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We propose that coding and decoding in the brain are achieved
through digital computation using three principles: relative ordinal
coding of inputs, random connections between neurons, and belief
voting. Due to randomization and despite the coarseness of the rela-
tive codes, we show that these principles are sufficient for coding and
decoding sequences with error-free reconstruction. In particular, the
number of neurons needed grows linearly with the size of the input
repertoire growing exponentially. We illustrate our model by recon-
structing sequences with repertoires on the order of a billion items.
From this, we derive the Shannon equations for the capacity limit to
learn and transfer information in the neural population, which is then
generalized to any type of neural network. Following the maximum
entropy principle of efficient coding, we show that random connec-
tions serve to decorrelate redundant information in incoming signals,
creating more compact codes for neurons and therefore conveying
a larger amount of information. Henceforth, despite the unreliability
of the relative codes, few neurons become necessary to discriminate
the original signal without error. Finally, we discuss the significance
of this digital computation model regarding neurobiological findings
in the brain and more generally with artificial intelligence algorithms,
with a view toward a neural information theory and the design of new
digital neural networks.

sparse coding | digital computing | maximum entropy | ordinal codes |
continual learning | efficient codes

Because neurons represent a small energetic resource albeit
with poor computational capabilities, it is expected that they
rely on an efficient coding mechanism to convey maximum
information (1–3). Accordingly, it is now accepted that neu-
rons encode stimuli in a distributed fashion and transmit near
independent (nonredundant and uncorrelated) information
in many brain areas (4–6). For instance, distribution and
sparsity help a population of neurons reduce communication
errors and transmit one complete signal despite the noise in
the synapses and the finite precision of the neurons. In vision,
maximizing information implies forcing the coding of images
into new representations in terms of the actual “primitives”
of the images (4, 7), and their patterns (8, 9). These rep-
resentations constitute a more compact repertoire that may
well be easier to work with than a much larger redundant
representation in the image. The first experiences in testing
the theory of efficiency coding or redundancy reduction came
from the work of Laughlin applied to the fly-eye (10). He
measured and compared both the contrast distribution in the
image and the contrastive cells in the fly-eye and predicted
that optimal encoding would take the form of maximizing
contrast by transforming the original (redundant) distribution
into a uniform (uncorrelated) distribution to be transmitted to
the fly brain. As each output value becomes equiprobable, the
conveyed signal achieves the capacity limit for transmission
with optimal bandwidth. As a result, optimal coding makes

the signal resemble white noise (maximum entropy): a coding
effect that is called whitening (11). Another example of effi-
cient coding is observed in the optic nerve, which constitutes
a bottleneck in transmitting information to the brain, as it
comprises 1.7 million ganglion cells although the number of
photoreceptors is on the order of 126 million cells. A reduced
code constructed from the difference between photoreceptors
in the retina (e.g., a differential code) is sent to the brain
with the same amount of information, which requires far less
channel capacity (11, 12).

Hence, efficient coding for pattern separation and pattern
completion is hypothesized to occur widely in the brain to
manipulate natural input. The same hypothesis is expected
for memory access, storage, and retrieval in areas such as the
hippocampus and the prefrontal cortex (6, 13). The question
is, therefore, how the brain can encode, transmit and store one
coherent signal efficiently from unreliable neurons. How can
neurons communicate as much information as is theoretically
possible? These two questions are tightly linked to the binding
problem as well: how can neural areas specialize in different
modalities, with partial access to information on an exter-
nal event, coherently share their views to produce a unified
representation of the world?

As a novel paradigm, we propose a mechanism that ex-
ploits a neural code with a limited resolution to code and
decode higher resolution sequences. Resolution is the number
of items within an input repertoire or the number of differ-
entiated values that can be learned by a neuron. Therefore,
high resolution denotes a small quantization step and thus
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a high repertoire cardinality (number of quantization levels).
In our neural network, the neural code takes the form of a
relative code to represent the relative order of items within
the sequence; e.g., the following relative ordinal code [#5, #3,
#2, #4, #1, #6] corresponds to the sequence of index [18, 13,
8, 14, 5,19]; see Fig. 1. Despite the coarseness of these neural
codes, our results show that this mechanism can achieve error-
free reconstruction by having sparse and distributed neural
representations of the original sequence.

Neural cells sensitive to serial order in sequences have
been found extensively in the prefrontal cortex (14–18) and
the hippocampus during spatial exploration and memory
tasks (19, 20). Studies identify them either as conjunctive cells
or as disjunctive cells, whether researchers are looking at their
binding feature to respond nonlinearly to various signals in a
mixed form (21–23) or at their factorizing feature to respond
only to relational or structural information (20, 24–26). In
both cases, they can be viewed as loosely salient pattern de-
tectors that are important for memory storage (27) and neural
communication (28).

We devise two important and apparently antagonistic de-
sign principles in terms of information processing underlying
the mechanism we propose, namely orderliness and random-
ness. First, relative ordinal codes permit a limited number of
synapses and a limited number of synaptic weight values to
represent one original item sequence. By doing so, it permits
the cost of wiring (3) to be reduced and the precision of the neu-
rons to be purposely limited; in effect, ordinal codes produce a
quantized representation of one original sequence with discrete
values, similar to binary codes in human-made communications
networks. Second, we impose some random permutations of
those ordinal codes to obtain sparse representations. Random
permutations, in effect, decorrelate redundant information in
incoming signals: henceforth, few neurons become necessary
to discriminate the original signal. By avoiding redundancy,
we guarantee the code efficiency with maximum information
compression, following the maximum entropy principle (8).

