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HITCHIN FIBRATION UNDER RAMIFIED COVERINGS

THIAGO FASSARELLA AND FRANK LORAY

Abstract. We are interested in studying the variation of the Hitchin fibration in moduli
spaces of parabolic Higgs bundles, under the action of a ramified covering. Given a degree
two map π : Y → X between compact Riemann surfaces, we may pull back a Higgs bundle
from X to Y , the lifted Higgs bundle tends to have many apparent singularities, then we
perform a suitable birational transformation in order to eliminate them. This correspon-
dence preserves the Hitchin fibrations and then its restriction to a general fiber gives a map
between Abelian varieties. The aim of this paper is to describe this map.

1. Introduction

Let X be a compact Riemann surface of genus gX and let D = t1 + · · · + tn be a divisor
on it determined by n distinct points. These points are called parabolic points. We are
interested in moduli spaces of Higgs bundles on X with simple poles on D. Higgs bundles
were originally introduced by Hitchin [7, 8] (see also [16]), without parabolic structure, and
then extended to parabolic context in [19, 22, 23, 11, 15]. The Hitchin fibration is defined
on these moduli spaces and it is a source of remarkable applications [6, 9, 17, 18].

Before going into technical definitions let us offer some motivation for the techniques de-
veloped in this paper. On the one hand, it is well known that the general fiber of the Hitchin
fibration is isomorphic to an Abelian variety. On the other hand, singular fibers are difficult
to deal with and this constitutes an interesting problem in the area. We believe that the
symmetries given by elementary transformations play an important role in this study. There-
fore, the first objective of this paper is to establish a dictionary that allows us to expressing
elementary transformations in terms of the Beauville-Narasimhan-Ramanan (BNR) corre-
spondence. As a consequence, we present a study of the variation of the Hitchin fibration
with respect to a degree two ramified covering. Our main motivation is the application of
these techniques to explicit examples, which are very rare in the current literature. Hence,
the cases (gX , n) ∈ {(0, 5), (0, 6), (1, 2), (2, 0)} are considered at the end of the paper. It is
also important to note that even in the case of five parabolic points on the Riemann sphere,
a complete description of singular fibers is not known, see for example [21, Discussion page
14]. In ongoing work, we shall use the tools developed in this paper to describe all the
singular fibers of the Hitchin fibration when (gX , n) ∈ {(0, 5), (1, 2)}. Here, the role of ele-
mentary transformations and the variation of the Hitchin fibration with respect to the two
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ramified elliptic cover are crucial. As a last piece of motivation, the description of singular
fibers includes the study of the nilpotent cone and the locus of fixed points of the C∗-action
given by multiplication on Higgs field. In particular, these techniques might also be useful
to investigate the foliation conjecture [20, Question 7.4]. Indeed, it follows from the work of
C. T. Simpson that there is a decomposition in the moduli space of logarithmic connections
obtained by looking at the limit in the moduli space of Higgs bundles, the limit point is
a fixed point with respect to the C∗-action and the foliation conjecture predicts that this
decomposition forms a regular foliation.

Let ωX denote the canonical sheaf of X. A rank two Higgs bundle on (X,D) consists of
a rank two holomorphic vector bundle E on X, endowed with a homomorphism θ : E →
E ⊗ ωX(D), which has nilpotent residual matrix Res(θ; ti) at each parabolic point. By
Res(θ; ti) we mean the linear endomorphism of the fiber Eti defined by taking the residues
at ti of local 1-forms defining θ. For any integer d, there is a moduli space H(X,D, d)
parametrizing Higgs bundles over (X,D), with fixed degree degE = d. Actually, we consider
triples (E, l, θ) where l intends to be the parabolic direction, described just below. See
Section 3.2 for the detailed definition. The definition of these moduli spaces also depends on
a choice of a weight vector (a sequence of reals numbers 0 ≤ µi ≤ 1, i = 1, . . . , n) which gives
a notion of slope-stability. The moduli space H(X,D, d) is a normal variety of dimension
2(n− 3 + 4gX), if it is nonempty. For instance see [23, Theorem 5.2] and our Remark 3.4.

Closely related, is the moduli space of parabolic vector bundles Bun(X,D, d), which is a
normal variety of dimension n − 3 + 4gX , if the stable locus is nonempty. An element of it
consists of a pair (E, l), where the additional data l refers to a one dimensional subspace on
the fiber of E over each parabolic point. There is a rational mapH(X,D, d) 99K Bun(X,D, d)
which associates to a Higgs field its underlying parabolic vector bundle, where the parabolic
direction over ti coincides with the kernel of Res(θ; ti). It turns out that the fiber of this
map, at a generic point, identifies with the cotangent space T ∗(E,l,θ)Bun(X,D, d). In addition,
H(X,D, d) admits a symplectic structure which coincides with that of T ∗Bun(X,D, d), given
by the Liouville form.

An important player on this subject is the Hitchin map HX , it associates to a Higgs bundle
its characteristic polynomial. This map is known to be an algebraically integrable system,
which turns out to say that the fiber over a generic point is Lagrangian and isomorphic to
an Abelian variety. This last consists of the Picard variety

H−1
X (s) ' Picn(Xs)

(of the corresponding spectral curve Xs) which parametrizes line bundles of degree n =
d + n + 2(gX − 1) on Xs, by the BNR correspondence. This correspondence is reviewed in
Section 2, as well as the notion of spectral curves.

The main goal of this paper is to study the behavior of the Hitchin fibration under a
degree two ramified covering π : Y → X, between compact Riemann surfaces. We can pull
back parabolic Higgs bundles from X to Y . The lifted Higgs field, after pull back, tends to
have apparent singularities, as well as the corresponding spectral curve has many singular
points. In order to eliminate them, we perform a suitable elementary transformation, and
this process gives a correspondence Φ between moduli spaces, which we now describe.
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Assume that π is branched over the points x1, . . . , xn, n ≥ 1, and let B =
∑n

i=1 xi be the
reduced divisor on X defined by them. Let T =

∑k
i=1 ti, k ≥ 0, be a reduced divisor on X

(T = 0 when k = 0) formed by points outside the support of B. We consider a map between
moduli spaces

Φ : H(X,B + T, 0) 99K H(Y, π∗T,−n)

which is defined by doing the pull back π∗ followed by an elementary transformation elemR

over R, where R =
∑n

i=1 yi denotes the divisor on Y defined by the set of ramification points,
with π(yi) = xi. (see Section 2.4 for the detailed definition). This map preserves the Hitchin
fibration and we denote by

Φs : H−1
X (s)→ H−1

Y (r)

its restriction to a given fiber. Using the BNR correspondence, we obtain a map between
the Abelian varieties that parametrize line bundles on the spectral curves. Hence, in order
to describe the map Φs we are led to investigate the variation of the BNR correspondence
with respect to elementary transformations, see Proposition 2.3.

Assuming 2gX + n − 4 ≥ 0, with strict inequality if k = 0, we assure that the generic
spectral curve in both moduli spaces is smooth and irreducible (see Proposition 4.1). We
show that there is an étale morphism ξs : Yr → Xs of degree two between spectral curves
(Proposition 4.2), and the modular map Φs is determined by ξ∗s , up to a translation. This is
the main result of this paper, Theorem 5.1 in the main text.

Theorem 1.1. Assume that 2gX + n − 4 ≥ 0, with strict inequality if k = 0. Then Φ is a
rational map of degree two onto its image, and it preserves the Hitchin fibrations. Moreover,
its restriction to a general Hitchin fiber is the map

Φs : Picn(Xs) −→ Picñ(Yr)

which sends a line bundle M in Picn(Xs) to the line bundle ξ∗s (M)(q∗r(−R)) in Picñ(Yr).

