (M oβ G) : θ(T ) = UTU∗ (9)

is a well defined ∗-homomorphism satisfying

θ(γ(a⊗ b)) = a⊗ β(b) and θ(1⊗ 1⊗ λg) = Ug ⊗ 1⊗ λg for all a ∈ N , b ∈M , g ∈ G.

Let a ∈ γ(N ⊗M)′ ∩ (N ⊗M) oγ G. Then, θ(a) is an element of B(H) ⊗ (M oβ G) that
commutes with 1⊗ β(M). Since β is strictly outer, we conclude that θ(a) = b⊗ 1⊗ 1 for some
b ∈ B(H).

Since θ(a) commutes with N ⊗ 1 ⊗ 1, we get that b = JcJ with c ∈ N . Since a belongs to
N ⊗M ⊗ B(L2(G)), we get that a commutes with JdJ ⊗ 1 ⊗ 1 for every d ∈ N . Note that
U(JdJ⊗1⊗1)U∗ belongs to B(H)⊗1⊗L∞(G) and is given by the function g 7→ Jαg(d)J⊗1.
Since θ(a) = JcJ ⊗ 1⊗ 1 commutes with all these operators, we conclude that c ∈ Z(N) = C1.
Thus, a ∈ C1.

In Theorem A, we have proven that crossed products M oα G are full whenever M is full and
the homomorphism G → OutM is faithful and has closed range. In light of question 9, it is
natural to try to prove a similar result without assuming that M is full, under the hypothesis
that the homomorphism G→ AutM/InnM is faithful and has closed range. One may expect
that this condition should be sufficient to prove that centralizing sequences of M oα G (see
below for terminology) are equivalent with asymptotically G-invariant centralizing sequences
in M . This leads to the following question, for which we again provide positive evidence in the
case of a product action (see Proposition 12).

Recall that a centralizing sequence in a von Neumann algebra N with separable predual is a
sequence an ∈ N satisfying supn ‖an‖ < +∞ and ‖ω · an − an · ω‖ → 0 for every ω ∈ N∗. A
centralizing sequence (an)n∈N is said to be trivial if there exists a bounded sequence tn ∈ C
such that an − tn1 → 0 ∗-strongly. Note that a factor N with separable predual is full if and
only if all centralizing sequences in N are trivial.

Question 11. Let G yα M be a strongly continuous action of a lcsc group G on a fac-
tor M with separable predual. Denote by π : AutM → AutM/InnM the natural quotient
homomorphism. Make the following assumptions.

• The homomorphism π ◦ α is faithful and has closed image.

• Every centralizing sequence an ∈M satisfying αg(an)− an → 0 ∗-strongly for every g ∈ G,
is trivial.

Does it follow that M oG is a full factor?

Question 11 is much more challenging than question 9. While question 9 is trivial for discrete
groupsG (because then every outer action is strictly outer), question 11 is even open whenG is a
discrete group and M is a II1 factor. The problem is that we have no analogue of Lemma 1 when
M is no longer full. The only positive result in this direction is provided by [Con75, Theorem
3.1] saying that for a II1 factor M and a single automorphism α ∈ AutM , we have that the
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trivial bimodule L2(M) is weakly contained in H(α) if and only if α is approximately inner.
Even for a countable family of automorphisms, this is not clear: assume that αn ∈ AutM ,
n ∈ N, is a sequence of automorphisms of a II1 factor M . Assume that the identity id does not
belong to the closure of {π(αn) | n ∈ N}, where π : AutM → AutM/InnM is the quotient
homomorphism. Can we conclude that the trivial bimodule L2(M) is not weakly contained in⊕

n∈NH(αn) ? When M is of type II∞ or type III, the situation is even more delicate, since
then Lemma 1 is no longer true. For instance, when α is a trace scaling automorphism of the
hyperfinite II∞ factor M , the bimodules L2(M) and H(α) are weakly equivalent, but α is not
approximately inner.

As in Proposition 10, we give a positive answer to question 11 in the case of product actions.

Proposition 12. Let Gyα N and Gyβ M be strongly continuous actions of a lcsc group G
on factors N and M with separable predual. Denote by γg = αg ⊗ βg the diagonal action of G
on N ⊗M . Consider the following two statements.

1. (N ⊗M) oγ G is a full factor.

2. Every centralizing sequence an ∈ N satisfying αg(an) − an → 0 ∗-strongly for every g ∈ G,
is trivial.

Then, 1⇒ 2. If β is strictly outer and that M ⊂M oβ G has stable w-spectral gap, then also
2⇒ 1.