In our neural network, although any individual neuron
is unreliable in reconstructing an original signal due to the
coarse quantization performed by the relative order codes
(pattern separation), taken at the population level, they can
share their views and exploit their distributivity and sparsity
to find a consensus through crosstalk (pattern completion).
Such an error-correction process can be performed iteratively
by selecting at each time step the solutions that best satisfy
the constraints during reconstruction. This approach can be
seen as similar to a Bayesian treatment of information using
conditional probabilities, such as expectation-maximization,
active inference (29, 30), predictive coding (31–33) or free-
energy minimization (34–36); see Fig. 2.

In effect, our strategy emphasizes the role of using simple
decoders to achieve noise cancellation. Interestingly, the three
computational stages we describe, namely, (1) shuffling, (2)
low-resolution codes, and (3) belief voting, are reminiscent of
the error-correcting mechanisms employed in modern digital
communications pioneered with the turbo-codes invented by
Claude Berrou and Alain Glavieux (37). Turbo codes exploit
two or more differently shuffled versions of the input signal
encoded by simple codes. The weakness of these codes causes
large individual reconstruction errors. However, iterative com-
binations of their belief votes allows us to find a consensus

and to correct errors near perfectly. Shannon showed that
communication channel capacity can be attained for asymp-
totically long messages using a random channel code, which
maps each message to a codeword that realizes of independent
identically distributed symbol random variables (38). However,
such a code is impractical in terms of complexity. It was the
advent of turbo codes that first demonstrated the existence of
structured codes operating close to capacity with reasonable
decoding complexity (39). Turbo codes encode a message
twice using a simple code, once in original positional order and
once in randomly shuffled order. These two “views” on the
message allow for an elaborate iterative decoding algorithm
that corrects many more errors than the simple codes alone.

In agreement with this, we suggest that random shuffling
and ordinal neurons can embody efficient error-correcting codes
to represent information, thanks to their sparsity/distributivity
features and the consensus at the neural population level,
despite their limited learning capabilities due to a discrete
representation and crude synaptic resolution. This mechanism
has the advantage of making memory digital because it encodes
information using a set of discrete values, making it more
robust to intrinsic and external noise for memory preservation
and retrieval.

In our experiments, we found that a surprisingly small
number of neurons (a few dozen) is enough to encode and
decode a sequence of distinct items taken in a large reper-
toire and this number grows linearly while the repertoire size
can grow exponentially (e.g., order of a billion of symbols).
This is a novel and fundamental result: it demonstrates that
the number of neurons needed to learn an input is related
to its resolution (which also determines its entropy) and to
the resolution of the neural codes. To our knowledge, this
observation has never been made before, it expresses that the
learning capacity of a neural network is limited by its entropy
and the entropy of the object to be learned. It closely follows
Shannon’s source and channel coding theorems and provides
insights for a neural information theory.

Our contributions in this paper are, therefore, twofold.
First, we describe a novel type of neural network, a digital
neural network, and its design. Second, from this discovery,
we could derive the Shannon equations for its capacity limit
to learn and transfer information; see Eqs. 1 and 2 in the SI
section. These equations are however universal and can be
extended now to any sort of formal model of neural networks
(e.g., deep networks, spiking networks, reservoir networks) to
define and analyze their learning capacity limit. Similar to
digital processing using binary bits in human communication
and in memory storage devices, the possibility of having digi-
tal neural networks is a direct consequence of this equation.
To our knowledge, these are two novel results that were ex-
ploited neither in artificial intelligence nor in computational
neuroscience.

We discuss the impact of our findings on the brain’s memory
organization (perception, recall, binding), its implications in
terms of neural coding for sparsity and distributivity, and on
the future design of energy-efficient and large-scale artificial
intelligence systems.

Model

Glossary. We explain some (information-theoretic) terms used
in the following.
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Fig. 1. Schematic presentation of the neural population based on randomly permuted ordinal codes. The process has three stages: the encoding of the original sequence, its
decoding and a global belief vote. In the first phase, the neurons encode the relative order (the ranks) of the items in the spatiotemporal sequence X using multiple randomly
shuffled orderings of the item alphabet. The result is that each neuron sees a randomly permuted ordinal code, e.g., P (Y/X). The items’ values are no longer present in the
ordinal codes, which perform a drastic quantization of information. During the decoding phase, each neuron reconstructs the sequence in its alphabet ordering by trial and
error, e.g., Q(X/Y ). Thus, each neuron has a different local estimate of the items in the sequence. In the final stage, after mapping back the local alphabet orderings to the
original, a global belief vote at the population level accumulates the local decisions from all the neurons, allowing correction of local decision errors; e.g., maximum a posteriori
probability X̂ = X∗.

Fig. 2. Robust neural decoding of a signal encoded with and without random per-
mutation of the input repertoire (alphabet). a) Encoding using N neurons without
permuting the alphabet order. Local (per neuron) errors are modeled by a Gaussian
distribution. Combining the N local estimates (top) allows only for a linear reduction
in the estimation noise through averaging. b) Random alphabet permutations cause
repertoire items that are neighbors in the original order to lie farther apart. When
cumulating the reordered local Gaussian votes (top), this leads to a nonlinear effect
that lets the global estimate stand out in the noise, which is now spread over the entire
alphabet.