We finish the paper by applying Theorem 1.1 to a degree two morphism π : Y → P1 where
gY ∈ {1, 2}. Let us briefly describe each case.

In the former case gY = 1, we consider the moduli space H(P1,Λ) of SL2-Higgs bundles
on (P1,Λ), where Λ is given by branch points {0, 1, λ,∞} of π with an extra point t. By SL2

we mean that Higgs fields have vanishing trace and vector bundles have trivial determinant
line bundle. After multiplication by a suitable line bundle to redress the determinant, we
get a modular map Φ0 : H(P1,Λ) → H(Y,D) to the moduli space H(Y,D) of SL2-Higgs
bundles over the elliptic curve Y , with simple poles on D = t1 + t2, with π(ti) = t. The
spectral curve Xs, on the P1 side, has genus 2; on the elliptic side, the spectral curve Yr has
genus 3.

In the second case gY = 2, we consider the moduli space H(P1, B) of SL2-Higgs bundles
over (P1, B), where B is formed by branch points of π. After renormalization of the determi-
nant line bundle, we get a modular Φ0 : H(P1, B) → H(Y ) map with values on the moduli
space H(Y ) of holomorphic Higgs bundles (without parabolic points) over Y . The spectral
curve Xs over P1 has genus 3, and over Y , the spectral curve Yr has genus 5. In this context,
Theorem 1.1 yields the following result, which corresponds to Corollaries 5.2 and 5.3 in the
main text.
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Corollary 1.2. Let the notation be as above. In both cases gY = 1, 2, the modular map Φ0

is dominant and its restriction to a smooth Hitchin fiber is the degree two map

Φ0,s : Picn(Xs) → Prym(Yr/Y )

M 7→ ξ∗s (M)⊗ q∗r(L0(−R))

where L0 is a square root of OY (R) and Prym(Yr/Y ) is the Prym variety of the covering
qr : Yr → Y .

2. Basic tools

2.1. Notations and conventions. Throughout this paper, we assume that X is a compact
Riemann surface of genus gX ≥ 0. As usual, we denote by OX its structural sheaf and by
ωX its canonical sheaf. When L is a line bundle on X we let L−1 be its dual. If E is a vector
bundle on X we often write Γ(E) for H0(X,E).

2.2. Spectral curve. Let L be a line bundle on X. We denote by P the ruled surface
P(OX ⊕ L−1) which is the projectivization of the rank two vector bundle OX ⊕ L−1. Let
q : P → X be the natural projection and let OP(1) be the hyperplane bundle along the
fibers. We note that q∗(OP) = OX and q∗(OP(1)) = OX ⊕ L−1, see for example [5, II -
Proposition 7.11].

The ruled surface P contains two disjoint sections P(OX) and P(L−1) corresponding to the
embedding of OX and L−1, respectively. The embedding of OX ↪→ q∗(OP(1)) = OX ⊕ L−1

gives a section w of OP(1), via the adjoint formula (cf. [5, II - Section 5]) which has P(L−1)
as its zero set. Similarly, since

q∗(q
∗L⊗OP(1)) ' L⊗ (OX ⊕ L−1) = L⊕OX

by the projection formula, we obtain a section z of q∗L⊗OP(1) which has P(OX) as its zero
set.

Given s = (s1, s2) ∈ Γ(L)⊕ Γ(L2), we define the spectral curve Xs ⊂ P as the zero locus
of the section

z2 + q∗(s1) · z ·w + q∗(s2) ·w2 ∈ H0(P, q∗(L2)⊗OP(2)).

It comes with a degree two map
qs : Xs → X

which is the restriction of q to Xs. Notice that in a local open subset U of X where
P|U ' U × P1

(w:z), the spectral curve has equation

z2 + s1zw + s2w
2 = 0.

Equivalently, we can define a structure of commutative ring on OX ⊕ L−1 induced by s:

(a0, a1) · (b0, b1) := (a0b0 − s2a1b1, a0b1 + a1b0 − s1a1b1). (2.1)

This makes OX ⊕ L−1 an OX-algebra, which will be denoted by As, and is locally given by

As(U) =
OX(U)[z]

(z2 + s1z + s2)
. (2.2)
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The spectral curve may be seen as

Xs = Spec (As).
We often write simply

Xs = Spec (OX ⊕ L−1) (2.3)

where OX ⊕ L−1 is considered as OX-algebra. Note that

(qs)∗OXs = OX ⊕ L−1. (2.4)

The (arithmetic) genus of Xs is given by

gXs := dim H1(Xs,OXs) = degL+ 2(gX − 1) + 1 (2.5)

see [2, Remark 3.2].

2.3. BNR correspondence. Let us briefly recall the correspondence between OX-
homomorphisms θ : E → E ⊗ L having the same characteristic polynomial Ps and torsion
free sheaves Mθ of rank one on Xs (cf. [2, Proposition 3.6]).

Let E be a rank two holomorphic vector bundle on X and let θ ∈ Γ(End(E) ⊗ L) be a
homomorphism with s1 = − tr(θ) ∈ Γ(L) and s2 = det(θ) ∈ Γ(L2). By Cayley-Hamilton
theorem it satisfies the equation Ps(θ) = 0, where Ps(z) = z2 + s1z + s2 is the characteristic
polynomial and

Ps(θ) = θ2 + s1 · θ + s2 · I
must be seen as a homomorphism E → E ⊗ L2.

Let us assume that Xs is integral, i.e. irreducible and reduced, which turns out to say
that As is a sheaf of integral domains. We have a canonical isomorphism

End(E)⊗ L ' HomOX
(L−1, End(E))

which associates θ ∈ End(E)⊗ L to the OX-homomorphism

L−1 → End(E)

z → θz

where θz(e) = θ(e) · z. Thus the homomorphism θ induces a structure of As-module on E

Θ : As × E → E (2.6)

which is locally given by (see (2.2))

ΘU : As(U)× E(U) → E(U)

(a+ bz, e) → (aI + bθz) · e
It defines a sheaf Mθ of As-modules on Xs, which comes with a multiplication

(a+ bz)� e := (aI + bθz) · e (2.7)

for any a+ bz ∈ As, e ∈ E. Since Xs is integral then Mθ is also torsion free.
Conversely, if M is a torsion free sheaf of rank one on Xs then E = (qs)∗M is a locally

free OX-module of rank two with an OX-linear map

Θ : As × E → E.
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The section z of q∗sL gives a family of endomorphisms

θU : E(U) → E(U)

s 7→ Θ(z, s)

for each open set U of X such that P|U ' U × P1
(w:z), which glue together to give a global

homomorphism θ : E → E ⊗ L satisfying θ2 + s1θ + s2I = 0. Since Xs is integral then
Ps(z) = z2 + s1z+ s2 is irreducible over the function field of X. Thus Ps is the characteristic
polynomial of θ.

Summarizing the discussion above, here is the version of BNR correspondence [2, Propo-
sition 3.6] needed for our purposes:

Proposition 2.1. Assume that the spectral curve Xs is integral. Then there is a bijective
correspondence between isomorphism classes of torsion free rank one sheaves on Xs and
isomorphism classes of pairs (E, θ) where E has rank two and θ : E → E ⊗ L is an OX-
homomorphism having characteristic polynomial Ps.

We conclude this section with a lemma which will be useful in the sequel.

