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This paper proves the existence of an universal nontrivial minorant of the set of the Mahler measures M(β ) where β runs over the set of reciprocal algebraic integers > 1. It represents a part of the solution of the Conjecture of Lehmer, the one restricted to the set of real reciprocal algebraic integers > 1. The proof relies upon, when β tends to one: (i) the asymptotic geometry of the lenticular zeroes of the Parry Upper functions f β (z) associated with the dynamical zeta functions ζ β (z) of the Rényi-Parry arithmetical dynamical systems (β -shift), (ii) the identification of these lenticular zeroes with conjugates of β using Kala-Vavra's Theorem, (iii) a Dobrowolski-type inequality deduced from the Poincaré asymptotic expansions of these lenticular zeroes as a function of the dynamical degree of β .

The dynamical zeta function is used to investigate the domain of very small Mahler measures of algebraic integers in the range (1, 1.176280 . . .], where 1.176280 is Lehmer's number, if any.

Let β be an algebraic integer of degree d, with minimal polynomial P β (X) = X d + a d-1 X d-1 + . . . + a 1 X + a 0 ∈ Z[X], with a 0 = 0. Let β 1 = β , β 2 , β 3 , . . . , β d its conjugates. Recall that the Mahler measure M(β ) of β is by definition (Smyth [41] [START_REF] Smyth | The Mahler Measure of Algebraic Numbers: A Survey[END_REF]) the Mahler measure of its minimal polynomial M(P β ) := ∏ d i=1 max{1, |β i |}. If β = 0 or β = ±1, then M(β ) = 1. We say that β ( = 0, = ±1) is reciprocal if β -1 is a conjugate of β ; if β is reciprocal, then d = deg β is even and the minimal polynomial of β -1 is the reciprocal polynomial P * β (X) := X d P β (1/X) of P β (X), which satisfies: P * β (X) = P β (X). If β = 0, we have: M(β ) = M(-β ) = M(±β -1 ).

In this note we consider the problem of the existence of a non-trivial minorant of the set (1.1) {M(β ) : β is a real algebraic integer, β = 0, β = ±1}.

It is sufficient to restrict β to the half-line (1, +∞). For the minorant, by "non-trivial" we mean "> 1". By a Theorem of Smyth in [START_REF] Smyth | On the Product of the Conjugates Outside the Unit Circle of an Algebraic Integer[END_REF], if β > 1 is a real non-reciprocal algebraic integer, i.e. for which β -1 is not a conjugate of β , then M(β ) ≥ Θ, where Θ is the smallest Pisot number. Recall that Siegel [START_REF] Siegel | Algebraic Integers whose Conjugates Lie in the Unit Circle[END_REF] proved that the smallest Pisot number Θ = 1.3247 . . . is the root > 1 of the trinomial X 3 -X -1. What is the smallest element of (1.1) known? Lehmer's number, say τ = 1.176280 . . ., is the dominant root of Lehmer's polynomial, irreducible and reciprocal, of degree 10, (

) P τ (X) = X 10 + X 9 -X 7 -X 6 -X 5 -X 4 -X 3 + X + 1. 1.2 
It is the smallest Salem number known [START_REF] Mossinghoff | Known Polynomials with Small Mahler Measure Through Degree 180[END_REF] [START_REF] Mossinghoff | Minimal Mahler Measures[END_REF]. As such M(τ) = τ, and τ belongs to the set (1.1). Lehmer's number τ is the smallest element of (1.1) known [START_REF] Mossinghoff | Minimal Mahler Measures[END_REF].

Then the problem we consider is the problem of the existence of a non-trivial minorant of the set (1.3) {M(β ) : β is a real reciprocal algebraic integer, β > 1, M(β ) < τ}.

In this paper we solve this problem. It is the Problem of Lehmer, but restricted to the real nonzero algebraic numbers = 1. The existence of a non-trivial minorant is proved in Theorem 1.1. It is effective, but this paper does not say that the set (1.3) contains elements between this universal minorant and τ. It may be empty; this is an open problem.

Let us sketch the organization of the paper. For solving this problem we suppose that the set (1.3) is not empty; we assume the existence of a real reciprocal algebraic integer β in (1, τ) such that M(β ) < τ. Recall that, if β := max{|β i | : i = 1, 2, . . . , d} denotes the house of β , we have: β ≤ β ≤ M(β ). Solving the problem amounts to investigating minorants of M(β ) when β > 1 tends to 1 and β > 1 lies in a very small neighbourhood of 1. The originality of the present note is the following: to the condition "β > 1 very close to 1" are associated an integer, called the dynamical degree of β , denoted by dyg(β ), and two analytic functions which are complementary: the first one is z → P β (z), the second one is the Parry Upper function z → f β (z) deduced from the dynamical zeta function ζ β (z) of the β -shift (Ito and Takahashi [START_REF] Ito | Markov Subshifts and Realization of β -expansions[END_REF] [START_REF] Takahashi | Isomorphisms of β -Automorphisms to Markov Automorphisms[END_REF] [START_REF] Takahashi | Fredholm Determinant of Unimodal Linear Maps[END_REF] [START_REF] Takahashi | Shift with Orbit Basis and Realization of One Dimensional Maps[END_REF] [START_REF] Lagarias | Number Theory Zeta Functions and Dynamical Zeta Functions[END_REF], cf Section 2). The present introduction of the dynamical zeta function ζ β (z) of the β -shift in the search for small Mahler measures has an impact on the Problem of Lehmer.

The (non-trivial) universal minorant of M(β ) established in Theorem 1.1 is deduced from the existence of the lenticular poles of ζ β (z), i.e. the lenticular zeroes of f β (z) (recalled in Section 2.1); to this set of lenticular poles a lenticular measure S lent (β ) can be defined (in (2.16)) and admits a lower bound depending upon dyg(β ) (Section 2.2, Theorem 2.8). This lower bound, given explicitely by Theorem 2.8, is a Dobrowolski-type inequality, comparable to the one obtained by Dobrowolski in [START_REF] Dobrowolski | On a Question of Lehmer and the Number of Irreducible Factors of a Polynomial[END_REF], but where the usual degree deg(β ) of β is replaced by the dynamical degree dyg(β ). This is based on a formulation of the lenticular poles as Poincaré asymptotic expansions of the variable dyg(β ) (divergent series) [START_REF] Verger-Gaugry | The method of asymptotic expansions of Poincaré and Mahler measures of univariate polynomials in the Conjecture of Lehmer[END_REF] [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]. In Section 3, we recall how this Dobrowolski-type inequality with dyg(β ) is a minorant function of the Mahler measure M(β ), as function of dyg(β ), using the method of rewriting trails between P β (z) and f β (z) (introduced in [START_REF] Verger-Gaugry | A proof of the Conjecture of Lehmer[END_REF] and its earlier versions, explicited in [START_REF] Dutykh | Alphabets, Rewriting Trails, Periodic Representations in Algebraic Bases[END_REF]), Kala-Vavra's Theorem [START_REF] Kala | Periodic Representations in Algebraic Bases[END_REF], and the identification of the lenticular zeroes of f β (z) with some conjugates of β .

With this identification, the (Galois) conjugates of β which are lenticular poles of ζ β (z) are called lenticular. The identification process between the lenticular poles of ζ β (z) and some Galois conjugates of β obey some sufficient conditions recalled in Section 3.2. In Section 3.3 two examples of sequences (β j ) j≥1 of reciprocal algebraic integers > 1 tending to 1 in which these sufficient conditions are not satisfied are given: the first one for which M(β j ) remains constant with j, the second one, outside the Problem of Lehmer, for which the sequence of houses ( β j ) j≥1 tends to 2 as j tends to infinity. Finally, in Section 4, we apply the Dobrowolski-type inequality numerically to prove the non-triviality of the universal minorant of M(β ).

In this note, θ n denotes the unique zero of -1 + z + z n in (0, 1), n ≥ 2 (cf [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF] [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF] for the properties of the Perron numbers θ -1 n ).

Theorem 1.1. There exists an integer η ≥ 260 such that, for any nonzero real reciprocal algebraic integer β , which is = ±1,

M(β ) ≥ θ -1 η . 2. THE DYNAMICAL ZETA FUNCTION ζ β (z) OF THE β -SHIFT AS β TENDS TO 1
In this Section, β denotes any real number in the interval (1, (1 + √ 5)/2). 