Input sequence (message): a sequence (vector) of items
that shall be encoded. The index may be related to time,

Fig. 3. Efficiency of a relative order code versus a temporal code. a) A spatiotemporal
sequence of L items taken in a repertoire of size R. b) Ordinal codes represent
the sequence with a vector from L only, storing the relative rank order over time
of the items in the sequence. In c-d), in terms of computational cost and precision,
formal neurons such as perceptrons have to encode the items’ index of temporal
sequences either in their synaptic weights with resolution R and L synaptic links or
with R synaptic links and synaptic weights with resolution L. In c), instead, ordinal
codes represent in their weights the relative order of items in the sequence only (L
values). In d), this second type of coding allows the drastic quantization of information
to only L synaptic links to learn, with respect to the R links necessary instead, as
in formal neurons. This large reduction in dimensionality comes at the cost of losing
information about the items’ values.

position, etc. Additionally, termed message in information
theory.
Item: an input value, e.g., a stimulus level, taken in a fixed
repertoire.
Repertoire (alphabet): the set of possible values, assumed
here to be finite and linearly ordered, e.g., the English alpha-
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bet with alphabetic order, or brightness levels {0, 1 . . . 255},
with integer order.
Resolution: the quantization step size used when represent-
ing a continuous quantity (e.g., the pitch of a sound). A finer
quantization resolution will then correspond to more steps, a
larger repertoire, needed to cover a fixed input range.
Channel: a mapping function that models a transmission
(or storage) system. If the channel map h(·) is one-to-one,
the channel is noiseless, and the input may be reconstructed
perfectly from its output. Otherwise, the channel is noisy and
perfect reconstruction is impossible. Noisy channels often have
probabilistic maps h(·).
Channel encoder: mapping of a message to a codeword, a
sequence of channel input values. Its goal is to add structured
redundancy to protect against channel noise.
Decoder: exploits the channel code structure to correct errors
introduced by the noisy channel.
Digital computing: the main difference w.r.t. analog com-
puting is that values involved in computation are from a finite
set (e.g., binary in most digital computers). This requires the
ability to correct the errors introduced by every type of phys-
ical computing and storage circuit (biological or electronic).
The ordinal code with a belief voting decoder used in this work
is an error correcting mechanism. Turbo coding: a telecom-
munications error correction scheme that encodes the original
input sequence and an interleaved (position-permuted) copy
of it. The decoder iteratively estimates the original sequence,
aided by the previous estimate of the interleaved sequence,
and vice versa. This alternating decoding iteration allows
many more errors to be corrected than with a single code,
provided that the interleaver ensures that the two estimates
for a symbol are almost independent.

Overview. The overall process consists of encoding an infor-
mation sequence, storing (transmitting) it in order-sensitive
neurons, then decoding it.

The input sequence of length L consists of items taken from
a repertoire of size R, which may be mapped without loss of
generality to the set of integers [R] = {1, 2, . . . R}. We will
interchangeably use the terms repertoire and original alphabet,
to distinguish it from the reordered (permuted) alphabets
underlying the coding and decoding mechanisms.

A message sequence s comprising L items (symbols) s =
[s1, s2, . . . , sL] is encoded by a function x = g(s) into a code-
word x = [x1, x2, . . . , xN ], where the number of message sym-
bols L and code symbols N are not necessarily equal. The
codeword is transmitted through a communication (or storage)
channel to produce an output y = [y1, y2, . . . , yN ] = h(x),
which is decoded to produce a message estimate ŝ. Message
symbols, channel inputs and outputs are modeled as random
variables, indicated by capital letters, while realizations use
lowercase letters.

The message is channel-encoded by mapping it to N ran-
domly permuted alphabets, which results in different rank
sequences “seen” by the ordinal neurons. The latter form the
channel, which outputs N scalars (dot products); see Eq. 1
below. They are two sources of channel “noise”: the alphabet
quantization due to the replacement of items by their rank,
and possibly a many-to-one mapping of rank sequences to a
scalar dot product. Finally, decoding is performed by first
estimating the N rank sequences, and then combining those
into a global decision vote. The details of this process are

explained in the following.

Computational features of ordinal codes. Neurons sensitive to
the ordinal structure within a sequence can be implemented
by weighting the relative order of the items depending on their
relative rank or their relative importance within it. Hence,
this type of coding differs from the temporal coding of the
bioinspired spike timing-dependent plasticity reinforcement
rule (40, 41). Relative ordinal codes depart also from the rank-
order coding algorithm of Simon Thorpe and colleagues (42,
43), although this work and previous works are inspired by
it (36, 44). The rank-order coding (ROC) algorithm has been
proposed as a model to explain the rapid processing performed
by the visual system in a few cortical layers. This algorithm
is a computational model of the visual spiking neurons and
the STDP mechanism. Although sparse, the encoding is not
relative; therefore, there is no reduction in the number of
synaptic weights. We will develop more in the Discussion
section on how the brain might carry out this function and
the biological plausibility of it.

We can use the example presented in Fig. 3 a) and b) to
explain the difference between the two types of coding, respec-
tively STDP/ROC and ordinal encoding. For instance, in a
time series of 6 items ordered as follows seq : [18, 13, 8, 14, 5, 19]
in Fig. 3 a), the ordinal code corresponding to this sequence is
order : [#5, #3, #2, #4, #1, #6] in Fig. 3 b). If R is defined
as the cardinality of the input space, and L is the number of
items within the sequence, then it is necessary to have L or R
synaptic links to encode the sequence, depending on the code
used and the desired precision level (see Fig. 3 c).

For instance, the STDP learning mechanism requires R
synaptic links to encode the indices and their location in
the temporal sequence; the values of the synaptic weights
encode the temporal delay or the index order (40, 45, 46).
In comparison, an ordinal code requires only a vector of L
weights, in which the amplitude level encodes the relative order.
This relative code can be seen as a harsh analog-to-digital
conversion in which the exact item values in the sequence
are removed. However, in the case where R ≫ L, it can
represent a computational advantage to represent only the
ordinal structure within the data (47, 48), see Fig. 3 d).

Ordinal codes implementation. The ordinal coding strategy con-
sists of discretizing the items in the sequence based on their
rank in a given alphabet.