Lemma 2.2. Let M be the torsion free sheaf of rank one on Xs associated to θ : E → E⊗L.
Then M is a line bundle on Xs if and only if for every point x ∈ X the C-linear map
θx : Ex → Ex⊗Lx ' Ex is not of the form λI, where λ ∈ C and I : Ex → Ex is the identity.

Proof. First assume that M is a line bundle on Xs, i.e. it has rank one as As-module. Then
for any x ∈ X there exist an open subset U ⊂ X containing x and v ∈ M(U) such that
every e ∈M(U) writes as

e = (a+ bz)� v, a+ bz ∈ As(U).

This means that any section e ∈ E(U) can be written as

e = (a+ bz)� v = av + bθ(v), a, b ∈ OX(U).

In particular, v and θ(v) are C-linearly independent when considered as elements of Ex, which
implies that θx 6= λI, for all λ ∈ C. Reciprocally, assuming that θx 6= λI for all λ ∈ C, there
exist an open neighbourhood U of x and v ∈ E(U) such that v and θ(v) are OX(U)-linearly
independent. This implies that v ∈M(U) generates M(U) as As(U)-module. �

2.4. Elementary transformations. We next introduce strongly parabolic endomorphisms
and elementary transformations. The goal of this section is the behavior of Mθ (cf. Section
2.3) with respect to elementary transformations.

Fix t1, . . . , tn ∈ X distinct points and denote by D = t1 + · · ·+ tn the divisor determined
by them.

A quasiparabolic vector bundle (E, l), l = {li}, of rank two on
(
X,D

)
consists of a holo-

morphic vector bundle E of rank two on X and for each i = 1, . . . , n, a 1-dimensional linear
subspace li ⊂ Eti . We refer to the points ti’s as parabolic points, and to the subspaces
li ⊂ Eti as the parabolic direction of E at ti.
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There is a correspondence between quasiparabolic vector bundles, called elementary trans-
formation, which we now describe. We consider the following exact sequence of sheaves

0 → E ′
α→ E

β→
n⊕
i=1

E/li → 0

where E/li intends to be a skyscraper sheaf determined by Eti/li, i.e., for an open subset
U of X we have (E/li)(U) = Eti/li if ti ∈ U and {0} otherwise. The map β sends s to
⊕ni=1s(ti). If E is locally generated by e1, e2 as OX-module near ti with e1(ti) ∈ li, then E ′
is locally generated by e1, e

′
2, with e′2 = xe2, where x is a local coordinate. In particular E ′

is locally free of rank two. We view E ′ as a quasiparabolic vector bundle (E ′, l′) of rank two
over (X,D) putting l′i := kerαti . We call it the elementary transformation of (E, l) over D:

elemD(E, l) := (E ′, l′).

Notice that we have the following equality

detE ′ = detE ⊗OX(−D).

An endomorphism f : E → E is called parabolic if f(li) ⊆ li for every i = 1, . . . , n. We
denote by End(E, l) the sheaf of parabolic endomorphisms. A parabolic endomorphism is
called strongly parabolic if f(Eti) ⊆ li and f(li) = 0 for every i = 1, . . . , n. The sheaf of
strongly parabolic endomorphisms of E will be denoted by SEnd(E, l).

Given a parabolic homomorphism θ : E → E ⊗ L, i.e.
θ ∈ Γ(End(E, l)⊗ L)

we can perform an elementary transformation elemD on the pair (E, θ), centered in l. For
instance, since θ is parabolic with respect to l, then θ(E ′) ⊂ E ′⊗L and its restriction induces
a homomorphism

θ′ : E ′ → E ′ ⊗ L
which is parabolic with respect to the direction l′ of E ′. If e1, e2 are local sections which
generate E near a parabolic point ti with e1(ti) ∈ li then θ is given by

θ =

(
a b
xc d

)
.

Since E ′ is locally generated by e1, e
′
2, with e′2 = xe2, then the restriction of θ to E ′ corre-

sponds to the matrix

θ′ =

(
a xb
c d

)
.

Note that trace and determinant do not change after an elementary transformation.
The condition of been strongly parabolic, i.e. θ ∈ Γ(SEnd(E, l)⊗ L) yields{

tr(θ) ∈ Γ(L(−D))
det(θ) ∈ Γ(L2(−D))

and in this case the spectral curve Xs, determined by

s = (− tr θ, det θ) ∈ Γ(L)⊕ Γ(L2)

is ramified over D.
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Before stating the next result, we introduce some notation. For this, let θ : E → E ⊗ L
be a parabolic homomorphism with respect to l and assume that the corresponding spectral
curve Xs is integral, in particular det θ is nonzero. We shall consider the curve Xθ ⊂ PE of
eigendirections of θ, defined as follows. If we take a local trivialization PE|U ' U × P1 of
the ruled surface PE at a point x ∈ X where det θx 6= 0, and if θ has local matrix

θ =

(
a b
c d

)
then we consider the curve in PE|U having equation

bz2 + (a− d)z − c = 0

where (1 : z) is a coordinate for P1. These local equations patch together to build a quasi-
projective subvariety of PE and Xθ is defined as the closure of this subvariety. Notice that
Xθ intersects the fiber PEx, at a general point x ∈ X, exactly at two eigendirections of the
linear homomorphism θx : Ex → Ex ⊗ Lx ' Ex.

Let us denote by
Wl = l1 + · · ·+ ln

the divisor in Xθ defined by parabolic directions, see Figure 1. There is a birational morphism

η : Xθ → Xs

which associates to each eigendirection the corresponding eigenvalue, and then it defines a
divisor

Wl,s = η(l1) + · · ·+ η(ln)

on Xs. If in addition Xs is smooth, then η is an isomorphism. Note that when θ is strongly
parabolic, and then Xs is ramified over D, one has Wl,s = (q∗sD)red. The subscript red
denotes the effective reduced divisor defined by the support of q∗sD.

X

X

W

t t1 n

Figure 1. Divisor Wl defined by parabolic directions.
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The next result describes the behavior of Mθ (cf. Section 2.3) under elementary transfor-
mations.

Proposition 2.3. Assume that the spectral curve Xs is integral. Let Mθ be a line bundle on
Xs corresponding to a parabolic homomorphism θ ∈ Γ(End(E, l)⊗L). Let Mθ′ be the torsion
free sheaf corresponding to θ′ ∈ Γ(End(E ′, l′) ⊗ L), obtained by performing an elementary
transformation over D. Then

Mθ′ = Mθ ⊗ I
where I is the ideal sheaf of the subscheme consisting of the support of q∗sD −Wl,s.

Proof. The homomorphism θ : E → E ⊗ L induces a structure of OXs-module

Θ : OXs × E → E

on E and Mθ is just E with this structure. See Section 2.3. Let Mθ′ be the torsion free
sheaf of rank one associated to θ′. Since θ′ is the restriction of θ to E ′, then Mθ′ is the
OXs-submodule of Mθ determined by the restriction Θ′ of Θ to E ′

Θ′ : OXs × E ′ → E ′.