β = Id, T (1) 
β = T β , T ( j) 
β = T β (T ( j-1) β
), for j ≥ 1.

The dynamical system ([0, 1], A , T β , µ β ), where A is the σ -algebra of borelians and µ β the invariant measure [START_REF] Hofbauer | β -Shifts Have Unique Maximal Measure[END_REF], introduced by Rényi [START_REF] Ényi | Representations for Real Numbers and their Ergodic Properties[END_REF], was initially studied in ergodic theory by Parry [START_REF] Parry | On the β -expansions of Real Numbers[END_REF] [START_REF] Hofbauer | Ergodic Properties of Invariant Measures for Piecewise Monotonic Transformations[END_REF]. We call dynamical zeta function of the β -shift, denoted by ζ β (z), the dynamical zeta function of this dynamical system [START_REF] Artin | On Periodic Points[END_REF] [25] [START_REF] Pollicott | Meromorphic Extension of Generalized Zeta Function[END_REF] [START_REF] Pollicott | Periodic Orbits and Zeta Functions[END_REF]. After Takahashi [START_REF] Takahashi | Isomorphisms of β -Automorphisms to Markov Automorphisms[END_REF] [45] [START_REF] Takahashi | Shift with Orbit Basis and Realization of One Dimensional Maps[END_REF] and Ito and Takahashi [START_REF] Ito | Markov Subshifts and Realization of β -expansions[END_REF] [START_REF] Lagarias | Number Theory Zeta Functions and Dynamical Zeta Functions[END_REF], this function takes the form

(2.1) ζ β (z) = 1 -z N (1 -β z) ∑ ∞ n=0 T n β (1) z n = - 1 -z N -1 + t 1 z + t 2 z 2 + t 3 z 3 + . . .
where N, which depends upon β , is the minimal positive integer such that T N β (1) = 0; in the case where T j β (1) = 0 for all j ≥ 1, "z N " has to be replaced by "0". In (2.1) the digits t i are defined from β by: t i := β T (i-1) β

(1) , i ≥ 1, and depend upon β . Writing t i = t i (β ), the integers t i = t i (β ) all belong to the alphabet A = {0, 1}. The sequence 

(t i = t i (β )) i≥1 is such that 0.
(i) f β (z) = - 1 -z N ζ β (z) in the first case, (2.4) (ii) f β (z) = - 1 ζ β (z)
in the second case.

We have:

(2.5) (1) = 0.10 n-1 1 and d θ -1 n (1) = 0.10 n-2 1, Proposition 2.1 implies that the condition is sufficient. It is also necessary: d β (1) begins as 0.10 n-1 1 for all β such that θ -1 n+1 ≤ β < θ -1 n . For such β s we write d β (1) = 0.10 n-1 1u with digits in the alphabet A β = {0, 1} common to all β s, that is Parry ([21] Chap. 7) applied to the sequence (1, 0 n-1 , 1 1+h 0 , 0 n 1 , 1 h 1 , 0 n 2 , 1 h 3 , . . .), which characterizes uniquely the base of numeration β , readily implies h 0 = 0 and h k = 1 and n k ≥ n -1 for all k ≥ 1.

-1 + t 1 z + t 2 z 2 + t 3 z 3 + . . . = f β (z) = -(1 -β z) ∞ ∑ n=0 T n β ( 
u = 1 h 0 0 n 1 1 h 1 0 n 2 1 h 2 . . . and h 0 , n 1 , h 1 , n 2 , h 2 , . . . integers ≥ 0. The Conditions of
Definition 2.3. Let n ≥ 2 (ou ? 3). The class B is the collection of all the polynomial sections of the power series f β (z) for all β s in the interval (1, (1 + √ 5)/2). From (2.5) and (2.6), the power series f β (z) in (2.5) take the form:

(2.7)

-1 + x + x n + x m 1 + x m 2 + . . . + x m s + . . .
with the distanciation conditions: m 1n ≥ n -1, m q+1m q ≥ n -1 for all 1 ≤ q. The polynomials of the class B are integer lacunary polynomials having coefficients in the alphabet {0, 1} except the constant term equal to -1, of the form

-1 + x + x n + x m 1 + x m 2 + . . . + x m s
for some integer s ≥ 0 (the case s = 0 corresponds to the trinomials -1 + x + x n ), with the same distanciation conditions: m 1n ≥ n -1, m q+1m q ≥ n -1 for all 1 ≤ q < s.

The domain of definition of ζ β (z), as a meromorphic function, contains the open unit disk D(0, 1) = {z ∈ C : |z| < 1}. Indeed, in all the cases where β > 1 is such that the denominator -1 + t 1 z + t 2 z 2 + t 3 z 3 + . . . of (2.1) has infinitely many non-zero terms, Hadamard's formula gives R = 1 as radius of convergence. For the other cases, the domain of definition of ζ β (z) as a meromorphic function is C. From (2.2), the real number β -1 is always a simple pole of ζ β (z) in D(0, 1). The function ζ β (z) is holomorphic on {z ∈ C : |z| < 1/β } and is extended meromorphically to D(0, 1).

In D(0, 1), the poles of ζ β (z) are separated into two subcollections [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF]:

-the lenticular poles, -the non-lenticular poles (the "other poles"). This classification is not canonical; it is due to the method of Rouché, applied to the zeroes of modulus < 1 of the trinomials -1 + x + x n , n ≥ 3 for the identification of the lenticular poles. However, it is powerful enough to deduce the Dobrowolski-type inequality in Theorem 2.8, and this inequality is used successfully in Section 4. A finer method would lead to better constants in (2.18). The subset of the lenticular poles is denoted by L β , all simple poles, and recalled below. Lenticuli of poles are symmetrical with respect to the real axis. Examples of lenticuli of lenticular poles are given in [START_REF] Dutykh | On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials[END_REF]. A lenticular pole of ζ β (z) is a zero of (2.7), the Parry Upper function f β (z) at β . Below, in Definition 2.7), we recall the definition of a lenticular pole of ζ β (z), from Theorem 2.6.

The terminology "lenticular pole" comes from the particular case where β belongs to ∪ n≥2 {θ -1 n } (cf [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]). Recall that the sequence

(θ -1 n ) n≥2 is strictly decreasing: 1 < . . . < θ -1 n+1 < θ -1 n < . . . < θ -1 2 = (1 + √ 5)/2, with lim n→∞ θ -1 n = 1. Indeed, in this particular case, if β = θ -1 n for some n ≥ 2, the set of poles of ζ β (z) = -(1 -z n )/(-1 + z + z n ) inside D(0, 1)
forms a lenticulus of simple poles in {z ∈ D(0, 1) : | arg z| < π/3}; all the poles of modulus < 1 are lenticular and there is no "other pole" [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]. In the general case, "other poles" exist, in a thin annulus of the unit circle in D(0, 1), and, if θ -1 n < β < θ -1 n-1 for some n ≥ 3, the lenticulus L β of lenticular poles can be defined "optimally" with respect to L θ -1 n .

Let us fix the notations; we follow Section 2 in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF], and Appendix in [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF]. They come from the factorization of G n (X) := -1 + X + X n in Selmer [START_REF] Selmer | On the Irreducibility of Certain Trinomials[END_REF]. Summing in pairs over complex conjugated imaginary roots, the indexation of the roots and the factorization of G n (X) are taken as follows:

(2.8) G n (X) = (X -θ n ) n 6 ∏ j=1 (X -z j,n )(X -z j,n ) × q n (X),
where θ n is the only (real) root of G n (X) in the interval (0, 1), where

q n (X) =                      n-2 2 ∏ j=1+ n 6 (X -z j,n )(X -z j,n )   × (X -z n 2 ,n ) if n is even, with z n 2 ,n real < -1, n-1 2 ∏ j=1+ n 6 (X -z j,n )(X -z j,n ) if n is odd,
where the index j = 1, 2, . . . is such that z j,n is a (nonreal) complex zero of G n (X), except if n is even and j = n/2, such that the argument arg(z j,n ) of z j,n is roughly equal to 2π j/n and that the family of arguments (arg(z j,n )) 1≤ j< n/2 forms a strictly increasing sequence with j:

0 < arg(z 1,n ) < arg(z 2,n ) < . . . < arg(z n 2 ,n ) ≤ π. For n ≥ 2 all the roots of G n (X) are simple.
Denote by a max = 5.87433 . . . the abscissa of the maximum of the function

a → (1 -exp( -π a ))/(2 exp( π a ) -1)
on (0, ∞). Let κ := 0.171573 . . . be the value of its maximum, at a = a max (Figure 1 in [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF]). From a numerical viewpoint we have: 2 arcsin(κ/2) = 0.171784 . . .. The sequel follows from Section 2 in [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF].