The ordering function rank(An, S, i), n ∈ [N ], i ∈ [L], spec-
ifies as output the rank under order An of the item si located
at position i within the sequence S = [S1, S2, . . . , SL]. The
ordered alphabet An = [π(n)

1 , π
(n)
2 , . . . , π

(n)
R ] is a permutation

of the original repertoire, and N is the number of output
neurons, equal to the number of representations of the same
sequence in different permuted orders. We implement the rank
function rank(An, S, i) = 1/r as the inverse of the rank r for
a particular index i, which can be obtained easily with the
argsort() function in the C, MATLAB, or python languages.

The equations of the neurons Y sensitive to ordinal infor-
mation in a sequence are as follows. The neurons’ output
Y is computed by forming the dot product between the or-
dering function rank(An, S, i) and the synaptic weights wi;
wi ∈ [0, 1], i ∈ [L]. For an input sequence of L items taken
in the repertoire of cardinality R and for a population of N
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ordinal neurons, we have:

Y (n) =
L∑

i=1

rank(An, S, i) w
(n)
i , n ∈ [N ]. [1]

The updating rule of the weights is that of the Kohonen
networks (49) with a learning rate α fixed to 1.0 for one-shot
learning, for the neuron Y (n), we have:

∆w(n) = α(rank(An, S) − w(n)). [2]

Thus after complete learning, the weights w(n) =
rank(An, S) and the neuron’s output becomes maximal,
Y (n) = Ymax =

∑L

r=1
1

r2 for our choice of rank function.
Notice that this maximum depends only on the choice of rank
function and the sequence length L.

Since the weights w are normalized between [0, 1] and the
support of their density is bounded, the ordinal neurons are
similar to radial basis functions. This attribute permits us to
use the neurons Y as receptive fields and radial basis functions
so that sequences with the same item order will fire the Y
neurons with a high activity level with respect to the alphabet
orders An. The channel input X does not appear in Eq. 1,
since the chain encoder–channel may be seen as mapping the
input sequence S directly to the channel output Y (n).

This neural network differs from other random neural net-
works, such as reservoir computing (50, 51) or sparse coding
with random projections (52). In those networks, random
projections tag the input in a high-dimensional space, and
they cannot retrieve it. Our neural network, instead, can
reconstruct the incoming signal. The random permutations
decorrelate information and remove redundancy to have inde-
pendent identically distributed random variables.

Sequence reconstruction mechanism. To reconstruct each se-
quence learned by each neuron and to have an estimate of the
items in each alphabet, we can use any metaheuristic methods,
such as the hill-climbing algorithm, simulated annealing, or
genetic algorithms, to evaluate it by trial and error. Here,
we implement the simulated annealing algorithm solutions
through an iterative stochastic optimization, as the one used
in related works on predictive coding (36, 44), Figure 1.

Using a noise vector S_noise, we test a generated sequence
S = S + S_noise, and indirectly evaluate its distance to the
encoded sequence S∗ in neuron Y by computing the error E
between the current activity level of neuron Y for sequence S
and its highest activity level Y ∗ for the encoded sequence S∗.
If the error gradient ∆E diminishes, then we store the current
sequence S∗.

This error signal E, similar to a gradient descent or hill-
climbing mechanism, guides the exploration process iteratively
to minimize error until convergence.

Similar with what we showed in (36, 44) this variational
process is an online stochastic hill-climbing algorithm per-
formed iteratively; a pseudocode is provided thereinafter. We
added in (47) a more sophisticated hill-climbing algorithm
corresponding to simulated annealing to efficiently drive the
exploration process.

Global decision vote mechanism. The global decision vote mech-
anism has some similarities to a Gaussian mixture model
(GMM); see the pseudocode.

For each location in the sequence, a probability density
function for each item in the repertoire is produced, repre-
sented as a sum of all densities of Gaussian components from
all the neurons.

The N Gaussian distributions are centered on the L re-
trieved items for each location in the sequence but on their
respective alphabet An. Therefore, neighboring items will not
be the same in each alphabet and the vote will be orthogonal,
as presented in Fig. 2. This differs from the original GMM.

For kernel-based methods, the parameter σ corresponds
to the bandwidth parameter or the variance, which has an
incidence on the global decision vote. The smaller σ is, the
larger the bias, whereas the larger σ is, the smaller the bias.

In GMM, an optimal bandwidth can be defined with respect
to the number of Gaussian functions, although this was not
considered here.

Algorithm 1 Pseudo-code of the algorithm
s = [item1, item2, . . . , itemL], ▷ a sequence of L items,
items ∈ [R] = {1, 2, . . . R} ▷ items randomly selected
neurons ∈ [N ] ▷ neural population of N neurons
random alphabets A = [A1, A2, . . . , AN ], ▷ of cardinality
R
original alphabet A0 = [1, 2, . . . R]

sk = Ak[s], k ∈ [N ]▷ sequence s in the new alphabet Ak

#1 encoding, one-shot learning for demonstration purpose
for k = 1, 2, . . . , N do ▷ for each neuron k

Wk = rank(Ak, sk) ▷ learn the relative ordinal code

#2 decoding, similar with a Hill-Climbing gradient error
for k = 1, 2, . . . , N do ▷ for each neuron k

initialize Errk, Err_bak,
s_bak = s_noise ▷ with s_noise ∈ [R]L
while Errk ̸= 0 do

s′
k = s_bak + s_noise ▷ with s_noise ∈ [R]L

Y (k) =
∑

rank(Ak, s′
k) Wk,

Errk = (Y max − Y (k))2

if Errk ≤ Err_bak then ▷ keep values
s_bak = s′

k

Err_bak = Err_k
sk = s_bak

#3 global decision, similar to a Gaussian Mixture Model
initialize σ, S′

for i = 1, 2, . . . , L do
initialize cumul_sum[i, j] = 0, ∀j ∈ [R]
for k = 1, 2, . . . , N do

initialize µ = s′
k[i]

for j = 1, 2, . . . , R do ▷ or j in a range around µ

G(π(k)
j ) = 1

σ
√

2π
e−(j−µ)2/2σ2

▷ in alphabet Ak

cumul_sum[i, j]+ = G(j) ▷ in alphabet A0

S′[i] = argmax(cumul_sum[i, :]) ▷ return max item
return S′
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Results