It is enough to analyse the behavior ofMθ at a point t of the support of D, because outside

it does not change. We may assume, without loss of generality, that t = 0, l0 =

(
1
0

)
, and

θ =

(
a b
xc d

)
and the spectral curve Xs has local equation

Xs = {(x, z) : z2 − (a+ d)z + (ad− xbc) = 0}.
Since Mθ is a line bundle, then there is a generator v for the OXs-module Mθ, i.e., any local
section e of Mθ, can be written as

e = (α + βz)� v ∈Mθ

with α + βz ∈ OXs (α, β ∈ OX , cf. (2.7)), meaning that any local section e of E can be
written as

e = (αI + βθ)(v) ∈ E.
Sections of E ′ are those of the form e′ = αv + βθ(v) ∈ E, such that

e′0 = (α0I + β0θ0)(v0)

is proportional to l0 =

(
1
0

)
, and the subscript means evaluation at the point x = 0. Since

α0I + β0θ0 =

(
α0 + β0a0 β0b0

0 α0 + β0d0

)
one obtains that α0 + β0d0 = 0, because v0 is not proportional to l0. This last implies that
the regular function α + βz ∈ OXs vanishes at the point (0, d0) ∈ Xs, which corresponds
to the second eigendirection of θ when a0 6= d0. When both eigendirections coincide, for
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instance when Xs is singular or has a smooth ramification point, then α + βz vanishes at
this point.

We conclude that the sections of Mθ′ are those sections of Mθ which vanish at the support
of the divisor q∗sD − Wl,s. This gives Mθ′ = Mθ ⊗ I and this concludes the proof of the
proposition. �

Corollary 2.4. With the same notation of Proposition 2.3, if Xs is smooth and irreducible,
and θ is strongly parabolic then

Mθ′ = Mθ(−(q∗sD)red).

Proof. When θ is strongly parabolic, Xs is ramified over every point in the support of D,
then q∗sD −Wl,s = (q∗sD)red. In addition, since Xs is smooth then I = OXs(−(q∗sD)red). �

2.5. Pullback and twist. Let Y be another compact Riemann surface and assume that
π : Y → X is a finite morphism. Given s = (s1, s2) ∈ Γ(L) ⊕ Γ(L2), let Y ∗r be the spectral
curve associated to r = π∗s ∈ Γ(π∗L)⊕Γ(π∗L2). The superscript ∗ in Y ∗r will be justified in
Section 4, where a normalization Yr of Y ∗r is constructed for our purposes.

We note that
Y ∗r = Y ×X Xs.

Indeed, since π is finite and thus affine, we can assume π : Spec B → Spec A, Xs = Spec As
and Y ∗r = Spec Bπ∗s with

As =
A[z]

(z2 + s1z + s2)
and Bπ∗s =

B[z]

(z2 + π∗s1z + π∗s2)
;

and then we see that Bπ∗s = B ⊗A As. In terms of sheaves of algebras, we have

Bπ∗s = OY ⊗π−1(OX) π
−1(As)

where Bπ∗s denotes the structural sheaf of Y ∗r .
In particular, there is a lifting πs : Y ∗r → Xs making the following diagram commute

Y ∗r

��

πs // Xs

��
Y

π // X

(2.8)

and which is locally given by the natural homomorphism As → As ⊗A B = Bπ∗s. The next
result describes the behavior of Mθ (cf. Section 2.3) under pullback.

Proposition 2.5. Assume that both spectral curves Xs and Y ∗r are integral. Let θ : E →
E ⊗ L be a homomorphism with characteristic coefficient s and let M be the torsion free
sheaf of rank one on Xs associated to θ. Then π∗sM is the torsion free sheaf of rank one
associated to π∗θ.

Proof. The pullback of M by πs : Y ∗r → Xs is given by

π∗sM = π−1
s (M)⊗π−1

s (OXs ) OY ∗r .
If U ⊂ Y and V ⊂ X are local affine open sets where

π : U = Spec B → V = Spec A
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let us denote by Ũ ⊂ Y ∗r and Ṽ ⊂ Xs their respective inverse images. We can write

(π∗sM)(Ũ) = M(Ṽ )⊗As Bπ∗s.

Since the As-module structure on M(Ṽ ) is induced by θ, then the Bπ∗s-module structure on
(π∗sM)(Ũ) is induced by π∗θ. Which is equivalent to give a Bπ∗s-module structure on

π∗(E)(U) = E(V )⊗A B
induced by π∗θ. It turns out to say that π∗sM coincides with π∗(E) with Bπ∗s-module
structure induced by π∗θ. This shows that π∗sM is the torsion free sheaf of rank one associated
to π∗θ. �

We finish this section by analyzing the behavior of M under twist.

Proposition 2.6. Assume that Xs is integral. Let θ : E → E ⊗L be a homomorphism with
characteristic coefficient s and let M be the torsion free sheaf of rank one on Xs associated
to θ. Let L0 be a line bundle on X and let θL0 : E⊗L0 → (E⊗L0)⊗L be the homomorphism
induced by θ. Then the torsion free sheaf of rank one on Xs associated to θL0 is M ⊗ q∗sL0.

Proof. Let ML0 be the torsion free sheaf of rank one on Xs associated to θL0 . It follows from
projection formula that

(qs)∗(M ⊗ q∗sL0) = ((qs)∗(M))⊗ L0 = E ⊗ L0

and then M ⊗ q∗sL0 and ML0 have the same pushforward via qs. The reader can check that
the structure of As-module on E ⊗ L0 induced by θL0 coincides with that of M ⊗ q∗sL0. �

3. Parabolic Higgs bundles and Hitchin fibration

3.1. Parabolic vector bundles. Let (E, l) be a quasiparabolic vector bundle. Fix a weight
vector µ = (µ1, . . . , µn) of real numbers 0 ≤ µi ≤ 1. The parabolic slope of (E, l) with respect
to µ is

Slopeµ(E) =
degE +

∑n
i=1 µi

2
where degE = deg(detE). Let N ⊂ E be a line subbundle. For each i = 1, . . . , n, set

Slopeµi(N,E) =

{
µi if Nti = Li,

0 if Nti 6= Li.

The parabolic slope of N ⊂ E with respect to µ is

Slopeµ(N,E) = degN +
n∑
i=1

Slopeµi(N,E).

A quasiparabolic vector bundle (E, l) is µ-semistable (respectively µ-stable) if for every
line subbundle N ⊂ E we have

Slopeµ(N,E) ≤ Slopeµ(E)

(respectively Slopeµ(N,E) < Slopeµ(E)). A parabolic vector bundle is a quasiparabolic
vector bundle together with a weight vector µ. We say that a parabolic vector bundle is
semistable if the corresponding quasiparabolic vector bundle is µ-semistable.
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For each d ∈ Z and a weight vector µ, there is a moduli space Bunµ(X,D, d), parametrizing
rank two parabolic vector bundles (E, l) on

(
X,D

)
, with degE = d, which are semistable.

If N is a line subbundle with degN = d, we denote by Bunµ(X,D,N) the subvariety of
Bunµ(X,D, d) given by those parabolic vector bundles with detE = N .

The moduli space Bunµ(X,D, d) has a structure of a normal projective variety of dimension
n− 3 + 4gX , if the stable locus is not empty, see [13, 3]. By twisting vector bundles with a
fixed line bundle L0, we see that Bunµ(X,D,N) ∼= Bunµ(X,D,N ⊗ L2

0).
Elementary transformations give correspondences between moduli spaces. The stability

condition is preserved after an appropriate modification of weights, if (E, l) is µ-semistable
then elemD(E, l) is µ′-semistable with

µ′ = (1− µ1, . . . , 1− µn).

In particular, this gives a map

elemD : Bunµ(X,D,N)→ Bunµ′(X,D,N ⊗OX(−D)).