Definition 2.4. Let n ≥ 195. Denote by J n the largest integer j ≥ 1 such that the root z j,n of G n satisfies (2.9)

| -1 + z j,n | |z j,n | ≤ κ = 1 -exp -π a max 2 exp π a max -1 = 0.171573 . . . ,
and by c n the real number > 0 such that

|z J n ,n | = 1 -c n n . Proposition 2.5. Let n ≥ 195. Then (2.10) arg(z J n ,n ) = 2 arcsin κ 2 + κ Log κ n √ 4 -κ 2 + 1 n O Log Log n Log n 2 ,
(2.11)

J n = n π arcsin κ 2 + κ Log κ π √ 4 -κ 2 + O Log Log n Log n 2
with, at the limit,

(2.12) lim n→+∞ arg(z J n ,n ) = lim n→+∞ 2π J n n = 2 arcsin κ 2 = 0.171784 . . . , (2.13 
)

c n = -(Log κ) (1 + 1 n ) + 1 n O Log Log n Log n 2 , with c = lim n→+∞ c n = -Log κ = 1.76274 . . .
Proof. Proposition 2.7 and Lemma 2.14 in [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF].

Let n ≥ 195. Denote

D 0,n := {z ∈ C : |z -θ n | < θ n -θ n-1 } the open disk of radius θ n -θ n-1 ≈ t 0,n n with t 0,n := Log Log n Log n 2 . Denote (2.14) D j,n := {z | |z -z j,n | < π |z j,n | n a max }, j = 1, 2, . . . , J n ,
with additional constraints of the radii for the small values of j, from Theorem 2.11 in [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF].

Theorem 2.6. Let c lent := min n≥260 (c n -π a max ). Let n ≥ 260 and β > 1 be a real number such that dyg(β ) = n, Denote by

f β (z) = -1 + z + z n + z m 1 + z m 2 + . . . + z m j + z m j+1 + . . . , where m 1 -n ≥ n -1, m j+1 -m j ≥ n -1 for j ≥ 1, the Parry Upper function at β . Then the zeroes of f β (z) of modulus < 1 which lie in -arg(z J n ,n )-π na max < arg z < + arg(z J n ,n )+ π na max either belong to z | |z| -1 < 1 3 c lent n or to z | ||z| -1| > c lent n .
In the second class of zeroes, all the zeroes, say ω j,n , are simple, and lie in the union

D 0,n ∪ J n j=1 (D j,n ∪ D j,n );
there is one zero per disk ω j,n ∈ D j,n , ω j,n ∈ D j,n , the disk D 0,n containing the element β -1 .

Proof. Theorem 2.19 in [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF].

Definition 2.7. Let n ≥ 260. Let β > 1 be a real number such that dyg(β ) = n. The poles of ζ β (z) which belong to the angular sector

(2.15) z ∈ C : |z| < 1 - c lent n , | arg z| ≤ arg(z J n ,n ) + π na max are called the lenticular poles of ζ β (z).
The lenticuli of lenticular poles, relative to θ -1 n and β respectively, are:

L θ -1 n := {z n/6 ,n , . . . , z 2,n , z 1,n , θ n , z 1,n , z 2,n , . . . , z n/6 ,n }, L β = {ω J n ,n , . . . , ω 1,n , β -1 , ω 1,n , . . . , ω J n ,n }.
The lenticular zeroes of f β are peculiar zeroes, off the unit circle. By (2.12), a good approximation of the angular dependence in (2.15) is "| arg z| ≤ π/18" instead of " | arg z| ≤ arg(z J n ,n ) + π na max ". This approximation is used in Theorem 4 in [START_REF] Dutykh | On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials[END_REF] (and Theorem 2.2 in [START_REF] Dutykh | On a class of lacunary almost Newman polynomials modulo p and density theorems[END_REF]).

A Dobrowolski-type inequality for the lenticular

measure. If θ -1 n < β < θ -1
n-1 for some n ≥ 3, and

L β = {ω J n ,n , . . . , ω 1,n , β -1 , ω 1,n , . . . , ω J n ,n }
denotes the set of the lenticular poles of ζ β (z), all depending upon β , then we attribute to L β a measure, that we call lenticular measure of β , by the expression (2.16)

S lent (β ) := ∏ ω∈L β |ω| -1 = β J n ∏ j=1 |ω j,n | -2 .
By construction, S lent (β ) ≥ 1. If β = θ -1 n , then the identification with the Mahler measure of θ -1 n holds:

S lent (θ -1 n ) = M(θ -1 n )
The definition of S lent (β ) is mimicked on the definition of the Mahler measure of an algebraic integer. It is an analogue of the Mahler measure. The properties of S lent (β ), θ -1 n < β < θ -1 n-1 , are closely related to those of the Mahler measure of β if β is an algebraic integer.

Theorem 1.1 in [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF] proves the continuity of β → S lent (β ) for θ -1 n < β < θ -1 n-1 , as soon as n is large enough. In [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF] lower bounds of the infimum lim inf β →1 S lent (β ) by comparison with lim n→∞ M(θ -1 n ) are studied. The method used is an extension of the one developped in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF] for the zeroes of the trinomials -1 + x + x n : inthere the lenticular poles are developped as asymptotic expansions "à la Poincaré" as a function of n [START_REF] Verger-Gaugry | The method of asymptotic expansions of Poincaré and Mahler measures of univariate polynomials in the Conjecture of Lehmer[END_REF], which leads to a Dobrowolski-type inequality of the Mahler measure, better than the classical Dobrowolski's inequality in [START_REF] Dobrowolski | On a Question of Lehmer and the Number of Irreducible Factors of a Polynomial[END_REF] . Let us recall more precisely these inequalities from [START_REF] Dobrowolski | On a Question of Lehmer and the Number of Irreducible Factors of a Polynomial[END_REF], [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF] and [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF]. Denote (2.17)

C := exp -1 π 2 arcsin( κ 2 ) 0 Log 1 + 2 sin( x 2 ) -1 -12 sin( x 2 ) + 4(sin( x 2 )) 2 4 dx = 1.15411 . . . .

The main theorem is:

Theorem 2.8. (Verger-Gaugry [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF]) There exists an integer η ≥ 260 such that the following inequality holds:

(2.18) S lent (β ) ≥ C -C arcsin(κ/2) π 1 Log (n)
, for all n ≥ η and any β ∈ (θ -1 n , θ -1 n-1 ).

This theorem extends the following result, proved in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]:

(2.19) M(θ -1 n ) > Λ - Λ 6 1 Log n , n ≥ 2,
where Λ is the following constant m s the Dirichlet L-series for the character χ 3 , with χ 3 the uniquely specified odd character of conductor 3 (χ 3 (m) = 0, 1 or -1 according to whether m ≡ 0, 1 or 2 (mod 3), equivalently χ 3 (m) = m 3 the Jacobi symbol). Recall that, from Selmer [START_REF] Selmer | On the Irreducibility of Certain Trinomials[END_REF], in (2.19), we have:

n = deg(θ -1 n ) if n ≡ 5 ( mod 6), and n = deg(θ -1 n ) + 2 if n ≡ 5 ( mod 6
). In 1979, Dobrowolski [START_REF] Dobrowolski | On a Question of Lehmer and the Number of Irreducible Factors of a Polynomial[END_REF], using an auxiliary function, obtained the general asymptotic minoration, with n = deg(α) the degree of the nonzero algebraic integer α, which is not a root of unity,

(2.21) M(α) > 1 + (1 -ε) Log Log n Log n 3 , n > n 0 (ε),
with 1ε replaced by 1/1200 for n ≥ 2, for an effective version of the minoration.