Because each neuron encodes a quantized version of the origi-
nal sequence, the reconstructed sequences are prone to local
errors. However, these errors are also distributed uniformly
with respect to the randomization performed on the original
alphabet (e.g., the original order of the items in the repertoire);
see the Materials and Methods section for a glossary of the
terms used. We can exploit this property to disambiguate
what is information from what is noise when a decision is
made at the population level. We display this effect in Fig. 4
a-d) for four reconstructed sequences with different randomly
permuted alphabets for neurons 1, 2, 5 and 8.

As neurons tend to satisfy a minimal global error during
reconstruction using only permuted codes, the local errors can
be large in some locations. The density distribution of the
local error is now uniform due to the different permuted orders
for each neuron. This can be exploited for disambiguation
during the global decision vote at the population level when
the sequences are remapped into the original alphabet, as seen
in Fig. 2 b).

This equalization of the distributions is similar to the
whitening effect found in sparse coding (9, 11) and differs
from conventional neural networks, whose neurons encode in-
puts using the same distribution and same lexicographic order
as in Fig.2 a); in this case, the error distribution is correlated
and blurred, and, therefore, difficult to discriminate.

To understand how the global decision is made at the pop-
ulation level, we analyze the local votes and their cumulative
sum in Fig. 5 to reconstruct one item, taken as an example.
Fig. 5 a) presents the vote between 0 and 1 of each neuron, for
each alphabet item (of R = 100 items) and for a given position
in the sequence. The local vote for each neuron follows a
wide Gaussian curve centered on the retrieved item and its
surroundings controlled by the bandwidth parameter σ. The
votes of the different neurons are then mapped back to the orig-
inal alphabet order, except for neuron 49 (last column), which
has an unshuffled alphabet, to ease method understanding.

Fig. 5 b) shows the cumulative sum of each neuron’s vote
for each item ∈ [R] (the sum is below 50, the size of the
neural population), displaying the global decision vote at the
population level, with a peak around the item of index 23, the
ground truth displayed with a red arrow. This peak is also
observed in Fig. 5 c), in which we overlap the cumulative sums.
In addition, we can observe other peaks of smaller amplitude,
which are other alternatives. The remaining majority of the
votes form a noninformative background noise; i.e., the nonin-
formative votes vanish. We can apprehend now the beneficial
effect of randomization on reconstruction. Randomization
permits crossing the local decisions, so that at the global level,
only the intersecting votes remain.

Another question is to assess the influence of the global
decision mechanism on the belief vote. To understand this,
we plot in Fig. 6 the reconstruction error with respect to the
cumulative local votes for each neuron and different width
parameter σ. For instance, this parameter σ modifies the
Gaussian functions’ width, which acts upon the shape of the
density distribution of the global vote when they are summed
up.

The cases for σ = 1, 2 and 5 correspond to the most unreli-
able situations when the redundancy of the neurons is little
exploited and when the error is only slowly reduced; exploiting

Fig. 4. Examples of reconstructed sequences with different permuted alphabets or
keys, with R = 100 and L = 50. The permuted ordinal code learned by each neuron
allows to retrieve the sequence with high fidelity, but always with some small local
error due to the quantization to ranks performed by the neurons in their respective
alphabet order. The original sequence (in the permuted order alphabet Ai of the
neuron i) is plotted in blue and the retrieved sequence is plotted in red. Variance is
proportional to R, approx. ±0.1R.
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a) b)

c)

Fig. 5. Local decision vote for individual neurons and global decision vote at the
neural population level; R = 100, L = 50. The red arrow indicates the true value
to be retrieved back. In a), the activity level represents the local decision vote for
each neuron (X axis) based on the Gaussian density distribution centered on the
estimated values for each item in their respective randomized alphabet (Y axis). In b),
the figure presents the cumulative sum with respect to the number of neurons used
during global decision. The activity level indicates the accumulated sum for each item,
the global decision vote at the neural population level. In c), display of the cumulative
sum for several numbers of neurons used.

the fifty neurons can reduce the overall root mean square error
(RMSE) from 0.5 to 0.3 for σ = 1 and RMSE = 0.1 for σ = 2.
However, during the decision-making process, any large classi-
fication errors (relative index errors above σ) are unlikely to
be corrected when reordered. This is because the votes are
centered only on the locally retrieved items. For a slightly
higher value σ = 5, which corresponds to a relaxation of the
decision process allowing a local error of 5 index distances from
the correct index in the repertoire R, the RMSE is cancelled
and only 22 neurons are necessary to reconstruct the original
sequence (green line). We can remark that more neurons
generate errors, and above 32 neurons, there is a complete
error cancellation. In comparison, for higher values σ > 10,
which correspond to a relaxation of the decision process for
possibly large classification errors above a relative distance of
10 indices to the correct index, the number of neurons needed
to cancel the error is reduced drastically to seven or eight neu-
rons needed to retrieve the original sequence perfectly. These
results show that an utterly small number of noisy neurons,
seven or eight, can perfectly represent a sequence of fifty items
taken in a repertoire of one hundred items, which can be letters
or pixel values. However, above this small number, the neural
population becomes redundant and more neurons will not add
more information. Therefore, seven or eight neurons are the
lower limit (Nlimit) until pattern completion in sparse coding
for a sequence of fifty items (L = 50), in a repertoire of one
hundred items (R = 100) in this case.