3.2. Parabolic Higgs bundles. A parabolic Higgs bundle is a triple (E, l, θ) where (E, l)
is a quasiparabolic vector bundle over (X,D) and

θ ∈ Γ(SEnd(E, l)⊗ ωX(D))

is a strongly parabolic homomorphism in the sense of Section 2.4. We say that θ is a parabolic
Higgs field. We note that been strongly parabolic means that for each point t ∈ X lying in
the support of D, the endomorphism

Res(θ; t) ∈ End(Et)

is nilpotent with respect to the parabolic direction of Et. The nilpotency condition means
that if p ⊂ Et is the parabolic direction, then

Res(θ; t)(p) = 0 and Res(θ; t)(Et) ⊂ p.

A line subbundle N ⊂ E is called invariant under θ : E → E ⊗ ωX(D) if

θ(N) ⊂ N ⊗ ωX(D).

We say that θ is irreducible if it does not admit invariant line subbundle.
Fix a weight vector µ ∈ [0, 1]n. A parabolic Higgs bundle (E, l, θ) on

(
X,D

)
is called

µ-semistable (respectively µ-stable) if for every line subbundle N ⊂ E invariant under θ, we
have

Slopeµ(N,E) ≤ Slopeµ(E)

(respectively Slopeµ(N,E) < Slopeµ(E)). We say that (E, l, θ) is µ-unstable if it is not
µ-semistable. Note that an irreducible Higgs field is stable for any choice of weight vector.

Given d ∈ Z, let Hµ(X,D, d) be the moduli space of µ-semistable parabolic Higgs bun-
dles (E, l, θ) on

(
X,D

)
with degE = d. If N is a line bundle of degree d, we denote by

Hµ(X,D,N) the subvariety ofHµ(X,D, d) given by those parabolic Higgs bundles with fixed
determinant detE = N .

The moduli space Hµ(X,D, d) is a quasiprojective variety of dimension 2(n − 3 + 4gX),
see [22, 23, 4].
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Similar to parabolic vector bundles, given (E, l, θ) we can perform an elementary trans-
formation elemD on it, see Section 2.4, and this provides a correspondence between moduli
spaces of Higgs bundles

elemD : Hµ(X,D,N)→ Hµ′(X,D,N ⊗OX(−D)).

3.3. Hitchin map and its fibers. Let (E, l, θ) ∈ Hµ(X,D, d) be a parabolic Higgs bundle.
Since Res(θ; ti) is nilpotent for every parabolic point ti ∈ X, one obtains{

tr(θ) ∈ Γ(ωX)
det(θ) ∈ Γ(ω⊗2

X (D)) ⊂ Γ(ω⊗2
X (2D)).

In order to simplify notation we shall write ΣD for the vector space

ΣD = Γ(ωX)⊕ Γ(ω⊗2
X (D)). (3.1)

The Hitchin map is defined as
HX : Hµ(X,D, d) −→ ΣD

(E, l, θ) 7−→ (− tr(θ), det(θ)).

Let s ∈ ΣD. Using the correspondence of Section 2.3 we get an identification between the
Jacobian variety of Xs and the fiber of HX over s, when Xs is integral. Then, we are led to
investigate the existence of integral spectral curves. To do this, we need a couple of results.

Proposition 3.1. Let (E, l, θ) be a parabolic Higgs bundle on
(
X,D

)
and let s =

(− tr θ, det θ). If the spectral curve Xs is non-integral then det θ ∈ Γ(ω⊗2
X ).

Proof. If Xs is non-integral then the characteristic polynomial Ps(z) = z2 − tr θz + det θ is
reducible over the function field of X. Hence, near a parabolic point ti in the support of D
we can write

Ps(z) = (z − a)(z − b)
with a, b ∈ OX(U). The nilpotence condition on θ implies that a+ b and ab vanish at ti. In
particular, a and b vanish at ti and then det θ ∈ Γ(ω⊗2

X (2D)) has a zero of order at least two
at ti, i = 1, . . . , n, which means that det θ ∈ Γ(ω⊗2

X ). �

Proposition 3.2. Let (E, l, θ) be a parabolic Higgs bundle on
(
X,D

)
. If θ has an invariant

line bundle N ⊂ E, then Xs is non-integral.

Proof. We will show that the characteristic polynomial Ps(z) = z2− tr θz+ det θ is reducible
over the function field of X. Taking a Zariski open subset U of X and e ∈ N(U) there exists
λ ∈ ωX(D)(U) such that

θ(e) = λ · e.
In particular, the rational function z − λ on X divides Ps(z). �

Let us assume that Xs is integral and let M be a line bundle on Xs. We can compute the
degree of E = (qs)∗M using (2.4) and the following identity

det(E) ' det((qs)∗OXs)⊗ Nm(M) (3.2)

where Nm(M) is the norm map (see [5, Cap. IV Ex. 2.6]). The result is

degM = degE + degL
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where L = ωX(D), and this yields

degM = degE + degD + 2gX − 2.

This computation can be extended to torsion free rank one sheaves on Xs. Therefore, given
d ∈ Z we are led to define

n = n(d) := d+ degD + 2gX − 2.

Let us denote by Pic
n
(Xs) the variety parametrizing isomorphism classes of torsion free

sheaves of rank one on Xs of degree n and let Picn(Xs) denote its corresponding subset
formed by line bundles. For an irreducible curve having only planar singularities, Pic

n
(Xs)

is an irreducible variety that contains Picn(Xs) as a dense open subset (c.f. [1]). If Xs has a
non-planar singularity then Pic

n
(Xs) has at least two irreducible components (c.f. [10]).

As we have seen in Section 2.3, there is a bijective correspondence between Pic
n
(Xs) and

isomorphism classes of pairs (E, θ) where E is a vector bundle of rank two and degree d, and
θ : E → E ⊗ ωX(D) is a homomorphism with tr(θ) = −s1 and det(θ) = s2. In particular we
have the following result (see also [12]).

Proposition 3.3. Assuming that s = (s1, s2) ∈ ΣD, with

s2 ∈ Γ(ω2
X(D)) \ Γ(ω2

X(D − ti)) , ∀i = 1, . . . , n

then Xs is integral and there is a bijective correspondence

Pic
n
(Xs)←→ H−1

X (s) .

Moreover, any Higgs bundle in H−1
X (s) has irreducible Higgs field.

Proof. Our hypothesis on s2 ensures, in particular, that s2 /∈ Γ(ω⊗2
X ), then Xs is integral by

Proposition 3.1.
Let L = ωX(D). For each M ∈ Pic

n
(Xs) we can associate a pair (E, θ), where θ :

E → E ⊗ L is a homomorphism with characteristic polynomial s, see Section 2.3. Since s2

lies in the subspace Γ(L2(−D)) of Γ(L2) then any residual matrix Res(θ; ti) has vanishing
determinant. This and tr(θ) ∈ Γ(L(−D)) yield θ strongly parabolic. Note that Res(θ; ti)
is non-null because s2 /∈ Γ(L2(−D − ti)). Thus the parabolic direction li ⊂ Eti is defined
as the kernel of Res(θ; ti). Now we show that (E, l, θ) is µ-semistable. Actually, we can
show that θ is irreducible and this also completes the last assertion of the statement of the
proposition. Indeed, by Proposition 3.2, if there is a line subbundle N ⊂ E invariant by θ,
then det(θ) = s2 ∈ Γ(ω⊗2

X ) and this gives a contradiction.
Conversely, for each pair (E, θ) with characteristic coefficient s, BNR correspondence gives

an element M ∈ Pic
n
(Xs). This finishes the proof of the proposition. �

Remark 3.4. Let U = Γ(ω2
X(D)) \ ∪ni=1Γ(ω2

X(D− ti)) be the open set given by Proposition
3.3. If 2gX + degD− 4 ≥ 0 then U is nonempty. To see this, note that this inequality yields
degω2

X(D) ≥ 2gX and then ω2
X(D) has no base points. In particular, by Proposition 3.3,

if 2gX + degD − 4 ≥ 0 then there exist irreducible parabolic Higgs Higgs fields θ : E →
E⊗ωX(D), and therefore Hµ(X,D, d) contains stable Higgs bundles for any choice of weight
vector µ. y



HITCHIN FIBRATION UNDER RAMIFIED COVERINGS 15

We finish this section by considering traceless Higgs fields. In view of Lemma 2.2 and the
next result, Higgs fields having non-vanishing residual part at every parabolic point play a
key role. We say that θ : E → E ⊗ ωX(D) is nowhere-holomorphic in D if

Res(θ; ti) 6= 0

for every ti at the support of D.