In the right hand sides of (2. [START_REF] Ács | On the Periodicity of the Radix Expansion[END_REF]) and (2.18) the constant term is not any more 1 as in (2.21) but Λ = 1.38135 . . . and C = 1.15411 . . . respectively, and the sign of the n-dependent term is "-", instead of "+", with an appreciable gain of (Log n) 2 in the denominator. In the case where β is a reciprocal algebraic integer in Theorem 2.8, (2.18) represents an improvment of Dobrowolski's inequality, in some sense, but in which the degree deg(β ) is replaced by the integer n such that β ∈ (θ -1 n , θ -1 n-1 ). To emphasize, the integer variable "n" is the true algebraic degree of β in (2.21), is almost all the time the algebraic degree of β in (2.20), but is different in (2.18). In [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF] it was suggested to name this peculiar integer n, appearing in (2.18), the dynamical degree of β , and to denote it by dyg(β ). This name is used in the sequel. It has the obvious following property: β tends to 1 if and only if dyg(β ) tends to infinity. When β > 1 is a reciprocal algebraic integer and dyg(β ) is large enough, a simple relation between dyg(β ) and deg(β ) can be deduced (cf Section 3.4). From Theorem 2.8, we have:

C ≤ lim inf β →1 + S lent (β ) ≤ Λ.

LENTICULAR MINORATION OF THE MAHLER MEASURE

In this section we assume the existence of a reciprocal algebraic integer β in the interval (θ -1 n , θ -1 n-1 ) for some integer n ≥ 3 (n is fixed), having M(β ) < 1.176280 . . ., i.e. less than Lehmer's number. The minimal polynomial P β of β is monic and reciprocal in the sense:

P * β (X) := X deg P β P β (1/X) = P β (X).
It can be written

(3.1) P β (X) = P β (X r )
for some integer r ≥ 1 and some Z-minimal integer polynomial P β (X). The integer r = r(β ) is the largest one such that (3.1) holds; it depends upon β . It suffices to restrict ourselves to the β s for which r(β ) = 1. The β s such that r(β ) ≥ 2 are excluded in the following, as explained in Section 3.3.1, since they do not bring any new contribution to the minoration problem of the Mahler measure; they constitute the "Second case". In the following we assume r(β ) = 1. Under these assumptions and the notations of Theorem 2.6, we have Proposition 3.1.

(3.2) f β (ω j,n ) = 0 =⇒ P β (ω j,n ) = 0.
Proof. Proposition 3 in [START_REF] Dutykh | Alphabets, Rewriting Trails, Periodic Representations in Algebraic Bases[END_REF].

The objective of this Section is to recall briefly the main ingredients of its proof. In Section 3.2 we detail the rewriting trails between the minimal polynomial "P β " and the polynomial sections of " f β ", and the way convergence occurs towards " f β " using the theorem of Kala-Vávra, with respect to Galois conjugation. The domain of applicability of Kala-Vávra's Theorem is due to the type of factorization of the polynomial sections of " f β ", and is recalled in Section 3.1.

The identification (3.2) gives the following minoration to the Mahler measure of β :

(3.3) M(β ) = M(β -1 ) = ∏ ω ∈L β ,|ω|<1 |ω| -1 × ∏ ω∈L β |ω| -1 ≥ ∏ ω∈L β |ω| -1 = S lent (β ).

Factorization of the lacunary almost-Newman polynomials of the class B and

Kala-Vávra's Theorem. Newman polynomials are polynomials with coefficients in {0, 1}.

In [START_REF] Dutykh | On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials[END_REF] almost-Newman polynomials have been introduced: by definition, an almost-Newman polynomial is an integer polynomial which has coefficients in {0, 1} except the constant term equal to -1. Recall that Newman polynomials are irreducible with probability one, under the Generalized Riemann Hypothesis [START_REF] Breuillard | Irreducibility of Random Polynomials of Large Degree[END_REF]. By Definition 2.3 the polynomials of the type:

f (x) := -1 + x + x n + x m 1 + x m 2 + . . . + x m s
where n ≥ 2, s ≥ 0, m 1n ≥ n -1, m q+1m q ≥ n -1 for 1 ≤ q < s, constituting the class B, are all almost-Newman polynomials, for which the lacunarity is controlled a minima by the (unique) integer n -1.

The case "s = 0" corresponds to the trinomials G n (z) := -1 + z + z n . The subclass B n ⊂ B is the set of polynomials f (x) ∈ B whose third monomial is exactly x n , so that the union B = ∪ n≥2 B n is disjoint.

The factorization of the polynomials of the class B has been investigated in [START_REF] Dutykh | On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials[END_REF] and the results are summarized in Theorem 3.2 and Theorem 3.3. Theorem 3.3 is more precise than the general theorems of factorization of lacunary polynomials of Schinzel [START_REF] Schinzel | Reducibility of polynomials and covering systems of congruences[END_REF] [34] [START_REF] Schinzel | On the number of irreducible factors of a polynomial[END_REF] [36] [37] [START_REF] Schinzel | Polynomials with special regard to reducibility[END_REF]. Two conjectures have appeared in this study:

(i) the "Asymptotic Reducibility Conjecture" says that 75% of the polynomials f (x) ∈ B are irreducible, (ii) the Conjecture B, which says that the factorization of any f ∈ B never contains factors which are reciprocal non-cyclotomic. Conjecture B has been established in [START_REF] Dutykh | On a class of lacunary almost Newman polynomials modulo p and density theorems[END_REF] for some infinite families of polynomials f of B, using criteria of Sawin, Shusterman and Stoll [START_REF] Sawin | Irreducibility of polynomials with a large gap[END_REF]: cf Proposition 4.7 and Remark 4.8 in [START_REF] Dutykh | On a class of lacunary almost Newman polynomials modulo p and density theorems[END_REF]. Theorem 3.2 (Selmer [START_REF] Selmer | On the Irreducibility of Certain Trinomials[END_REF]). Let n ≥ 2. The trinomials G n (x) are irreducible if n ≡ 5 (mod 6), and, for n ≡ 5 (mod 6), are reducible as product of two irreducible factors whose one is the cyclotomic factor x 2 -x+1, the other factor (-1+x+x n )/(x 2 -x+1) being nonreciprocal of degree n -2.

Theorem 3.3 (Dutykh -Verger-Gaugry [START_REF] Dutykh | On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials[END_REF]). For any f ∈ B n , n ≥ 3, denote by

(3.4) f (x) = A(x)B(x)C(x) = -1 + x + x n + x m 1 + x m 2 + . . . + x m s ,
where s ≥ 1, m 1n ≥ n -1, m j+1m j ≥ n -1 for 1 ≤ j < s, the factorization of f where A is the cyclotomic part, B the reciprocal noncyclotomic part, C the nonreciprocal part. Then (i) the nonreciprocal part C is nontrivial, irreducible and never vanishes on the unit circle, (ii) if γ > 1 denotes the real algebraic number uniquely determined by the sequence (n, m 1 , m 2 , . . . , m s ) such that 1/γ is the unique real root of f in

(θ n-1 , θ n ), -C * (X)
is the minimal polynomial P γ (X) of γ, and γ is a nonreciprocal algebraic integer.

In (3.4), in 75% of the cases, A(x)B(x) = 1. In the 25 % remaining cases, the polynomial A(x) is not trivial and is a product of cyclotomic polynomials Φ j of small indices j [START_REF] Dutykh | On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials[END_REF].

Remark 3.4. For applying Kala-Vávra's Theorem 3.5 to rewriting trails and representations in Section 3.2, the important point in Theorem 3.

3 is |γ | = 1 for any conjugate γ of γ ∈ (θ -1 n , θ -1 n-1
). As a consequence, any x ∈ Q(γ) will be an eventually periodic (γ, A )-representation for some alphabet A depending only upon γ, and, for any conjugation Q-automorphism σ , such that |γ = σ (γ)| > 1, σ (x) will be the eventually periodic (σ (γ), A )-representation, with the same coefficient vector.