We illustrate the reconstruction process and the pattern
completion stage in a sequence of fifty items (L = 50) for a

Fig. 6. Plot of the root mean-squared error (RMSE) for the global decision at the
neural population level with respect to the parameter σ ∈ [1, 5, 10, 20, 50]; with
R = 100 and L = 50. The smaller the parameter σ is, the less effective the
decision-making, which will not make good use of the redundancy. In such cases,
ten neurons are not enough to retrieve the original sequence, limited to an RMSE of
0.3. Instead, for a larger parameter σ above 10, fewer neurons can drastically reduce
error to zero, performing a sparse coding of the incoming sequence.

repertoire of now ten million items (R = 107) in Fig. 7. Fig. 7
a) shows the global decision vote based on the cumulative
sum for different neural population sizes N . Fig. 7 b) shows
the absolute error between the true items and their local
reconstruction (after global consensus voting) for each position
in the sequence. The consensus vote among the neurons
with complete disambiguation is achieved for approximately
seventeen neurons; N = 17. Below this limit, not all items
in the sequence are correctly reconstructed. We can observe
that the discrepancy is not linear and that errors cannot
be predicted monotonically with respect to the size of the
neural population used during the decision-making process.
The error cancellation changes abruptly and nonlinearly at
different locations in the sequence with respect to the number
of cumulative votes.

We display (in Fig. 8 a-b) the performances of the neural
population when encoding a sequence of fixed length L =
50 and for different cardinalities R of the input repertoire,
up to one hundred million items, R = 108. Such a large
cardinality may model a finely quantized fixed-range signal, so
in the following, we speak interchangeably of resolution and
cardinality. High resolution means a small quantization step
and thus a high repertoire cardinality (number of quantization
levels).

The case for input repertoire cardinality R = 102 (blue
line) corresponds to the same situation as in the previous
experiments.

For a sequence of items taken in a ten times larger repertoire,
R = 103 (orange line), corresponding to a higher resolution,
the performances degrade slightly, and only approximately ten
neurons are required to fully reconstruct the sequence. That
is, three additional neurons are necessary to encode a sequence
taken in an alphabet of ten times as many items, which is a
surprising result.

However, for higher cardinalities up to R = 108, the perfor-
mances do not degrade and the progression becomes slightly
more nonlinear. The number of ordinal neurons necessary to
fully encode a sequence taken in a large-scale repertoire is
extremely small, below twenty neurons, in comparison to the
repertoire cardinality. The graph in Fig. 8 b), with the values
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Fig. 7. Sequence reconstruction vs. number of neurons N for a fixed input sequence
of length L = 50 (repertoire size R = 107). Each column in the matrix plot corre-
sponds to the reconstruction for a given N . a) shows the global reconstruction in
the color-coded repertoire. b) The squared reconstruction error averaged over the
neurons. Approximately 17 neurons are needed to guarantee correct reconstruction
in all sequence positions.

a)

b)

Fig. 8. Number of neurons needed to decode a sequence of various resolutions. The
resolution is related to the size R of the input repertoire, or its cardinality, from which
items are taken in the sequence (larger R for finer resolution). The number of neurons
Nlimit is the minimum number of neurons found necessary for reconstruction without
error. In a), global decision vote for various cardinalities R; we set σ to the large
value R/2. In b), the minimum number of neurons needed is Nlimit to reconstruct
the sequence without error with respect to the input resolution (resp. R). The graph
shows a linear progression of the number of neurons required to code a sequence
while the cardinality R augments exponentially; the values are averaged over ten
simulations.

averaged over ten simulations shows the counterintuitive result
that a logarithmic relationship can be achieved between the
number of neurons necessary to encode a sequence and its
resolution, which can grow exponentially.

This shows the surprising result that an extremely small
number of neurons is required to disentangle a signal or se-
quence of very high resolution, and this is achieved with
quantized neurons with limited learning capabilities, which
make large reconstruction errors.

This result indicates that few quantized neurons can handle
very high-resolution signals as sparse codes to keep memory
safe for reduced neural communication (3) and error-free pat-
tern completion (9, 13, 53). Put into an equation format, this
fundamental result describes the intuition behind information
theory that the channel capacity is related to the resolution
of the message to be learned. In the case of a neural network,
the number of neurons N and the resolution of their codes
Rnetwork represent the neurons’ capacity to learn one input
and Rinput = R, its resolution. We develop in the SI section
the demonstration of the equation that relates these different
terms and corresponds to: NL log Rnetwork ≥ L log Rinput.
This equation can be adapted to our ordinal neural network
with Rnetwork = L being the number of possible values that
can take the synapses; see Eqs. 1 and 2 in the SI section.
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a) b) c)

d)

Fig. 9. Image reconstruction by neurons of lower resolution. In a), we present two neurons that encode an image with random permutations of the pixels’ distribution (255
values) and reduced to a binary code (2 values). c) Euclidean error with respect to the number of neurons used during global decision-making. Near forty binary neurons are
required to retrieve back perfectly the original pixels’ value. d) image reconstruction for different number of neurons used during the decision vote.

We illustrate our algorithm on a visual example. The
network learns one image of size 256x256 with neurons of
synaptic resolution 2; see Fig. 9. Each neuron has access to
a different shuffled order of the pixel values within the image
repertoire of size 256. The binary codes reduce the pixel values
to the values [0,1] for the synaptic weights. This operation
makes neurons very poor detectors, as plotted in Fig. 9 (a-b)
for two of them.

We reproduce the reconstruction process at the population
level and we plot in Fig. 9 c) the Euclidean error based on the
number of neurons used during reconstruction and in Fig. 9
d) the results for different ensembles of neurons.

