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The poles of the dynamical zeta function of the β -shift in the open unit disk in C are investigated, when β > 1 is a real number close to 1 and tends to 1. We show that to β is associated an integer, called dynamical degree of β , and that two types of poles can be characterized as a function of dyg(β ): the lenticular poles and the other poles in a narrow annular neighbourhood of the unit circle. From the lenticulus of lenticular poles we show that we can construct a lenticular measure associated to it. Its definition is mimicked on that of the Mahler measure, and both are related. We prove that this lenticular measure admits a lower bound, when dyg(β ) is large enough, as a function of dyg(β ), which is an analogue of the inequality of Dobrowolski relative to the Mahler measure of algebraic integers. This Dobrowolski-type inequality generalizes a previous one obtained by the author on the Mahler measure of the trinomials -1 + x + x n for n large enough.

), for j ≥ 1. The dynamical system ([0, 1], A , T β , µ β ), where A is the σ -algebra of borelians and µ β the invariant measure [START_REF] Hofbauer | β -Shifts Have Unique Maximal Measure[END_REF], was introduced by Rényi [START_REF] Ényi | Representations for Real Numbers and their Ergodic Properties[END_REF] and initially studied in ergodic theory by Parry [START_REF] Parry | On the β -expansions of Real Numbers[END_REF] [START_REF] Hofbauer | Ergodic Properties of Invariant Measures for Piecewise Monotonic Transformations[END_REF]. We call dynamical zeta function of the β -shift, denoted by ζ β (z), the dynamical zeta function of this dynamical system [START_REF] Artin | On Periodic Points[END_REF] [START_REF] Parry | Zeta functions and Periodic Orbit Structure of Hyperbolic Dynamics[END_REF] [15] [START_REF] Pollicott | Periodic Orbits and Zeta Functions[END_REF]. After Takahashi [START_REF] Takahashi | Isomorphisms of β -Automorphisms to Markov Automorphisms[END_REF] [25] [START_REF] Takahashi | Shift with Orbit Basis and Realization of One Dimensional Maps[END_REF] and Ito and Takahashi [START_REF] Ito | Markov Subshifts and Realization of β -expansions[END_REF] [START_REF] Lagarias | Number Theory Zeta Functions and Dynamical Zeta Functions[END_REF], this function takes the form

(1.1) ζ β (z) = 1 -z N (1 -β z) ∑ ∞ n=0 T n β (1) z n = - 1 -z N -1 + t 1 z + t 2 z 2 + t 3 z 3 + . . .
where N, which depends upon β , is the minimal positive integer such that T N β (1) = 0; in the case where T j β (1) = 0 for all j ≥ 1, "z N " has to be replaced by "0". In (1.1) the digits t i are defined from β by: t i := β T (i-1) β

(1) , i ≥ 1, and depend upon β . All the t i s are integers in the alphabet A β = {0, 1, . . . , β -1 } where β -1 is the upper integer part of β -1; if β is not an integer, then β -1 = β . The sequence (t i ) i≥1 is such that 0.t 1 t 2 t 3 . . . is the Rényi β -expansion of unity d β (1) ( [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF], Chapt 7), i.e. 1 = ∑ i≥1 t i β -i . Multiplying this identity by β uniquely characterizes β as a Laurent series of β -1 from (t i ), as:

(1.2)

β = t 1 + t 2 β + t 3 β 2 + . . . .
The domain of definition of ζ β (z), as a meromorphic function, contains the open unit disk D(0, 1) = {z : |z| < 1}. Indeed, in all the cases where β > 1 is such that the power series -1 + t 1 z + t 2 z 2 + t 3 z 3 + . . . at the denominator of (1.1) has infinitely many non-zero terms, Hadamard's formula gives R = 1 as radius of convergence. For the other cases, the domain of definition of ζ β (z) as a meromorphic function is C. From (1.2) β -1 is always a simple pole of ζ β (z) in D(0, 1). The function ζ β (z) is holomorphic on {z ∈ C : |z| < 1/β } and is extended meromorphically to D(0, 1). What are the other poles of ζ β (z) in D(0, 1)? Could it be possible to classify them into classes and, on each class, that a global measure can be defined and have interesting bounded properties associated with β itself? Let us ask these two questions only when β lies in the neighbourhood of 1, precisely when β ∈ (1, (1 + √ 5)/2); the alphabet A β being common, equal to {0, 1}, for all such β s.

In this paper, for 1 < β ≤ (1 + √ 5)/2 any real number, we show two results; first that the set of the poles of ζ β (z) in D(0, 1) can be partitioned into two parts: the subset of the lenticular poles, denoted by L β , all simple poles, and the subset of the other poles. The definition of a lenticular pole is given in Definition 2.12. The terminology "lenticular pole" comes from the particular case where β belongs to ∪ n≥2 {θ -1 n }, where θ n is the unique zero of -1 + z + z n in (0, 1) (cf Appendix and [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]). The sequence (θ -1 n ) n≥2 is strictly decreasing and tends to 1 if n tends to infinity: 1 < . . . < θ -1 n+1 < θ -1 n < . . . < θ -1 2 =

(1 + √ 5)/2. Indeed, in this particular case, if β = θ -1 n for some n ≥ 2, the set of poles of ζ β (z) = -(1z n )/(-1 + z + z n ) inside D(0, 1) forms a lenticulus of simple poles in {z ∈ D(0, 1) : | arg z| < π/3}; all the poles of modulus < 1 are lenticular and there is no "other pole". In the general case, in Theorem 2.18 we show that "other poles" exist, in a neighbourhood of the unit circle, and that, if θ -1 n < β < θ -1 n-1 for some n ≥ 3, the lenticulus L β of lenticular poles can be defined "optimally" with respect to L θ -1 n , using the method of Rouché circles. The notion of "optimality" is made precise in Theorem 2. [START_REF] Dobrowolski | On a Question of Lehmer and the Number of Irreducible Factors of a Polynomial[END_REF]. Lenticuli of poles are symmetrical with respect to the real axis. Examples of lenticuli of lenticular poles are given in [START_REF] Dutykh | On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials[END_REF].

Second, if θ -1 n < β < θ -1 n-1 for some n ≥ 3, and L β = {ω J n ,n , . . . , ω 1,n , β -1 , ω 1,n , . . . , ω J n ,n } denotes the set of lenticular poles of ζ β (z), all depending upon β , then we attribute to L β a measure, that we call lenticular measure of β , by the expression

(1.3) S lent (β ) := ∏ ω∈L β |ω| -1 = β J n ∏ j=1 |ω j,n | -2 .
By construction, S lent (β ) ≥ 1. If β = θ -1 n for some n ≥ 2, then we have the identification with the Mahler measure of θ -1 n : S lent (θ Section 5). Recall that the Mahler measure of a nonzero algebraic number β , of minimal polynomial [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]. The definition of S lent (β ) is mimicked on the definition of the Mahler measure of an algebraic integer. It is an analogue of the Mahler measure. Hence, the properties of S lent (β ), θ -1 n < β < θ -1 n-1 , are expected to be closely related to those of the Mahler measure of β if β is an algebraic integer. It will be the purpose of a future work to clarify this point. In this note we are just interested in (i) proving the continuity of S lent (β ) (Theorem 1.1), (ii) obtaining a lower bound of lim inf β →1 S lent (β ) by comparison with lim n→∞ M(θ -1 n ), and n-depending lower bounds of S lent (β ) when β ∈ (θ -1 n , θ -1 n-1 ) and n large enough (Theorem 1.2). The method used is an extension of the one developped in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]: inthere the lenticular poles are developped as asymptotic expansions "à la Poincaré" as a function of n, which leads to a Dobrowolski-type inequality of the Mahler measure, better than the classical Dobrowolski's inequality in [START_REF] Dobrowolski | On a Question of Lehmer and the Number of Irreducible Factors of a Polynomial[END_REF] .

-1 n ) = M(θ -1 n ) (cf Appendix
P β (X) = a 0 X m + a 1 X m-1 + . . . + a m = a 0 ∏ i (X -α (i) ) ∈ Z[X], is M(β ) = |a 0 | ∏ i max{1, |α (i) |} =: M(P β ) [21]
Let us recall more precisely these inequalities from [START_REF] Dobrowolski | On a Question of Lehmer and the Number of Irreducible Factors of a Polynomial[END_REF] and [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]. In 1979, Dobrowolski [START_REF] Dobrowolski | On a Question of Lehmer and the Number of Irreducible Factors of a Polynomial[END_REF], using an auxiliary function, obtained the asymptotic minoration, with n = deg(α) the degree of the nonzero algebraic integer α, which is not a root of unity,

(1.4) M(α) > 1 + (1 -ε) Log Log n Log n 3 , n > n 0 (ε),
with 1ε replaced by 1/1200 for n ≥ 2, for an effective version of the minoration. The minoration (1.4) is general and admits a better lower bound, in a similar formulation, when α only runs over the set {θ -1 n : n ≥ 2}. Indeed, in this case, it is proved in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF] that

(1.5) M(θ -1 n ) > Λ - Λ 6 1 Log n , n ≥ 2,
holds with the following constant

(1.6) Λ := exp 3 √ 3 4 π L(2, χ 3 ) = exp -1 π π/3 0 Log 2 sin x 2 dx = 1.38135 . . . ,
higher than 1.1541 . . ., and L(s,

χ 3 ) := ∑ m≥1 χ 3 (m)
m s the Dirichlet L-series for the character χ 3 , with χ 3 the uniquely specified odd character of conductor 3 (χ 3 (m) = 0, 1 or -1 according to whether m ≡ 0, 1 or 2 (mod 3), equivalently χ 3 (m) = m 3 the Jacobi symbol). From Selmer [START_REF] Selmer | On the Irreducibility of Certain Trinomials[END_REF], in (1.5), we have:

n = deg(θ -1 n ) if n ≡ 5 ( mod 6), and n = deg(θ -1 n ) + 2 if n ≡ 5 ( mod 6).
Denote by a max = 5.87433 . . . the abscissa of the maximum of the function a → (1exp( -π a ))/(2 exp( π a ) -1) on (0, ∞) (Figure 1). Let κ := 0.171573 . . . be the value of its maximum, at a = a max . From a numerical viewpoint we have: 2 arcsin(κ/2) = 0.171784 . . .. Denote (1.7)

C := exp -1 π 2 arcsin( κ 2 ) 0 Log 1 + 2 sin( x 2 ) -1 -12 sin( x 2 ) + 4(sin( x 2 )) 2 4 dx = 1.15411 . . . .
The objective of this paper is to prove the two following theorems.

Theorem 1.1. For all n ≥ 260, the map

(1.8) S lent : β → S lent (β )
is continuous on the interval (θ -1 n , θ -1 n-1 ). Theorem 1.2. There exists an integer η ≥ 260 such that the following inequality holds:

(1.9) S lent (β ) ≥ C -C arcsin(κ/2) π 1 Log (n)
, for all n ≥ η and any β ∈ (θ -1 n , θ -1 n-1 ). In (1.5) or (1.9) the constant in the minorant is not any more 1 as in (1.4) but Λ = 1.38135 . . . and C = 1.15411 . . . respectively, and the sign of the n-dependent term is "-", instead of "+", with an appreciable gain of (Log n) 2 in the denominator. In the case where β is an algebraic integer in Theorem 1.2, (1.9) represents an improvment of Dobrowolski's inequality, in some sense, but in which the degree deg(β ) is replaced by the integer n such that β ∈ (θ -1 n , θ -1 n-1 ). We suggest to name this peculiar integer n the dynamical degree of β , and to denote it by dyg(β ). It has the obvious following property:

β tends to 1 if and only if dyg(β ) tends to infinity. Then, from Theorem 1.2, we have:

C ≤ lim inf β →1 + S lent (β ) ≤ Λ.
The paper is organized as follows. In Section 2 we show the optimal existence of lenticuli of poles of ζ β (z), by the method of Rouché, by comparison with the sets of lenticular zeroes of the trinomials -1 + x + x n . To be self-contained the Appendix fixes notations, recalls useful results concerning the roots of the trinomials -1 + x + x n , and establishes some new relations between them. We prove Theorem 1.1 in Section 3, and establish Theorem 1.2 in Section 4 from the asymptotic expansions bounding from below the lenticular measures, the notations for the asymptotic expansions of the poles of ζ θ -1 n (z) being recalled in Section 5. (1) , i ≥ 1, are equal to 1 or 0. The sequence (t i ) entirely controls the set of admissible sequences of digits in {0, 1}, by the Conditions of Parry [START_REF] Parry | On the β -expansions of Real Numbers[END_REF], [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF] Chapt. 7: it defines the upper bound, in the lexicographical sense, of all admissible sequences. The adherence of the set of the admissible sequences in {0, 1} N is called the β -shift. In honour of W. Parry, because of this upper bound, we introduce the following terminology.