Let us recall the definitions. For a general complex number β ∈ C, |β | > 1, and a finite alphabet A ⊂ C, we define the (β , A )-representations as expressions of the form ∑ k≥-L a k β -k , a k ∈ A , for some integer L ∈ Z. They are Laurent series of 1/β . We define Per A (β ) := {x ∈ C | x has an eventually periodic (β , A )-representation}.

Attention will be focused on the complex numbers β which are real algebraic integers > 1, close to 1, assuming that β has no conjugate on the unit circle, and on the alphabets A ⊂ Z, depending upon β , involved in the identity:

Q(β ) = Per A (β ).
Those β s which are the real roots > 1 of the polynomials of the class B will be of special interest in the next section. We write Q for the set of rational numbers, Q(β ) for the smallest sub-field of C containing β . Indeed, such an identity always holds by the following theorem. 

(3.5) Q(β ) = Per A (β ).
Daróczy and Kátai [START_REF] Óczy | Generalized Number Systems in the Complex Plane[END_REF], and later Thurston [START_REF] Thurston | Groups, Tilings and Finite State Automata: Summer 1989 AMS Colloquium Lectures[END_REF], have proved that for any non-real β ∈ C, |β | > 1, there exists a finite alphabet A ⊂ C such that every x ∈ C has a (β , A )representation. The search for periodic representations in radix systems goes back to Kovács [START_REF] Ács | Canonical Number Systems in Algebraic Number Fields[END_REF] and to Kovács and Környei [START_REF] Ács | On the Periodicity of the Radix Expansion[END_REF] (see also Pethő [START_REF] Peth Ő | On the Periodic Expansion of Algebraic Numbers[END_REF]). For the Rényi-Parry numeration system in base β > 1, the idea of the enlargement of the alphabet to obtain the eventual periodicity for the representations of the elements of the number field Q(β ) has been recurrent.

In the context of automorphisms of complex numbers (Kestelman [START_REF] Kestelman | Automorphisms of the field of complex numbers[END_REF], Yales [START_REF]YALES Automorphisms of the Complex Numbers[END_REF]); the absence of continuity of the Q-automorphisms of conjugation is compensated in some sense by the eventual periodicity of the representations in Theorem 3.5.

Identification, rewriting trails, Galois conjugation and convergence

. Since β ∈ (θ -1 n , θ -1 n-1
) is a reciprocal algebraic integer for some integer n ≥ 3 (n is fixed), the Parry Upper function f β (z) = -1 + z + z n + z m 1 + z m 2 + . . . + z m j + z m j+1 + . . . , where m 1n ≥ n-1, m j+1 -m j ≥ n-1 for j ≥ 1, written = -1+∑ i≥1 t i z i , is a power series which is never a polynomial. Indeed, the number of positive real roots of f β (z) is 2, and if we assume it is a polynomial, we obtain a contradiction, with Descartes's rule. Then the sequence (t i = t i (β )) i≥1 , satisfying t 1 = 1,t 2 = . . . = t n-1 = 0,t n = 1,t n+1 = 0, . . ., in {0, +1}, contains infinitely many nonzero terms.

For every s ≥ 1, we denote by S

* γ s (X) = X s S γ s (1/X) = 1 -t 1 X -t 2 X 2 -. . . -t s-1 X s-1 - t s X s the reciprocal polynomial of S γ s (X) := X s -∑ s-1 i=0 t s-i X i . The polynomial -S * γ s (z)
is the sth polynomial section of f β (z). We denote by γ s > 1 the nonreciprocal algebraic integer which is the unique real root of S γ s (z). We have:

S * γ s (γ -1 s ) = 0 and lim s→+∞ γ -1 s = β -1 ; deg γ -1 s = deg S * γ s if and only if S * γ s (x) is irreducible. . The number of distinct polynomial sections of f β (z) is infinite.
The minimal polynomial P β of β is monic and reciprocal. Denote it

P β (x) = 1 + a 1 x + a 2 x 2 + . . . + a d-1 x d-1 + a d x d (a d-i = a i ). A 1 (X) is -1 + (-a 1 -t 1 )X. The second polynomial A 2 (X) is -1 + (-a 1 -t 1 )X + (-a 2 - (-(-a 1 -t 1 )t 1 + t 2 ))X 2 , etc.
For q ≥ deg(P), all the coefficients of P are restored; denote by (h q, j ) j=0,1,...,s-1 the s-tuple of integers produced by this rewriting trail, at step q. It is such that

(3.7) A q (γ -1 )S * γ (γ -1 ) = -P(γ -1 ) + γ -q-1 s-1 ∑ j=0 h q, j γ -j .
Then take q = d. The lhs of (3.7) is equal to 0. Thus

P(γ -1 ) = γ -d-1 s-1 ∑ j=0 h d, j γ -j =⇒ P(γ) = s-1 ∑ j=0 h d, j γ -j-1 .
The height of the polynomial W (X)

:= ∑ s-1 j=0 h d, j X j+1 is ≤ (2 d -1)H +2 d .
We now assume |P(γ)| < η. By Kala-Vavra's Theorem 3.5 and Theorem 3 in [START_REF] Dutykh | Alphabets, Rewriting Trails, Periodic Representations in Algebraic Bases[END_REF] there exist a preperiod

R(X) ∈ A [X], a period T (X) ∈ A [X] such that (3.8) W (γ -1 ) = P(γ) = R(γ -1 ) + γ -deg R-1 ∞ ∑ j=0 1 γ j(deg T +1) T (γ -1 ), deg R ≤ s -1, deg T ≤ s -1, with A ⊂ Z the symmetrical alphabet = {-m, . . . , 0, . . . , +m} where m = 2((2 d -1)H + 2 d )/3 .
Since the algebraic norm N(γ) is equal to ±1 the uniqueness of the representation (3.8) is not expected [START_REF] Ács | On the Periodicity of the Radix Expansion[END_REF]. However, for any (γ, A )-eventually periodic representation of P(γ)

P(γ) = W (γ -1 ) = a w γ w + a w+1
γ w+1 + a w+2 γ w+2 + . . . , with |a j | ≤ m, j = w, w + 1, . . . with a w = 0, the exponent w appearing in the first term tends to infinity if η tends to 0. Indeed, from Theorem 4, Remarks 5 to 7, in [START_REF] Baker | On Periodic Representations in non-Pisot Bases[END_REF], there exists a positive real number κ γ,A > 0 such that w is the minimal integer such that

γ w-1 ≥ κ γ,A |P(γ)| ≥ κ γ,A η .
(ii) The integer n = dyg(β ) ≥ 3 is fixed. By Theorem 3.3, for any s ≥ 0, γ -1 s has no conjugate on the unit circle. For all s such that deg S * γ s ≥ deg P β , the identity

Q(γ s ) = Per A (γ s ), holds with A = {-m, . . . , +m} ⊂ Z , m = 2((2 d -1)H + 2 d )/3 . The polynomial value P β (γ s ) ∈ Q(γ s ) is eventually periodic (3.9) P β (γ s ) = R(γ -1 s ) + 1 γ L s ∞ ∑ j=0 1 γ jρ s T (γ -1 s ) ∈ Per A (γ s )
with L, ρ and R(X), T (X), depending upon s. This representation of P β (γ s ) starts as = a w,(s)

γ w s + a w+1, (s) γ w+1 s 
+ . . . + a w+m s -1, (s) 
γ w+m s -1 s + . . . , a j,(s) ∈ A , j = w, . . . , w + m s -1, with a w,(s) = 0 and w = w s ≥ 1, depending upon s, satisfies

κ γ s ,A η ≤ γ w s -1 s
for some positive constant κ γ s ,A depending upon γ and A . Since A is independent of s, and that the sequence (γ s ) is convergent with limit β > 1, there exists a (true) constant κ > 0 such that κ η ≤ γ w s -1 s from Theorem 4, Remarks 5 to 7, in [START_REF] Baker | On Periodic Representations in non-Pisot Bases[END_REF]. Since lim s→∞ P β (γ s ) = 0 = P β (β ), we take η = η s := |P β (γ s )|. The sequence (η s ) tends to 0. We deduce lim s→∞ w s = +∞.