Proposition 3.5. Let s = (0, s2) ∈ ΣD. Assume that Xs is integral and smooth at every
point over the complement of the support of D. Then there is a bijective correspondence

Picn(Xs)←→
{

(E, l, θ) ∈ H−1
X (s) : θ is nowhere-holomorphic in D

}
Proof. By Lemma 2.2 there is a bijective correspondence between Picn(Xs) and the isomor-
phism classes of pairs (E, θ) where E has degree d, θ : E → E ⊗ ωX(D) is a homomorphism
with tr(θ) = 0 and det(θ) = s2, and θx is not of the form λI for every x ∈ X.

Since tr θ = 0, then θx = λI if and only if θx = 0. But, θx is nonvanishing at every point
over the complement of the support of D, because Xs is smooth at that point. For a point
ti of the support of D, we have

θti = Res(θ; ti)

and then θti 6= 0, ∀i = 1, . . . , n, if and only if θ is nowhere-holomorphic in D. To conclude
the proof of the proposition we note that, in this case, the parabolic direction over ti is
determined by the kernel of Res(θ; ti). �

4. Spectral curves under degree two ramified coverings

Let π : Y → X be a finite morphism of degree two between irreducible smooth complex
curves. Assume that {x1, . . . , xn}, n ≥ 1, is the set of branch points and let B =

∑n
i=1 xi be

the reduced divisor on X defined by them. Let R =
∑n

i=1 yi be the divisor on Y formed by
ramification points: π(yi) = xi.

Let us consider a reduced divisor T =
∑k

i=1 ti, k ≥ 0, on X formed by points outside the
support of B. We put T = 0 when k = 0. Then we can write

π∗(T +B) = π∗(T ) + 2R.

Note that π induces a linear map (see Section 3.3 for the definition of ΣD)

π∗ : ΣT+B → Σπ∗(T ),

because poles over branch points became regular after pullback. Indeed, if y and x denote
local coordinates of Y and X, respectively, over a branch point, then π is locally given by
π(y) = y2 and

π∗
(
dx⊗2

x

)
= 4dy⊗2.

We want to pull back Higgs fields over (X,T + B) to Higgs fields over (Y, π∗(T )). Let us
first investigate the relation between their spectral curves.
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4.1. General spectral curve. In this section we start with an element s ∈ ΣT+B, which
gives a spectral curve Xs. Since π∗(s) becomes regular over ramification points, we can see
it as an element r = π∗(s) ∈ Σπ∗(T ). Let Yr be the corresponding spectral curve given by r.

We set L = ωX(T +B) and consider the respective spectral curve (cf. (2.3))

Xs = Spec (OX ⊕ L−1)

with its degree two map qs : Xs → X. The divisor Rqs of ramification points of qs is given
by zeros of s2

1 − 4s2 and since s lies in the subspace ΣT+B, then qs is ramified over every
point in the support of T +B.

Note that
π∗L ' ωY (R + π∗(T )).

Following Section 2.5, the element

r = π∗s ∈ Γ(π∗L)⊗ Γ(π∗L2)

gives the spectral curve

Y ∗r = Spec (OY ⊕ (π∗L)−1) = Y ×X Xs

which is singular over a point lying in the support of R. To avoid singular points of Y ∗r , it
is convenient to switch π∗L. Then we consider

N = π∗L(−R) = ωY (π∗T )

and the element
r = π∗s ∈ Σπ∗(T ) ⊂ Γ(N)⊕ Γ(N2)

gives the spectral curve
Yr = Spec(OY ⊕N−1).

We summarize the discussion above in Figure 2.

Figure 2. Three spectral curves.

Proposition 4.1. Assume that 2gX + n− 4 ≥ 0, with strict inequality if k = 0 (n = degB
and k = deg T ). If s is a general element of ΣB+T , then Xs and Yr are irreducible and
smooth.
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Proof. The hypothesis 2gX + n− 4 ≥ 0 ensures that Xs is integral for general s ∈ ΣB+T , see
Remark 3.4. The locus of sections s ∈ ΣB+T , s = (s1, s2), such that Xs is smooth is open and
nonempty. Besides that if s2 has only simple zeros then the same holds for π∗(s2) ∈ Σπ∗(T ).
In particular, the curve Yr, r = π∗(s), is smooth for general s. Now we show that Yr is
integral.

First let us assume k > 0 and let y be a point with π(y) = ti, where ti lies in the support
of T . If s2 /∈ Γ(ω⊗2

X (B + T − ti)) then π∗s2 /∈ Γ(ω⊗2
Y (π∗T − y)) because π is étale at y.

Therefore we can use Proposition 3.3 again to conclude that Yr is integral.
Now suppose k = 0. We claim that the image of π∗ : ΣB+T → Σπ∗(T ) intersects the open

subset of Σπ∗(T ) formed by all sections for which the spectral curve is integral. To do this,
we can assume s1 = 0. A section s2 ∈ Γ(ω⊗2

Y ) gives a reducible spectral curve if and only if
it lies in the image of the map ψ : Γ(ωY ) → Γ(ω⊗2

Y ), a 7→ a2. By Riemann-Roch theorem,
the injective linear map π∗ : Γ(ω⊗2

X (B)) → Γ(ω⊗2
Y ) has image of dimension 3(gX − 1) + n,

whereas the image of ψ has dimension at most gY . Thus if 3(gX − 1) + n > gY , the claim
above will follow. By Riemann-Hurwitz formula, the previous inequality is equivalent to
2gX + n− 4 > 0. This concludes the proof of the proposition. �

4.2. A map between spectral curves.

Proposition 4.2. Let the notation be as above. The following statements hold:
(1) there is a morphism ξs : Yr → Xs of degree two making the following diagram commute

Yr

qr
��

ξs // Xs

qs
��

Y
π // X .

(2) if Xs is smooth then Yr is the normalization of Y ∗r ;
(3) ξs is étale when Xs and Yr are smooth and irreducible.

Proof. Let us prove (1). Following Section 4.1, setting L = ωX(T + B) and N = ωY (π∗T )
we have  Xs = Spec (OX ⊕ L−1)

Y ∗r = Spec (OY ⊕ (π∗L)−1) = Y ×X Xs

Yr = Spec(OY ⊕N−1).