GEOMETRY OF

Definition 2.1. The analytic function -1 + t 1 z + t 2 z 2 + t 3 z 3 + . . ., whose coefficient vector is the sequence (t i ) of d β (1) = 0.t 1 t 2 t 3 . . ., is denoted by f β (z) and is called the Parry Upper function at β . Because of (1.1), the identities

(2.1) (i) f β (z) = - 1 -z N ζ β (z) if T i β (1) = 0 for 1 ≤ i ≤ N -1, T N β (1) = 0, (2.2) (ii) f β (z) = - 1 ζ β (z) otherwise,
hold. Therefore the zeroes of modulus < 1 of f β (z) are exactly the poles of ζ β (z). For convenience in the sequel, because the Parry Upper function is easier to manipulate, we will mostly consider f β (z) and its zeroes inside D(0, 1), instead of ζ β (z).

The lacunarity of the Parry Upper function f β (z) is a consequence of the two following results.

Let us observe that, in general, the total ordering < on (1, +∞) is uniquely in correspondence with the lexicographical ordering < lex on Rényi expansions of 1 by the following Proposition, which is Lemma 3 in Parry [START_REF] Parry | On the β -expansions of Real Numbers[END_REF].

Proposition 2.2. Let α > 1 and β > 1. If the Rényi α-expansion of 1 is d α (1) = 0.t 1 t 2 t 3 . . . , i.e. 1 = t 1 α + t 2 α 2 + t 3 α 3 + . . . and the Rényi β -expansion of 1 is d β (1) = 0.t 1 t 2 t 3 . . . , i.e. 1 = t 1 β + t 2 β 2 + t 3 β 3 + . . . , then α < β if and only if (t 1 ,t 2 ,t 3 , . . .) < lex (t 1 ,t 2 ,t 3 , . . .). Theorem 2.3. A real number β , 1 < β < 1+ √ 5 2 , belongs to [θ -1 n+1 , θ -1 n )
for some integer n ≥ 2 if and only if the Rényi β -expansion of unity d β (1) has the form

(2.3) d β (1) = 0.10 n-1 10 n 1 10 n 2 10 n 3 . . . , with n k ≥ n -1 for all k ≥ 1.
Proof. The condition is necessary: d β (1) begins as 0.10 n-1 1 for all β s such that θ -1 n+1 ≤ β < θ -1 n . For such β s we write d β (1) = 0.10 n-1 1u with u a string of digits in {0, 1} , that is Parry ([11] Chap. 7) applied to the sequence (1, 0 n-1 , 1 1+h 0 , 0 n 1 , 1 h 1 , 0 n 2 , 1 h 3 , . . .), which characterizes uniquely the base of numeration β , readily implies h 0 = 0 and h k = 1 and n k ≥ n -1 for all k ≥ 1.

u = 1 h 0 0 n 1 1 h 1 0 n 2 1 h 2 . . . and h 0 , n 1 , h 1 , n 2 , h 2 , . . . integers ≥ 0. The Conditions of
The condition is sufficient: since d θ -1 n+1

(1) = 0.10 n-1 1 and d θ -1 n (1) = 0.10 n-2 1, Proposition 2.2 implies the result. From (2.3), for any real number β in the interval (1, (1 + √ 5)/2), we deduce that the Parry Upper function f β (z) takes the form, for some integer n ≥ 3:

(2.4) f β (z) = -1 + x + x n + x m 1 + x m 2 + . . . + x m s + . . .
with the distanciation conditions: m 1n ≥ n -1, m q+1m q ≥ n -1 for 1 ≤ q. The real number β has dynamical degree dyg(β ) = n if the third monomial in (2.4) is exactly "x n ".

Lenticular poles. In this subsection

β ∈ (1, θ -1 6 ) is a real number such that β ∈ {θ -1 n | n ≥ 7}. The Rényi β -expansion d β (1) of 1 is infinite or not. If it is finite f β (z)
is a polynomial of degree m q for some integer m q , q ≥ 2. In Theorem 2.11 it will be proved that, to such a β , is associated a lenticulus L β of zeroes of f β (z), located in the angular sector | arg(z)| < π/18.2880, |z| < 1, each lenticular zero being uniquely associated with a lenticular zero of a trinomial -1 + x + x n for some n. Examples of lenticuli can be visualized in [START_REF] Dutykh | On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials[END_REF]. The Appendix (Section 5) gives a summary on the geometry of the lenticular zeroes of f β (z) for β ∈ {θ -1 n | n ≥ 3}, together with their asymptotic expansions in regions of validity. In the following we will use the notation G n (z) := -1 + z + z n instead of f θ -1 n (z), n ≥ 3. The method which will be used to detect the lenticulus of lenticular zeroes of f β (z) is the method of Rouché, where the lenticular zeroes are expressed as asymptotic expansions of the integer dyg(β ). Let us give a few comments on the way it will be applied.

Let n := dyg(β ). From §5.1, let

L θ -1 n = {z n/6 ,n , . . . , z 2,n , z 1,n , θ n , z 1,n , z 2,n , . . . , z n/6 ,n } denote the lenticulus of lenticular roots of G n = f θ -1
n . Since it is symmetrical with respect to the real axis, we will only consider the lenticular zeroes in the (upper) Poincaré half-plane. L θ -1 n lies in the angular sector

| arg(z)| < π/3, |z| < 1.
In Theorem 2.4 and Proposition 2.9, we prove the existence of real numbers t j,n ∈ (0, 1) such that the small Rouché circles

C j,n := {z ∈ C : |z -z j,n | = t j,n n }
of respective centers z j,n , z j,n ∈ L θ -1 n , all satisfy the Rouché conditions:

(2.5)

f β (z) -G n (z) = ∑ q≥1 z m q < |G n (z)| for z ∈ C j,n , for j = 1, 2, . . . , J n ,
are pairwise disjoint, small enough to avoid a nonempty intersection with {z : |z| = 1}, and where the integer J n ≤ n 6 is the largest possible integer. The maximality of J n means that the conditions of Rouché cannot be satisfied as soon as J n < j ≤ n 6 for the reason that the circles C j,n are too close to |z| = 1.

As a consequence, the number of zeroes of f β (z) and

G n (z) in the open disk D j,n := {z | |z -z j,n | < t j,n
n } will be equal, implying the existence of a simple zero of the Parry Upper function f β (z) in each disk D j,n .

For any real number β ∈ (1, θ -1 6 ) such that β ∈ {θ -1 n | n ≥ 7}, the quantities t j,n will be deduced from the following inequalities:

(2.6) |z| 2n-1 1 -|z| n-1 < |G n (z)| for z ∈ C j,n , j = 1, 2, . . . , J n , since f β (z) -G n (z) = ∑ q≥1 z m q ≤ ∑ q≥1 |z m q | ≤ |z| 2n-1 1 -|z| n-1 , |z| < 1,
instead of (2.5). The existence of the lenticular roots ω j,n of L β in the main angular subsector is proved in Theorem 2.4, then in Theorem 2.11 in a refined version. Proposition 2.9 completes the proof of their existence in the bump angular sector (cf Section 5.2), where the asymptotic expansions of the lenticular zeroes z j,n take another form. n } the circle centered at the j-th root z j,n of -1 + X + X n , with t j,n = π|z j,n | a . Then the condition of Rouché

(2.7) |z| 2n-1 1 -|z| n-1 < |-1 + z + z n | , for all z ∈ C j,n ,
holds true on the circle C j,n for which the center z j,n satisfies

(2.8) | -1 + z j,n | |z j,n | < 1 -exp -π a 2 exp π a -1 .
The condition n ≥ 195 ensures the existence of such roots z j,n . Taking the value a = a max = 5.87433 . . . for which the upper bound of (2.8) is maximal, equal to 0.171573 . . ., the roots z j,n which satisfy (2.8) all belong to the angular sector, independent of n:

(2.9) arg(z) ∈ 0, + π 18.2880 .

For any real number β > 1 having dyg(β ) = n, f β (z) admits a simple zero ω j,n in D j,n for which the center z j,n satisfies (2.8) with a = a max , and j in the range { v n , v n + 1, . . . , n/6 }.

Proof. Denote by ϕ := arg(z j,n ) the argument of the j-th root z j,n . Since -1 + z j,n + z n j,n = 0, we have |z j,n | n = | -1 + z j,n |. Let us write z = z j,n + t j,n n e iψ = z j,n (1 + π a n e i(ψ-ϕ) ) the generic element belonging to C j,n , with ψ ∈ [0, 2π]. Let X := cos(ψϕ). Let us show that if the inequality (2.7) of Rouché holds true for X = +1, for a certain circle C j,n , then it holds true for all X ∈ [-1, +1], that is for every argument ψ ∈ [0, 2π], i.e. for every z ∈ C j,n . Let us show

1 + π a n e i(ψ-ϕ) n = exp π X a × 1 - π 2 2a 2 n (2X 2 -1) + O( 1 n 2 )
and

arg 1 + π a n e i(ψ-ϕ) n = sgn(sin(ψ -ϕ)) × π √ 1 -X 2 a [1 - π X a n ] + O( 1 n 2 ) . Indeed, since sin(ψ -ϕ) = ± √ 1 -X 2 , then 1 + π a n e i(ψ-ϕ) n = exp n Log (1 + π a n e i(ψ-ϕ)) ) = exp π a (X ± i 1 -X 2 ) + - n 2 ( π a n (X ± i 1 -X 2 )) 2 + O( 1 n 2 ) = exp π X a - π 2 2a 2 n (2X 2 -1) + O( 1 n 2 ) × exp ± i π √ 1 -X 2 a [1 - π X a n ] + O( 1 n 2 ) . Moreover, 1 + π a n e i(ψ-ϕ) = 1 + π a n (X ± i 1 -X 2 ) = 1 + π X a n + O( 1 n 2 ). with arg(1 + π a n e i(ψ-ϕ) ) = sgn(sin(ψ -ϕ)) × π √ 1 -X 2 a n + O( 1 n 2
). For all n ≥ 18 (Proposition 3.5 in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]), let us recall that (2.10)

|z j,n | = 1 + 1 n Log (2 sin π j n ) + 1 n O Log Log n Log n 2 .
Then the left-hand side term of (2.7) is

|z| 2n-1 1 -|z| n-1 = | -1 + z j,n | 2 1 + π a n e i(ψ-ϕ) 2n |z j,n | 1 + π a n e i(ψ-ϕ) -| -1 + z j,n | 1 + π a n e i(ψ-ϕ) n (2.11) = | -1 + z j,n | 2 1 -π 2 a n (2X 2 -1) exp 2π X a 1 + 1 n Log (2 sin π j n ) + π X a n -| -1 + z j,n | 1 -π 2 2a n (2X 2 -1) exp( π X a ) up to 1 n O Log Log n
Log n

2

-terms (in the terminant). The right-hand side term of (2.7) is

|-1 + z + z n | = -1 + z j,n 1 + π n a e i(ψ-ϕ) + z n j,n 1 + π n a e i(ψ-ϕ) n = -1 + z j,n (1 ± i π √ 1 -X 2 a n )(1 + π X a n ) +
(2.12)

(1 -z j,n ) 1 - π 2 2a 2 n (2X 2 -1) exp π X a exp ± i π √ 1 -X 2 a [1 - π X a n ] +O( 1 n 2 )
Let us consider (2.11) and (2.12) at the first order for the asymptotic expansions, i.e. up to

O(1/n) -terms instead of up to O( 1 n (Log Log n/Log n) 2 ) -terms or O(1/n 2 ) -terms. (2.11) becomes: | -1 + z j,n | 2 exp( 2πX a ) |z j,n | -| -1 + z j,n | exp( πX a
) and (2.12) is equal to:

| -1 + z j,n | 1 -exp π X a exp ± i π √ 1 -X 2 a
and is independent of the sign of sin(ψϕ). Then the inequality (2.7) is equivalent to

(2.13) | -1 + z j,n | 2 exp( 2πX a ) |z j,n | -| -1 + z j,n | exp( πX a ) < | -1 + z j,n | 1 -exp π X a exp ± i π √ 1 -X 2 a , and (2.13) to 
(2.14)

| -1 + z j,n | |z j,n | < 1 -exp π X a exp i π √ 1-X 2 a exp -π X a exp π X a + 1 -exp π X a exp i π √ 1-X 2 a =: κ(X, a).
Denote by κ(X, a) the right-hand side term, as a function of (X, a), on [-1, +1] × [1, +∞). It is routine to show that, for any fixed a, the partial derivative ∂ κ X of κ(X, a) with respect to X is strictly negative on the interior of the domain. The function x → κ(x, a) takes its minimum at X = 1, and this minimum is always strictly positive. Hence the inequality of Rouché (2.7) will be satisfied on C j,n once it is satisfied at X = 1.

For which range of values of j/n? Up to O(1/n)-terms in (2.14), it is given by the set of integers j for which z j,n satisfies:

(2.15) | -1 + z j,n | |z j,n | < κ(1, a) = 1 -exp π a exp -π a exp π a + 1 -exp π a .
In order to take into account a collection of roots of z j,n as large as possible, i.e. in order to have a minorant of the lenticular measure S lent (β ) the largest possible, the value of a ≥ 1 has to be chosen such that a → κ(1, a) is maximal in (2.15). The function a → κ(1, a) reaches its maximum κ(1, a max ) := 0.171573 . . . at a max = 5.8743 . . .. (Figure 1). Denote by J n the maximal integer j for which (2.15) is satisfied and in which a is taken equal to a max (Definition 2.6 and Proposition 2.7). From Proposition 2.7, in which are reported the asymptotic expansions of J n and arg(z J n ,n ), we deduce (2.16) arg(z j,n ) < π 18.2880 . . . = 0.171784 . . . for j = v n , v n + 1, . . . , J n . This finishes the proof.