We can observe from the graph that near forty neurons
are necessary in our case to recover the full resolution of
the image without error. This number is, however, a large
upper bound because according to the equation defined in the
Supplementary Information: NL log L ≥ L log R, only eight
neurons need to have orthogonal codes as N = log 256/ log 2 ≈
8, which is in line with binary codes in bits in image processing.

The neural codes transform the pixel distribution into an
independent identical distribution. Therefore, the spatial
redundancy is removed, which makes the representation sparse.

Discussion

Biological plausibility. We described in this paper how artifi-
cial neural networks with discrete and ordinal synaptic weights
can reconstrcut back missing information in original signals.
However, we did not provide any grounds how the brain may
implement this function. We suggest two plausible mecha-
nisms.

First, chemical and electrical synapses possess specific
strength and plasticity to conduct nerve impulses, and there-
fore particular synaptic resolution and potentiation. Above
this potentiation limit, synapses may saturate, as it can be
the case for binary synapses. This may induce a strong dis-
cretization of the incoming signal, which may be well rendered
by discrete or low resolution weights as we suggest.

Second, while in many domains of human cognition, sequen-
tially and hierarchically structured representations are thought
to play a key role, many evidences suggest that the neurons in
the frontal cortex are involved in their encoding (15, 16, 18, 54–
56).

We review several neurocomputational models for ordinal
encoding in (48) and provide as well an original biological
implementation of it based on STDP, called ordinal STDP.

In this ordinal version of STDP, pre- and post-synaptic
neurons reinforce their links with respect on their relative
index, relative distance or relative spatial location, but not on
their timing as it is conventionally the case in STDP.

Post-synaptic neurons with higher (resp. lower) index than
pre-synaptic ones will strengthen (resp. diminish) their synap-
tic links. By doing so, spiking neurons sensitive to specific
order in sequences can be constructed in recurrent networks,
without the need to encode the indexes in the synapses as it is
currently done in simulations. This type of ordinal encoding
will have for advantage to be very robust to intrinsic noise even
when nodes are inserted or suppressed within the sequence.

Digital computation. We found the counterintuitive result that
a very limited number of neurons with coarse resolution and
random connections can accurately encode arbitrary signals
of very high resolution, one hundred million times higher than
the neurons’ learning capabilities, and this ratio grows linearly.

Because of the neurons’ ordinal representation of the se-
quence, items taken in a repertoire of dimension R can be
represented by a neural code with values taken in a reper-
toire of dimension L only, making the computation cycles of
encoding and decoding very fast. Surprisingly, the principal
bottleneck is at the reconstruction stage, which is dependent
on the parameter σ and the number of neurons N used in
the calculation of the Gaussian functions. The larger σ is,
the heavier the computation but also the more precise the
reconstruction, as shown in the experiments. The number of
units required remains nonetheless low and almost constant.
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Considering our finding that very few neurons are necessary
to retrieve back items taken in very large repertoires, this
mechanism is very sparse and computationally efficient.

From this result, we found a mathematical relationship
between the memory capacity of a neural population — which
depends on its number of neurons N and the resolution of its
neural codes Rnetwork = L — and the repertoire cardinality
Rinput of the message to be learned (equivalently its entropy
or resolution). This parallels Shannon’s so-called separation
theorem, which states that an information source may be
transmitted (or stored) with an arbitrarily small frequency
of error as long as the source entropy per channel use does
not exceed the channel (or storage) capacity. The related
equations are provided in the SI section; see Eqs. 1 and 2.
These equations can provide insights for a neural information
theory and the design of novel digital neural networks, for
which the neural network we propose is one of the first instances
to our knowledge.

The ordinal codes in our neural architecture operate a
discretization (quantization) of information. Additionally, the
randomly permuted orders yield independent and identically
distributed rank items to be coded (with maximum entropy).
This max entropy holds under the model assumption that the
random permutations are chosen uniformly for each sequence
learned. Together, they form a joint source-channel code that
allows disambiguation of sequences that map to the same rank
order in the original alphabet. This is in line with the efficient
coding principle of redundancy reduction and the whitening
phenomenon, which is found in sparse coding (3, 8, 11, 12, 57).

Error-correcting codes are at the heart of the revolution of
modern communication theory and practice. Interestingly, the
pioneering work that first came within reach of the Shannon
limit to error-free communication is the turbo-codes (37),
which exploit the three mechanisms we similarly use here:
shuffling of the input signal, coarse representation (by parity-
check codes), and belief votes at the decoder.

Within the brain, since the task of correctly retrieving a
particular group of neurons is incommensurate (58) consider-
ing the number of neural units (1010 cells) and the number of
synaptic connections (1014 dendrites), the brain has to find an
efficient solution to overcome its complexity for processing, pro-
tecting and retrieving information (3). One outstanding and
provocative question is, therefore, does the brain effectively
use a digital code to process neural information? Although
not a computer, does the brain incidentally exploit the same
principles found in current man-made telecommunication net-
works?

After all, if ’DNA is encoded digital information in the
“Strong Sense”’ according to Richard Dawkins (59), the brain
may also exploit some kind of digital processing for memory
preservation, access and learning.

Perceptual binding. Pouget and colleagues present in (60) a
Bayesian inference treatment of feature binding between two or
more variables emphasizing the important role of the Gaussian
distribution of the neurons’ output: that is, neurons encode
(Gaussian) probabilities, and as such, they are sensitive to
specific values in high dimensions (i.e., their mean value),
which are a compromise between multiple inputs but weighted
by the inverse of their variance (their precision or uncertainty).
Therefore, in comparison with perceptrons in formal neural
networks, biological neurons convey two types of information

instead of one: the output and the confidence level.
They use one example in which the estimation of the width

of an object (µwidth) is performed by combining visual and
tactile cues (X1 and X2); the estimated size of the object is the
average between these two variables with mean and variance:
µwidth = W1X1 + W2X2. As such, combining cues increases
(or decreases) the information and confidence level.