Since (π∗L)−1 ⊂ N−1, this gives an inclusion i : OY ⊕ (π∗L)−1 → OY ⊕N−1 of OY -modules.
Note that their structure of commutative ring induced by π∗s (c.f. (2.1)) are compatible and
thus OY ⊕ (π∗L)−1 is a subring of OY ⊕ N−1. In particular i yields a map ϕs : Yr → Y ∗r .
Then we set ξs = πs ◦ ϕs, where πs : Y ∗r → Xs is given by (2.8). Note that (π∗L)−1 and
N−1 coincide when restricted to an open set U away from the support of R, then ϕs|U is
an isomorphism. Since πs : Y ∗r → Xs has degree two and ϕs : Yr → Y ∗r is birational, this
concludes the proof of (1).

In order to prove (2), we note first that if Xs is smooth then s2 has only simple zeros.
Consequently, the same is true for π∗s2, seen as a section of Γ(N2). This shows that Yr is
smooth and then ϕs : Yr → Y ∗r is the normalization of Y ∗r . This proves (2).
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Finally, when Xs and Yr are smooth and irreducible, we can use (2.5) and Riemann-
Hurwitz formula to conclude (3). �

In view of Proposition 4.2 we conclude this section with the following well-known result,
see also [14, Lemma p. 332]. Here, we include a proof for the convenience to the reader.

Proposition 4.3. Let ξ : Z → W be an étale morphism of degree 2 between compact
Riemann surfaces. Then the induced morphism ξ∗ : Pic0(W ) → Pic0(Z) has degree 2 onto
its image.

Proof. There is a correspondence between étale morphisms of degree 2 and 2-torsion elements
in Pic0(W ). We recall briefly this correspondence. Let L ∈ Pic0(W ) be a 2-torsion point,
P = P(OW ⊕L) and q : P→ W the natural projection. Roughly speaking, the curve Z can
be seen as the inverse image of the unit section of L2 ' OW under the map L → L2 which
sends a to a2. The subvariety P(OW ) ⊂ P is the zero locus of a section

z : OP → q∗(L)⊗OP(1)

and P(L) is the zero locus of a section

w : OP → OP(1)

and ξ = q|Z . If we denote by s a nonzero section of L2, the curve Z ⊂ P corresponds to the
zero locus of the section

z2 − q∗(s) ·w2.

Note that s is not a power a2 of a section a of L, otherwise L would be trivial.
Now we can show that ξ∗(L) = OZ . To see this, observe that z and w do not vanish in

Z, then the restriction of OP(1) and q∗(L)⊗OP(1) to Z are trivial. It follows that

ξ∗(L) = (q∗(L)⊗OP(1)) |Z

is trivial.
Assume that M ∈ Pic0(W ) is a line bundle with ξ∗(M) = OZ . Then projection formula

yields
OW ⊕ L ' ξ∗(OZ) = ξ∗((π

∗M)⊗OZ) 'M ⊕ (M ⊗ L).

In particular, M ⊕ (M ⊗ L) has a nonzero section. Since M and L have degree zero, one
obtains that eitherM isOW orM⊗L isOW . This concludes the proof of the proposition. �

5. A map between moduli spaces

5.1. Main result. We keep the notation of Section 4, where B and R denote the divisors of
branch points and ramification points of π : Y → X, respectively. Also, let T be an effective
reduced divisor on X whose support does not intersect the support of B.

In this section we will consider a rational map between moduli spaces of parabolic Higgs
bundles

Φ : Hµ(X,B + T, 0) 99K Hµ′(Y, π
∗(T ),−n). (5.1)
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This map is defined by doing π∗ followed by an elementary transformation over R

(E , θ)
π∗
//

Φ
,,

(π∗E , π∗θ)
elemR

// ((π∗E)′, (π∗θ)′)

where E = (E, l). In the last step, parabolic directions over ramification points are forgotten,
this justifies the lack of ramification points in the divisor of parabolic points on the target
in (5.1). We describe below each step of this correspondence.

At first, Φ might send each semistable Higgs bundle to an unstable Higgs bundle. So, in
view of Proposition 4.1, we assume that 2gX + n − 4 ≥ 0, with strict inequality if k = 0
(n = degB and k = deg T ). Let us fix s ∈ ΣB+T such that Xs and Yr are integral.

We can define a correspondence

(E, l, θ) 7→ Φ(E, l, θ)

which associates to a Higgs bundle on (X,T + B), with characteristic coefficient s, a Higgs
bundle on (Y, π∗(T )) with characteristic coefficient r = π∗s, by doing the following series of
transformations:

(1) Let (E, l, θ) be a parabolic Higgs bundle, with degE = 0, and with characteristic
coefficient s.

(2) Pulling back (E, l, θ) to Y via π, we obtain a parabolic Higgs bundle (π∗(E, l), π∗θ)
on (Y, π∗(B + T )) with characteristic coefficient r ∈ Σπ∗(T ).

(3) After performing an elementary transformation over R (cf. Section 2.4), the resulting
parabolic Higgs bundle

Φ(E, l, θ) :=
(
((π∗E)′, l′), (π∗θ)′

)
is regular over each ramification point, and deg(π∗E)′ = −n. Then we get a parabolic
Higgs bundle over (Y, π∗(T )). SinceXs and Yr are integral, θ and (π∗θ)′ are irreducible
(cf. Proposition 3.2), then they are both stable.

This correspondence gives a rational map between moduli spaces of parabolic Higgs bun-
dles

Φ : Hµ(X,B + T, 0) 99K Hµ′(Y, π
∗(T ),−n) (5.2)

which makes the following diagram commute

Hµ(X,B + T, 0)

HX

��

Φ // Hµ′(Y, π
∗(T ),−n)

HY

��
ΣB+T

π∗ // Σπ∗(T )

(5.3)

We want to investigate the behavior of Φ with respect to the Hitchin fibration. Let us
consider its restriction to a (general) Hitchin fiber

Φs : H−1
X (s)→ H−1

Y (r)

with r = π∗s. When Xs and Yr are irreducible and smooth, then

H−1
X (s) ' Picn(Xs) and H−1

Y (r) ' Picñ(Yr).
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where n = k + n+ 2gX − 2 and ñ = 2k − n+ 2gY − 2. This gives a map

Φs : Picn(Xs)→ Picñ(Yr).

In the next result we show that this map is determined by ξ∗s (see Proposition 4.2), up to
a translation on the target.

Theorem 5.1. Assume that 2gX + n − 4 ≥ 0, with strict inequality if k = 0. Then Φ is a
rational map of degree two onto its image which preserves the Hitchin fibrations. Moreover,
its restriction to a general Hitchin fiber is the map

Φs : Picn(Xs) −→ Picñ(Yr)

which sends a line bundle M in Picn(Xs) to the line bundle ξ∗s (M)(q∗r(−R)) in Picñ(Yr),
where ξs is given by Proposition 4.2.

Proof. By Proposition 4.1, Xs and Yr are irreducible and smooth for general s. We want to
show that Φs(M) = ξ∗s (M)(−S) for any line bundle M on Xs, of degree n. Recall that ξs is
a composition ξs = πs ◦ ϕs

Yr ϕs

//

ξs

''
Y ∗r πs

// Xs

where πs is the natural projection of the fiber product Y ∗r = Y ×X Xs and ϕs is the normal-
ization of Y ∗r , see Proposition 4.2 and Figure 2.

The map Φ is defined using two correspondences, the former is a pullback and the sec-
ond is an elementary transformation followed by a suitable reduction to the curve Yr (c.f.
Section 4.1). Thus we need to follow the behavior of M under these correspondences:

Picn(Xs)
π∗s

//

Φs

,,
Pic2n(Y ∗r )

elemR

// Pic2n(Y ∗r )
ϕ∗s

// Picñ(Yr) .