Let us calculate the argument of the last root z j,n for which (2.14) is an equality with X = 1. Definition 2.6. Let n ≥ 195. Denote by J n the largest integer j ≥ 1 such that the root z j,n of G n satisfies (2.17)

| -1 + z j,n | |z j,n | ≤ κ(1, a max ) = 1 -exp -π a max 2 exp π a max -1 = 0.171573 . . .
Let us observe that the upper bound κ(1, a max ) is independent of n. From this independence we deduce the following "limit" angular sector in which the Rouché conditions can be applied.

Proposition 2.7. Let n ≥ 195. Let us put κ := κ(1, a max ) for short. Then (2.18) arg(z J n ,n ) = 2 arcsin κ 2 + κ Log κ n √ 4 -κ 2 + 1 n O Log Log n Log n 2 , (2.19) J n = n π arcsin κ 2 + κ Log κ π √ 4 -κ 2 + O Log Log n Log n 2 with, at the limit, (2.20) lim n→+∞ arg(z J n ,n ) = lim n→+∞ 2π J n n = 2 arcsin κ 2 = 0.171784 . . .
Proof. Since lim n→+∞ |z J n ,n | = 1, we deduce from (2.17) that the limit argument ϕ lim of z J n ,n satisfies |-1 +cos(ϕ lim )+i sin(ϕ lim )| = 2 sin(ϕ lim /2) = κ(1, a max ). We deduce (2.20), and the equality between the two limits from (2.21).

From (2.17), the inequality |-1+z j,n | ≤ |z j,n | κ(1, a max ) already implies that arg(z J n ,n )) < ϕ lim . In the sequel, we will use the asymptotic expansions of the roots z J n ,n . From Section 6 in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF] the argument of z J n ,n takes the following form

(2.21) arg(z J n ,n )) = 2π( J n n + ℜ) with ℜ = - 1 2πn 1 -cos( 2πJ n n ) sin( 2πJ n n ) Log (2 sin( πJ n n )) with tl(arg(z J n ,n ))) = + 1 n O Log Log n Log n 2 .
Its modulus is

(2.22) |z J n ,n | = 1 + 1 n Log (2 sin πJ n n ) + 1 n O Log Log n Log n 2 . Denote ϕ := arg(z J n ,n ). Up to 1 n O Log Log n
Log n 2 -terms, we have

| -1 + z J n ,n | 2 = -1 + [1 + 1 n Log (2 sin πJ n n )](cos(ϕ) + i sin(ϕ)) 2 = [-1 + [1 + 1 n Log (2 sin πJ n n )](cos(ϕ)] 2 + [1 + 1 n Log (2 sin πJ n n )] 2 (sin(ϕ) 2 = 1 + [1 + 1 n Log (2 sin πJ n n )] 2 -2[1 + 1 n Log (2 sin πJ n n )] cos(ϕ) (2.23) = 4(sin( ϕ 2 
)) 2 + 4 n (sin( ϕ 2 )) 2 Log (2 sin πJ n n ) = 4(sin( ϕ 2 
)) 2 [1 + 1 n Log (2 sin πJ n n )]. Up to 1 n O Log Log n
Log n 2 -terms, due to the definition of J n , let us consider (2.17) as an equality; hence, from (2.23) and (2.22), the following identity should be satisfied

(2.24) 2 sin( ϕ 2 ) = κ [1 + 1 2n Log (2 sin πJ n n )]
We now use (2.24) to obtain an asymptotic expansion of ψ n := 2π J n nϕ lim as a function of n and ϕ lim up to 1 n O Log Log n Log n 2 -terms. First, at the first order in ψ n , sin(

πJ n n ) = ψ n 2 cos( ϕ lim 2 ) + sin( ϕ lim 2 ), cos( πJ n n ) = - ψ n 2 sin( ϕ lim 2 ) + cos( ϕ lim 2 ), Log 2 sin( πJ n n ) = Log 2 sin( ϕ lim 2 ) + ψ n cos( ϕ lim 2 ) 2 sin( ϕ lim 2 ) = Log κ + ψ n cos( ϕ lim 2 ) h . Moreover, 1 -cos( 2πJ n n ) sin( 2πJ n n ) Log (2 sin( πJ n n )) (2.25) = tan( ϕ lim 2 )(Log κ) 1 + ψ n 1 sin(ϕ lim ) + cos( ϕ lim 2 ) κ Log κ .
Hence ). Remarkably this upper bound 2 arcsin( κ(1,a max )

2

) is independent of n. By comparison it is fairly small with respect to π/3 for the Perron numbers θ -1 n .

(ii) The curve a → κ(1, a), given by Figure 1, is such that any value in the interval (0, κ(1, a max )) is reached by the function κ(1, a) from two values say a 1 and a 2 , of a, satisfying a 1 < a max < a 2 . On the contrary, the correspondence a max ↔ κ(1, a max ) is unique, corresponding to a double root. Denote D := exp(π/a max ) and κ := κ(1, a max ). It means that the quadratic algebraic equation 2κD 2 -(κ + 1)D + 1 = 0 deduced from the upper bound in (2.17) has necessarily a discriminant equal to zero. The discriminant is κ 2 -6κ + 1. Therefore D = (κ + 1)/(4κ) and the limit value x = 2 arcsin(κ/2) in (2.20) satisfies the quadratic algebraic equation

4(sin(x/2)) 2 -12 sin(x/2) + 1 = 0. Proposition 2.9. Let n ≥ n 1 = 195. The circles C j,n := {z | |z -z j,n | = π|z j,n |
n a max } centered at the roots z j,n of the trinomial -1 + z + z n which belong to the "bump sector", namely for j ∈ {1, 2, . . . , v n }, are such that the conditions of Rouché

(2.27) |z| 2n-1 1 -|z| n-1 < |-1 + z + z n | , for all z ∈ C j,n , 1 ≤ j ≤ v n ,
hold true. For any real number β > 1 having dyg(β ) = n, f β (z) admits a simple zero ω j,n in D j,n (with a = a max ), for j in the range {1, 2, . . . , v n }.

Proof. The development terms "D(|z j,n |)" of the asymptotic expansions of |z j,n | change from the main angular sector arg z ∈ (2π(Log n)/n, π/3) to the first transition region arg z 2π(Log n)/n, the "bump sector", further to the second transition region arg z 2π (Log n)(Log Log n)/n, and to a small neighbourhood of θ n (cf Section 5.2).

Then the proof of (2.27) is the same as that of Theorem 2.4 once (2.10) is substituted by the suitable asymptotic expansions which correspond to the angular sector of the "bump". The terminants tl(|z j,n |) of the respective asymptotic expansions of |z j,n | also change: this change obliges to reformulate (2.11) and (2.12) up to Log n/n -terms, and not up to 1/nterms, as in the proof of Theorem 2.4. It is remarkable that the inequality (2.14) remains the same, with the same upper bound function κ(X, a). Then the equation of the curve of the Rouché condition a → κ(1, a), on [1, +∞), is the same as in Theorem 2.4 for controlling the conditions of Rouché. The optimal value a max of a also remains the same, and (2.7) also holds true for those z j,n in the bump sector. Lemma 2.10. Let n ≥ 7. Any real number β of dynamical degree n,

β = θ -1 n , is such that β -1 ∈ C 0,n := {z ∈ C : |z -θ n | = t 0,n n } with t 0,n := Log Log n Log n 2 . Proof. Since β -1 runs over the open interval (θ n-1 , θ n ), this interval (θ n-1 , θ n ) is neces- sarily completely included in D 0,n := {z ∈ C : |z -θ n | < t 0,n
n }, and the radius of C 0,n is θ nθ n-1 . We deduce the result from Lemma 5.7. From Proposition 5.10 the root z 1,n admits ℑ(z 1,n ) = 2π n (1 -1 Log n + . . .) as imaginary part. Then, for any t 1,n ∈ (0, 1), the circle C 0,n , of radius t 0,n /n, and C 1,n are disjoint and do not intersect |z| = 1.

From the inequalities (2.8) in Theorem 2.4, also used in the proof of Proposition 2.9, we now obtain a finer localization of a subcollection of the roots ω j,n of the Parry Upper function f β (z), and a definition of the lenticulus L β of β , as follows. (2.28)

|ω j,n -z j,n | < π|z j,n | n a j,n for j = v n , v n + 1, . . . , J n ,
where a J n ,n = a max and, for j = v n , . . . , J n -1, the value a j,n , > a max , is defined by

(2.29) D π a j,n = Log 1 + B j,n -1 -6B j,n + B 2 j,n 4B j,n with B j,n := 2 sin( π j n ) 1 - 1 n Log (2 sin( π j n )) ,
and, putting D := D π a j,n for short,

(2.30) tl( π a j,n = 2 n × B -1 j,n ( -3 + exp(-D) + 2 exp(D) 4 -exp(-D) -2 exp(D) ) × Log Log n Log n 2 .
An upper bound of the tails, independent of j, is given by

(2.31) O (Log Log n) 2 (Log n) 3
with the constant 1 7π in the Big O. Definition 2.12. Under the notations of Theorem 2.11, the lenticulus L β associated with β is constituted by the following subset of lenticular roots of f β (z):

(2.32)

L β := {1/β } ∪ J n j=1 {ω j,n } ∪ {ω j,n } .
Proof. The existence of the zeroes comes from Proposition 2.9 and Theorem 2.4, with the maximal value J n of the index j given by Proposition 2.6. To refine the localization of ω j,n in the neighbourhood of z j,n , in the main angular sector, i.e. for j ∈ { v n , v n + 1, . . . , J n }, the conditions of Rouché (2.7) are now used to define the new radii. The value a j,n is defined by the development term D( π a j,n ), itself defined as follows:

(2.33) D | -1 + z j,n | |z j,n | =: 1 -exp -D( π a j,n ) 2 exp D( π a j,n ) -1
and the tail tl( π a j,n ) calculated from tl

|-1+z j,n | |z j,n | so that the Rouché condition (2.34) | -1 + z j,n | |z j,n | = D | -1 + z j,n | |z j,n | + tl | -1 + z j,n | |z j,n | < 1 -exp -π a j,n
2 exp π a j,n -1 holds true. From Proposition 5.15, denote

B j,n := D | -1 + z j,n | |z j,n | = 2 sin( π j n ) 1 - 1 n Log (2 sin( π j n ))
.

Let W := exp(D( π a j,n )). The identity (2.33) transforms into the equation of degree 2:

(2.35) 2B j,n W 2 -B j,n + 1 W + 1 = 0
from which (2.36) is deduced. For the calculation of tl( π a j,n ), denote D := D( π a j,n ) and tl j,n := tl( π a j,n ). Then, at the first order,

1-exp -π a j,n 2 exp π a j,n -1 = 1 -exp -D -tl j,n 2 exp D + tl j,n -1 = B j,n [1 + tl j,n × ( 4 -exp(-D) -2 exp(D) -3 + exp(-D) + 2 exp(D) )].
From (2.34) and (5.23) the following inequality should be satisfied, with the constant 2 in the Big O,

1 n O Log Log n Log n 2 = tl | -1 + z j,n | |z j,n | < tl j,n × B j,n ( 4 -exp(-D) -2 exp(D) -3 + exp(-D) + 2 exp(D) )].
The expression of tl j,n in (2.30) follows, to obtain a strict inequality in (2.34). By (2.29) the quantity exp(D) is a function of B j,n , which tends to 3 4 when B j,n tends to 0; hence, at the first order, a lower bound of the function B j,n → |B j,n ( 4-exp(-D)-2 exp(D) -3+exp(-D)+2 exp(D) )| is obtained for j = v n , and given by 2π Log n n × 7. Then it suffices to take

tl j,n = cste (Log Log n) 2 (Log n) 3
with cste = 1/(7π), to obtain a tail independent of j, and therefore the conditions of Rouché (2.34) satisfied with these new smaller radii and tails in the main angular sector. 

c n = -(Log κ) (1 + 1 n ) + 1 n O Log Log n Log n 2 ,
with c = lim n→+∞ c n = -Log κ = 1.76274 . . ., and, up to O(

1 n Log Log n Log n 2 )-terms, (2.38) (1 -c n n ) 2n (1 -c n n ) -(1 -c n n ) n = e -2c 1 -e -c 1 + c 2n(1 -e -c ) 2 -ce -c -2c
with e -2c /(1e -c ) = 0.0355344 . . .

Proof. The asymptotic expansion (2.37) of c n is deduced from the asymptotic expansions of ψ n and z J n ,n given by (2.26) and (2.22) (Proposition 3.5 in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]). We deduce the limit c := -Log (κ(1, a max )) = 1.76274 . . . and then (2.38) follows.