Let ω j,n = β -1 be a lenticular zero of f β (z). We assume the existence of a small disk D(ω j,n , r) centered at ω j,n of radius r > 0, included in the open unit disk, which has the property that the only zero of

f β (z) in D(ω j,n , r) is ω j,n .
The lenticular zero ω j,n is limit point of a sequence of zeroes of the polynomial sections of f β (z). As soon as s ≥ s 0 for some s 0 , we assume that the disk D(ω j,n , r) contains only one zero of S * γ s (z). Denote by r s this zero. Let us assume that r s is a Galois conjugate of γ -1 s , and denote by σ s : γ -1 s → r s the Q-automorphism of conjugation. This assumption is reasonable by the Asymptotic Reducibility Conjecture.

To summarize, for s ≥ s 0 :

f β (ω j,n ) = 0, S * γ s (r s ) = 0, r s = σ s (γ -1 s ), |ω j,n -σ s (γ -1 s )| < r, lim s→∞ r s = ω j,n .
Let us show that P β (ω j,n ) = 0. Let us conjugate (3.8) for X = γ -1 s . The power series (3.9) specialized at γ -1 s is eventually periodic, therefore can be conjugated term by term, once the image of γ -1 s by the conjugation σ s is such that |σ s (γ -1 s )| < 1, to ensure convergence. Then Let us observe that within a period of period length ρ in the power series (3.10) a certain number of coefficients are equal to zero, and therefore that the upper bound (3.11) can be improved using the period length ρ and the degree of T . However it is sufficient for below. We deduce

P β (ω j,n ) = lim s→∞ W (r s ) = 0,
that is Proposition 3.1.

3.3.

Examples without identification of the lenticular poles. Let (β q ) q≥1 be an infinite sequence of real reciprocal algebraic integers > 1 tending to 1. We assume that it is strictly decreasing, with β 1 ≤ 1.176280 . . ., β 1 ≤ 1.176280 . . . M(β 1 ) ≤ 1.176280 . . ., and that there exists only one β q in an interval (θ -1 n , θ -1 n-1 ) for some n. We denote it by β q n and have:

θ -1 n < β q n < θ -1 n-1 , β q n ≤ β q n ≤ M(β q n ) (n ≥ n 0 ).
We allow n to run over a strictly increasing sequence I of integers n 0 , n 1 , n 2 , . . .. We assume that the sequence of Mahler measures (M(β q n )) n∈I and the sequence of houses ( β q n ) n∈I are decreasing:

1 < . . . < β q n+1 < β q n < β q n-1 < . . . < β q n 0 ≤ . . . ≤ 1.176280 . . . ,

1 < . . . ≤ β q n+1 ≤ β q n ≤ β q n-1 ≤ . . . ≤ β q n 0 ≤ . . . ≤ 1.176280 . . . , 1 ≤ . . . ≤ M(β q n+1 ) ≤ M(β q n ) ≤ M(β q n-1 ) ≤ . . . ≤ 1.176280 . . . .
If they exist, let us call "Main Case" when the sequence (M(β q n )) n∈I is not stationary after a certain rank; and "Second Case" when the sequence (M(β q n )) n∈I is stationary after a certain rank. Whatever I , from Theorem 2.8, Proposition 3.1 and (3.3), we have the universal lower bound lim n∈I ,n→+∞

M(β q n ) ≥ C,
and, for n ∈ I large enough, the Dobrowolsky-type inequality

M(β q n ) ≥ S lent (β q n ) ≥ C -C arcsin(κ/2) π 1 Log (dyg(β q n ))
.

Let us give two examples of sequences of reciprocal algebraic integers β q n > 1 which converge to 1 which do not possess any lenticular conjugate (except β -1 q n ), to better understand the assumptions involved. Recall that the definition of a lenticular zero is given in Definition 2.7.

3.3.1. "Second Case": Minimal polynomial P β (X) = P β (X r ) for r ≥ 2 -Roots of unity.

Let

β 1 = 2 + √ 3 ∈ (1, +∞). The minimal polynomial of β 1 is P β 1 (X) = X 2 -4X + 1. It is reciprocal.
Lemma 3.6. Let r ≥ 1 be an integer and denote by β r the real number in (1, ∞) with β r r = β 1 . Then β r is a reciprocal algebraic integer, lim r→∞ β r = 1, with minimal polynomial X 2r -4X r + 1. The Mahler measure is constant on the family (β r ) r≥1 , i.e., for all r ≥ 1, M(β r ) = β 1 .

Proof. Say r ≥ 2 and let γ ∈ C satisfy γ r = β 1 . Then γ is an algebraic integer. We claim So β r is not the r-th power of any element of K if r ≥ 2. Moreover -β 1 /4 < 0 is not a fourth power in the real quadratic field K. From this and from a classical result from the theory of fields, Theorem VI.9.1 in S. Lang, Algebra, Graduate Texts in Mathematics, 211, (2002), we conclude that X rβ 1 is irreducible in K

γ ∈ K = Q( √ 3). Indeed, if γ ∈ K, then |γ| ≤ 2 + √ 3 < 2 and |γ | ≤ 2 - √ 3 
[X] for all r ≥ 1. So X 2r -4X r + 1 = P β 1 (X r )
is the Z-minimal polynomial of β r . In particular β r is reciprocal. Now, if ε runs over the set of r-th roots of unity, ε r = 1, then the set of the conjugates of β r is {β r ε | all ε, ε r = 1}, since (β r ε) r = β 1 which implies M(β r ) = M(β 1 ) for all r ≥ 2.

The action of the r-th roots of unity, for r tending to infinity, does not produce reciprocal algebraic integers of smaller Mahler measure than M(β 1 ). We have

1 . . . < β r+1 < β r < . . . < β 2 < β 1 = 2 + √ 3 with . . . = M(β r + 1) = M(β r ) = . . . = M(β 2 ) = M(β 1 ) = 2 + √ 3.
In this note we are concerned with the attack of the Conjecture of Lehmer, not with sequences of algebraic integers on which the Mahler measure remains constant. Therefore, for obtaining a minorant of M(β r ), because of the Mahler measure remains constant on the sequence (β r ) r≥1 , we replace dyg(β r ) by dyg(β r r ) and use the lenticular minorant relative to We have proved M(β r ) ≥ β 1 . The equality holds; in this case the lenticular minorant is exactly the Mahler measure M(β 1 ) = β 1 .

f β r r (z) = f β 1 (z). The fact is that β 1 = 2 + √ 3 ≥ (1 + √ 
The general strategy is the same. Let β > 1 be a reciprocal algebraic integer of dynamical degree dyg(β ) ≥ 260, for which the minimal polynomial

P β (X) = 1 + d-1 ∑ j=1 a j X j + X d = d ∏ k=1 (X -β (k) ), β (1) 
= β , is relative to the Main Case. Then, for any q ≥ 2, we define the reciprocal algebraic integer β q > 1, root of the reciprocal polynomial

P β q (X) = 1 + d-1 ∑ j=1 a j X q j + X qd = P β (X q ).
For all q ≥ 2, we have: M(β q ) = M(β ), considering the equations X qβ (k) , |β (k) | ≥ 1, and if γ q = β (k) , (γ ε) q = β (k) for any ε, ε q = 1. For any q ≥ 2, there exists n ≥ 260 such that θ -1 n < β q < θ -1 n-1 . Then to find a minorant of M(β q ) we replace n = dyg(β q ) by dyg(β )

and consider the set of the lenticular zeroes of f β q q (z) = f β (z). Then we obtain the lenticular minorant S lent (β ) ≤ M(β q ). This amounts to the case: the "Main Case relative to β and P β (X)".