We can draw a parallel with our framework. In our exam-
ples, we can see each element of the sequence as if they were
different variables, modalities or cues, with access to different
sources of information. The more items that are added in
the sequence, the more active the neuron, which corresponds
to its confidence level. Alternatively, the weights matrix W
can also be read in the other direction, vertically: the more
neurons that are used in element estimation, the more precise
the reconstruction through accumulation (61).

The Gaussian functions and equations in our model are
used in the same manner as the Bayesian treatment of uncer-
tainty during feature binding in (60), with variance as a sign of
computation (62). In addition, the randomization introduced
in our algorithm has the advantage of creating a normal dis-
tribution of the variables so that each variable is independent
and separable from the others. Sparsity is, therefore, a feature
as important as binding for “tractability” or disentanglement
in perception (63).

Information routing and conscious gating. Our ideas may cast
light on recent proposals that the PFC is the brain router that
may manipulate neuronal variables and pointers for gating
information and conscious access (64, 65) or others that the
brain manipulates integrated and differentiated information
codes (66).

Because retrieval is viewed as an optimization decoding
process in our network, our framework may explain why the
bandwidth limitation to memory access is all-or-none and why
conscious access is constrained, time-limited, and sequential.
Under this aspect, it is in line with the predictive process-
ing and free-energy account for consciousness, in which con-
sciousness is simply the process of optimizing beliefs through
inference (67–70). Their results are also in accordance with
current main theories of the brain that relate conscious pro-
cessing explicitly with information theory to global ignition,
long-distance broadcasting, cognitive cost and information
integration (66, 69, 71–76).

Our results may provide some additional constraints on
the types of neural coding and communication mechanisms
necessary for distal neurons to dynamically control the syn-
chronization of a coherent neural assembly, to fulfill gating and
conscious processing. Moreover, the efficiency of the working
memory can be evaluated quantitatively in terms of durability
and access to stored information: (1) its robustness against
catastrophic forgetting and (2) its rapidity in retrieving any
pieces of information, even corrupted ones.

Digital Neural Networks. Some other neural architectures have
been proposed recently to incorporate discreteness and digital
capabilities. Instances have been proposed by Berrou and col-
leagues (77) focusing on the problem of memory capacity and
organization while Graves and colleagues (78, 79) investigated
their computer-like features.

Berrou’s neural network borrows the technique from
telecommunication networks, showing high memory capac-
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ity and sparsity, but its use in real case problems and its
computational efficacy in real time have not been investigated.
Additionally, Graves’ neural Turing machine and Differentiable
Neural Computer (DNC) show the computational capabilities
of conventional computers with the use of neuronal pointers
and access to external memory. The feature of having an
addressable memory with pairs of (key,value) permits DNC to
buffer and manipulate variables and codes, useful for symbolic
AI problems. However, the problem of how the organiza-
tion of memory and information processing can be efficiently
combined, what the brain does, still remains.

To make a parallel with these neural networks and also
with the von Neuman’s computer architecture, we may see
the neural population we introduced to realize the function
of a random access memory (RAM) to retrieve quickly the
addresses of neurons in a large-scale memory network. These
neural addresses are represented in our neural architecture by
quantized ordinal codes. Our results showed that a relatively
small neural code can retrieve sequences in a very large-scale
repertoire; e.g., an external memory system.

Conclusion

Our proposal that the brain may manipulate and compute a
kind of digital information, may remind the pioneering and
provocative works of the founders of computers and computa-
tion, John von Neumann and Alan Turing, to which we can add
Claude Shannon. On the one hand, John von Neumann (80)
created the standard model of computer architectures based
on the separation between the operative and the operand, with
memory-stored control and memory-stored programs. He also
suggested the idea that the brain might be necessarily a digital
parallel addressable memory machine to avoid noise, to keep
and compute information. On the other hand, Alan Turing was
perfectly aware of the cost of computation that has to endure
the human memory system (81), “necessarily limited” (82)
(p.231), to process, retrieve and keep track of information.
Besides, noise, storage and transmission are at the heart of
the concerns of the Communication and Information Theory
of Claude Shannon (38), who also worked on the redundancy
of the English language (83), in Artificial Intelligence (chess
and maze-solving programs) and information storage in genes
before the discovery of DNA.

Before Claude Shannon’s work, engineers thought that to
reduce communications errors, it was necessary to increase
transmission power or to send the same message repeatedly.
Shannon basically showed it was not necessary to waste so
much energy and time if you had the right coding schemes (38).

Current machine learning techniques (e.g. deep networks)
rely extensively on big data and large neural networks to ap-
proximate statistical correlations on a relatively small number
of classes (a few hundred). It is acknowledged that we will soon
arrive at the end of a cycle as it becomes harder to achieve sig-
nificant improvements with the difficulty of accessing a larger
volume of data and constructing larger deep networks. Further-
more, energy consumption becomes problematic as powerful
computers, graphic cards, and high-performance computing
are now required for efficient learning in a reasonable amount
of time with those models. Thus, we can make a parallel with
the current situation in AI and the earlier ages before digital
communication.

Current AI architectures (deep networks) mostly ignore

that computating has physical means and energy costs that
biological systems cannot afford as they do not have access
to a virtually unlimited amount of energy, precision and time,
and have an urge to act. According to the efficient coding
hypothesis for the brain, leveraging maximum entropy may
be a decisive ally to achieve neat computational power with
limited resources (neurons and synapses). We suggest that
this leap be done by the digitalization of information for en-
ergy consumption, computational effectiveness and preserving
information.

Data Availability.

The code to run the neural network is available on GitHub
(https://git.u-cergy.fr/neurocyber/digicode).
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