Definition 2.15. Let n ≥ n 2 := 260. We denote by H n the largest integer j ≥ v n such that

(2.39) arg(z J n ,n ) -arg(z j,n ) ≥ (1 -c n n ) 2n (1 -c n n ) -(1 -c n n ) n . Proposition 2.16. Let n ≥ 260. Let denote κ := κ(1, a max ) for short. Then arg(z H n ,n ) = 2 arcsin κ 2 - κ 2 1 -κ (2.40) + Log κ n κ √ 4 -κ 2 + 2 + κ Log (κ) + 2 Log (κ) 2(1 -κ) + 1 n O Log Log n Log n 2 ,
with, at the limit,

lim n→+∞ arg(z H n ,n ) = 2 arcsin κ 2 - κ 2 1 -κ = 0.13625.
Proof. The asymptotic expansion of the right-hand side term of (2.39) is

(2.41) (1 -c n n ) 2n (1 -c n n ) -(1 -c n n ) n = e -2c 1 -e -c 1 + c(2 -ce -c -2c) 2n(1 -e -c ) + . . .
Then the asymptotic expansion of arg(z H n ,n ) comes from (2.39) in which the inequality is replaced by an equality, and from the asymptotic expansion (2.18) of arg(z J n ,n ) (Proposition 2.7).

For n large enough, arg(z H n ,n ) is equal to 2π H n n , up to higher order -terms, and a definition of H n in terms of asymptotic expansions could be: (2.42)

H n = n 2π 2 arcsin κ 2 - κ 2 1 -κ -Log (κ) κ √ 4 -κ 2 + 2 + κ Log (κ) + 2 Log (κ) 2(1 -κ) ,
For simplicity's sake, we will take the following definition of H n (2.43)

H n := n 2π 2 arcsin κ 2 - κ 2 1 -κ -1 .
Remark 2.17. The value n 2 = 260 is calculated to be the smallest value such that the inequality 2πv n n < arg(z H n ,n ) holds, inequality which should be valid for all n ≥ n 2 ; here H n is given by (2.43), arg(z H n ,n ) by (2.40), where (v n ) is the delimiting sequence (cf Appendix Section 5.2) of the transition region of the boundary of the bump sector. A first minimal value of n is first estimated by 2π Log n n < D(arg(z H n ,n )) using (2.40). Then it is corrected so that the numerical value of the tail of the asymptotic expansion in (2.40) be taken into account in this inequality.

Other poles.

In the complement of the family of the adjustable Rouché disks Theorem 2.18 asserts the existence of a zerofree region depending upon the dynamical degree of β . 

(2.44) |z| < 1 - c n n , 1 n Log Log n Log n 2 < |z -θ n |, (2.45) π|z j,n | n a max < |z -z j,n |, for j = 1, 2, . . . , J n ,
and, for j

= J n + 1, . . . , 2J n -H n + 1, (2.46) π|z j,n | n s j,n < |z -z j,n |, with s j,n = a max 1 + a 2 max ( j -J n ) 2 π 2 J 2 n -1/2
.

Then, for any real number β > 1 having dyg(β ) = n, the Parry Upper function f β (z) does not vanish at any point z in D n .

Proof. Assume β > 1 such that θ n-1 < β -1 < θ n . We will apply the general form of the Theorem of Rouché to the compact K n which is the adherence of the domain D n , i.e. we will show that the inequality (and symmetrically with respect to the real axis)

(2.47) | f β (z) -G n (z)| < |G n (z)|, z ∈ ∂ K ext n ∪ C 1,n ∪ C 2,n ∪ . . . ∪ C J n
,n holds, with z ∈ Im(z) ≥ 0, where ∂ K n is the union of: (i) the arcs of the circles defined by the equalities in (2.45) and (2.46), arcs which lie in |z| ≤ 1c n /n, and circles for which the intersection with |z| = 1c n /n is not empty, (ii) the arcs of C(0, 1c n /n) which have empty intersections with the interiors of the disks defined by the inequalities ">", instead of "<", in (2.45) and (2.46), which join two successive circles. The two functions f β (z) and G n (z) are continuous on the compact K n , holomorphic in its interior D n , and G n has no zero in K n . As a consequence the function f β (z) will have no zero in the interior D n of K n .

Instead of using f β (z) itself in (2.47), we will show that the following inequality holds true (2.48)

|z| 2n-1 1 -|z| n-1 < |-1 + z + z n | , for all z ∈ ∂ K ext n what will imply the claim.
The Rouché inequalities (2.47) (2.48) hold true on the (complete) circles C j,n , 1 ≤ j ≤ J n by Theorem 2.4 and Proposition 2.9; these conditions become out of reach for j taking higher values (i.e. in {J n + 1, . . . , n/6 }), but we will show that they remain true on the arcs defined by the equalities in (2.46).

The domain D n only depends upon the dynamical degree n of β , not of β itself. Let us prove that the external Rouché circle |z| = 1c n /n intersects all the circles C J n -k,n , k = 0, 1, . . . , k max , with k max := J n ( π a max ) . Indeed, up to 

J n n )) = Log (2 sin(π (J n -k) + k n )) = Log 2π J n -k n (1 + k J n -k ) (2.49) = Log 2 sin(π J n -k n ) + k J n . Since |z J n ,n | = 1-c n /n = 1+ 1 n Log (2 sin(π J n n ))+ 1 n O Log Log n
Log n 2 , we deduce from (2.49), with k ≤ k max , that the point z ∈ C(0, 1c n /n) for which arg(z) = arg(z J n -k,n ) is such that

|z J n -k,n -z| = k n J n ≤ J n ( π a max ) n J n ≤ π n a max up to 1 n O Log Log n
Log n 2 -terms. As soon as n is large enough, we deduce that z lies in the interior of D J n -k,n . Since the function x → Log (2 sin(πx)) is negative and strictly increasing on (0, 1/6), the sequence (|z j,n |) j=H n ,...,J n is strictly increasing, by (2.22). Hence we deduce that the circle |z| = 1c n /n intersects all the circles C j,n for j = J nk max , . . . , J n . The same arguments show that the external Rouché circle |z| = 1c n /n intersects all the circles C(z j,n ,

π|z j,n | n s j,n ) for j = J n + 1, J n + 2, . . . , 2J n -H n + 1.
The quantities s j,n , for j = J n + 1, . . . , 2J n -H n + 1, are easily calculated (left to the reader) so that the distance (length of the j-th circle segment)

z j,n |z j,n | (1 - c n n ) -y j = z j,n |z j,n | (1 - c n n ) -y j
for y j , y j ∈ C(z j,n , Then the two sequences of moduli of centers (|z j,n |) j=J n +1,...,2J n -H n +1 and of radii ( π|z j,n | n s j,n ) j=J n +1,...,2J n -H n +1 are both increasing, with the fact that the corresponding disks D(z j,n ,

π|z j,n | n s j,n ) ∩ C(0, 1 -c n n ), y j = y j ,
π|z j,n | n s j,n ) keep constant the intersection chord arg(y j ) -arg(y j ) = π|z J n ,n | n a max with the ex- ternal Rouché circle |z| = 1 -c n /n. Let z ∈ C(0, 1 -c n n ), ϕ := arg(z) ∈ [0, π]. Denote by Z(ϕ) := |G n ((1 -c n n )e iϕ )| 2 = -1 + (1 -c n n )e iϕ + (1 -c n n
) n e i n ϕ 2 . The expansion of the function Z(ϕ) as a function of ϕ, up to O(1/n)terms, is the following:

Z(ϕ) = (-1 + (1 - c n n ) cos(ϕ)+(1 - c n n ) n cos(nϕ)) 2 +((1 - c n n ) sin(ϕ))+(1 - c n n ) n sin(nϕ)) 2 = 2 + e -2c -2 cos(ϕ) -2e -c cos(n ϕ) + 2e -c cos(ϕ) cos(n ϕ) + 2e -c sin(ϕ) sin(n ϕ) = 2 + e -2c -2 cos(ϕ) -4e -c sin( ϕ 2 ) cos(n ϕ) sin( ϕ 2 ) -sin(n ϕ) cos( ϕ 2 ) (2.51) = 2 + e -2c -2 cos(ϕ) + 4e -c sin( ϕ 2 ) sin(nϕ - ϕ 2 
).

The function Z(ϕ), defined on [0, π/3], is almost-periodic (in the sense of Besicovitch and Bohr), takes the value 0 at ϕ = arg(z J n ,n ), and therefore, up to O(1/n)-terms, has its minima at the successive arguments arg(z J n ,n ) + 2kπ n for |k| = 0, 1, 2, . . . , J n -H n + 1, . . . (Figure 2). For such integers k, from (2.51), we deduce the successive minima

(2.52) | -1 + z J n ,n e -2ikπ/n + (z J n ,n e -2ikπ/n ) n | = |G n (z J n ,n )| + 2|k|π n = 2|k|π n up to 1 n O Log Log n Log n 2 -terms, with arg(z J n ,n e -2ikπ/n ) = arg(z J n -k,n ) up to O(1/n)-terms.
With the above notations, denote by y j , y j the two points of C(0,

1 -c n n ) which belong to C j,n for 2H n -J n ≤ j ≤ J n , to C(z j,n , π|z j,n | n s j,n ) for J n + 1 ≤ j ≤ 2J n -H n + 1.
Writing them by increasing argument, we have:

(2.53) y 2H n -J n , y 2H n -J n , . . . , y H n , y H n , . . . , y J n , y J n , y J n +1 , y J n +1 , . . . , y 2J n -H n +1 , y 2J n -H n +1 .
The Rouché inequality (2.47) is obviously satisfied at each y j and y j for j = 2H n -J n , . . . , J n . Let us show that this inequality holds at each point y j and y j for j = J n +1, . . . , 2J n -H n +1. Indeed, for such a point, say y j , there exists ξ j = w j z J n ,n e 2i( j-J n )π/n + (1w j ) y j , for some w j ∈ [0, 1], lying in the segment z J n ,n e 2i( j-J n )π/n , y j such that

G n (y j ) = G n (z J n ,n e 2i( j-J n )π/n ) + (y j -z J n ,n e 2i( j-J n )π/n ) G n (ξ j )
with, using (2.50),

|G n (y j ) -G n (z J n ,n e 2i( j-J n )π/n )| = |y j -z J n ,n e 2i( j-J n )π/n ||G n (ξ j )| = π|z J n ,n | n a max |G n (ξ j )|.
The derivative of G n (z) is G n (z) = 1 + nz n-1 . Up to O(1/n)-terms, the line generated by the segment z J n ,n e 2i( j-J n )π/n , y j is tangent to the circle C(0, 1c n /n), and the modulus 

1 n |G n (ξ j )| satisfies 1 n |G n (ξ j )| = 1 n |G n (z J n ,n e 2i( j-J n )π/n )| = 1 n |G n (z J n ,n )| = lim n→+∞ 1 n |G n (z J n ,n )| = e -c . From |G n (y j )| ≥ |G n (y j ) -G n (z J n ,n e 2i( j-J n )π/n )| -|G n (z J n ,n e 2i( j-J n )π/n )| and (2.50) we deduce (2.54) |G n (y j )| ≥ π|z J n ,n | a max e -c - 2π| j -J n | n . But, by definition of H n , still up to O(1/n)-terms, for | j -J n | ≤ J n -H n -1, (2.55) 2π| j -J n | n ≤ 2π (J n -H n -1) n = arg(z J n ,n ) -arg(z H n +1,n ) ≤ e -2c
|G n (y j )| ≥ π|z J n ,n | a max - e -2c 1 -e -c ≥ e -2c
1e -c . Therefore the conditions of Rouché (2.48) hold at all the points y j and y j of (2.53).

Let us prove that the conditions of Rouché (2.48) hold on each arc y j y j+1 of the circle |z| = 1c n /n, for j = 2H n -J n , 2H n -J n + 1, . . . , 2J n -H n . Indeed, from (2.51), the derivative Z (ϕ) takes a positive value at the extremity y j while it takes a negative value at the other extremity y j+1 . Z(ϕ) is almost-periodic of almost-period 2π/n. The function Z(ϕ) is increasing on (arg(z j,n ), arg(z j,n ) + π n ) and decreasing on (arg(z j,n ) + π n , arg(z j,n ) + 2 π n ); on the arc y j y j+1 it takes the value |G n (y j )| ≥ e -2c

1-e -c , admits a maximum, and decreases to

|G n (y j+1 )| ≥ e -2c
1-e -c . Hence, (2.7) holds true for all z ∈ C(0, 1c n /n) with arg(y j ) ≤ arg(z) ≤ arg(y j+1 ).