From Theorem A, it thus follows that the two statements in Proposition 12 are equivalent when
Gyα N is an arbitrary action and Gyβ M is an action on a full factor for which the resulting
homomorphism G→ OutM is faithful and has closed image.

Proof. We use the same notation as in the beginning of the proof of Proposition 12.

We first prove that 1 ⇒ 2. Take a centralizing sequence an ∈ N satisfying αg(an) − an → 0
∗-strongly for every g ∈ G. It follows from the dominated convergence theorem that γ(an ⊗
1)− an ⊗ 1⊗ 1→ 0 ∗-strongly. We get for every ω ∈ (N ⊗M ⊗B(L2(G)))∗ w.r.t. the norm of
(N ⊗M ⊗B(L2(G)))∗ that

‖ω · γ(an ⊗ 1)− ω · (an ⊗ 1⊗ 1)‖ → 0 , ‖γ(an ⊗ 1) · ω − (an ⊗ 1⊗ 1) · ω‖ → 0 and

‖ω · (an ⊗ 1⊗ 1)− (an ⊗ 1⊗ 1) · ω‖ → 0 .

It follows that ‖ω · γ(an⊗ 1)− γ(an⊗ 1) ·ω‖ → 0 for all ω ∈ (N ⊗M ⊗B(L2(G)))∗. A fortiori,
(γ(an ⊗ 1))n∈N is a centralizing sequence in (N ⊗M)oγ G. By 1, the sequence (γ(an ⊗ 1))n∈N
is trivial, so that also the centralizing sequence an ∈ N must be trivial.

We then prove the more subtle converse implication 2⇒ 1, assuming that β is strictly outer and
that β(M) ⊂MoβG has stable w-spectral gap. Fix a centralizing sequence an ∈ (N⊗M)oγG.
We may assume that ‖an‖ ≤ 1 for all n. We use the homomorphism θ defined in (9). Since
(an)n∈N is centralizing, we get that θ(an)(1⊗ β(b))− (1⊗ β(b))θ(an)→ 0 ∗-strongly for every
b ∈ M . Since β(M) ⊂ M oβ G has stable w-spectral gap and trivial relative commutant, we
find a sequence bn ∈ B(H) such that ‖bn‖ ≤ 1 for all n and θ(an)− bn ⊗ 1⊗ 1→ 0 ∗-strongly.
It follows that an − U∗(bn ⊗ 1⊗ 1)U → 0 ∗-strongly.

Denote by λ a left Haar measure on G. Fix a Borel set V ⊂ G with 0 < λ(V) < +∞. Denote
by ωV the vector state on B(L2(G)) given by the unit vector λ(V)−1/21V . Fix a normal state
ω ∈M∗. Since an ∈ N ⊗M ⊗B(L2(G)), define the sequence cn ∈ N by cn = (id⊗ω⊗ωV)(an).
Since an − U∗(bn ⊗ 1⊗ 1)U → 0 ∗-strongly, we define

dn = λ(V)−1

∫
V
U∗g bnUg dg
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and conclude that cn − dn → 0 ∗-strongly. Note that ‖dn‖ ≤ 1 for all n ∈ N.

We claim that bn − dn → 0 ∗-strongly. For every g ∈ G, we have that (1 ⊗ 1 ⊗ λ∗g)an(1 ⊗ 1 ⊗
λg)− an → 0 ∗-strongly. Applying θ, it follows that

(U∗g ⊗ 1⊗ λ∗g)θ(an)(Ug ⊗ 1⊗ λg)− θ(an)→ 0 ∗-strongly.

Since θ(an)− bn⊗ 1⊗ 1→ 0 ∗-strongly, we conclude that U∗g bnUg− bn → 0 ∗-strongly for every
g ∈ G. The claim then follows from the dominated convergence theorem.

Since cn−dn → 0 ∗-strongly, it follows from the claim above that cn− bn → 0 ∗-strongly. Then
also an−U∗(cn⊗1⊗1)U → 0 ∗-strongly. Note that U∗(cn⊗1⊗1)U = γ(cn⊗1). Since (an)n∈N
is a centralizing sequence in (N ⊗M) oγ G and since γ(N ⊗ 1) is a von Neumann subalgebra,
it follows that (cn)n∈N is a centralizing sequence in N . Since an asymptotically commutes with
1⊗1⊗λg, we also get that αg(cn)−cn → 0 ∗-strongly for every g ∈ G. By the assumption of 2,
we find a bounded sequence tn ∈ C such that cn − tn1→ 0 ∗-strongly. Then also an − tn1→ 0
∗-strongly and 1 is proven.