Let (E, l, θ) be the Higgs bundle which corresponds to M ∈ Picn(Xs). By Proposition
2.5, π∗sM is the line bundle in Pic2n(Y ∗r ) corresponding to (π∗(E, l), π∗θ), and it follows from
Proposition 2.3 that the elementary transformation elemR transforms π∗sM into π∗sM ⊗ I,
where I is the ideal sheaf of (ζ∗rR)red given by the 2:1 cover ζr : Y ∗r → Y .

The last operation is given by the normalization of Y ∗r . Since ξs = πs ◦ ϕs, then
Φs(M) = ϕ∗s(π

∗
sM ⊗ I) = ξ∗s (M)⊗ ϕ∗s(I).

The conclusion follows from the fact that Yr is smooth, and then ϕ∗s(I) = OYr(−S) is the
ideal sheaf of S = q∗rR, where qr : Yr → Y is the 2:1 cover.

To see that Φ has degree two onto its image, first remark that π∗ of (5.3) is a one-to-one
map between Hitchin basis and Proposition 4.3.

�

We point out that it would be interesting to compare the techniques used in this paper
with the methods of [24].

We close the paper by presenting two situations where the modular map Φ is dominant,
which deal with pullback of SL2-Higgs bundles over P1 via π : Y → P1, where gY ∈ {1, 2}.
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By SL2 we mean that θ : E → E⊗ωX(D) has vanishing trace and E has trivial determinant
line bundle.

5.2. The case (gX , gY ) = (0, 1). Let us consider the degree two elliptic cover π : Y → P1,
branched over four distinct points {0, 1, λ,∞}. Let us fix t1, t2 ∈ Y with π(t1) = π(t2) = t,
t /∈ {0, 1, λ,∞}.

On the P1 side, we consider the moduli space H(P1,Λ) of irreducible SL2 parabolic Higgs
bundles over (P1,Λ), where Λ = 0+1+λ+∞+t. On the elliptic side, we consider the moduli
space H(Y,D) of irreducible SL2 parabolic Higgs bundles over (Y,D), where D = t1 + t2.

It turns out that H(P1,Λ) and H(Y,D) have the same dimension: four. We can associate
to a Higgs bundle in H(P1,Λ) a Higgs bundle in H(Y,D) by doing the pullback π∗ followed
by a composition of an elementary transformation elemR over the divisor

R = w0 + w1 + wλ + w∞

formed by ramification points of π. This is our map Φ. Note that, starting with a vector bun-
dle E of degree 0 on P1, the transformed vector bundle on Y has determinant OY (−R), then
degree −4. Since R ∼ 4w∞, we then perform a last transformation, twisting by OY (2w∞),
which results in trivial determinant.

This correspondence gives a map

Φ0 : H(P1,Λ) 99K H(Y,D)

which consists in [⊗OY (2w∞)] ◦ Φ, and fits in the following commutative diagram

H(P1,Λ)

det
��

Φ0 // H(Y,D)

det
��

Γ(ω⊗2
P1 (Λ))

π∗ // Γ(ω⊗2
Y (t1 + t2))

(both spaces of quadratic differentials are two dimensional).
Over P1, the smooth spectral curve Xs has genus 2 and is branched over 6 distinct points

0, 1, λ,∞, t, ρ. The corresponding Hitchin fiber det−1(s) is isomorphic Pic3(Xs). Over Y ,
the generic spectral curve Yr is a hyperelliptic curve of genus 3 branched over 4 distinct
points t1, t2, u1, u2, with ρ = π(u1) = π(u2). The fiber det−1(r) over Yr is an Abelian variety
isomorphic to the Prym variety

Prym(Yr/Y ) =
{
M ∈ Pic2(Yr) : det((qr)∗M) = OY

}
.

Since qr is a ramified covering, then Prym(Yr/Y ) is an irreducible variety, this follows from
[14, (iv) in p. 329].

We can choose local coordinates where{
Xs = {(x,w) : w2 = x(x− 1)(x− λ)(x− t)(x− ρ)}
Yr = {(x, y, z) : y2 = x(x− 1)(x− λ) and z2 = (x− t)(x− ρ)}
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and both curves fit in the commutative diagram below

Yr
2:1

xx

2:1
��

2:1 étale: ξs

&&
Y

2:1
&&

P1
ρ

2:1
��

Xs

2:1
xx

P1

(5.4)

where
P1
ρ = {(x, z) : z2 = (x− t)(x− ρ)}.

The étale map ξs : Yr → Xs is the same of Proposition 4.2, explicitly given here by (x, y, z) 7→
(x, yz).

In this context, Theorem 5.1 can be written as

Corollary 5.2. The rational map Φ0 : H(P1,Λ) 99K H(Y,D) has degree two. Moreover, its
restriction to a general fiber of the Hitchin map is a morphism of degree two given by

Φ0,s : Pic3(Xs) → Prym(Yr/Y )

M 7→ ξ∗s (M)(S0)

where S0 = q∗r(2w∞ −R).

Proof. As mentioned above, the map Φ0 consists of [⊗OY (2w∞)] ◦ Φ where Φ is the map of
Theorem 5.1. Let us fix a point (E, l, θ) in the image of Φ0 with characteristic coefficient r.
By construction, we have detE = OY , then it follows by BNR correspondence that (E, l, θ)
corresponds to a line bundle N ∈ Pic2(Yr) satisfying det((qr)∗N) = detE = OY . Hence,
N ∈ Prym(Yr/Y ) and the proof of the corollary follows from Theorem 5.1. �

In a forthcoming paper, we will give the full description (at singular Hitchin fibers) of the
map Φ0.

5.3. The case (gX , gY ) = (0, 2). We now take a degree two morphism π : Y → P1 from a
curve Y of genus 2. It is branched over 6 distinct points t1, . . . , t6 of P1. Let B = t1 + · · ·+ t6
be the reduced divisor on P1 defined by those points, and let R = w1 + · · ·+w6 be the divisor
on Y formed by ramification points of π.

Let us consider the moduli space H(P1, B) of irreducible SL2-Higgs bundles over (P1, B).
Over Y , we consider the moduli space H(Y ) of irreducible holomorphic SL2-Higgs bundles
over Y , without parabolic points. These moduli spaces have both dimension 6.

The spectral curve on the P1 side has genus 3 and the corresponding smooth Hitchin fiber
is isomorphic to Pic4(Xs). Over Y , the spectral curve Yr has genus 5 and the smooth Hitchin
fiber H(Y ) is isomorphic to

Prym(Yr/Y ) =
{
M ∈ Pic2(Yr) : det((qr)∗M) = OY

}
which is three dimensional, and irreducible ([14, (iv) in p. 329]).
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We consider the correspondence Φ0 : H(P1, B) 99K H(Y ) given by [⊗L0] ◦ elemR ◦ π∗,
where L0 is a square root of OY (R). Note that the following diagram is commutative

H(P1, B)

det
��

Φ0 // H(Y )

det
��

Γ(ω⊗2
P1 (B))

π∗ // Γ(ω⊗2
Y )

where the Hitchin basis are three dimensional. From Theorem 5.1, we obtain a result similar
to Corollary 5.2:

Corollary 5.3. The rational map Φ0 : H(P1, B) 99K H(Y ) has degree two and its restriction
to a general fiber of the Hitchin map consists of

Φ0,s : Pic4(Xs) → Prym(Yr/Y )

M 7→ ξ∗s (M)⊗ q∗r(L0(−R)).

Proof. Similar to the proof of Corollary 5.2. �
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