Let us now prove that the condition of Rouché (2.7) is satisfied in the angular sector 0 ≤ arg(z) ≤ arg(z H n ,n ). Indeed, in this angular sector, the successive minima of Z(ϕ) are all above e -2c

1-e -c by the definition of H n and (2.52). Hence the claim. Let us prove that the condition of Rouché (2.7) is satisfied in the angular sector arg

(z 2J n -H n +1,n ) ≤ arg(z) ≤ π 2 .
In this angular sector, the oscillations of Z(ϕ) still occur by the form of (2.51) and the successive minima of Z(ϕ) are all above e -2c

1-e -c for

2J n -H n +2 J n ≤ arg(z) ≤ π/2, by (2.52) for k ≥ J n -H n + 1.
We deduce the claim. The condition of Rouché (2.7) is also satisfied in the angular sector π ≤ arg(z) ≤ π/2, since then cos(ϕ) ≤ 0 and therefore Z(ϕ) ≥ √

2 + e -2c -4e -c = 1.15 . . .. Since this lower bound is greater than the value e -2c

1-e -c = 0.0354 . . . we deduce the claim. Let us show that the conditions of Rouché (2.7) are also satisfied on the arcs C(z j,n ,

π|z j,n | n s j,n ) ∩ D(0, 1 -c n n ) for j = J n + 1, . . . , 2J n -H n + 1.
For such an integer j, let us denote such an arc by y j y j . The two extremities y j and y j of the arc y j y j of the circle C(z j,n , π|z j,n | n s j,n ) define the same value of the difference cosine, say X j := cos(arg(y jz j,n )arg(z j,n )) = cos(arg(y jz j,n )arg(z j,n )), by (2.50). The conditions of Rouché are already satisfied at the points y j and y j by the above. Recall that, for any fixed a ≥ 1, the function κ(X, a), defined in (2.14), is such that the partial derivative ∂ κ X of κ(X, a) is strictly negative on the interior of [-1, +1] × [1, +∞). In particular the function κ(X, s j,n ) is decreasing. For any point Ω of the arc y j y j , we denote by X = cos(arg(Ω -

z j,n ) -arg(z j,n )). We deduce, up to O(1/n)-terms, e -2c 1 -e -c ≤ κ(X j , s j,n ) ≤ κ(X, s j,n ), for all X ∈ [-1, X j ],
hence the result.

2.4.

A dissociation theorem and an alternate definition.

Theorem 2.19. Let c lent := min n≥260 (c n -π a max ). Let n ≥ 260 and β > 1 be a real number such that dyg(β ) = n, Denote by

f β (z) = -1 + z + z n + z m 1 + z m 2 + . . . + z m j + z m j+1 + . . . ,
where m 1n ≥ n -1, m j+1m j ≥ n -1 for j ≥ 1, the Parry Upper function at β . Then the zeroes of f β (z) of modulus < 1 which lie inarg(z

J n ,n )-π na max < arg z < + arg(z J n ,n )+ π na max either belong to z | |z| -1 < 1 3 c lent n or to z | ||z| -1| > c lent n .
In the second class of zeroes, all the zeroes are simple, and lie in the union

D 0,n ∪ J n j=1 (D j,n ∪ D j,n );
there is one zero per disk D j,n , D j,n , the disk D 0,n containing the element β -1 .

Proof. Denote by

S n := z | θ n-1 ≤ |z| < 1, -arg(z J n ,n ) - π na max ≤ arg z ≤ + arg(z J n ,n ) + π na max
the truncated angular sector and let

S n := o S n \ J n j=1 D j,n ∪ D j,n ∪ D(θ n , θ n -θ n-1 )
cl the open truncated angular sector obtained from S n by removing the closure of the Rouché disks D j,n , D j,n centered at the zeroes z j,n of G n (z) in S n of respective radius π|z j,n | na max , and of D(θ n , θ nθ n-1 ). The argument arg(z J n ,n ) is defined in (2.18). The analytic function G n (z) has no zero in the adherence S n of S n and reaches its infimum inf z∈ S n | -1 + z + z n | > 0 on the boundary ∂ S n of S n . On the Rouché circles C j,n ,C j,n , j = 1, . . . , J n , using (2.7) and (2.27), this infimum is bounded from below by

|Z| 2n-1 1 -|Z| n-1
where Z is the point of C 1,n of smallest modulus, which is such that |Z| = |θ n -π na max θ n | at the first order. Putting aside the Rouché circles, using the inequality

| -1 + z + z n | ≥ || -1 + z| -|z n ||, the minimum of | -1 + z + z n | on the arcs |z| = 1, |z| = θ n-1 , the segments arg x = ±(arg(z J n ,n ) + π na max ) and the circle C(θ n , θ n -θ n-1 ) on ∂ S n is bounded from below by | -1 + θ n-1 | -|θ n n-1 | = (1 -θ n-1 ) 2 . Denote δ n := min (1 -θ n-1 ) 2 , |Z| 2n-1 1 -|Z| n-1 .
We have: 0

< δ n ≤ inf z∈ S n | -1 + z + z n | and lim n→∞ δ n = 0. It is easy to show that lim n→∞ Log δ n n = 0.
Using §5.3 in [START_REF] Dutykh | On the Reducibility and the Lenticular Sets of Zeroes of Almost Newman Lacunary Polynomials[END_REF] this limit condition allows to calculate a first-order estimate of the thickness of the annular neighbourhood of the unit circle, in S n , which contains the roots of a polynomial section -1

+ z + z n + z m 1 + z m 2 + . . . + z m s of f β (z); this estimate is (2.57) e(s) = 1 -1 -2 (n -1)(s -δ n ) (n -1)(s 2 + s) + 2(m s -n) 1/(n-1)
.

In the expression (2.57) n is fixed, as well as the sequence (m j ) j≥1 since β is fixed, therefore f β (z) also; the integer m s tends to infinity, if s tends to infinity, since m sn ≥ (m 1n) + ∑ s j=2 (m jm j-1 ) ≥ s(n -1); the integer s is large enough (at least to have sδ n > 0) and lim s→∞ e(s) = 0. Among all the Rouché disks D j,n , 1 ≤ j ≤ J n , the J n th Rouché disk D J n ,n is the closest to the unit circle (by (iii-2) in Proposition 5.2). By Lemma 2.14 its center is z J n ,n , of modulus |z J n ,n | = 1 -c n n , and its radius is

π|z J n ,n |
na max < π na max . By Lemma 2.14 the limit c = lim n→∞ c n exists, is positive, and, from a numerical viewpoint, c -π a max = 1.76274 -0.53479 = 1.22794 . . .. By the asymptotic expansion of c n in Lemma 2.14, the constant

c lent := min n≥260 (c n -π a max ) is positive. The disk {z | |z| < 1 -c lent n } contains all the Rouché disks D j,n , D j,n , 1 ≤ j ≤ J n , and D 0,n .
Let assume that f β (z) has a zero in

S n ∩ z | |z| < 1 - 1 3 c lent n .
Denote it by z, counted with multiplicity. There exists r > 0 small enough such that the open disk D(z, r) be included in

S n ∩ {z | |z| < 1 -1 3 c lent
n } and only contains the zero z of f β (z). By Hurwitz Theorem (for instance cf §11 in Chap. 2 in [START_REF] Saks | Fonctions Analytiques, Masson et C ie[END_REF]) the number of zeroes of any polynomial section -1 + z + z n + z m 1 + z m 2 + . . . + z m s of f β (z) in D(z, r) should be equal to the multiplicity ≥ 1 of z, as soon as s is large enough, say s ≥ s 0 for some s 0 .

Since lim s→0 e(s) = 0, we obtain a contradiction by taking s 0 such that e(s) ≤ c lent 10 n for all s ≥ s 0 . The constant 10, at the denominator, is arbitrary and may be taken eventually larger. This means that all the zeroes of all the polynomial sections of f β (z), in S n , for all s ≥ s 0 , are contained in 1 -

c lent 3 n < |z| < 1. But {z | 1 -c lent 3 n < |z| < 1} ∩ D(z, r) = / 0. Contradiction. Therefore the zeroes of f β (z) which lie in the open angular sector {z ∈ C : |z| < 1, -arg(z J n ,n ) - π na max < arg z < arg(z J n ,n ) + π na max }
are located either in the Rouché disks by Theorem 2.4 and Theorem 2.11, or in a small neighbourhood of the unit circle included in {z | 1 -c lent 3 n < |z| < 1}. This dichotomy naturally extends to the zeroes of any polynomial section of f β (z) (cf the proofs of Theorem 2.4, Theorem 2.11 and Theorem 2.19). Definition 2.20. Let n ≥ 260. Let β > 1 be a real number such that dyg(β ) = n. With the notations of Theorem 2.19, the poles of ζ β (z) which belong to the angular sector

(2.58) z ∈ C : |z| < 1 - c lent n , | arg z| ≤ arg(z J n ,n ) + π na max
are called the lenticular poles of ζ β (z).

CONTINUITY OF THE LENTICULAR POLES -PROOF OF THEOREM 1.1

Let n ≥ 260. To n is associated the set of the lenticular zeroes of the trinomial -1+x+x n of imaginary part ≥ 0, as:

{θ n , z 1,n , z 2,n , . . . , z J n ,n },
and the set of Rouché disks (defined in Theorem 2.11)

{D 1,n D 2,n , . . . , D J n ,n },
the jth-disk D j,n being centered at z j,n . For j = 1, . . . , J n , the disks D j,n satisfy: D j,n ⊂ D(0, 1), D j,n ∩ C(0, 1) = / 0, z j,n-1 ∈ D j,n , and, for any real number

β ∈ [θ -1 n , θ -1 n-1 ], f β (z) admits an unique zero ω j,n in D j,n , which is simple by Theorem 2.11. Since β → f β (z) is injective on [θ -1 n , θ -1 n-1 ]
, by Proposition 2.2, the map β → ω j,n = ω j,n (β ) is well-defined. Let us denote this map by ω j,n (with no ambiguity) and by

ω j,n (β ) the image of β (instead of ω j,n ). Let S j,n := ω j,n ([θ -1 n , θ -1 n-1 ]) be the adherence of the image of the closed interval [θ -1 n , θ -1 n-1 ]
; it is a compact subset of D j,n such that S j,n ∩ ∂ D j,n = / 0, for which the image of the left extremity of the interval is the center of the disk D j,n : ω j,n (θ -1 n ) = z j,n .

Lemma 3.1. Let n ≥ 3. The two analytic functions -1 + z + z n-1 and -1 + z + z n + ∑ ∞ q=1 z q(n-1)+n have the same zeroes (with the same multiplicities = 1) inside the open unit disk.

Proof. Let x 0 , |x 0 | < 1, be a zero of the trinomial -1 + z + z n-1 . Then 0 = -1+x 0 +x n-1 0 = -1+x 0 +x n 0 1 x 0 = -1+x 0 +x n 0 (1+x n-2 0 ) = -1+x 0 +x n 0 +x n+n-2+1 0 1 x 0 .
Let us replace the last 1 x 0 by 1 + x n-2 0 . And so on, iteratively. Doing this operation infinitely many times provides the identity

0 = -1 + x 0 + x n-1 0 = -1 + x 0 + x n 0 + ∞ ∑ q=1
x q(n-1)+n 0

.

The converse comes from

-1 + z + z n + ∞ ∑ q=1 z q(n-1)+n = -1 + z + z n-1 1 -z n-1 , |z| < 1. 
Multiplicities are equal to 1 by [START_REF] Selmer | On the Irreducibility of Certain Trinomials[END_REF].

Denote δ := min{1 -|z| | z ∈ ∪ J n j=1 S j,n } > 0.
Proposition 3.2. Let n ≥ 260. For all 1 ≤ j ≤ J n , the map

ω j,n : [θ -1 n , θ -1 n-1 ] → D j,n , β → ω j,n (β ) is continuous. Proof. Let β 1 , β 2 be two real numbers in the open interval (θ -1 n , θ -1 n-1
), and assume β 1 < β 2 . To β 1 , resp. β 2 , is associated uniquely the sequence (t i ) i≥1 ∈ {0, 1}, resp. (t i ) i≥1 ∈ {0, 1}, of the coefficients of the Rényi β 1 -expansion of unity d β 1 (1) = 0.t 1 t 2 t 3 . . ., resp. of d β 2 (1) = 0.t 1 t 2 t 3 . . .; the two Parry Upper functions f β 1 (z) and f β 2 (z) are deduced from them:

f β 1 (z) = -1 + ∑ j≥1 t i z i , f β 2 (z) = -1 + ∑ j≥1 t i z i .
The inequality '<' is translated by the lexicographical inequality '< lex ' on the sequences (t i ) i≥1 , resp. (t i ), by Proposition 2.2. When β 2 is close to β 1 , the first digits are the same. We define the lexicographical metric d by:

d(β 1 , β 2 ) := e -r iff t 1 = t 1 ,t 2 = t 2 , . . . ,t r = t r ,t r+1 = t r+1 .
To prove the continuity of ω j,n it suffices to show that, for all ε > 0, there exists η > 0 such that

d(β 1 , β 2 ) < η =⇒ |ω j,n (β 1 ) -ω j,n (β 2 )| < ε,
and to establish the continuity at the extremity θ

-1 n-1 of the closed interval [θ -1 n , θ -1 n-1 ]. We have f β 1 (β -1 1 ) = f β 1 (ω j,n (β 1 )) = f β 2 (β -1 2 ) = f β 2 (ω j,n (β 2 )) = 0. Since β 1 = β 2
and that the disks D j,n have the property that f β 2 (z) contains an unique zero in it (cf Theorem 2.11),

0 = f β 2 (ω j,n (β 1 )) = f β 2 (ω j,n (β 2 ) + (ω j,n (β 1 ) -ω j,n (β 2 ))) = (ω j,n (β 1 ) -ω j,n (β 2 )) ∞ ∑ q=1 f (q) β 2 (ω j,n (β 2 )) q! (ω j,n (β 1 ) -ω j,n (β 2 )) q-1 .
Now by Theorem 2.11 the unique zero

ω j,n (β -1 2 ) in D j,n is simple. Thus f β 2 (ω j,n (β 2 )) = 0 and the function z → f β 2 (z)/(z -ω j,n (β 2 )),
extended by continuity by f β 2 (ω j,n (β 2 )) at ω j,n (β 2 ), does not take the value 0 on the compact S j,n . Hence, the function

z → ∞ ∑ q=1 f (q) β 2 (ω j,n (β 2 ))
q! (zω j,n (β 2 )) q-1 admits an infimum, say µ j on S j,n . Denote µ := min{ µ j | j = 1, 2, . . . J n } > 0 the infimum, common to all the disks D j,n . Now, with d(β 1 , β 2 ) := e -r ,

f β 2 (ω j,n (β 1 )) = ( f β 2 -f β 1 )(ω j,n (β 1 )) = ∞ ∑ k=r+1 (t k -t k )(ω j,n (β 1 )) k . Therefore | f β 2 (ω j,n (β 1 ))| ≤ ∞ ∑ k=r+1 |ω j,n (β 1 )| k ≤ ∞ ∑ k=r+1 (1 -δ ) k ≤ (1 -δ ) r+1 1 δ .
Hence

ω j,n (β 1 ) -ω j,n (β 2 ) ≤ 1 µ (1 -δ ) r+1 1 δ .
It suffices to take r large enough to have the property of continuity.