3.3.2. An example outside the Problem of Lehmer. Let n ≥ 2 be an integer. Let β n the unique root > 1 of the reciprocal integer polynomial

P n (X) = X 2 n -2X 2 n -1 -8X 2 n-1 -2X + 1 ∈ Z[X].
We show that the Conjecture of Lehmer is true for the family {β n : n ≥ 2} (in the sense that there is a common lower bound > 1 for all the Mahler measures M(β n )). This is due to Lemma 3.8 and to the fact that the house β n = β n tends to 2 as n → ∞ ((iv) in Proposition 3.7). Since 2 does not belong to the interval (1, 1.32 . . .), a dynamical degree dyg of β n cannot be defined. Therefore a lenticular minorant of the Mahler measure M(β n ) has no sense. We cannot expect any help from any lenticular root of f β n (z) in this case, since lenticular roots do not exist. This example does not constitute an attack of the problem of Lehmer, but, interestingly, when we consider the integer polynomial

P n (-X) = X 2 n + 2X 2 n -1 -8X 2 n-1 + 2X + 1 ∈ Z[X],
we find the sequence of reciprocal algebraic integers (-γ n ) n≥2 in (1, +∞) which are roots of P n (-z) and which converges to 1, by (iv) in Proposition 3.7. For this family it is tempting to try to use the lenticular roots of f -γ n (z) for n large enough, which exist, as n tends to infinity, to establish a minorant of M(-γ n ) = M(β n ). It is hopeless. The conditions of identification of the lenticular roots of f -γ n (z) with some zeroes of P n (-z) in {z ∈ C : -π/18 ≤ arg z ≤ +π/18, |z| < 1}, are not satisfied (cf [START_REF] Dutykh | Alphabets, Rewriting Trails, Periodic Representations in Algebraic Bases[END_REF]) since the Mahler measure M(β n ) = M(γ n ) is far too large (cf Lemma 3.8 and Remark 3.9); in this angular sector, the only zero which is common to f -γ n (z) and P n (-z) is (-γ n ) -1 (cf (v) in Proposition 3.7).

Proposition 3.7. Let n ≥ 2. Then (i) the polynomial P n (X) is not of the form Q(X r ) for some integer r ≥ 2 and some integer polynomial Q, (ii) P n is irreducible in Q[X], (iii) P n has no root on the unit circle, (iv) for n large enough, P n admits four real roots γ n , γ -1 n , β n , β -1 n which have the following properties: Proof. (i) This is readily due to the fact that 2 n and 2 n -1 are coprime.

γ n < -1 < γ -1 n < 0 < β -1 n < 1 < β n , β n = γ >
(ii) The shifted polynomial P n (X + 1) modulo 2 satifies:

P n (X + 1) ≡ (X + 1) 2 n + 1 ≡ X 2 n ( mod 2Z[X]).

Moreover P n (-1) = -2 is not divisible by 2 2 . By Eisenstein's criterium, P n (X + 1) is irreducible in Z[X].

(iii) Assume z, |z| = 1, is a zero of P n . We have:

|z 2 n + 2z 2 n -1 + 2z + 1| ≤ 1 + 2 + 2 + 1 = 6. Then |P n (z)| ≥ | -8z 2 (n-1) | -|z 2 n + 2z 2 n -1 + 2z + 1| ≥ 2.
Contradiction.

(iv) For n large enough, let us prove deduce that m(1 Proof. The lenticulus of lenticular conjugates relative to β is:

+ 1 m + γ n ) converges to
L β = {ω J n ,n , . . . , ω 1,n , β -1 , ω 1,n , . . . , ω J n ,n }.

The number of elements in the lenticulus L β is 1 + 2J n , with n = dyg(β ). The total number of conjugates of β is the degree deg(β ) of the minimal polynomial P β . By Proposition 2.5,

1 + 2J n = 2n π arcsin κ 2 + 2κ Log κ π √ 4 -κ 2 + 1 + 1 n O Log Log n Log n 2 .
The inequality (3.15) follows.

4. PROOF OF THEOREM 1.1

Let β = 0 be a reciprocal algebraic integer which is not a root of unity, such that dyg(β ) ≥ η with η ≥ 260. Since M(β ) = M(β -1 ) there are three cases to be considered:

(i) the house of β satisfies β ≥ θ -1 5 , (ii) the dynamical degree of β satisfies: 6 ≤ dyg(β ) < η, with M(β ) < 1.176280 . . ., (iii) the dynamical degree of β satisfies: dyg(β ) ≥ η, with M(β ) < 1.176280 . . .. In the first case, M(β ) ≥ θ -1 5 > θ -1 260 ≥ θ -1 η > 1. In the second case, M(β ) ≥ θ -1 η . In the third case, the Dobrowolski-type inequality in Theorem This lower bound is numerically greater than θ -1 260 = 1.01 . . ., itself greater than θ -1 η . Therefore, in any case, the universal lower bound θ -1 η of M(β ) holds true. We deduce the theorem.
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2. 1 .

 1 The lenticular poles of ζ β (z). The β -transformation is the map [0, 1] → [0, 1], x → {β x}, where {•} denotes the fractional part, and y = y -{y} the integer part of y . The βtransformation is denoted by T β , and its iterates by: T (0)

x 2

 2 dx = 1.38135 . . . , higher than C = 1.1541 . . ., and L(s, χ 3 ) := ∑ m≥1 χ 3 (m)

Theorem 3 . 5 (

 35 ). Let β ∈ C be an algebraic number of degree d, |β | > 1, and let a d x da d-1 x d-1 -. . .a 1 xa 0 ∈ Z[x] be its minimal polynomial. Suppose that |β | = 1 for any conjugate β of β . Then there exists a finite alphabet A ⊂ Z such that

(3. 10 )

 10 σ s (P β (γ s )) = W (r s ) = R(r s ) + r L s T (r s ) 1r ρ s = a w s ,(s) r w s s + a w s +1,(s) r w s +1 s + . . .with κ |P β (γ s )| ≤ γ w s -1 s and |r s | < |ω j,n | + r < 1, s ≥ s 0 .We have, with m = 2((2 d -1)H + 2 d )/3 , |W (r s )| ≤ |a w s ,(s) ||r w s s | + |a w s +1,(s) ||r w s +1 s | + . . . ≤ m |r w s s | + |r w s +1 s | + . . . = m|r w s s | 1 + |r s | + |r s | 2 + . . . . Then (3.11) |W (r s )| ≤ |r s | w s m 1 -|r s | .

  < 0.6 with γ the conjugate of γ. We write γ = a + b √ 3 with a, b ∈ Z, so γ = ab √ 3. Then b = (γγ )/(2 √ 3) and so |b| ≤ (2 + 0.6)/(2 √ 3) < 1 which implies b = 0. So |a| = |γ| < 2 implies γ ∈ {0, ±1}, a contradiction.

5 )

 5 /2 and that "dyg" has not yet be defined on [(1 + √ 5)/2, ∞). By convention, say dyg(γ) = 1 when γ > (1 + √ 5)/2. So dyg(β r ) is replaced by dyg(β r r ) = 1. The minimal polynomial of β 1 is relative to the Main Case. Now the set of lenticular roots of f β 1 (z) is only = {1/β 1 }, and M(1/β 1 ) = β 1 .

2

 2 for any conjugate γ of β n , in particular β n = γ n > 2, lim n→+∞ γ n = -1, lim n→+∞ β n = 2, (v) for n large enough, P n has no root in the annulus {z ∈ C : |γ -1 n | < |z| < 1}.

3e 2 -

 2 8e + 3 6e 2 -8e as m tends to +∞. Therefore, when m is large, we have approximately-γ n = +1 + 1 m3(e 2 -1) 6e 2 -8e .We deduce, for any ε > 0,M(P n ) = M(β n ) > 2 × e 3(e 2 -1) 6e 2 -8eε, ≈ 4.66 . . .ε.as soon as n is large enough.