Remark 13. Consider the setting of Proposition 12. We have actually proven the following
two statements.

1. Whenever (an)n∈N is a centralizing sequence in N satisfying αg(an)− an → 0 ∗-strongly for
every g ∈ G, the sequence an ⊗ 1 is centralizing in (N ⊗M) oγ G.

2. Assume that β is strictly outer and that M ⊂M oβ G has stable w-spectral gap. Then, for
every centralizing sequence (bn)n∈N in (N ⊗M)oγ G, there exists a sequence (an)n∈N as in
1 such that bn − an ⊗ 1→ 0 ∗-strongly.

In [Jon81, Theorem 6], Jones proved that if Z yα M is an outer action on a full II1 factor
then the crossed product M oα Z is full if and only if the image of Z in OutM is closed. In
general, assume that G is a countable group and G yα M is an outer action on a factor M
with separable predual. In [Mar18a, Theorem A], the following two implications are proven.

1. If M is full and the image of G in OutM is closed, then M oα G is full.

2. If G is amenable and M oα G is full, then M is full and the image of G in OutM is closed.

In Theorem A, we have proven that statement 1 still holds for lcsc groups G. As the following
example shows, statement 2 is wrong for locally compact G. But a weaker variant of statement 2
might still be true for lcsc groups, see question 15.

Example 14. Let K be an infinite compact abelian group and let Γ ⊂ K be any countable
dense subgroup. Choose a strongly continuous outer action K yβ N of K on a full factor
N , e.g. the Bogoljubov action of K on L(F∞) associated with the left regular representation
of K as we recalled in Section 3. We restrict β to an action of Γ on N and define M =
N oβ Γ. Denote G = Γ̂ and define α = β̂ as the dual action of G on M . Since N ⊂ Mα,
we get that (Mα)′ ∩M = C1 and it follows that α is strictly outer. Note that G is a second
countable compact abelian group. The crossed product MoαG ∼= N⊗B(`2(Γ)) is a full factor.
Nevertheless, M is not a full factor. This follows by taking a sequence gn ∈ Γ such that gn →∞
in Γ and gn → e in K, so that αgn → id in AutN . We claim that the associated unitaries
ugn ∈ M form a nontrivial centralizing sequence in M . Denote by N ⊂ B(H) the standard
representation of N and let (Ug)g∈Γ be the canonical implementation of the action β. Then,
M = N oβ Γ can be viewed as the von Neumann subalgebra of B(H) ⊗ L(Γ) generated by
N ⊗ 1 and the unitary operators Ug ⊗ λg, g ∈ Γ. Since αgn → id, we have Ugn → 1 ∗-strongly.
Since the unitaries 1⊗ λg commute with B(H)⊗ L(Γ), it follows that the sequence Ugn ⊗ λgn
is centralizing for N oβ Γ.
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Question 15. Let G be an amenable lcsc group and let Gyα M be an outer action on a full
factor M with separable predual. Assume that M oα G is full. Does it follow that the image
of G in OutM is closed?

Remark 16. Finally observe that Example 14 and Question 15 are quite subtle. In Example
14, the factor M oα G is full and thus, there is no nontrivial centralizing sequence (an)n∈N
in M satisfying αg(an) − an → 0 ∗-strongly for all g ∈ G. On the other hand, whenever
Λ ⊂ G is a countable subgroup, it follows from [Mar18a, Theorem 3.3] that there exists a
nontrivial centralizing sequence (an)n∈N in M satisfying αg(an) − an → 0 ∗-strongly for all
g ∈ Λ. This can be seen as follows. Choose an ultrafilter ω on N and denote by Mω the
Ocneanu ultrapower. Then, M ′ ∩Mω is a diffuse von Neumann algebra with a faithful normal
state ϕ given by limn→ω an = ϕ(a)1 weakly for every element a ∈ M ′ ∩Mω represented by a
centralizing sequence (an)n∈N. The canonical action Λ yα M ′∩Mω is thus ϕ-preserving. Since
Λ is an abelian group, it follows from [Mar18a, Theorem 3.3] that this action is not strongly
ergodic. Using a diagonal argument, we then find the required centralizing sequence.

It then also follows that there exists a nontrivial centralizing net (ai)i∈I in M satisfying αg(ai)−
ai → 0 ∗-strongly for all g ∈ G. Since the dominated convergence theorem fails for nets, we
cannot deduce that (ai)i∈I defines a nontrivial centralizing net in M oα G, which would have
been absurd.
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