Let us consider the case of the extremity

β 2 = θ -1 n-1 . By Lemma 3.1, since θ n-1 is root of -1 + x + x n-1 it satisfies: 0 = -1 + θ n-1 + θ n n-1 + ∞ ∑ q=1 θ q(n-1)+n n-1
.

The metric d can be extended to

(θ -1 n , θ -1 n-1 ]×(θ -1 n , θ -1 n-1
] since the sequence of coefficients of the power series -1 + z + z n + ∑ q≥1 z q(n-1)+n is obviously in the adherence of the set {(t i ) | the digits t i being those of d β (1) for all β ∈ (θ -1 n , θ -1 n-1 )}, and not an isolated point. The case is simpler for the other extremity β 1 = θ -1 n .

Remark 3.3. In [START_REF] Flatto | The Zeta Function of the beta Transformation[END_REF] Flatto, Lagarias and Poonen study the continuity of the modulus of the first root (given in Proposition 5.13)

(3.1) β → |ω 1,n (β )|, 1 < β < 2 over the union of the intervals [θ -1 n , θ -1 n-1 ].
The curve given by Figure 1 in [START_REF] Flatto | The Zeta Function of the beta Transformation[END_REF] suggests that the map ω 1,n is injective on (θ -1 n , θ -1 n-1 ) but that the union S 1,n-1 ∪ S 1,n ∪ S 1,n+1 , for all n large enough, is a self-intersecting curve.

THE LENTICULAR MEASURE

The method of Rouché allows to define optimally the lenticulus L β of the lenticular poles of ζ β (z) (Theorem 2.4 and Proposition 2.9), for any real number 1 < β < θ -1 259 and β ∈ {θ -1 n : n ≥ 260}. Then we define the lenticular measure of β by (4.1)

S lent (β ) := ∏ ω∈L β |ω| -1 = β J n ∏ j=1 |ω j,n (β )| -2 .
In Section 4.1 Theorem 4.1 proves the existence of a lower bound > 1.15 to the infimum lim inf β →1 S lent (β ). In Section 4.2, using

(4.2) β × J n ∏ j=1 |ω j,n (β )| -2 ≥ β × J n ∏ j=1 (|z j,n | + t j,n n ) -2 ,
and denoting

L r (β ) := Log β × J n ∏ j=1 (|z j,n | + t j,n n ) -2 ,
we obtain the asymptotic expansion of a lower bound of L r (β ) as a function of n = dyg(β ) in Theorem 4.2. From S lent (β ) ≥ exp(L r (β )), the Dobrowolski-type inequality (1.9) is deduced from this asymptotic expansion, in Section 4.3. This generalizes the case where β ∈ {θ -1 n : n ≥ 3} treated in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]; let us recall it briefly. Let n 0 be an integer such that π 3 > 2π Log n 0 n 0 , and let n ≥ n 0 . Inthere the Mahler measure (cf the Appendix)

M(θ -1 n ) = M(G n ) = θ -1 n n/6 ∏ j=1 |z j,n | -2 ,
which is equal to

S lent (θ -1 n ) = ∏ L θ -1 n |z| -1 ,
is shown to admit the following asymptotic expansion 

(4.3) M(G n ) = Λ 1 + r(n) 1 Log n + O Log Log n Log n 2 , n ≥ n 0 ,
(β ) = -Log ( 1 
β ) -2 J n ∑ j=1 Log |ω j,n | = Log ( 1 
β ) -2 J n ∑ j=1 Log |(ω j,n -z j,n ) + z j,n | (4.5) = Log (β ) -2 J n ∑ j=1 Log |z j,n | -2 J n ∑ j=1 Log 1 + ω j,n -z j,n z j,n .
The first term of (4.5) tends to 0 if dyg(β ) tends to +∞ since lim n→∞ θ n = 1 (Proposition 5.5). Let us turn to the third summation in (4.5). The j-th root ω j,n ∈ L β of f β (z) is the unique root of f β (z) in the disk D j,n = {z | |ω j,nz j,n | < π|z j,n | n a max }. From Theorem 2.11 we have the more precise localization in D j,n : |ω j,nz j,n | < π|z j,n | n a j,n for j = v n , . . . , J n (main angular sector), with

D( π a j,n ) = Log 1 + B j,n -1 -6B j,n + B 2 j,n 4B j,n
and B j,n = 2 sin( π j n ) 1 -1 n Log (2 sin( π j n )) (from (2.29)). For j = v n , . . . , J n the following inequalities hold:

1 - 1 n D( π a j,n ) ≤ |1 + ω j,n -z j,n z j,n | ≤ 1 + 1 n D( π a j,n ),
up to second order terms. Let us apply the remainder Theorem of alternating series: for

x real, |x| < 1, |Log (1 + x) -x| ≤ x 2 2 .
Then the third summation in (4.5) satisfies

-2 lim n→∞ J n ∑ j=1 1 n Log 1 + 2 sin( π j n ) -1 -12 sin( π j n ) + 4(sin( π j n )) 2 8 sin( π j n ) (4.6) ≤ lim inf n→∞ -2 J n ∑ j=1
Log 1 + ω j,nz j,n z j,n .

Let us convert the limit to an integral. The Riemann-Stieltjes sum

S(F, n) := -2 J n ∑ j=1 1 n Log 1 + 2 sin( π j n ) -1 -12 sin( π j n ) + 4(sin( π j n )) 2 8 sin( π j n ) = -1 π J n ∑ j=1 (x j -x j-1 )F(x j ) with x j = 2π j n and F(x) := Log 1+2 sin( x 2 )- √ 1-12 sin( x 2 )+4(sin( x 2 )) 2 8 sin( x 2 )
converges to the limit In a similar way we transform the limit, as n tends to infinity, of the second summation in (4.5) into an integral in order to obtain the term Λ r . By Proposition 2.7 let us observe that the Riemann-Stieltjes sum

S( f , n) := -2 J n ∑ j=1 1 n Log 2 sin π j n = -1 π J n ∑ j=1 (x j -x j-1 ) f (x j )
with x j = 2π j n and f (x) := Log 2 sin x 2 converges to the limit

lim n→∞ S( f , n) = -1 π lim n→∞ 2π J n n 0 f (x)dx = -1 π 0.171784... 0 f (x)dx (4.8) = Log Λ r = Log (1.16302 . . .).
This limit is a log-sine integral [START_REF] Borwein | Log-Sine Evaluations of Mahler Measures, II[END_REF]. From [27] §4. 

(θ -1 n ) = M(G n ) for all n ≥ 3,
L r (β ) = Log (β ) -2 J n ∑ j=1 Log |z j,n | -2 v n ∑ j=1 Log (1 + π n a max ) -2 J n ∑ j= v n Log (1 + π n a j,n ),
where the a j,n s are given by Theorem 2. ) -

J n ∑ j= v n 1 n D( π a j,n ) - J n ∑ j= v n 1 n tl( π a j,n )| ≤ 1 2 J n ∑ j= v n π n a j,n 2 .
with the constant (ii-1) the approximate value of Log Λ r is independent of the integer m (i.e. step length) used in the Newton-Cotes formulas, assuming the weights (α q ) q=0,1,...,m associated with m all positive. Indeed, if m is arbitrarily large, the estimate of the integral should be very good by these methods, ideally exact at the limit (m" = " + ∞).

Proof of (i-1): we consider the decomposition of the interval of integration as 0, 2 arcsin(κ/2) = 

(4.20) 0, 2π Log n n ∪ J n -1 j= Log n 2π j n , 2π( j + 1) n ∪ 2πJ n n , 2 
:= 2π j n , 2π ( j+1) 
n , j = Log n , Log n + 1, . . . , J n -1. On each such I j , the function f (x) is approximated by its interpolation polynomial P m (x), where m ≥ 1 is the number of subintervals forming an uniform partition of I j given by (4.22) y q = 2π j n + q 2π n 1 m , q = 0, 1, . . . , m, of step length h NC := 2π n m , and P m the interpolating polynomial of degree m or less with P m (y q ) = f (y q ), for q = 0, 1, . . . , m.

The Newton-Cotes formulas 2π( j+1) n

2π j n P m (x)dx = h NC m ∑ q=0 α q f (y q )
provide approximate values of 2π( j+1) n 2π j n f (x)dx, where the α q are the weights obtained by integrating the Lagrange's interpolation polynomials. Steffensen [?] ( [START_REF] Stoer | Introduction to Numerical Analysis[END_REF], p 127) showed that the approximation error may be expressed as follows:

2π( j+1) n 2π j n P m (x)dx - 2π( j+1) n 2π j n f (x)dx = h p+1 NC • K • f (p+1) (ξ ), ξ ∈ o I j ,
where p ≥ 2 is an integer related to m, and K a constant.

Using [START_REF] Stoer | Introduction to Numerical Analysis[END_REF], p. 128, and m = 1, the method being the "Trapezoidal rule", we have: "p = 2, K = 1/12, α 0 = α 1 = 1/2". Then (4.21) is estimated by . We deduce the following asymptotic expansion (4.26)

∆ 1 = R Log n + O( 1 (Log n) 2 )
with |R| < arcsin(κ/2) π .

Proof of (ii-1): Let us show that the upper bound arcsin(κ/2) π 1

Log n is independent of the integer m used, once assumed the positivity of the weights (α q ) q=0,1,...,m . For m ≥ 1 fixed, this is merely a consequence of the relation between the weights in the Newton-Cotes formulas. Indeed, we have ∑ m q=0 α q = m, and therefore > 0 is increasing on the interval (0, x). When y = 2πJ n n < x tends to x -, by Proposition 2.7 and Remark 2.8, since 0 < 4 sin 2 (y/2) -12 sin(y/2) + 1 ≤ 1 is close to zero for y = 2πJ n /n, the following inequality holds (ii) the correlation between the geometry of the roots of G n (X) which lie inside the unit disk and the upper half-plane and their indexation is given by: The (Poincaré) asymptotic expansions of the roots z j,n of G n are generically written: Re(z j,n ) = D(Re(z j,n )) + tl(Re(z j,n )), Im(z j,n ) = D(Im(z j,n )) + tl(Im(z j,n )), θ n = D(θ n ) + tl(θ n ), where "D" and "tl" stands for "development", or "limited expansion", or "lowest order terms", and "tl" for "tail" or "remainder", or "terminant" [START_REF] Dingle | Asymptotic Expansions: their Derivation and Interpretation[END_REF].

Poincaré [START_REF] Poincar É ; | Lec ¸ons de Mécanique Céleste[END_REF] introduced this method of divergent series for the N-body problem in celestial mechanics; the analogue of the variable time t (of celestial mechanics) is the dynamical degree dyg(β ) when β > 1 is a real number; for the trinomial G n it is n.

The Poincaré asymptotic expansions of the roots z j,n of G n (z) = -1 + z + z n , lying in the first quadrant of C, are recalled in Proposition 5.10. They are divergent formal series of functions of the couple of two variables which is:

• n, j n , in the ("main" sector) angular sector:

π 2 > arg z > 2π Log n n ,
• n, j Log n , in the angular sector ("bump" sector): 2π Log n n > arg z ≥ 0.

In the bump sector (cusp sector of Solomyak's fractal [START_REF] Solomyak | Conjugates of beta-Numbers and the Zero-Free Domain for a Class of Analytic Functions[END_REF] in the open unit disk), the roots z j,n are dispatched into the two subsectors:

• 2π √ (Log n)(Log Log n) n > arg z > 0, • 2π Log n n > arg z > 2π √ (Log n)(Log Log n) n .
The relative angular size of the bump sector, as (2π Log n n )/( π 2 ), tends to zero, as soon as n is large enough. By transition region, we mean a small neighbourhood of the argument :

arg z = 2π
Log n n or of 2π (Log n)(Log Log n) n .

Outside these two transition regions, a dominant asymptotic expansion of z j,n exists. In a transition region an asymptotic expansion contains more n-th order terms of the same order of magnitude (n = 2, 3, 4). These two neighbourhoods are defined as follows. Let ε ∈ (0, 1) small enough. Two strictly increasing sequences of real numbers (u n ), (v n ) are introduced, which satisfy: 

n/6 > v n >

2 .

 2 Geometry of the poles of ζ β (z) inside the open unit disk 2.1. Parry Upper function and lacunarity 2.2. Lenticular poles 2.3. Other poles 2.4. A dissociation theorem and an alternate definition 3. Continuity of the lenticular poles -Proof of Theorem 1.1 4. The lenticular measure 4.1. A lower bound of the liminf of the lenticular measure, β tending to 1 4.2. Poincaré asymptotic expansions 4.3. A Dobrowolski-type inequality -Proof of Theorem 1.2 5. Appendix: Trinomials -1 + z + z n , Mahler measures and angular sectorization 5.1. Notations, factorization, lenticular roots 5.2. Asymptotic expansions: poles of ζ θ -1 n (z) and useful relations 1. INTRODUCTION Let β > 1 be a real number. The β -transformation is the map [0, 1] → [0, 1], x → {β x}, where {•} denotes the fractional part, and y = y -{y} the integer part of y . The βtransformation is denoted by T β , and its iterates by: T

Theorem 2 . 4 .

 24 Let n ≥ n 1 = 195, a ≥ 1, and j ∈ { v n , v n + 1, . . . , n/6 } . Denote by C j,n := {z | |zz j,n | = t j,n

FIGURE 1 .

 1 FIGURE 1. Curve of the Rouché condition a → κ(1, a) (upper bound in (2.8)), for the circles C j,n = {z | |zz j,n | = π|z j,n |/(a n)} centered at the zeroes z j,n of the trinomial -1 + X + X n , as a function of the size of the circles C j,n parametrized by the adjustable real number a ≥ 1.
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 211 Let n ≥ n 1 = 195. Let β > 1 be any real number having dyg(β ) = n. The Parry Upper function f β (z) has an unique simple zero ω j,n in each disk D j,n := {z | |zz j,n | < π |z j,n | n a max }, j = 1, 2, . . . , J n , which satisfies the additional inequality:

Theorem 2 . 18 .

 218 Let n ≥ n 2 := 260. Denote by D n the subdomain of the open unit disk, symmetrical with respect to the real axis, defined by the conditions:

F

  (x)dx = Log µ r with µ r = 0.992337 . . . .

4 . 2 .

 42 and lim n→+∞ M(G n ) = Λ = 1.38 . . . (recalled in (1.6)) which is greater than 1.15 . . .. This establishes completely the inequality (4.4). Let us observe that the constant C given in Theorem 1.2 is C = Λ r µ r . Poincaré asymptotic expansions. The aim of this Section is to prove Theorem 4.2. Assume β > 1 and dyg(β ) ≥ 260, with β ∈ {θ -1 n : n ≥ 259}. In the continuation of the last paragraph, we expand asymptotically a lower bound of L r (β ) as a function of n = dyg(β ). As a starting point, we have: (4.10)

2 )

 2 By integrating by parts the integral in (4.25), for large n, it is easy to show that this integral is = O (Log n) 2 n

  x)dxh NC m f (y 0 ) = h NC m ∑ q=0 α q ( f (y q )f (y 0 )) Since h NC m = 2πn and that the inequality supξ ∈L j | f (ξ )| ≤ | f ((2πLog n)/n)|holds uniformly for all j, we deduce the same upper bound as in (4.23) for the Trapezoidal rule. Summing up the contributions over all the intervals I j , we obtain the same upper bound (4.25) of (4.19) as before.

F2π n 2 F

 2 (x)dx, where the α q s are the weights obtained by integrating the Lagrange's interpolation polynomials. Using[START_REF] Stoer | Introduction to Numerical Analysis[END_REF], p. 128, and m = 1, the method being the "Trapezoidal rule", we have:p = 2, K = 1/12, α 0 = α 1 = 1/2.Then (4.29) is estimated by 1 (ξ ) for some ξ ∈ o I j , for large n. As in Remark 2.8, let x = 2 arcsin(κ/2). The derivative (4.32) F (y) = cos(y/2)(-2 sin(y/2) + 1 -4 sin 2 (y/2) -12 sin(y/2) + 1 4 sin(y/2) 4 sin 2 (y/2) -12 sin(y/2) + 1)

( 4

 4 2 ( πJ n n ) -12 sin( πJ n n ) + 1 .

( 5 . 5 ) 1 n n/ 6 ∏ 7 . 5 . 4 .

 5516754 j ∈ {1, 2, . . . , n 6 } ⇐⇒ ℜ(z j,n ) > 1 2 ⇐⇒ |z j,n | < 1,and the Mahler measure M(G n ) of the trinomial G n (X) is(5.6) M(G n ) = M(G * n ) = θ -j=1 |z j,n | -2 .Proof.[START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF], Proposition 3.Definition Let n ≥ 2. The set of the lenticular poles of ζ θ -1 n (z), equivalently the set of the lenticular roots of G n (z), is L θ -1 n = {z n/6,n , . . . , z 1,n , θ n , z 1,n , . . . , z n/6 ,n }.5.2. Asymptotic expansions: poles of ζ θ -1n (z) and useful relations. The poles of ζ θ -1 n (z), n ≥ 3, inside the open unit disk are the zeroes of G n (z) of modulus < 1, in C. In the following, for being self-contained, we summarize the main results on the asymptotic expansions of the roots of the G n s useful to the expansions of the lower bounds of the lenticular measures S lent (β ) in Section 4.

  THE POLES OF ζ β (z) INSIDE THE OPEN UNIT DISK 2.1. Parry Upper function and lacunarity. Let 1 < β ≤ (1 + √ 5)/2. The Rényi βexpansion of unity, denoted by d β (1) = 0.t 1 t 2 t 3 . . ., is such that the digits t i = β T

	(i-1)
	β

  , with 2 sin(ϕ/2) = 2 sin(πJ n /n) cos(πℜ) + 2 cos(πJ n /n) sin(πℜ), and from (2.21), up to 1 n O Log Log n /n = ψ n + ϕ lim and (2.19). With 2πJ n /n, and from (2.21) and (2.25) we deduce (2.18). This finishes the proof.

	Log n	2 -terms, the identity (2.24) becomes
	[ψ n cos(	ϕ lim 2	) + 2 sin(	ϕ lim 2	)] + (	-2 cos( ϕ lim 2 ) tan( ϕ lim 2 ) Log κ 2n	) = κ 1 +	Log κ 2n	.
	We deduce								
	(2.26)		ψ n =	κ Log κ n cos( ϕ lim 2 )	+	1 n	O	Log Log n Log n	2 ,
	then 2πJ n Remark 2.8. (i) The maximal half-opening angle of the sector in which one can detect
	zeroes of f								

β (z), for any β such that θ n-1 < β -1 < θ n , by the method of Rouché, is 0.17178... = 2 arcsin( κ(1,a max ) 2

  Remark 2.13. For n very large, up to second-order terms, (2.35) reduces to Let n ≥ 195 and c n defined by |z J n ,n | = 1 -c n n . Let us put κ := κ(1, a max ) for short. Then

				4 sin(	π j n	)W 2 -2 sin(	π j n	) + 1 W + 1 = 0
	and (2.29) to					
	(2.36)	D	π a j,n	= Log	1 + 2 sin( π j n ) -1 -12 sin( π j n ) + 4(sin( π j n )) 2 8 sin( π j n )	.
	Lemma 2.14. (2.37)					

  1e -c . This inequality is in particular satisfied for the last two values of | j -J n | which are J n -H n and J n -H n + 1 up to O(1/n)-terms. , from (2.54), (2.55) and (2.56), as soon as n is large enough, we deduce the Rouché inequality

	Since the inequality		
	(2.56)	0.0710 . . . = 2	e -2c 1 -e -c <	π|z J

n ,n | a max e -c = 0.0914 . . . holds

  A lower bound of the liminf of the lenticular measure, β tending to 1. Recall κ = κ(1, a max ) from Definition 2.6. The value 2 arcsin(κ(1, a max )/2) = 0.171784 . . . is given by Proposition 2.7, and a max = 5.8743 . . . by Theorem 2.4.

	with the constant 1/6 involved in the Big O, and with r(n) real, |r(n)| ≤ 1/6. The Dobrowol-
	ski-type inequality (1.5) is then deduced from (4.3). Theorem 4.2 generalizes (4.3).
	4.1. Theorem 4.1. Let β > 1 be a real number such that dyg(β ) ≥ 260. Let
	Λ r := exp	-1 π	0	2 arcsin( κ 2 )	Log 2 sin	x 2	dx = 1.16302 . . . ,
	and						
	µ r := exp	-1 π	0	2 arcsin( κ 2 ) Log	1 + 2 sin( x 2 ) -1 -12 sin( x 2 ) + 4(sin( x 2 )) 2 8 sin( x 2 )	dx
								= 0.992337 . . . .
	The lenticular measure S lent (β ) of β admits a liminf when β tends to 1 + , bounded from
	below as						
	(4.4)		lim inf dyg(β )→+∞ S lent (β ) ≥ Λ r • µ r = 1.15411 . . . .
	Proof. Assume β ∈ {θ -1 n : n ≥ 259}. From (4.1) we have
	Log S lent						

  It is easy to check that the corrections due to the roots which lie inside the bump sector (cf Appendix Section 5.1), not counted above, are zero contributions. Since S lent (β ) ≥ exp(L r (β )), we deduce the lower bound Λ r µ r in (4.4) from (4.6), (4.7), (4.8) and (4.9).

			2, pp 111-115, in a similar way, we have
				J n	
	(4.9)	lim n→∞	S( f , n) = -2 lim n→∞	j=1 ∑	Log |z j,n |
	Assume β ∈ {θ -1				

n : n ≥ 259}. By construction we have: S lent

  [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF], the sequence (v n ) by the Appendix, and J n by Definition 2.6 and Proposition 2.7. From Section 4.1 we have lim dyg(β )→∞ L r (β ) ≥ Log Λ r + Log µ r . In Theorem 4.2, we will gather the asymptotic contributions of each term in (4.10) and obtain the asymptotic expansion of a minorant of L r (β ) as a function of n.

	(i) First term in (4.10): from Lemma 5.6 and Theorem 5.8, (4.11) Log (β ) = Log n n (1 -λ n ) + 1 n O Log Log n Log n with the constant 1 2π arcsin( κ 2 ) (from Proposition 2.7) involved in the Big O. 2 = O Log n (iii) third term in (4.10): with the definition of ε and (v n ) (Appendix), n (ii) second term in (4.10): from Proposition 5.12, J n Log |z j,n | = (4.14) -2 v n ∑ Log (1 + π n a max ) = O (Log n) 1+ε ; n j=1 ∑ j= v n (iv) fourth term in (4.10): from the Theorem of alternating series,	;
	J n ∑ j= v n (4.15) | j= v n Log 1 + J n ∑ Log (1 + 1 n Log 2 sin π n a j,n	π j n	+	1 2n	Log Log n Log n	2	+	1 n	O	(Log Log n) 2 (Log n) 3

  Log (Λ r µ r ) + ∆ 1 + ∆ 2 . by an approximate value obtained by integration of an interpolation polynomial by the methods of Newton-Cotes; we just need to know this approximate value up to O Log Log n

											2
											Log n	.
	Up to O Log Log n Log n		2	, we will show that:				
	(i-1) an upper bound of (4.19) is (κ stands for κ(1, a max ) as in Proposition 2.7)
						arcsin(κ/2) π	1 Log n	,	
			1 2π arcsin( κ 2 ) involved in the Big O. Let us denote by ∆ 1 the first term
	within brackets, resp. ∆ 2 the second term within brackets, in (4.17) so that
	(4.18) D(L r (β )) = Calculation of |∆ 1 |: let us estimate and give an upper bound of |∆ 1 | =
	(4.19)	-1 π	0	2 arcsin(κ/2)	Log 2 sin(x/2) dx -	J n ∑ j= Log n	-2 n	Log 2 sin	π j n	.

In

(4.19) 

the sums are truncated Riemann-Stieltjes sums of Log Λ r , the integral being Log Λ r . Referring to

Stoer and Bulirsch ([23]

, pp 126-128) we now replace Log Λ r

  Log n, Log n > u n > (Log n)(Log Log n), for n ≥ n 0 = 18, u n = O((Log n) 1+ε )with the constant 1 involved in the big O. The roots z j,n lying in the first transition region about 2π(Log n)/n are such that:

	such that								
	lim n→∞	v n n	= lim n→∞	(Log n)(Log Log n) u n	= lim n→∞	u n Log n	= lim n→∞	Log n v n	= 0
	and								
	(5.7) and the roots z j,n lying in the second transition region about v n 2π v n n > arg z j,n > 2π (2Log n -v n ) n 2π , √ (Log n)(Log Log n) n	are such
	that:								
			2π	u n n	> arg z j,n > 2π	2 (Log n)(Log Log n) -u n n	.
	In Proposition 5.10, for simplicity's sake, these two transition regions are schematically
	denoted by								
		arg z 2π	(Log n) n	resp. arg z 2π	(Log n)(Log Log n) n	.
	By complementarity, the other sectors are schematically written:
					2π	(Log n)(Log Log n) n	> arg z > 0
	instead of								
	resp.			2π	2 (Log n)(Log Log n) -u n n	> arg z > 0;
				2π	Log n n	> arg z > 2π	(Log n)(Log Log n) n
	instead of resp.				2π	2Log n -v n n	> arg z > 2π	u n n	;
		π 2	> arg z > 2π	Log n n	instead of	π 2	> arg z > 2π	v n n	.

Proposition 5.5. Let n ≥ 2. The root θ n can be expressed as:

θ n = D(θ n ) + tl(θ n ) with D(θ n ) = 1-(5.8) Log n n 1 -n -Log n n Log n + n -Log n Log Log n -nLog 1 -Log n n -Logn
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with the constant 1 involved in the Big O. Let us apply the remainder Theorem of alternating series: for x real, |x| < 1, |Log (1 + x) -x| ≤ x 2 2 . Then

For 1 ≤ j ≤ J n , the inequalities 0 < 2 sin(π j/n) ≤ 1 and Log (2 sin(π j/n)) < 0 hold. Then |Log (2 sin(π j/n)| ≤ |Log (2 sin(π/n))| = O(Log n). On the other hand, the two O( )s in the rhs of (4.12) involve a constant which does not depend upon j. Therefore, from Proposition 2.7, the rhs of (4.12) is

On the other hand, the two regimes of asymptotic expansions in the Bump sector (cf Appendix) give The terminant tl( π

is given by (2.31). From Theorem 2.11, with B j,n = 2 sin( π j n ) 1 -1 n Log (2 sin( π j n )) , it is easy to show

The rhs of (4.15

The summation ∑

J n j= v n can be replaced by ∑

Inserting the contributions (4.11) (4.13) (4.14) (4.16) in (4.10) leads to

As for the (Steffensen's) approximation errors, they make use of the successive derivatives of the function f (x) = Log (2 sin(x/2)). We have:

Recursively, it is easy to show that the q-th derivative of f (x), q ≥ 1, is a rational function of the two quantities cos(x/2) and sin(x/2) with bounded numerator on the interval (0, π/3], and a denominator which is sin q (x/2). For the needs of majoration in the Newton-Cotes formulas over each interval of the collection (I j ), this denominator takes its smallest value at ξ = (2π Log n )/n. Therefore, for large n, the (Steffensen's) approximation error "

By summing up over the intervals I j , we obtain the global (Steffensen's) approximation error (p ≥ 2)

Calculation of |∆ 2 |: we proceed as above for establishing an upper bound of , (ii-2) the approximate value of Log µ r is independent of the step length m used in the Newton-Cotes formulas, assuming the weights (α q ) q=0,1,...,m associated with m all positive.

Proof of (i-2): The decomposition of the interval of integration 0, 2 arcsin(κ/2) remains the same as above, given by (4.20). Let us treat the complete interval of integration 0, 2 arcsin(κ/2) by subintervals. We first proceed by estimating an upper bound of

.

On each interval I j the function F(x) is approximated by its interpolation polynomial (say) P F,m (x), where m ≥ 1 is the number of subintervals of I j given by their extremities y q by (4.22), of step length h NC := 2π n m , and P F,m the interpolating polynomial of degree m or less with P F,m (y q ) = F(y q ), for q = 0, 1, . . . , m. The Newton-Cotes formulas

provide the approximate values

The upper bound is a function of n which comes from the asymptotic expansion of πJ n n -x 2 , as deduced from (2.19). Indeed, from (2.19) and using Remark 2.8 (ii),

From (4.31), we deduce the following upper bound of (4.29) on each

(4.35) 4π

By summing up the contributions, for j = Log n , . . . , J n -1, from (4.35) and the asymptotics of J n given by (2.19), we deduce the upper bound (4.28) of |∆ 2 |.

Let us prove that the method of numerical integration we use leads to a (Steffensen's) approximation error which is a

The second derivative F (y) is positive and increasing on (0, 2πJ n n ). It is easy to show that there exists a constant C 0 > 0 such that

Using the asymptotic expansion of J n ((2.19); Remark 2.8 (ii); (4.34)), there exist

From (4.36) and (4.37), summing up the contributions for j = Log n , . . . , J n -1, the global (Steffensen's) approximation error of (4.27) for |∆ 2 | admits the following upper bound, for some constants

Now let us turn to the extremity intervals. Using the Appendix, and (2.19) in Proposition 2.7, it is easy to show that the two integrals

Proof of (ii-2): On each interval I j := 2π j n , 2π( j+1) n , j = Log n , . . . , J n -1, let us assume that the number m of subintervals of I j given by their extremities y q by (4.22), is ≥ 2. The weights α q in (4.30) are assumed to be positive.

The upper bound

n of (4.27) is independent of m ≥ 2, once assumed the positivity of the weights (α q ) q=0,1,...,m , since, due to the relation between the weights in the Newton-Cotes formulas ∑ m q=0 α q = m,

holds uniformly for all j = Log n , . . . , J n -1, we deduce the same upper bound (4.35) as for the Trapezoidal rule. Summing up the contributions over all the intervals I j , we obtain the same upper bound (4.28) of (4.27), as before.

As for the (Steffensen's) approximation errors involved in the numerical integration (4.30) there are "h p+1 NC • K • F (p) (ξ )" on one interval I j , for some p ≥ 2. They make use of the successive derivatives of the function F(x). It can be shown that they contribute negligibly, after summing up over all the intervals I j , as

Gathering the different terms from (i-1)(i-2), the Steffenssen's error terms and the error terms due to the numerical integration by the Newton-Cotes method (ii-1)(ii-2), we have proved the following theorem. Theorem 4.2. Let β > 1 be a real number such that n = dyg(β ) ≥ 260, with β ∈ {θ -1 n : n ≥ 259}. The minorant L r (β ) of Log S lent (β ) admits the following asymptotic expansion as lower bound, as a function of n = dyg(β ), Log 2 sin(x/2) dx -

Each term of (4.42) is bounded by 1 n 1 Log n from above, as previously. On the contrary, each term of (4.43) is such that

Summing up the two contributions, we obtain the following upper bound of (4.41):

The first term (c -1) 1 n is a O 1 n and, multiplied by Log n, is inserted in the Big O of (4.39). The second term 1 c arcsin(κ/2) π Log n is an upper bound of R n /Log n. Let us fix the constant c. Take for instance c = 3. The function (Log Log x) 2 /Log x tends to 0 when x goes to infinity. Therefore there exists an integer η such that all the functions, depending upon n, "grouped in the Big O" of (4.39) satisfy (in short form):

We deduce Lemma 4.3.

Proof of Theorem 1.2.-For any real number β > 1, dyg(β ) ≥ 260 and β ∈ {θ -1 n : n ≥ 259}, we have

from Theorem 4.2. Using Lemma 4.3, for all n ≥ η for some η ≥ 260, we can improve the above inequality to

Recall that C = Λ r µ r . We deduce Theorem 1.2.

5. APPENDIX: TRINOMIALS -1 + z + z n , MAHLER MEASURES AND ANGULAR SECTORIZATION 5.1. Notations, factorization, lenticular roots. The following notations are used throughout this paper. They come from the factorization of G n (X) := -1 + X + X n ([19], Section 2 in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]). Summing in pairs over complex conjugated imaginary roots, the indexation of the roots and the factorization of G n (X) are taken as follows:

(5.1)

where θ n is the only (real) root of G n (X) in the interval (0, 1), where

where the index j = 1, 2, . . . is such that z j,n is a (nonreal) complex zero of G n (X), except if n is even and j = n/2, such that the argument arg(z j,n ) of z j,n is roughly equal to 2π j/n (Proposition 5.11) and that the family of arguments (arg(z j,n )) 1≤ j< n/2 forms a strictly increasing sequence with j:

For n ≥ 2 all the roots of G n (X) are simple, and the roots of

as inverses of the roots of G n (X), are classified in the reversed order (Figure 3). Proposition 5.1. Let n ≥ 2. If n ≡ 5 (mod 6), then G n (X) is irreducible over Q. If n ≡ 5 (mod 6), then the polynomial G n (X) admits X 2 -X + 1 as irreducible factor in its factorization and G n (X)/(X 2 -X + 1) is irreducible.

Proof. Selmer [START_REF] Selmer | On the Irreducibility of Certain Trinomials[END_REF]. 

n > 1, with θ n the unique root of G n in the interval (0, 1). Proposition 5.2. For all n ≥ 2, all zeros z j,n and θ n of the polynomials G n (X) have a modulus in the interval

(ii) the trinomial G n (X) admits a unique real root θ n in the interval (0, 1). The sequence (θ n ) n≥2 is strictly increasing, lim n→+∞ θ n = 1, with θ 2 = 2 1+ √ 5 = 0.618 . . ., (iii) the root θ n is the unique root of smallest modulus among all the roots of G n (X); if n ≥ 6, the roots of modulus < 1 of G n (z) in the closed upper half-plane have the following properties:

(iii-1) θ n < |z 1,n |, (iii-2) for any pair of successive indices j, j + 1 in {1, 2, . . . , n/6 },

Proof. (i)(ii) Selmer [START_REF] Selmer | On the Irreducibility of Certain Trinomials[END_REF], pp 291-292; (iii-1) Flatto, Lagarias and Poonen [START_REF] Flatto | The Zeta Function of the beta Transformation[END_REF], (iii-2) Verger-Gaugry [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF].

From [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF], or by Smyth's Theorem [START_REF] Smyth | On the Product of the Conjugates Outside the Unit Circle of an Algebraic Integer[END_REF] since the trinomials G n (X) are not reciprocal, the Mahler measure of G n satisfies

where Θ = θ -1 5 is the smallest Pisot number, dominant root of the Pisot polynomial

with the constant 1/2 involved in O ( ).

Proof.

[27] Proposition 3.1.

Lemma 5.6. Given the limited expansion D(θ n ) of θ n as in (5.8), denote

with the constant 1 in the Big O.

Proof.

[27] Lemma 3.2.

Lemma 5.7. Let n ≥ 6. The difference θ nθ n-1 > 0 admits the following asymptotic expansion, reduced to its terminant:

with the constant 1 involved in O ( ).

Proof. From (5.8) and Lemma 5.6, we have

with the constant 1/2 involved in O ( ), and

with the constant 1 in the Big O. Then we deduce

The real function x -2 Log x on (1, +∞) is decreasing for x ≥ √ e. Hence the sequence (D(θ n ) -D(θ n-1 )) is decreasing for n large enough. By Proposition 5.2 (θ nθ n-1 ) n is already known to tend to 0.

Since tl(θ

, we have

where the constant involved in O ( ) is now 1 = 1/2 + 1/2. Hence the claim.

Theorem 5.8. Let n ≥ 6. Let β > 1 be a real number of dynamical degree dyg(β ) = n. Then β -1 can be expressed as:

with the constant 1 involved in O ( ).

Proof. By definition

Theorem 5.9. Let β ∈ (1, θ -1 6 ) be a real number. The asymptotic expansion of the locally constant function n = dyg(β ), as a function of the variable β -1, is

2 with the constant 1 in O( ).

Proof. Inverting (5.13) gives the asymptotic expansion of n as a function of β : from (5.13) readily comes (5.16)

then (5.15) as β → 1.

In the sequel, for short, we write λ n instead of D(λ n ).

Proposition 5.10. Let n ≥ n 0 = 18 and 1 ≤ j ≤ n-1 4 . The roots z j,n of G n (X) have the following asymptotic expansions: z j,n = D(z j,n ) + tl(z j,n ) in the following angular sectors: (i) Sector π 2 > arg z > 2π Log n n (main sector):

and the constant 1 in the Big O, (ii) "Bump" sector 2π Log n n > arg z > 0 :

Outside the "bump sector" the moduli of the roots z j,n are readily obtained as (Proposition 3.5 in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF]):

(5.17)

with the constant 1 in the Big O (independent of j).

Proposition 5.11.

Proof. §6 in [START_REF] Verger-Gaugry | On the Conjecture of Lehmer, Limit Mahler Measure of Trinomials and Asymptotic Expansions[END_REF].

Proposition 5.12. For all j such that π/3 ≥ arg z j,n > 2π v n n , the asymptotic expansions of the moduli of the roots z j,n are

where the constant involved in O( ) is 1 (does not depend upon j).

Proof. Proposition 5.14. For n ≥ 18, the modulus of -1 + z j,n , where z j,n is the j-th root of G n (z) = -1 + z + z n , v n ≤ j ≤ n/6 , is Proposition 5.15. For n ≥ 18, the modulus of (-1 + z j,n )/z j,n , where z j,n is the j-th root of G n (z) = -1 + z + z n , v n ≤ j ≤ n/6 , is