  (2.8), Proposition 3.1, and (3.3), give the following lower bound of the Mahler measure M(β ) ≥ C -C arcsin(κ/2)π Log (dyg(β ))≥ C -C arcsin(κ/2) π Log (η) ≥ C -C arcsin(κ/2)π Log (260) , ≈ 1.14 . . .

  t 1 t 2 t 3 . . . is the Rényi β -expansion of unity d β (1) ([21], Chapt 7), i.e. 1 = ∑ i≥1 t i β -i . The sequence (t i ) uniquely characterizes β . Multiplying d β (1) = 0.t 1 t 2 t 3 . . . by β provides β as a Laurent series of β -1 from (t i ), as:

	(2.2)	β = t 1 (β ) +	t 2 (β ) β	+	t 3 (β ) β 2 + . . . .
	Up to the sign, by definition, the expansion of the power series of the denominator (2.1)
	is the Parry Upper function f β (z) at β . It satisfies	
	(2.3)				

  < β if and only if (t 1 ,t 2 ,t 3 , . . .) < lex (t 1 ,t 2 ,t 3 , . . .).

	with n k ≥ n -1 for all k ≥ 1.				
	Proof. Since d θ -1 n+1					
							1) z n ,
	with d β (1) = 0.t 1 t 2 t 3 . . .. The Parry Upper function f β (z) has no zero in {z ∈ C : |z| ≤ 1/β }
	except z = 1/β which is a simple zero.				
	The lexicographical ordering < lex on the Rényi expansions of 1 is uniquely in correspon-
	dence with the total ordering < on (1, +∞) by the following Proposition, which is Lemma
	3 in Parry [24].					
	Proposition 2.1. Let α > 1 and β > 1. If the Rényi α-expansion of 1 is
	d α (1) = 0.t 1 t 2 t 3 . . . ,	i.e. 1 =	t 1 α	+	t 2 α 2 +	t 3 α 3 + . . .
	and the Rényi β -expansion of 1 is				
	d β (1) = 0.t 1 t 2 t 3 . . . ,	i.e. 1 =	t 1 β	+	t 2 β 2 +	t 3 β 3 + . . . ,
	then α Theorem 2.2. Let n ≥ 2. A real number β ∈ (1, 1+ √ 5 2 ] belongs to [θ -1 n+1 , θ -1 n ) if and only
	if the Rényi β -expansion of unity d β (1) is of the form (finite or infinite)
	(2.6)	d β (1) = 0.10 n-1 10 n 1 10 n 2 10 n 3 . . . ,

Let H := max{|a i | : 1 ≤ i ≤ d -1} ≥ 1 be the naïve height of P β .

We proceed in two steps:

(i) first we want to express P β (γ s ) as a (γ s , A )eventually periodic representation with the symmetrical alphabet A = {-m, . . . , 0, . . . , +m} ⊂ Z which does not depend upon s, with m = 2((2 d -1)H + 2 d )/3 . This expression of P β (γ s ), as a Laurent series of 1/γ s , will be obtained using Theorem 3 in [START_REF] Dutykh | Alphabets, Rewriting Trails, Periodic Representations in Algebraic Bases[END_REF], and Theorem 3.5, (ii) we allow s to tend to infinity (which has a sense by the above) to obtain the convergence of P β (γ s ) to 0, what will prove Proposition 3.1.

(i) For simplifying the notations, we write P instead of P β and γ instead of γ s . Let us recall the construction called "rewriting trail from "S * γ " to "P", at γ -1 " from [START_REF] Dutykh | On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials[END_REF]. The starting point is the identity 1 = 1, to which we add 0 = -S * γ (γ -1 ) in the right hand side. Then we define a rewriting trail from

). A rewriting trail will be a sequence of integer polynomials, whose role will consist in "restoring" the coefficients of 1 -P(γ -1 ) one after the other, from the left, by adding "0" conveniently at each step to both sides of (3.6). At the first step we add 0 = (-a 1t 1 )γ -1 S * γ (γ -1 ); and we obtain 1 = -a 1 γ -1 +(-(-a 1t 1 )t 1 + t 2 )γ -2 + (-(-a 1t 1 )t 2 + t 3 )γ -3 + . . . so that the height of the polynomial

where the height of the polynomial

Denote by V (γ -1 ) this polynomial remainder in γ -1 , for some V (X) ∈ Z[X], and X specializing in γ -1 . If we denote the upper bound of the height of the polynomial remainder V (X), at step q, by λ q H + v q , we readily deduce: v q = 2 q , and λ q+1 = 2λ q + 1, q ≥ 1, with λ 1 = 1; then λ q = 2 q -1.

To summarize, we obtain a sequence (A q (X)) q≥1 of rewriting polynomials involved in this rewriting trail; for q ≥ 1, A q ∈ Z[X], deg(A q ) ≤ q and A q (0) = -1. The first polynomial

which converges to e 2 + 2e 2 -8e + 3 > 0 as m → ∞. Since P n (-1) < 0, we obtain the existence of a root in the interval (-1 -1 2 n-1 , -1). By Descartes's rule, the number of positive real roots of P n (-X) is equal to the number of sign changes of the polynomial, which is equal to 2. Since P n (-X) is reciprocal, there is only one root in (-1 -1 m , -1) ; γ n is the only root of P n (X) in this interval. By Descartes's rule applied to P n (X), since P n is reciprocal, there is only one root of P n in (1, ∞). For n ≥ 2, observe that P n (-2) < 0, P n (-3) > 0, and then -3 < β n < -2. For n large enough, let us prove that

as n → ∞.

Indeed, if we set

gives, expanding at the first order,

hence the result. Now, let ξ a primitive root of unity, ξ m = 1. Let us prove that the other roots

Indeed, if we set γ = ξ j γ n + v j , we have
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Consequently, for j = 0, expanding at the first order,

hence the result. Since |γ n | < 1 + 1/2 n-1 we deduce from (3.12), for any ε > 0, that

Thus, since e -2 < 0.5, for any root γ of P n , for n large enough, we have:

We use Rouché's Theorem and assume that m is large enough. The root 1/γ n is the unique root in [-1, 0) of P n (x), from (iii). For all r ∈ [-1, 1/γ n ), we find 0 > P n (r) = r 2 n -2r 2 n -1 -8r 2 n-1 -2r + 1, hence

Therefore, for all z ∈ C with |z| = |r|, we find

By Rouché's Theorem z → P n (z) and z → -8z m have the same number of roots, counted with multiplicities, in {z ∈ C : |z| < |r|}. This number equals m for all r ∈ [-1, 1/γ n ). Therefore P n (z) has no roots with absolute value in (|1/γ n |, 1).

Proof. From Proposition 3.7, the number of conjugates of β n of modulus > -γ n is exactly 2 n-1 . Therefore, the Mahler measure of

A lower bound of -γ n , as a function of n, is obtained as follows. We have: P n (-1) = -2, P n (-1 -1 m ) which tends to e 2 + 2e 2 -8e + 3 > 0 as m → ∞. Observe that P n (-1) = -2 n which tends to -∞ as n → ∞, and Remark 3.9. Lemma 3.8 shows that the family (β n ) is not concerned with the Problem of Lehmer. It is concerned with the problem of the topology and the search for limit points of the set of Mahler measures of algebraic numbers in the half-line (1, ∞). Indeed, the Mahler measure M(β n ) (calculated by Graeffe's method) tends to a limit, as n → ∞. The topology of the set of Mahler measures of algebraic integers, and its limit points, is a general problem [START_REF] Verger-Gaugry | A Panorama on the Minoration of the Mahler Measure : from Lehmer's Problem to Topology and Geometry[END_REF]. The characterization of the small limit points has been tackled by Boyd and Mossinghoff [START_REF] Boyd | Small Limit Points of Mahler's Measure[END_REF] and Deninger [START_REF] Deninger | Deligne Periods of Mixed Motives, K-Theory and the Entropy of Certain Z n -Actions[END_REF] for instance.

3.4. Algebraic degree and dynamical degree. By Northcott Theorem, the (algebraic) degree deg(β ) of the reciprocal algebraic integer β > 1 tends to infinity, when β tends to one. In this paragraph we still assume the proviso on β , stated at the beginning of section 3, which is that the integer r = r(β ) = 1 is the largest one such that P β (X) = P β (X r ) holds for some Z-minimal integer polynomial P β (X), discarding the other cases which are not relevant. The following Theorem 3.10 makes precise the relations between the dynamical degree n = dyg(β ) of β , coming from the inequalities θ -1 n ≤ β < θ -1 n-1 , and deg(β ).

First, by Selmer's Theorem 3.2, we have, for β = θ -1 n and n ≥ 2:

Secondly, from the Appendix in [START_REF] Verger-Gaugry | A Dobrowolski-type Inequality for the Poles of the Dynamical Zeta Function of the beta-shift[END_REF], if β is a any real number in (θ -1 n , θ -1 n-1 ), n ≥ 2, then the asymptotic expansion of the dynamical degree dyg(β ) = dyg(θ -1 n ) = n of β is: