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A DOBROWOLSKI-TYPE INEQUALITY FOR THE POLES OF THE
DYNAMICAL ZETA FUNTION OF THE BETA-SHIFT

JEAN-LOUIS VERGER-GAUGRY

ABSTRACT. The poles of the dynamical zeta function of the β -shift in the open unit disk
in C are investigated, when β > 1 is a real number close to 1 and tends to 1. We show
that to β is associated an integer, called dynamical degree of β , and that two types of poles
can be characterized as a function of dyg(β ): the lenticular poles and the other poles in a
narrow annular neighbourhood of the unit circle. From the lenticulus of lenticular poles we
show that we can construct a lenticular measure associated to it. Its definition is mimicked
on that of the Mahler measure, and both are related. We prove that this lenticular measure
admits a lower bound, when dyg(β ) is large enough, as a function of dyg(β ), which is
an analogue of the inequality of Dobrowolski relative to the Mahler measure of algebraic
integers. This Dobrowolski-type inequality generalizes a previous one obtained by the
author on the Mahler measure of the trinomials −1+ x+ xn for n large enough.
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1. INTRODUCTION

Let β > 1 be a real number. The β -transformation is the map [0,1]→ [0,1],x 7→ {βx},
where {·} denotes the fractional part, and byc = y−{y} the integer part of y . The β -
transformation is denoted by Tβ , and its iterates by: T (0)

β
= Id, T (1)

β
=Tβ , T ( j)

β
=Tβ (T

( j−1)
β

),
for j≥ 1. The dynamical system ([0,1],A ,Tβ ,µβ ), where A is the σ -algebra of borelians
and µβ the invariant measure [7], was introduced by Rényi [17] and initially studied in
ergodic theory by Parry [12] [8]. We call dynamical zeta function of the β -shift, denoted
by ζβ (z), the dynamical zeta function of this dynamical system [1] [13] [15] [16]. After
Takahashi [24] [25] [26] and Ito and Takahashi [9] [10], this function takes the form

(1.1) ζβ (z) =
1− zN

(1−β z)
(

∑
∞
n=0 T n

β
(1)zn

) =− 1− zN

−1+ t1z+ t2z2 + t3z3 + . . .

where N, which depends upon β , is the minimal positive integer such that T N
β
(1) = 0; in

the case where T j
β
(1) 6= 0 for all j ≥ 1, “zN” has to be replaced by “0”. In (1.1) the digits ti

are defined from β by: ti := bβT (i−1)
β

(1)c, i≥ 1, and depend upon β . All the tis are integers
in the alphabet Aβ = {0,1, . . . ,dβ −1e} where dβ −1e is the upper integer part of β −1;
if β is not an integer, then dβ − 1e = bβc. The sequence (ti)i≥1 is such that 0.t1t2t3 . . . is
the Rényi β -expansion of unity dβ (1) ([11], Chapt 7), i.e. 1 = ∑i≥1 tiβ−i. Multiplying this
identity by β uniquely characterizes β as a Laurent series of β−1 from (ti), as:

(1.2) β = t1 +
t2
β
+

t3
β 2 + . . . .

The domain of definition of ζβ (z), as a meromorphic function, contains the open unit disk
D(0,1) = {z : |z| < 1}. Indeed, in all the cases where β > 1 is such that the power series
−1+ t1z+ t2z2 + t3z3 + . . . at the denominator of (1.1) has infinitely many non-zero terms,
Hadamard’s formula gives R = 1 as radius of convergence. For the other cases, the domain
of definition of ζβ (z) as a meromorphic function is C.

From (1.2) β−1 is always a simple pole of ζβ (z) in D(0,1). The function ζβ (z) is holo-
morphic on {z ∈ C : |z|< 1/β} and is extended meromorphically to D(0,1). What are the
other poles of ζβ (z) in D(0,1)? Could it be possible to classify them into classes and, on
each class, that a global measure can be defined and have interesting bounded properties
associated with β itself? Let us ask these two questions only when β lies in the neighbour-
hood of 1, precisely when β ∈ (1,(1+

√
5)/2); the alphabet Aβ being common, equal to

{0,1}, for all such β s.

In this paper, for 1 < β ≤ (1+
√

5)/2 any real number, we show two results; first that
the set of the poles of ζβ (z) in D(0,1) can be partitioned into two parts: the subset of the
lenticular poles, denoted by Lβ , all simple poles, and the subset of the other poles. The
definition of a lenticular pole is given in Definition 2.12. The terminology “lenticular pole”
comes from the particular case where β belongs to ∪n≥2{θ−1

n }, where θn is the unique
zero of −1+ z+ zn in (0,1) (cf Appendix and [27]). The sequence (θ−1

n )n≥2 is strictly
decreasing and tends to 1 if n tends to infinity: 1 < .. . < θ

−1
n+1 < θ−1

n < .. . < θ
−1
2 =
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(1+
√

5)/2. Indeed, in this particular case, if β = θ−1
n for some n ≥ 2, the set of poles

of ζβ (z) = −(1− zn)/(−1+ z+ zn) inside D(0,1) forms a lenticulus of simple poles in
{z ∈ D(0,1) : |argz| < π/3}; all the poles of modulus < 1 are lenticular and there is no
“other pole”. In the general case, in Theorem 2.18 we show that “other poles” exist, in a
neighbourhood of the unit circle, and that, if θ−1

n < β < θ
−1
n−1 for some n≥ 3, the lenticulus

Lβ of lenticular poles can be defined “optimally” with respect to L
θ
−1
n

, using the method
of Rouché circles. The notion of “optimality” is made precise in Theorem 2.4. Lenticuli
of poles are symmetrical with respect to the real axis. Examples of lenticuli of lenticular
poles are given in [5].

Second, if θ−1
n < β < θ

−1
n−1 for some n≥ 3, and Lβ = {ωJn,n, . . . ,ω1,n,β

−1,ω1,n, . . . ,ωJn,n}
denotes the set of lenticular poles of ζβ (z), all depending upon β , then we attribute to Lβ

a measure, that we call lenticular measure of β , by the expression

(1.3) Slent(β ) := ∏
ω∈Lβ

|ω|−1 = β

Jn

∏
j=1
|ω j,n|−2.

By construction, Slent(β )≥ 1. If β = θ−1
n for some n≥ 2, then we have the identification

with the Mahler measure of θ−1
n : Slent(θ

−1
n ) = M(θ−1

n ) (cf Appendix Section 5). Recall
that the Mahler measure of a nonzero algebraic number β , of minimal polynomial Pβ (X) =

a0Xm + a1Xm−1 + . . .+ am = a0 ∏i(X −α(i)) ∈ Z[X ], is M(β ) = |a0|∏i max{1, |α(i)|} =:
M(Pβ ) [21] [27]. The definition of Slent(β ) is mimicked on the definition of the Mahler
measure of an algebraic integer. It is an analogue of the Mahler measure. Hence, the
properties of Slent(β ), θ−1

n < β < θ
−1
n−1, are expected to be closely related to those of the

Mahler measure of β if β is an algebraic integer. It will be the purpose of a future work to
clarify this point. In this note we are just interested in (i) proving the continuity of Slent(β )
(Theorem 1.1), (ii) obtaining a lower bound of liminfβ→1Slent(β ) by comparison with
limn→∞ M(θ−1

n ), and n-depending lower bounds of Slent(β ) when β ∈ (θ−1
n ,θ−1

n−1) and n
large enough (Theorem 1.2). The method used is an extension of the one developped in
[27]: inthere the lenticular poles are developped as asymptotic expansions “à la Poincaré”
as a function of n, which leads to a Dobrowolski-type inequality of the Mahler measure,
better than the classical Dobrowolski’s inequality in [4] .

Let us recall more precisely these inequalities from [4] and [27]. In 1979, Dobrowolski
[4], using an auxiliary function, obtained the asymptotic minoration, with n = deg(α) the
degree of the nonzero algebraic integer α , which is not a root of unity,

(1.4) M(α)> 1+(1− ε)

(
LogLogn

Logn

)3

, n > n0(ε),

with 1− ε replaced by 1/1200 for n ≥ 2, for an effective version of the minoration. The
minoration (1.4) is general and admits a better lower bound, in a similar formulation, when
α only runs over the set {θ−1

n : n≥ 2}. Indeed, in this case, it is proved in [27] that

(1.5) M(θ−1
n ) > Λ− Λ

6

( 1
Logn

)
, n≥ 2,
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holds with the following constant

(1.6) Λ := exp
(3
√

3
4π

L(2,χ3)
)
= exp

(−1
π

∫
π/3

0
Log

(
2 sin

(x
2
))

dx
)

= 1.38135 . . . ,

higher than 1.1541 . . ., and L(s,χ3) := ∑m≥1
χ3(m)

ms the Dirichlet L-series for the character
χ3, with χ3 the uniquely specified odd character of conductor 3 (χ3(m) = 0,1 or −1 ac-
cording to whether m ≡ 0, 1 or 2 (mod 3), equivalently χ3(m) =

(m
3

)
the Jacobi symbol).

From Selmer [19], in (1.5), we have: n = deg(θ−1
n ) if n 6≡ 5 (mod 6), and n = deg(θ−1

n )+2
if n≡ 5 (mod 6).

Denote by amax = 5.87433 . . . the abscissa of the maximum of the function a→ (1−
exp(−π

a ))/(2exp(π

a )− 1) on (0,∞) (Figure 1). Let κ := 0.171573 . . . be the value of its
maximum, at a= amax. From a numerical viewpoint we have: 2arcsin(κ/2)= 0.171784 . . ..
Denote
(1.7)

C := exp
(−1

π

∫ 2arcsin( κ

2 )

0
Log

[1+2sin( x
2)−

√
1−12sin( x

2)+4(sin( x
2))

2

4

]
dx
)
= 1.15411 . . . .

The objective of this paper is to prove the two following theorems.

Theorem 1.1. For all n≥ 260, the map

(1.8) Slent : β →Slent(β )

is continuous on the interval (θ−1
n ,θ−1

n−1).

Theorem 1.2. There exists an integer η ≥ 260 such that the following inequality holds:

(1.9) Slent(β )≥C−C
arcsin(κ/2)

π

1
Log(n)

, for all n≥ η

and any β ∈ (θ−1
n ,θ−1

n−1).

In (1.5) or (1.9) the constant in the minorant is not any more 1 as in (1.4) but Λ =
1.38135 . . . and C = 1.15411 . . . respectively, and the sign of the n-dependent term is “−”,
instead of “+”, with an appreciable gain of (Logn)2 in the denominator. In the case where
β is an algebraic integer in Theorem 1.2, (1.9) represents an improvment of Dobrowolski’s
inequality, in some sense, but in which the degree deg(β ) is replaced by the integer n such
that β ∈ (θ−1

n ,θ−1
n−1). We suggest to name this peculiar integer n the dynamical degree of

β , and to denote it by dyg(β ). It has the obvious following property:
β tends to 1 if and only if dyg(β ) tends to infinity.

Then, from Theorem 1.2, we have: C ≤ liminfβ→1+Slent(β )≤ Λ.
The paper is organized as follows. In Section 2 we show the optimal existence of lenticuli

of poles of ζβ (z), by the method of Rouché, by comparison with the sets of lenticular zeroes
of the trinomials −1+ x+ xn. To be self-contained the Appendix fixes notations, recalls
useful results concerning the roots of the trinomials −1+x+xn, and establishes some new
relations between them. We prove Theorem 1.1 in Section 3, and establish Theorem 1.2 in
Section 4 from the asymptotic expansions bounding from below the lenticular measures, the
notations for the asymptotic expansions of the poles of ζ

θ
−1
n
(z) being recalled in Section 5.
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2. GEOMETRY OF THE POLES OF ζβ (z) INSIDE THE OPEN UNIT DISK

2.1. Parry Upper function and lacunarity. Let 1 < β ≤ (1 +
√

5)/2. The Rényi β -
expansion of unity, denoted by dβ (1) = 0.t1t2t3 . . ., is such that the digits ti = bβT (i−1)

β
(1)c,

i≥ 1, are equal to 1 or 0. The sequence (ti) entirely controls the set of admissible sequences
of digits in {0,1}, by the Conditions of Parry [12], [11] Chapt. 7: it defines the upper
bound, in the lexicographical sense, of all admissible sequences. The adherence of the set
of the admissible sequences in {0,1}N is called the β -shift. In honour of W. Parry, because
of this upper bound, we introduce the following terminology.

Definition 2.1. The analytic function −1+ t1z+ t2z2 + t3z3 + . . ., whose coefficient vector
is the sequence (ti) of dβ (1) = 0.t1t2t3 . . ., is denoted by fβ (z) and is called the Parry Upper
function at β .

Because of (1.1), the identities

(2.1) (i) fβ (z) =−
1− zN

ζβ (z)
if T i

β
(1) 6= 0 for 1≤ i≤ N−1,T N

β
(1) = 0,

(2.2) (ii) fβ (z) =−
1

ζβ (z)
otherwise,

hold. Therefore the zeroes of modulus < 1 of fβ (z) are exactly the poles of ζβ (z). For
convenience in the sequel, because the Parry Upper function is easier to manipulate, we
will mostly consider fβ (z) and its zeroes inside D(0,1), instead of ζβ (z).

The lacunarity of the Parry Upper function fβ (z) is a consequence of the two following
results.

Let us observe that, in general, the total ordering < on (1,+∞) is uniquely in correspon-
dence with the lexicographical ordering <lex on Rényi expansions of 1 by the following
Proposition, which is Lemma 3 in Parry [12].

Proposition 2.2. Let α > 1 and β > 1. If the Rényi α-expansion of 1 is

dα(1) = 0.t ′1t ′2t ′3 . . . , i.e. 1 =
t ′1
α
+

t ′2
α2 +

t ′3
α3 + . . .

and the Rényi β -expansion of 1 is

dβ (1) = 0.t1t2t3 . . . , i.e. 1 =
t1
β
+

t2
β 2 +

t3
β 3 + . . . ,

then α < β if and only if (t ′1, t
′
2, t
′
3, . . .)<lex (t1, t2, t3, . . .).

Theorem 2.3. A real number β , 1 < β < 1+
√

5
2 , belongs to [θ−1

n+1,θ
−1
n ) for some integer

n≥ 2 if and only if the Rényi β -expansion of unity dβ (1) has the form

(2.3) dβ (1) = 0.10n−110n110n210n3 . . . ,

with nk ≥ n−1 for all k ≥ 1.
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Proof. The condition is necessary: dβ (1) begins as 0.10n−11 for all β s such that θ
−1
n+1 ≤

β < θ−1
n . For such β s we write dβ (1) = 0.10n−11u with u a string of digits in {0,1} , that

is
u = 1h00n11h10n21h2 . . .

and h0,n1,h1,n2,h2, . . . integers ≥ 0. The Conditions of Parry ([11] Chap. 7) applied to
the sequence (1,0n−1,11+h0,0n1,1h1,0n2,1h3, . . .), which characterizes uniquely the base of
numeration β , readily implies h0 = 0 and hk = 1 and nk ≥ n−1 for all k ≥ 1.

The condition is sufficient: since d
θ
−1
n+1

(1) = 0.10n−11 and d
θ
−1
n
(1) = 0.10n−21, Proposi-

tion 2.2 implies the result. �

From (2.3), for any real number β in the interval (1,(1+
√

5)/2), we deduce that the
Parry Upper function fβ (z) takes the form, for some integer n≥ 3:

(2.4) fβ (z) =−1+ x+ xn + xm1 + xm2 + . . .+ xms + . . .

with the distanciation conditions: m1− n ≥ n− 1, mq+1−mq ≥ n− 1 for 1 ≤ q. The real
number β has dynamical degree dyg(β ) = n if the third monomial in (2.4) is exactly “xn”.

2.2. Lenticular poles. In this subsection β ∈ (1,θ−1
6 ) is a real number such that β 6∈

{θ−1
n | n ≥ 7}. The Rényi β -expansion dβ (1) of 1 is infinite or not. If it is finite fβ (z) is

a polynomial of degree mq for some integer mq,q ≥ 2. In Theorem 2.11 it will be proved
that, to such a β , is associated a lenticulus Lβ of zeroes of fβ (z), located in the angular
sector

|arg(z)|< π/18.2880, |z|< 1,

each lenticular zero being uniquely associated with a lenticular zero of a trinomial −1+
x+ xn for some n. Examples of lenticuli can be visualized in [5].

The Appendix (Section 5) gives a summary on the geometry of the lenticular zeroes of
fβ (z) for β ∈ {θ−1

n | n≥ 3}, together with their asymptotic expansions in regions of valid-
ity. In the following we will use the notation Gn(z) :=−1+z+zn instead of f

θ
−1
n
(z),n≥ 3.

The method which will be used to detect the lenticulus of lenticular zeroes of fβ (z) is
the method of Rouché, where the lenticular zeroes are expressed as asymptotic expansions
of the integer dyg(β ). Let us give a few comments on the way it will be applied.

Let n := dyg(β ). From §5.1, let

L
θ
−1
n

= {zbn/6c,n, . . . ,z2,n,z1,n,θn,z1,n,z2,n, . . . ,zbn/6c,n}

denote the lenticulus of lenticular roots of Gn = f
θ
−1
n

. Since it is symmetrical with respect to
the real axis, we will only consider the lenticular zeroes in the (upper) Poincaré half-plane.
L

θ
−1
n

lies in the angular sector

|arg(z)|< π/3, |z|< 1.

In Theorem 2.4 and Proposition 2.9, we prove the existence of real numbers t j,n ∈ (0,1)
such that the small Rouché circles

C j,n := {z ∈ C : |z− z j,n|=
t j,n

n
}
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of respective centers z j,n, z j,n ∈L
θ
−1
n

, all satisfy the Rouché conditions:

(2.5)
∣∣ fβ (z)−Gn(z)

∣∣= ∣∣∣∣∣∑q≥1
zmq

∣∣∣∣∣< |Gn(z)| for z ∈C j,n, for j = 1,2, . . . ,Jn,

are pairwise disjoint, small enough to avoid a nonempty intersection with {z : |z|= 1}, and
where the integer Jn ≤ bn

6c is the largest possible integer. The maximality of Jn means that
the conditions of Rouché cannot be satisfied as soon as Jn < j ≤ bn

6c for the reason that the
circles C j,n are too close to |z|= 1.

As a consequence, the number of zeroes of fβ (z) and Gn(z) in the open disk D j,n := {z |
|z− z j,n| <

t j,n
n } will be equal, implying the existence of a simple zero of the Parry Upper

function fβ (z) in each disk D j,n.
For any real number β ∈ (1,θ−1

6 ) such that β 6∈ {θ−1
n | n≥ 7}, the quantities t j,n will be

deduced from the following inequalities:

(2.6)
|z|2n−1

1−|z|n−1 < |Gn(z)| for z ∈C j,n, j = 1,2, . . . ,Jn,

since ∣∣ fβ (z)−Gn(z)
∣∣= ∣∣∣∣∣∑q≥1

zmq

∣∣∣∣∣≤ ∑
q≥1
|zmq| ≤ |z|2n−1

1−|z|n−1 , |z|< 1,

instead of (2.5).
The existence of the lenticular roots ω j,n of Lβ in the main angular subsector is proved

in Theorem 2.4, then in Theorem 2.11 in a refined version. Proposition 2.9 completes the
proof of their existence in the bump angular sector (cf Section 5.2), where the asymptotic
expansions of the lenticular zeroes z j,n take another form.

Theorem 2.4. Let n ≥ n1 = 195, a ≥ 1, and j ∈ {dvne,dvne+ 1, . . . ,bn/6c} . Denote by
C j,n := {z | |z− z j,n| =

t j,n
n } the circle centered at the j-th root z j,n of −1+X +Xn, with

t j,n =
π|z j,n|

a . Then the condition of Rouché

(2.7)
|z|2n−1

1−|z|n−1 < |−1+ z+ zn| , for all z ∈C j,n,

holds true on the circle C j,n for which the center z j,n satisfies

(2.8)
|−1+ z j,n|
|z j,n|

<
1− exp

(−π

a

)
2exp

(
π

a

)
−1

.

The condition n≥ 195 ensures the existence of such roots z j,n. Taking the value a = amax =
5.87433 . . . for which the upper bound of (2.8) is maximal, equal to 0.171573 . . ., the roots
z j,n which satisfy (2.8) all belong to the angular sector, independent of n:

(2.9) arg(z) ∈
[

0,+
π

18.2880
]
.

For any real number β > 1 having dyg(β ) = n, fβ (z) admits a simple zero ω j,n in D j,n
for which the center z j,n satisfies (2.8) with a = amax, and j in the range {dvne,dvne+
1, . . . ,bn/6c}.
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Proof. Denote by ϕ := arg(z j,n) the argument of the j-th root z j,n.
Since −1+ z j,n+ zn

j,n = 0, we have |z j,n|n = |−1+ z j,n|. Let us write z = z j,n+
t j,n
n eiψ =

z j,n(1+ π

anei(ψ−ϕ)) the generic element belonging to C j,n, with ψ ∈ [0,2π].
Let X := cos(ψ −ϕ). Let us show that if the inequality (2.7) of Rouché holds true for

X = +1, for a certain circle C j,n, then it holds true for all X ∈ [−1,+1], that is for every
argument ψ ∈ [0,2π], i.e. for every z ∈C j,n. Let us show∣∣∣1+ π

an
ei(ψ−ϕ)

∣∣∣n = exp
(

π X
a

)
×
(

1− π2

2a2 n
(2X2−1)+O(

1
n2 )

)
and

arg
((

1+
π

an
ei(ψ−ϕ)

)n)
= sgn(sin(ψ−ϕ))×

(
π
√

1−X2

a
[1− π X

an
]+O(

1
n2 )

)
.

Indeed, since sin(ψ−ϕ) =±
√

1−X2, then(
1+

π

an
ei(ψ−ϕ)

)n
= exp

(
nLog(1+

π

an
ei(ψ−ϕ)))

)
= exp

(
π

a
(X± i

√
1−X2)+

[
−n

2
(

π

an
(X± i

√
1−X2))2 +O(

1
n2 )

])
= exp

(
π X
a
− π2

2a2 n
(2X2−1)+O(

1
n2 )
)
× exp

(
± i

π
√

1−X2

a
[1− π X

an
]+O(

1
n2 )

)
.

Moreover, ∣∣∣1+ π

an
ei(ψ−ϕ)

∣∣∣= ∣∣∣1+ π

an
(X± i

√
1−X2)

∣∣∣= 1+
π X
an

+O(
1
n2 ).

with

arg(1+
π

an
ei(ψ−ϕ)) = sgn(sin(ψ−ϕ))× π

√
1−X2

an
+O(

1
n2 ).

For all n≥ 18 (Proposition 3.5 in [27]), let us recall that

(2.10) |z j,n|= 1+
1
n

Log(2sin
π j
n
)+

1
n

O
(

LogLogn
Logn

)2

.

Then the left-hand side term of (2.7) is

|z|2n−1

1−|z|n−1 =
|−1+ z j,n|2

∣∣∣1+ π

anei(ψ−ϕ)
∣∣∣2n

|z j,n|
∣∣1+ π

anei(ψ−ϕ)
∣∣−|−1+ z j,n|

∣∣1+ π

anei(ψ−ϕ)
∣∣n

(2.11) =
|−1+ z j,n|2

(
1− π2

an(2X2−1)
)

exp
(2π X

a

)
(

1+ 1
nLog(2sin π j

n )+ π X
an

)
−|−1+ z j,n|

(
1− π2

2an(2X2−1)
)

exp(π X
a )

up to 1
nO
(

LogLogn
Logn

)2
-terms (in the terminant). The right-hand side term of (2.7) is

|−1+ z+ zn|=
∣∣∣−1+ z j,n

(
1+

π

na
ei(ψ−ϕ)

)
+ zn

j,n

(
1+

π

na
ei(ψ−ϕ)

)n∣∣∣
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=

∣∣∣∣∣−1+ z j,n(1± i
π
√

1−X2

an
)(1+

π X
an

)+

(2.12)

(1− z j,n)
(
1− π2

2a2 n
(2X2−1)

)
exp
(π X

a

)
exp
(
± i
(

π
√

1−X2

a
[1− π X

an
]
))

+O(
1
n2 )

∣∣∣∣∣
Let us consider (2.11) and (2.12) at the first order for the asymptotic expansions, i.e. up

to O(1/n) - terms instead of up to O(1
n(LogLogn/Logn)2) - terms or O(1/n2) - terms.

(2.11) becomes:
|−1+ z j,n|2 exp(2πX

a )

|z j,n|− |−1+ z j,n|exp(πX
a )

and (2.12) is equal to:

|−1+ z j,n|

∣∣∣∣∣1− exp
(π X

a

)
exp
(
± i

π
√

1−X2

a

)∣∣∣∣∣
and is independent of the sign of sin(ψ−ϕ). Then the inequality (2.7) is equivalent to

(2.13)
|−1+ z j,n|2 exp(2πX

a )

|z j,n|− |−1+ z j,n|exp(πX
a )

< |−1+ z j,n|

∣∣∣∣∣1− exp
(π X

a

)
exp
(
± i

π
√

1−X2

a

)∣∣∣∣∣ ,
and (2.13) to

(2.14)
|−1+ z j,n|
|z j,n|

<

∣∣∣1− exp
(

π X
a

)
exp
(

i π
√

1−X2

a

)∣∣∣exp
(−π X

a

)
exp
(

π X
a

)
+
∣∣∣1− exp

(
π X
a

)
exp
(

i π
√

1−X2

a

)∣∣∣ =: κ(X ,a).

Denote by κ(X ,a) the right-hand side term, as a function of (X ,a), on [−1,+1]×
[1,+∞). It is routine to show that, for any fixed a, the partial derivative ∂κX of κ(X ,a) with
respect to X is strictly negative on the interior of the domain. The function x→ κ(x,a) takes
its minimum at X = 1, and this minimum is always strictly positive. Hence the inequality
of Rouché (2.7) will be satisfied on C j,n once it is satisfied at X = 1.

For which range of values of j/n? Up to O(1/n)-terms in (2.14), it is given by the set of
integers j for which z j,n satisfies:

(2.15)
|−1+ z j,n|
|z j,n|

< κ(1,a) =

∣∣1− exp
(

π

a

)∣∣exp
(−π

a

)
exp
(

π

a

)
+
∣∣1− exp

(
π

a

)∣∣ .
In order to take into account a collection of roots of z j,n as large as possible, i.e. in order to
have a minorant of the lenticular measure Slent(β ) the largest possible, the value of a≥ 1
has to be chosen such that a→ κ(1,a) is maximal in (2.15).

The function a→ κ(1,a) reaches its maximum κ(1,amax) := 0.171573 . . . at amax =
5.8743 . . .. (Figure 1). Denote by Jn the maximal integer j for which (2.15) is satisfied and
in which a is taken equal to amax (Definition 2.6 and Proposition 2.7). From Proposition
2.7, in which are reported the asymptotic expansions of Jn and arg(zJn,n), we deduce

(2.16) arg(z j,n)<
π

18.2880 . . .
= 0.171784 . . . for j = dvne,dvne+1, . . . ,Jn.
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0.025
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FIGURE 1. Curve of the Rouché condition a→ κ(1,a) (upper bound in
(2.8)), for the circles C j,n = {z | |z− z j,n| = π|z j,n|/(an)} centered at the
zeroes z j,n of the trinomial −1+X +Xn, as a function of the size of the
circles C j,n parametrized by the adjustable real number a≥ 1.

Remark 2.5. The minimal value n1 = 195 is calculated by the condition 2π
vn
n < π

18.2880...
= 0.171784 . . ., for all n ≥ n1, for having a strict inclusion, of the “bump sector” inside
the angular sector defined by the maximal opening angle 0.171784 . . . (cf Appendix for the
sequence (vn))

This finishes the proof. �

Let us calculate the argument of the last root z j,n for which (2.14) is an equality with
X = 1.

Definition 2.6. Let n ≥ 195. Denote by Jn the largest integer j ≥ 1 such that the root z j,n
of Gn satisfies

(2.17)
|−1+ z j,n|
|z j,n|

≤ κ(1,amax) =
1− exp

( −π

amax

)
2exp

(
π

amax

)
−1

= 0.171573 . . .

Let us observe that the upper bound κ(1,amax) is independent of n. From this indepen-
dence we deduce the following “limit” angular sector in which the Rouché conditions can
be applied.

Proposition 2.7. Let n≥ 195. Let us put κ := κ(1,amax) for short. Then

(2.18) arg(zJn,n) = 2arcsin
(κ

2
)
+

κ Logκ

n
√

4−κ2
+

1
n

O
((LogLogn

Logn

)2)
,

(2.19) Jn =
n
π

(
arcsin

(κ

2
))

+
κ Logκ

π
√

4−κ2
+O

((LogLogn
Logn

)2)
with, at the limit,

(2.20) lim
n→+∞

arg(zJn,n) = lim
n→+∞

2π
Jn

n
= 2arcsin

(κ

2
)
= 0.171784 . . .

Proof. Since limn→+∞ |zJn,n|= 1, we deduce from (2.17) that the limit argument ϕlim of zJn,n
satisfies |−1+cos(ϕlim)+ isin(ϕlim)|= 2sin(ϕlim/2) = κ(1,amax). We deduce (2.20), and
the equality between the two limits from (2.21).
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From (2.17), the inequality |−1+z j,n| ≤ |z j,n|κ(1,amax) already implies that arg(zJn,n))<
ϕlim. In the sequel, we will use the asymptotic expansions of the roots zJn,n. From Section
6 in [27] the argument of zJn,n takes the following form

(2.21) arg(zJn,n)) = 2π(
Jn

n
+ℜ) with ℜ =− 1

2πn

[
1− cos(2πJn

n )

sin(2πJn
n )

Log(2sin(
πJn

n
))

]
with

tl(arg(zJn,n))) = +
1
n

O

((
LogLogn

Logn

)2
)
.

Its modulus is

(2.22) |zJn,n|= 1+
1
n

Log(2sin
πJn

n
)+

1
n

O
(

LogLogn
Logn

)2

.

Denote ϕ := arg(zJn,n). Up to 1
nO
((LogLogn

Logn

)2)-terms, we have

|−1+ zJn,n|2 =
∣∣∣−1+[1+

1
n

Log(2sin
πJn

n
)](cos(ϕ)+ isin(ϕ))

∣∣∣2
= [−1+[1+

1
n

Log(2sin
πJn

n
)](cos(ϕ)]2 +[1+

1
n

Log(2sin
πJn

n
)]2(sin(ϕ)2

= 1+[1+
1
n

Log(2sin
πJn

n
)]2−2[1+

1
n

Log(2sin
πJn

n
)]cos(ϕ)

(2.23) = 4(sin(
ϕ

2
))2 +

4
n
(sin(

ϕ

2
))2 Log(2sin

πJn

n
) = 4(sin(

ϕ

2
))2[1+

1
n

Log(2sin
πJn

n
)].

Up to 1
nO
((LogLogn

Logn

)2)-terms, due to the definition of Jn, let us consider (2.17) as an equal-
ity; hence, from (2.23) and (2.22), the following identity should be satisfied

(2.24) 2sin(
ϕ

2
) = κ [1+

1
2n

Log(2sin
πJn

n
)]

We now use (2.24) to obtain an asymptotic expansion of ψn := 2π
Jn
n −ϕlim as a function of

n and ϕlim up to 1
nO
((LogLogn

Logn

)2)-terms. First, at the first order in ψn,

sin(
πJn

n
) =

ψn

2
cos(

ϕlim

2
)+ sin(

ϕlim

2
), cos(

πJn

n
) =−ψn

2
sin(

ϕlim

2
)+ cos(

ϕlim

2
),

Log
(
2sin(

πJn

n
)
)
= Log

(
2sin(

ϕlim

2
)
)
+ψn

cos(ϕlim
2 )

2sin(ϕlim
2 )

= Logκ +ψn
cos(ϕlim

2 )

h
.

Moreover, [1− cos(2πJn
n )

sin(2πJn
n )

Log(2sin(
πJn

n
))
]

(2.25) = tan(
ϕlim

2
)(Logκ)

[
1+ψn

(
1

sin(ϕlim)
+

cos(ϕlim
2 )

κ Logκ

)]
.
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Hence, with 2sin(ϕ/2) = 2sin(πJn/n)cos(πℜ)+2cos(πJn/n)sin(πℜ), and from (2.21),
up to 1

nO
((LogLogn

Logn

)2)-terms, the identity (2.24) becomes

[ψn cos(
ϕlim

2
)+2sin(

ϕlim

2
)]+(

−2cos(ϕlim
2 ) tan(ϕlim

2 )Logκ

2n
) = κ

[
1+

Logκ

2n

]
.

We deduce

(2.26) ψn =
κ Logκ

n cos(ϕlim
2 )

+
1
n

O
((LogLogn

Logn

)2)
,

then 2πJn/n = ψn +ϕlim and (2.19). With 2πJn/n, and from (2.21) and (2.25) we deduce
(2.18). This finishes the proof. �

Remark 2.8. (i) The maximal half-opening angle of the sector in which one can detect
zeroes of fβ (z), for any β such that θn−1 < β−1 < θn, by the method of Rouché, is

0.17178... = 2arcsin(κ(1,amax)
2 ). Remarkably this upper bound 2arcsin(κ(1,amax)

2 ) is inde-
pendent of n. By comparison it is fairly small with respect to π/3 for the Perron numbers
θ−1

n .
(ii) The curve a→ κ(1,a), given by Figure 1, is such that any value in the interval

(0,κ(1,amax)) is reached by the function κ(1,a) from two values say a1 and a2, of a,
satisfying a1 < amax < a2. On the contrary, the correspondence amax↔ κ(1,amax) is unique,
corresponding to a double root. Denote D := exp(π/amax) and κ := κ(1,amax). It means
that the quadratic algebraic equation 2κD2− (κ + 1)D+ 1 = 0 deduced from the upper
bound in (2.17) has necessarily a discriminant equal to zero. The discriminant is κ2−6κ +
1. Therefore D = (κ +1)/(4κ) and the limit value x = 2arcsin(κ/2) in (2.20) satisfies the
quadratic algebraic equation

4(sin(x/2))2−12sin(x/2)+1 = 0.

Proposition 2.9. Let n ≥ n1 = 195. The circles C j,n := {z | |z− z j,n| =
π|z j,n|
namax

} centered at
the roots z j,n of the trinomial −1+ z+ zn which belong to the “bump sector”, namely for
j ∈ {1,2, . . . ,bvnc}, are such that the conditions of Rouché

(2.27)
|z|2n−1

1−|z|n−1 < |−1+ z+ zn| , for all z ∈C j,n, 1≤ j ≤ bvnc,

hold true. For any real number β > 1 having dyg(β ) = n, fβ (z) admits a simple zero ω j,n
in D j,n (with a = amax), for j in the range {1,2, . . . ,bvnc}.

Proof. The development terms “D(|z j,n|)” of the asymptotic expansions of |z j,n| change
from the main angular sector argz∈ (2π(Logn)/n,π/3) to the first transition region argz�
2π(Logn)/n, the “bump sector”, further to the second transition region
argz� 2π

√
(Logn)(LogLogn)/n, and to a small neighbourhood of θn (cf Section 5.2).

Then the proof of (2.27) is the same as that of Theorem 2.4 once (2.10) is substituted by
the suitable asymptotic expansions which correspond to the angular sector of the “bump”.
The terminants tl(|z j,n|) of the respective asymptotic expansions of |z j,n| also change: this
change obliges to reformulate (2.11) and (2.12) up to Logn/n - terms, and not up to 1/n -
terms, as in the proof of Theorem 2.4. It is remarkable that the inequality (2.14) remains the
same, with the same upper bound function κ(X ,a). Then the equation of the curve of the
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Rouché condition a→ κ(1,a), on [1,+∞), is the same as in Theorem 2.4 for controlling
the conditions of Rouché. The optimal value amax of a also remains the same, and (2.7)
also holds true for those z j,n in the bump sector. �

Lemma 2.10. Let n≥ 7. Any real number β of dynamical degree n, β 6= θ−1
n , is such that

β−1 ∈C0,n := {z ∈ C : |z−θn|=
t0,n
n } with

t0,n :=
(

LogLogn
Logn

)2

.

Proof. Since β−1 runs over the open interval (θn−1,θn), this interval (θn−1,θn) is neces-
sarily completely included in D0,n := {z ∈ C : |z− θn| <

t0,n
n }, and the radius of C0,n is

θn− θn−1. We deduce the result from Lemma 5.7. From Proposition 5.10 the root z1,n
admits ℑ(z1,n) =

2π

n (1− 1
Logn + . . .) as imaginary part. Then, for any t1,n ∈ (0,1), the circle

C0,n, of radius t0,n/n, and C1,n are disjoint and do not intersect |z|= 1. �

From the inequalities (2.8) in Theorem 2.4, also used in the proof of Proposition 2.9,
we now obtain a finer localization of a subcollection of the roots ω j,n of the Parry Upper
function fβ (z), and a definition of the lenticulus Lβ of β , as follows.

Theorem 2.11. Let n≥ n1 = 195. Let β > 1 be any real number having dyg(β ) = n. The
Parry Upper function fβ (z) has an unique simple zero ω j,n in each disk D j,n :=

{z | |z− z j,n|<
π |z j,n|
namax

}, j = 1,2, . . . ,Jn, which satisfies the additional inequality:

(2.28) |ω j,n− z j,n|<
π|z j,n|
na j,n

for j = dvne,dvne+1, . . . ,Jn,

where aJn,n = amax and, for j = dvne, . . . ,Jn−1, the value a j,n , > amax, is defined by

(2.29) D
( π

a j,n

)
= Log

[1+B j,n−
√

1−6B j,n +B2
j,n

4B j,n

]
with B j,n := 2sin(

π j
n
)
(

1− 1
n

Log(2sin(
π j
n
))
)
,

and, putting D := D
(

π

a j,n

)
for short,

(2.30) tl(
π

a j,n

)
=

2
n
×B−1

j,n (
−3+ exp(−D)+2exp(D)

4− exp(−D)−2exp(D)
)×
(

LogLogn
Logn

)2

.

An upper bound of the tails, independent of j, is given by

(2.31) O
((LogLogn)2

(Logn)3

)
with the constant 1

7π
in the Big O.

Definition 2.12. Under the notations of Theorem 2.11, the lenticulus Lβ associated with
β is constituted by the following subset of lenticular roots of fβ (z):

(2.32) Lβ := {1/β} ∪
Jn⋃

j=1

(
{ω j,n}∪{ω j,n}

)
.
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Proof. The existence of the zeroes comes from Proposition 2.9 and Theorem 2.4, with the
maximal value Jn of the index j given by Proposition 2.6. To refine the localization of ω j,n
in the neighbourhood of z j,n, in the main angular sector, i.e. for j ∈ {dvne,dvne+1, . . . ,Jn},
the conditions of Rouché (2.7) are now used to define the new radii.

The value a j,n is defined by the development term D( π

a j,n
), itself defined as follows:

(2.33) D
(
|−1+ z j,n|
|z j,n|

)
=:

1− exp
(
−D( π

a j,n
)
)

2exp
(
D( π

a j,n
)
)
−1

and the tail tl( π

a j,n
) calculated from tl

(
|−1+z j,n|
|z j,n|

)
so that the Rouché condition

(2.34)
|−1+ z j,n|
|z j,n|

= D
(
|−1+ z j,n|
|z j,n|

)
+ tl
(
|−1+ z j,n|
|z j,n|

)
<

1− exp
(
− π

a j,n

)
2exp

(
π

a j,n

)
−1

holds true. From Proposition 5.15, denote

B j,n := D
(
|−1+ z j,n|
|z j,n|

)
= 2sin(

π j
n
)
(

1− 1
n

Log(2sin(
π j
n
))
)
.

Let W := exp(D( π

a j,n
)). The identity (2.33) transforms into the equation of degree 2:

(2.35) 2B j,nW 2−
(

B j,n +1
)

W +1 = 0

from which (2.36) is deduced. For the calculation of tl( π

a j,n
), denote D := D( π

a j,n
) and

tl j,n := tl( π

a j,n
). Then, at the first order,

1−exp
(
−π

a j,n

)
2exp
(

π

a j,n

)
−1

=
1− exp

(
−D− tl j,n

)
2exp

(
D+ tl j,n

)
−1

= B j,n[1+ tl j,n× (
4− exp(−D)−2exp(D)

−3+ exp(−D)+2exp(D)
)].

From (2.34) and (5.23) the following inequality should be satisfied, with the constant 2 in
the Big O,

1
n

O
((LogLogn

Logn

)2
)
= tl
( |−1+ z j,n|

|z j,n|

)
< tl j,n×B j,n (

4− exp(−D)−2exp(D)

−3+ exp(−D)+2exp(D)
)].

The expression of tl j,n in (2.30) follows, to obtain a strict inequality in (2.34). By (2.29)
the quantity exp(D) is a function of B j,n, which tends to 3

4 when B j,n tends to 0; hence, at
the first order, a lower bound of the function B j,n→ |B j,n (

4−exp(−D)−2exp(D)
−3+exp(−D)+2exp(D))| is obtained

for j = dvne, and given by 2π
Logn

n ×7. Then it suffices to take

tl j,n = cste
((LogLogn)2

(Logn)3

)
with cste= 1/(7π), to obtain a tail independent of j, and therefore the conditions of Rouché
(2.34) satisfied with these new smaller radii and tails in the main angular sector. �
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Remark 2.13. For n very large, up to second-order terms, (2.35) reduces to

4sin(
π j
n
)W 2−

(
2sin(

π j
n
)+1

)
W +1 = 0

and (2.29) to

(2.36) D
( π

a j,n

)
= Log

[1+2sin(π j
n )−

√
1−12sin(π j

n )+4(sin(π j
n ))2

8sin(π j
n )

]
.

Lemma 2.14. Let n≥ 195 and cn defined by |zJn,n|= 1− cn
n . Let us put κ := κ(1,amax) for

short. Then

(2.37) cn =−(Logκ)(1+
1
n
)+

1
n

O
((LogLogn

Logn

)2)
,

with c = limn→+∞ cn =−Logκ = 1.76274 . . ., and, up to O(1
n

((LogLogn
Logn

)2)
)-terms,

(2.38)
(1− cn

n )
2n

(1− cn
n )− (1− cn

n )
n =

e−2c

1− e−c

(
1+

c
2n(1− e−c)

[
2− ce−c−2c

])
with e−2c/(1− e−c) = 0.0355344 . . .

Proof. The asymptotic expansion (2.37) of cn is deduced from the asymptotic expansions
of ψn and zJn,n given by (2.26) and (2.22) (Proposition 3.5 in [27]). We deduce the limit
c := −Log(κ(1,amax)) = 1.76274 . . . and then (2.38) follows. �

Definition 2.15. Let n≥ n2 := 260. We denote by Hn the largest integer j ≥ dvne such that

(2.39) arg(zJn,n)− arg(z j,n)≥
(1− cn

n )
2n

(1− cn
n )− (1− cn

n )
n .

Proposition 2.16. Let n≥ 260. Let denote κ := κ(1,amax) for short. Then

arg(zHn,n) = 2arcsin
(κ

2
)
− κ2

1−κ

(2.40) +
Logκ

n

[
κ√

4−κ2
+

2+κ Log(κ)+2Log(κ)
2(1−κ)

]
+

1
n

O
((LogLogn

Logn

)2)
,

with, at the limit,

lim
n→+∞

arg(zHn,n) = 2arcsin
(κ

2
)
− κ2

1−κ
= 0.13625.

Proof. The asymptotic expansion of the right-hand side term of (2.39) is

(2.41)
(1− cn

n )
2n

(1− cn
n )− (1− cn

n )
n =

e−2c

1− e−c

(
1+

c(2− ce−c−2c)
2n(1− e−c)

)
+ . . .

Then the asymptotic expansion of arg(zHn,n) comes from (2.39) in which the inequality is
replaced by an equality, and from the asymptotic expansion (2.18) of arg(zJn,n) (Proposition
2.7). �
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For n large enough, arg(zHn,n) is equal to 2π
Hn
n , up to higher order - terms, and a defini-

tion of Hn in terms of asymptotic expansions could be:
(2.42)

Hn=b
n

2π

(
2arcsin

(κ

2
)
− κ2

1−κ

)
−Log(κ)

[
κ√

4−κ2
+

2+κ Log(κ)+2Log(κ)
2(1−κ)

]
c,

For simplicity’s sake, we will take the following definition of Hn

(2.43) Hn := b n
2π

(
2arcsin

(κ

2
)
− κ2

1−κ

)
−1c.

Remark 2.17. The value n2 = 260 is calculated to be the smallest value such that the
inequality 2πvn

n < arg(zHn,n) holds, inequality which should be valid for all n≥ n2; here Hn
is given by (2.43), arg(zHn,n) by (2.40), where (vn) is the delimiting sequence (cf Appendix
Section 5.2) of the transition region of the boundary of the bump sector. A first minimal
value of n is first estimated by 2π

Logn
n < D(arg(zHn,n)) using (2.40). Then it is corrected

so that the numerical value of the tail of the asymptotic expansion in (2.40) be taken into
account in this inequality.

2.3. Other poles. In the complement of the family of the adjustable Rouché disks Theo-
rem 2.18 asserts the existence of a zerofree region depending upon the dynamical degree
of β .

Theorem 2.18. Let n ≥ n2 := 260. Denote by Dn the subdomain of the open unit disk,
symmetrical with respect to the real axis, defined by the conditions:

(2.44) |z|< 1− cn

n
,

1
n

(
LogLogn

Logn

)2

< |z−θn|,

(2.45)
π|z j,n|
namax

< |z− z j,n|, for j = 1,2, . . . ,Jn,

and, for j = Jn +1, . . . ,2Jn−Hn +1,

(2.46)
π|z j,n|
ns j,n

< |z− z j,n|, with s j,n = amax

[
1+

a2
max( j− Jn)

2

π2 J2
n

]−1/2
.

Then, for any real number β > 1 having dyg(β ) = n, the Parry Upper function fβ (z)
does not vanish at any point z in Dn.

Proof. Assume β > 1 such that θn−1 < β−1 < θn. We will apply the general form of the
Theorem of Rouché to the compact Kn which is the adherence of the domain Dn, i.e. we
will show that the inequality (and symmetrically with respect to the real axis)

(2.47) | fβ (z)−Gn(z)|< |Gn(z)|, z ∈ ∂K ext
n ∪C1,n ∪C2,n∪ . . .∪CJn,n

holds, with z ∈ Im(z)≥ 0, where ∂Kn is the union of: (i) the arcs of the circles defined by
the equalities in (2.45) and (2.46), arcs which lie in |z| ≤ 1− cn/n, and circles for which
the intersection with |z|= 1− cn/n is not empty, (ii) the arcs of C(0,1− cn/n) which have
empty intersections with the interiors of the disks defined by the inequalities “>”, instead
of “<”, in (2.45) and (2.46), which join two successive circles. The two functions fβ (z)
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and Gn(z) are continuous on the compact Kn, holomorphic in its interior Dn, and Gn has
no zero in Kn. As a consequence the function fβ (z) will have no zero in the interior Dn of
Kn.

Instead of using fβ (z) itself in (2.47), we will show that the following inequality holds
true

(2.48)
|z|2n−1

1−|z|n−1 < |−1+ z+ zn| , for all z ∈ ∂K ext
n

what will imply the claim.
The Rouché inequalities (2.47) (2.48) hold true on the (complete) circles C j,n,1≤ j≤ Jn

by Theorem 2.4 and Proposition 2.9; these conditions become out of reach for j taking
higher values (i.e. in {Jn + 1, . . . ,bn/6c}), but we will show that they remain true on the
arcs defined by the equalities in (2.46).

The domain Dn only depends upon the dynamical degree n of β , not of β itself.
Let us prove that the external Rouché circle |z| = 1− cn/n intersects all the circles

CJn−k,n,k = 0,1, . . . ,kmax, with kmax := bJn(
π

amax
)c. Indeed, up to 1

nO
((LogLogn

Logn

)2)- terms,
from Proposition 2.7,

Log(2sin(π
Jn

n
)) = Log(2sin(π

(Jn− k)+ k
n

)) = Log
(
2π

Jn− k
n

(1+
k

Jn− k
)
)

(2.49) = Log
(
2sin(π

Jn− k
n

)
)
+

k
Jn
.

Since |zJn,n|= 1−cn/n= 1+ 1
nLog(2sin(π Jn

n ))+
1
nO
((LogLogn

Logn

)2), we deduce from (2.49),
with k ≤ kmax, that the point z ∈C(0,1− cn/n) for which arg(z) = arg(zJn−k,n) is such that

|zJn−k,n− z| = k
nJn

≤
bJn(

π

amax
)c

nJn
≤ π

namax

up to 1
nO
((LogLogn

Logn

)2)- terms. As soon as n is large enough, we deduce that z lies in the
interior of DJn−k,n. Since the function x→ Log(2sin(πx)) is negative and strictly increas-
ing on (0,1/6), the sequence (|z j,n|) j=Hn,...,Jn is strictly increasing, by (2.22). Hence we
deduce that the circle |z|= 1− cn/n intersects all the circles C j,n for j = Jn− kmax, . . . ,Jn.

The same arguments show that the external Rouché circle |z| = 1− cn/n intersects all
the circles C(z j,n,

π|z j,n|
ns j,n

) for j = Jn +1,Jn +2, . . . ,2Jn−Hn +1.
The quantities s j,n, for j = Jn + 1, . . . ,2Jn−Hn + 1, are easily calculated (left to the

reader) so that the distance (length of the j-th circle segment)∣∣∣∣ z j,n

|z j,n|
(1− cn

n
)− y j

∣∣∣∣= ∣∣∣∣ z j,n

|z j,n|
(1− cn

n
)− y′j

∣∣∣∣
for y j,y′j ∈ C(z j,n,

π|z j,n|
ns j,n

)∩C(0,1− cn
n ),y j 6= y′j, be independent of j in the interval {Jn +

1, . . . ,2Jn−Hn +1} and equal to

(2.50)
π|zJn,n|
namax

.
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È-1+z+z^nÈ

FIGURE 2. Oscillations of the upper bound |−1+ z+ zn| of the Rouché in-
equality (2.7), for z running over the curve |z|= 1− cn/n (here represented
with n = 615) as a function of arg(z) in [0,0.28]. The minima correspond
to the angular positions of the zeroes z j,n of the trinomial −1+ X + Xn,
for j = 1,2, . . . ,Hn, . . . ,Jn, . . . ,2Jn−Hn +1, . . . (J615 = 17,H615 = 12). The
angular separation between two successive minima is ≈ 2π/n. The differ-
ence between two successive minima is≈ 2π/n. For n= 615, the arguments
2π(Logn)/n (limiting the bump sector), arg(zHn,n) and arg(zJn,n) are respec-
tively equal to 0.0656 . . . ,0.12189 . . . ,0.17129 . . .. The horizontal line at the
y-coordinate 0.0354... is the value of the left-hand side term of the Rouché
inequality (2.7) (Proposition 2.47); it is always strictly smaller than the min-
imal value of the oscillating function |−1+z+zn| on the external boundary
∂K ext

n , whose geometry surrounds the roots z j,n for j between Hn + 1 and
2Jn−Hn +1.

Then the two sequences of moduli of centers (|z j,n|) j=Jn+1,...,2Jn−Hn+1 and of radii

(
π|z j,n|
ns j,n

) j=Jn+1,...,2Jn−Hn+1 are both increasing, with the fact that the corresponding disks

D(z j,n,
π|z j,n|
ns j,n

) keep constant the intersection chord arg(y j)− arg(y′j) =
π|zJn,n|
namax

with the ex-
ternal Rouché circle |z|= 1− cn/n.

Let z∈C(0,1− cn
n ), ϕ := arg(z)∈ [0,π]. Denote by Z(ϕ) := |Gn((1− cn

n )e
iϕ)|2 =

∣∣−1+
(1− cn

n )e
iϕ +(1− cn

n )
neinϕ

∣∣2. The expansion of the function Z(ϕ) as a function of ϕ , up to
O(1/n)- terms, is the following: Z(ϕ) =

(−1+(1− cn

n
)cos(ϕ)+(1− cn

n
)n cos(nϕ))2+((1− cn

n
)sin(ϕ))+(1− cn

n
)n sin(nϕ))2

= 2+ e−2c−2cos(ϕ)−2e−c cos(nϕ)+2e−c cos(ϕ)cos(nϕ)+2e−c sin(ϕ)sin(nϕ)

= 2+ e−2c−2cos(ϕ)−4e−c sin(
ϕ

2
)
(

cos(nϕ)sin(
ϕ

2
)− sin(nϕ)cos(

ϕ

2
)
)

(2.51) = 2+ e−2c−2cos(ϕ)+4e−c sin(
ϕ

2
)sin(nϕ− ϕ

2
).

The function Z(ϕ), defined on [0,π/3], is almost-periodic (in the sense of Besicovitch and
Bohr), takes the value 0 at ϕ = arg(zJn,n), and therefore, up to O(1/n)-terms, has its minima
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at the successive arguments arg(zJn,n)+
2kπ

n for |k|= 0,1,2, . . . ,Jn−Hn +1, . . . (Figure 2).
For such integers k, from (2.51), we deduce the successive minima

(2.52) |−1+ zJn,ne−2ikπ/n +(zJn,ne−2ikπ/n)n|= |Gn(zJn,n)|+
2|k|π

n
=

2|k|π
n

up to 1
nO
((LogLogn

Logn

)2)- terms, with arg(zJn,ne−2ikπ/n) = arg(zJn−k,n) up to O(1/n)-terms.
With the above notations, denote by y j,y′j the two points of C(0,1− cn

n ) which belong to

C j,n for 2Hn−Jn ≤ j ≤ Jn, to C(z j,n,
π|z j,n|
ns j,n

) for Jn+1≤ j ≤ 2Jn−Hn+1. Writing them by
increasing argument, we have:

(2.53) y2Hn−Jn,y
′
2Hn−Jn

, . . . ,yHn,y
′
Hn
, . . . ,yJn,y

′
Jn
, yJn+1,y′Jn+1, . . . ,y2Jn−Hn+1, y′2Jn−Hn+1.

The Rouché inequality (2.47) is obviously satisfied at each y j and y′j for j = 2Hn−Jn, . . . ,Jn.
Let us show that this inequality holds at each point y j and y′j for j = Jn+1, . . . ,2Jn−Hn+1.
Indeed, for such a point, say y j, there exists

ξ j = w j zJn,ne2i( j−Jn)π/n +(1−w j)y j, for some w j ∈ [0,1],

lying in the segment
[
zJn,ne2i( j−Jn)π/n,y j

]
such that

Gn(y j) = Gn(zJn,ne2i( j−Jn)π/n)+(y j− zJn,ne2i( j−Jn)π/n)G′n(ξ j)

with, using (2.50),

|Gn(y j)−Gn(zJn,ne2i( j−Jn)π/n)|= |y j− zJn,ne2i( j−Jn)π/n||G′n(ξ j)|=
π|zJn,n|
namax

|G′n(ξ j)|.

The derivative of Gn(z) is G′n(z) = 1+ nzn−1. Up to O(1/n)-terms, the line generated by
the segment

[
zJn,ne2i( j−Jn)π/n,y j

]
is tangent to the circle C(0,1− cn/n), and the modulus

1
n |G
′
n(ξ j)| satisfies

1
n
|G′n(ξ j)| =

1
n
|G′n(zJn,ne2i( j−Jn)π/n)| = 1

n
|G′n(zJn,n)| = lim

n→+∞

1
n
|G′n(zJn,n)| = e−c.

From |Gn(y j)| ≥
∣∣|Gn(y j)−Gn(zJn,ne2i( j−Jn)π/n)| − |Gn(zJn,ne2i( j−Jn)π/n)|

∣∣ and (2.50) we
deduce

(2.54) |Gn(y j)| ≥
π|zJn,n|

amax
e−c− 2π| j− Jn|

n
.

But, by definition of Hn, still up to O(1/n)-terms, for | j− Jn| ≤ Jn−Hn−1,

(2.55)
2π| j− Jn|

n
≤ 2π (Jn−Hn−1)

n
= arg(zJn,n)− arg(zHn+1,n)≤

e−2c

1− e−c .

This inequality is in particular satisfied for the last two values of | j−Jn| which are Jn−Hn
and Jn−Hn +1 up to O(1/n)-terms.

Since the inequality

(2.56) 0.0710 . . .= 2
e−2c

1− e−c <
π|zJn,n|

amax
e−c = 0.0914 . . .
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holds, from (2.54), (2.55) and (2.56), as soon as n is large enough, we deduce the Rouché
inequality

|Gn(y j)| ≥
π|zJn,n|

amax
− e−2c

1− e−c ≥
e−2c

1− e−c .

Therefore the conditions of Rouché (2.48) hold at all the points y j and y′j of (2.53).
Let us prove that the conditions of Rouché (2.48) hold on each arc y′j y j+1 of the circle
|z|= 1−cn/n, for j = 2Hn−Jn,2Hn−Jn +1, . . . ,2Jn−Hn. Indeed, from (2.51), the deriv-
ative Z′(ϕ) takes a positive value at the extremity y′j while it takes a negative value at the
other extremity y j+1. Z(ϕ) is almost-periodic of almost-period 2π/n. The function

√
Z(ϕ)

is increasing on (arg(z j,n),arg(z j,n)+
π

n ) and decreasing on (arg(z j,n)+
π

n ,arg(z j,n)+2π

n );
on the arc y′j y j+1 it takes the value |Gn(y′j)| ≥ e−2c

1−e−c , admits a maximum, and decreases

to |Gn(y j+1)| ≥ e−2c

1−e−c . Hence, (2.7) holds true for all z ∈ C(0,1− cn/n) with arg(y′j) ≤
arg(z)≤ arg(y j+1).

Let us now prove that the condition of Rouché (2.7) is satisfied in the angular sector
0 ≤ arg(z) ≤ arg(zHn,n). Indeed, in this angular sector, the successive minima of

√
Z(ϕ)

are all above e−2c

1−e−c by the definition of Hn and (2.52). Hence the claim.
Let us prove that the condition of Rouché (2.7) is satisfied in the angular sector

arg(z2Jn−Hn+1,n) ≤ arg(z) ≤ π

2 . In this angular sector, the oscillations of
√

Z(ϕ) still oc-
cur by the form of (2.51) and the successive minima of

√
Z(ϕ) are all above e−2c

1−e−c for
2Jn−Hn+2

Jn
≤ arg(z)≤ π/2, by (2.52) for k ≥ Jn−Hn +1. We deduce the claim.

The condition of Rouché (2.7) is also satisfied in the angular sector π ≤ arg(z) ≤ π/2,
since then cos(ϕ) ≤ 0 and therefore

√
Z(ϕ) ≥

√
2+ e−2c−4e−c = 1.15 . . .. Since this

lower bound is greater than the value e−2c

1−e−c = 0.0354 . . . we deduce the claim.
Let us show that the conditions of Rouché (2.7) are also satisfied on the arcs

C(z j,n,
π|z j,n|
ns j,n

)∩D(0,1− cn
n ) for j = Jn + 1, . . . ,2Jn−Hn + 1. For such an integer j, let us

denote such an arc by y j y′j. The two extremities y j and y′j of the arc y j y′j of the circle

C(z j,n,
π|z j,n|
ns j,n

) define the same value of the difference cosine, say X j :=
cos(arg(y j− z j,n)− arg(z j,n)) = cos(arg(y′j− z j,n)− arg(z j,n)), by (2.50). The conditions
of Rouché are already satisfied at the points y j and y′j by the above. Recall that, for any
fixed a≥ 1, the function κ(X ,a), defined in (2.14), is such that the partial derivative ∂κX of
κ(X ,a) is strictly negative on the interior of [−1,+1]× [1,+∞). In particular the function
κ(X ,s j,n) is decreasing. For any point Ω of the arc y j y′j, we denote by X = cos(arg(Ω−
z j,n)− arg(z j,n)). We deduce, up to O(1/n)-terms,

e−2c

1− e−c ≤ κ(X j,s j,n) ≤ κ(X ,s j,n), for all X ∈ [−1,X j],

hence the result. �
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2.4. A dissociation theorem and an alternate definition.

Theorem 2.19. Let clent := minn≥260(cn− π

amax
). Let n≥ 260 and β > 1 be a real number

such that dyg(β ) = n, Denote by

fβ (z) =−1+ z+ zn + zm1 + zm2 + . . .+ zm j + zm j+1 + . . . ,

where m1−n≥ n−1, m j+1−m j ≥ n−1 for j≥ 1, the Parry Upper function at β . Then the
zeroes of fβ (z) of modulus < 1 which lie in−arg(zJn,n)− π

namax
< argz<+arg(zJn,n)+

π

namax
either belong to {

z |
∣∣|z|−1

∣∣< 1
3

clent

n

}
or to

{
z | ||z|−1|> clent

n

}
.

In the second class of zeroes, all the zeroes are simple, and lie in the union

D0,n ∪
Jn⋃

j=1

(D j,n∪D j,n);

there is one zero per disk D j,n, D j,n, the disk D0,n containing the element β−1.

Proof. Denote by

Sn :=
{

z | θn−1 ≤ |z|< 1,−arg(zJn,n)−
π

namax
≤ argz≤+arg(zJn,n)+

π

namax

}
the truncated angular sector and let

Ŝn :=
o

Sn \
( Jn⋃

j=1

(
D j,n∪D j,n

)
∪ D(θn,θn−θn−1)

)cl

the open truncated angular sector obtained from Sn by removing the closure of the Rouché
disks D j,n,D j,n centered at the zeroes z j,n of Gn(z) in Sn of respective radius π|z j,n|

namax
, and of

D(θn,θn−θn−1). The argument arg(zJn,n) is defined in (2.18). The analytic function Gn(z)

has no zero in the adherence Ŝn of Ŝn and reaches its infimum infz∈Ŝn
|−1+ z+ zn| > 0

on the boundary ∂Ŝn of Ŝn. On the Rouché circles C j,n,C j,n, j = 1, . . . ,Jn, using (2.7) and
(2.27), this infimum is bounded from below by

|Z|2n−1

1−|Z|n−1

where Z is the point of C1,n of smallest modulus, which is such that |Z| = |θn− π

namax
θn|

at the first order. Putting aside the Rouché circles, using the inequality | − 1+ z+ zn| ≥
||−1+z|−|zn||, the minimum of |−1+z+zn| on the arcs |z|= 1, |z|= θn−1, the segments
argx =±(arg(zJn,n)+

π

namax
) and the circle C(θn,θn−θn−1) on ∂Ŝn is bounded from below

by
|−1+θn−1|− |θ n

n−1|= (1−θn−1)
2.

Denote

δn := min
{
(1−θn−1)

2,
|Z|2n−1

1−|Z|n−1

}
.
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We have: 0 < δn ≤ infz∈Ŝn
|−1+ z+ zn| and limn→∞ δn = 0. It is easy to show that

lim
n→∞

Logδn

n
= 0.

Using §5.3 in [5] this limit condition allows to calculate a first-order estimate of the thick-
ness of the annular neighbourhood of the unit circle, in Ŝn, which contains the roots of a
polynomial section −1+ z+ zn + zm1 + zm2 + . . .+ zms of fβ (z); this estimate is

(2.57) e(s) = 1−
(

1−2
(n−1)(s−δn)

(n−1)(s2 + s)+2(ms−n)

)1/(n−1)

.

In the expression (2.57) n is fixed, as well as the sequence (m j) j≥1 since β is fixed, therefore
fβ (z) also; the integer ms tends to infinity, if s tends to infinity, since ms−n≥ (m1−n)+
∑

s
j=2(m j−m j−1)≥ s(n−1); the integer s is large enough (at least to have s−δn > 0) and

lims→∞ e(s) = 0.
Among all the Rouché disks D j,n, 1 ≤ j ≤ Jn, the Jnth Rouché disk DJn,n is the clos-

est to the unit circle (by (iii-2) in Proposition 5.2). By Lemma 2.14 its center is zJn,n,
of modulus |zJn,n| = 1− cn

n , and its radius is π|zJn,n|
namax

< π

namax
. By Lemma 2.14 the limit

c = limn→∞ cn exists, is positive, and, from a numerical viewpoint, c− π

amax
= 1.76274−

0.53479 = 1.22794 . . .. By the asymptotic expansion of cn in Lemma 2.14, the constant
clent := minn≥260(cn− π

amax
) is positive. The disk {z | |z|< 1− clent

n } contains all the Rouché
disks D j,n,D j,n, 1≤ j ≤ Jn, and D0,n.

Let assume that fβ (z) has a zero in

Ŝn∩
{

z | |z|< 1− 1
3

clent

n

}
.

Denote it by z, counted with multiplicity. There exists r > 0 small enough such that the
open disk D(z,r) be included in Ŝn∩{z | |z| < 1− 1

3
clent

n } and only contains the zero z of
fβ (z). By Hurwitz Theorem (for instance cf §11 in Chap. 2 in [18]) the number of zeroes
of any polynomial section −1+ z+ zn + zm1 + zm2 + . . .+ zms of fβ (z) in D(z,r) should be
equal to the multiplicity ≥ 1 of z, as soon as s is large enough, say s≥ s0 for some s0.

Since lims→0 e(s) = 0, we obtain a contradiction by taking s0 such that e(s) ≤ clent
10n for

all s ≥ s0. The constant 10, at the denominator, is arbitrary and may be taken eventually
larger. This means that all the zeroes of all the polynomial sections of fβ (z), in Ŝn, for all
s≥ s0, are contained in

1− clent

3n
< |z|< 1.

But {z | 1− clent
3n < |z|< 1}∩D(z,r) = /0. Contradiction.

Therefore the zeroes of fβ (z) which lie in the open angular sector

{z ∈ C : |z|< 1,−arg(zJn,n)−
π

namax
< argz < arg(zJn,n)+

π

namax
}

are located either in the Rouché disks by Theorem 2.4 and Theorem 2.11, or in a small
neighbourhood of the unit circle included in {z | 1− clent

3n < |z| < 1}. This dichotomy nat-
urally extends to the zeroes of any polynomial section of fβ (z) (cf the proofs of Theorem
2.4, Theorem 2.11 and Theorem 2.19). �
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Definition 2.20. Let n≥ 260. Let β > 1 be a real number such that dyg(β ) = n. With the
notations of Theorem 2.19, the poles of ζβ (z) which belong to the angular sector

(2.58)
{

z ∈ C : |z|< 1− clent

n
, |argz| ≤ arg(zJn,n)+

π

namax

}
are called the lenticular poles of ζβ (z).

3. CONTINUITY OF THE LENTICULAR POLES - PROOF OF THEOREM 1.1

Let n≥ 260. To n is associated the set of the lenticular zeroes of the trinomial−1+x+xn

of imaginary part ≥ 0, as:
{θn,z1,n,z2,n, . . . ,zJn,n},

and the set of Rouché disks (defined in Theorem 2.11)

{D1,nD2,n, . . . ,DJn,n},

the jth-disk D j,n being centered at z j,n. For j = 1, . . . ,Jn, the disks D j,n satisfy: D j,n ⊂
D(0,1), D j,n∩C(0,1) = /0, z j,n−1 ∈ D j,n, and, for any real number β ∈ [θ−1

n ,θ−1
n−1], fβ (z)

admits an unique zero ω j,n in D j,n, which is simple by Theorem 2.11. Since β → fβ (z) is
injective on [θ−1

n ,θ−1
n−1], by Proposition 2.2, the map β → ω j,n = ω j,n(β ) is well-defined.

Let us denote this map by ω j,n (with no ambiguity) and by ω j,n(β ) the image of β (instead
of ω j,n). Let S̃ j,n := ω j,n([θ

−1
n ,θ−1

n−1]) be the adherence of the image of the closed interval
[θ−1

n ,θ−1
n−1]; it is a compact subset of D j,n such that S̃ j,n∩∂D j,n = /0, for which the image

of the left extremity of the interval is the center of the disk D j,n: ω j,n(θ
−1
n ) = z j,n.

Lemma 3.1. Let n ≥ 3. The two analytic functions −1 + z + zn−1 and −1 + z + zn +

∑
∞
q=1 zq(n−1)+n have the same zeroes (with the same multiplicities = 1) inside the open

unit disk.

Proof. Let x0, |x0|< 1, be a zero of the trinomial −1+ z+ zn−1. Then

0=−1+x0+xn−1
0 =−1+x0+xn

0
1
x0

=−1+x0+xn
0(1+xn−2

0 )=−1+x0+xn
0+xn+n−2+1

0
1
x0
.

Let us replace the last 1
x0

by 1+xn−2
0 . And so on, iteratively. Doing this operation infinitely

many times provides the identity

0 =−1+ x0 + xn−1
0 =−1+ x0 + xn

0 +
∞

∑
q=1

xq(n−1)+n
0 .

The converse comes from

−1+ z+ zn +
∞

∑
q=1

zq(n−1)+n =
−1+ z+ zn−1

1− zn−1 , |z|< 1.

Multiplicities are equal to 1 by [19]. �

Denote δ := min{1−|z| | z ∈ ∪Jn
j=1S̃ j,n}> 0.
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Proposition 3.2. Let n≥ 260. For all 1≤ j ≤ Jn, the map

ω j,n : [θ−1
n ,θ−1

n−1]→ D j,n, β → ω j,n(β )

is continuous.

Proof. Let β1,β2 be two real numbers in the open interval (θ−1
n ,θ−1

n−1), and assume β1 < β2.
To β1 , resp. β2, is associated uniquely the sequence (ti)i≥1 ∈ {0,1}, resp. (t ′i)i≥1 ∈ {0,1},
of the coefficients of the Rényi β1-expansion of unity dβ1(1) = 0.t1t2t3 . . ., resp. of dβ2(1) =
0.t ′1t ′2t ′3 . . .; the two Parry Upper functions fβ1(z) and fβ2(z) are deduced from them:

fβ1(z) =−1+ ∑
j≥1

tizi, fβ2(z) =−1+ ∑
j≥1

t ′iz
i.

The inequality ‘<’ is translated by the lexicographical inequality ‘<lex’ on the sequences
(ti)i≥1, resp. (t ′i), by Proposition 2.2. When β2 is close to β1, the first digits are the same.
We define the lexicographical metric d by:

d(β1,β2) := e−r iff t1 = t ′1, t2 = t ′2, . . . , tr = t ′r, tr+1 6= t ′r+1.

To prove the continuity of ω j,n it suffices to show that, for all ε > 0, there exists η > 0 such
that

d(β1,β2)< η =⇒ |ω j,n(β1)−ω j,n(β2)|< ε,

and to establish the continuity at the extremity θ
−1
n−1 of the closed interval [θ−1

n ,θ−1
n−1].

We have

fβ1(β
−1
1 ) = fβ1(ω j,n(β1)) = fβ2(β

−1
2 ) = fβ2(ω j,n(β2)) = 0.

Since β1 6= β2 and that the disks D j,n have the property that fβ2(z) contains an unique zero
in it (cf Theorem 2.11),

0 6= fβ2(ω j,n(β1)) = fβ2(ω j,n(β2)+(ω j,n(β1)−ω j,n(β2)))

= (ω j,n(β1)−ω j,n(β2))
[ ∞

∑
q=1

f (q)
β2

(ω j,n(β2))

q!
(ω j,n(β1)−ω j,n(β2))

q−1
]
.

Now by Theorem 2.11 the unique zero ω j,n(β
−1
2 ) in D j,n is simple. Thus f

′
β2
(ω j,n(β2)) 6= 0

and the function
z→ fβ2(z)/(z−ω j,n(β2)),

extended by continuity by f
′
β2
(ω j,n(β2)) at ω j,n(β2), does not take the value 0 on the com-

pact S̃ j,n. Hence, the function

z→

∣∣∣∣∣∣
∞

∑
q=1

f (q)
β2

(ω j,n(β2))

q!
(z−ω j,n(β2))

q−1

∣∣∣∣∣∣
admits an infimum, say µ̃ j on S̃ j,n. Denote µ̃ := min{µ̃ j | j = 1,2, . . .Jn}> 0 the infimum,
common to all the disks D j,n.
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Now, with d(β1,β2) := e−r,

fβ2(ω j,n(β1)) = ( fβ2− fβ1)(ω j,n(β1)) =
∞

∑
k=r+1

(tk− t ′k)(ω j,n(β1))
k.

Therefore

| fβ2(ω j,n(β1))| ≤
∞

∑
k=r+1

|ω j,n(β1)|k ≤
∞

∑
k=r+1

(1−δ )k ≤ (1−δ )r+1 1
δ
.

Hence ∣∣ω j,n(β1)−ω j,n(β2)
∣∣≤ 1

µ̃
(1−δ )r+1 1

δ
.

It suffices to take r large enough to have the property of continuity.
Let us consider the case of the extremity β2 = θ

−1
n−1. By Lemma 3.1, since θn−1 is root

of −1+ x+ xn−1 it satisfies:

0 =−1+θn−1 +θ
n
n−1 +

∞

∑
q=1

θ
q(n−1)+n
n−1 .

The metric d can be extended to (θ−1
n ,θ−1

n−1]×(θ−1
n ,θ−1

n−1] since the sequence of coefficients
of the power series −1+ z+ zn +∑q≥1 zq(n−1)+n is obviously in the adherence of the set

{(ti) | the digits ti being those of dβ (1) for all β ∈ (θ−1
n ,θ−1

n−1)},

and not an isolated point. The case is simpler for the other extremity β1 = θ−1
n .

�

Remark 3.3. In [6] Flatto, Lagarias and Poonen study the continuity of the modulus of the
first root (given in Proposition 5.13)

(3.1) β → |ω1,n(β )|, 1 < β < 2

over the union of the intervals [θ−1
n ,θ−1

n−1]. The curve given by Figure 1 in [6] suggests that

the map ω1,n is injective on (θ−1
n ,θ−1

n−1) but that the union S̃1,n−1∪ S̃1,n∪ S̃1,n+1, for all
n large enough, is a self-intersecting curve.

4. THE LENTICULAR MEASURE

The method of Rouché allows to define optimally the lenticulus Lβ of the lenticular
poles of ζβ (z) (Theorem 2.4 and Proposition 2.9), for any real number 1 < β < θ

−1
259 and

β 6∈ {θ−1
n : n≥ 260}. Then we define the lenticular measure of β by

(4.1) Slent(β ) := ∏
ω∈Lβ

|ω|−1 = β

Jn

∏
j=1
|ω j,n(β )|−2.

In Section 4.1 Theorem 4.1 proves the existence of a lower bound > 1.15 to the infimum
liminfβ→1Slent(β ). In Section 4.2, using

(4.2) β ×
Jn

∏
j=1
|ω j,n(β )|−2 ≥ β ×

Jn

∏
j=1

(|z j,n|+
t j,n

n
)−2,
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and denoting

Lr(β ) := Log

(
β ×

Jn

∏
j=1

(|z j,n|+
t j,n

n
)−2

)
,

we obtain the asymptotic expansion of a lower bound of Lr(β ) as a function of n = dyg(β )
in Theorem 4.2. From Slent(β ) ≥ exp(Lr(β )), the Dobrowolski-type inequality (1.9) is
deduced from this asymptotic expansion, in Section 4.3.

This generalizes the case where β ∈ {θ−1
n : n≥ 3} treated in [27]; let us recall it briefly.

Let n0 be an integer such that π

3 > 2π
Logn0

n0
, and let n≥ n0. Inthere the Mahler measure (cf

the Appendix)

M(θ−1
n ) = M(Gn) = θ

−1
n

bn/6c

∏
j=1
|z j,n|−2,

which is equal to
Slent(θ

−1
n ) = ∏

L
θ
−1
n

|z|−1,

is shown to admit the following asymptotic expansion

(4.3) M(Gn) = Λ

(
1+ r(n)

1
Logn

+O
(

LogLogn
Logn

)2))
, n≥ n0,

with the constant 1/6 involved in the Big O, and with r(n) real, |r(n)| ≤ 1/6. The Dobrowol-
ski-type inequality (1.5) is then deduced from (4.3). Theorem 4.2 generalizes (4.3).

4.1. A lower bound of the liminf of the lenticular measure, β tending to 1. Recall
κ = κ(1,amax) from Definition 2.6. The value 2arcsin(κ(1,amax)/2) = 0.171784 . . . is
given by Proposition 2.7, and amax = 5.8743 . . . by Theorem 2.4.

Theorem 4.1. Let β > 1 be a real number such that dyg(β )≥ 260. Let

Λr := exp
(−1

π

∫ 2arcsin( κ

2 )

0
Log

(
2sin

(x
2
))

dx
)
= 1.16302 . . . ,

and

µr := exp
(−1

π

∫ 2arcsin( κ

2 )

0
Log

[1+2sin( x
2)−

√
1−12sin( x

2)+4(sin( x
2))

2

8sin( x
2)

]
dx
)

= 0.992337 . . . .

The lenticular measure Slent(β ) of β admits a liminf when β tends to 1+, bounded from
below as

(4.4) liminf
dyg(β )→+∞

Slent(β ) ≥ Λr ·µr = 1.15411 . . . .

Proof. Assume β 6∈ {θ−1
n : n≥ 259}. From (4.1) we have

LogSlent(β ) =−Log(
1
β
)−2

Jn

∑
j=1

Log |ω j,n|= Log(
1
β
)−2

Jn

∑
j=1

Log |(ω j,n− z j,n)+ z j,n|
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(4.5) = Log(β )−2
Jn

∑
j=1

Log |z j,n|−2
Jn

∑
j=1

Log
∣∣1+ ω j,n− z j,n

z j,n

∣∣.
The first term of (4.5) tends to 0 if dyg(β ) tends to +∞ since lim

n→∞
θn = 1 (Proposition 5.5).

Let us turn to the third summation in (4.5). The j-th root ω j,n ∈Lβ of fβ (z) is the unique

root of fβ (z) in the disk D j,n = {z | |ω j,n− z j,n|<
π|z j,n|
namax

}. From Theorem 2.11 we have the

more precise localization in D j,n: |ω j,n− z j,n| <
π|z j,n|
na j,n

for j = dvne, . . . ,Jn (main angular
sector), with

D(
π

a j,n
) = Log

[1+B j,n−
√

1−6B j,n +B2
j,n

4B j,n

]
and B j,n = 2sin(π j

n )
(

1− 1
nLog(2sin(π j

n ))
)

(from (2.29)).
For j = dvne, . . . ,Jn the following inequalities hold:

1− 1
n

D(
π

a j,n
)≤ |1+

ω j,n− z j,n

z j,n
| ≤ 1+

1
n

D(
π

a j,n
),

up to second order terms. Let us apply the remainder Theorem of alternating series: for x
real, |x|< 1, |Log(1+ x)− x| ≤ x2

2 . Then the third summation in (4.5) satisfies

−2 lim
n→∞

Jn

∑
j=1

1
n

Log
[1+2sin(π j

n )−
√

1−12sin(π j
n )+4(sin(π j

n ))2

8sin(π j
n )

]

(4.6) ≤ liminf
n→∞

(
−2

Jn

∑
j=1

Log
∣∣1+ ω j,n− z j,n

z j,n

∣∣) .

Let us convert the limit to an integral. The Riemann-Stieltjes sum

S(F,n) :=−2
Jn

∑
j=1

1
n

Log
[1+2sin(π j

n )−
√

1−12sin(π j
n )+4(sin(π j

n ))2

8sin(π j
n )

]

=
−1
π

Jn

∑
j=1

(x j− x j−1)F(x j)

with x j =
2π j

n and F(x) := Log
[

1+2sin( x
2 )−
√

1−12sin( x
2 )+4(sin( x

2 ))
2

8sin( x
2 )

]
converges to the limit

(4.7) lim
n→∞

S(F,n) =
−1
π

∫ 0.171784...

0
F(x)dx = Log µr with µr = 0.992337 . . . .

In a similar way we transform the limit, as n tends to infinity, of the second summation
in (4.5) into an integral in order to obtain the term Λr. By Proposition 2.7 let us observe
that the Riemann-Stieltjes sum

S( f ,n) :=−2
Jn

∑
j=1

1
n

Log
(
2 sin

(π j
n

))
=
−1
π

Jn

∑
j=1

(x j− x j−1) f (x j)
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with x j =
2π j

n and f (x) := Log
(
2 sin

( x
2

))
converges to the limit

lim
n→∞

S( f ,n) =
−1
π

∫ limn→∞ 2π
Jn
n

0
f (x)dx =

−1
π

∫ 0.171784...

0
f (x)dx

(4.8) = Log Λr = Log(1.16302 . . .).

This limit is a log-sine integral [2]. From [27] §4.2, pp 111–115, in a similar way, we have

(4.9) lim
n→∞

S( f ,n) =−2 lim
n→∞

Jn

∑
j=1

Log |z j,n|

It is easy to check that the corrections due to the roots which lie inside the bump sector
(cf Appendix Section 5.1), not counted above, are zero contributions. Since Slent(β ) ≥
exp(Lr(β )), we deduce the lower bound Λrµr in (4.4) from (4.6), (4.7), (4.8) and (4.9).

Assume β ∈ {θ−1
n : n ≥ 259}. By construction we have: Slent(θ

−1
n ) = M(Gn) for all

n≥ 3, and limn→+∞ M(Gn) = Λ = 1.38 . . . (recalled in (1.6)) which is greater than 1.15 . . ..
This establishes completely the inequality (4.4). �

Let us observe that the constant C given in Theorem 1.2 is

C = Λrµr.

4.2. Poincaré asymptotic expansions. The aim of this Section is to prove Theorem 4.2.
Assume β > 1 and dyg(β )≥ 260, with β 6∈ {θ−1

n : n≥ 259}. In the continuation of the last
paragraph, we expand asymptotically a lower bound of Lr(β ) as a function of n = dyg(β ).
As a starting point, we have:
(4.10)

Lr(β ) = Log(β )−2
Jn

∑
j=1

Log |z j,n|−2
bvnc

∑
j=1

Log(1+
π

namax
)−2

Jn

∑
j=dvne

Log(1+
π

na j,n
),

where the a j,ns are given by Theorem 2.11, the sequence (vn) by the Appendix, and Jn
by Definition 2.6 and Proposition 2.7. From Section 4.1 we have limdyg(β )→∞ Lr(β ) ≥
LogΛr +Log µr. In Theorem 4.2, we will gather the asymptotic contributions of each term
in (4.10) and obtain the asymptotic expansion of a minorant of Lr(β ) as a function of n.

(i) First term in (4.10): from Lemma 5.6 and Theorem 5.8,

(4.11) Log(β ) =
Logn

n
(1−λn)+

1
n

O

((
LogLogn

Logn

)2
)

= O
(

Logn
n

)
;

(ii) second term in (4.10): from Proposition 5.12,
Jn

∑
j=dvne

Log |z j,n|=

Jn

∑
j=dvne

Log
(

1+
1
n

Log
(
2 sin

(π j
n

))
+

1
2n

(
LogLogn

Logn

)2

+
1
n

O
(
(LogLogn)2

(Logn)3

))



A DOBROWOLSKI-TYPE INEQUALITY AND THE DYNAMICAL ZETA FUNTION OF THE BETA-SHIFT29

with the constant 1 involved in the Big O. Let us apply the remainder Theorem of alternat-
ing series: for x real, |x|< 1, |Log(1+ x)− x| ≤ x2

2 . Then∣∣∣∣∣ Jn

∑
j=dvne

Log |z j,n|−
Jn

∑
j=dvne

1
n

Log
(
2 sin

(π j
n

))
−

Jn

∑
j=dvne

1
2n

(
LogLogn

Logn

)2
∣∣∣∣∣

≤
Jn

∑
j=dvne

1
n

∣∣∣∣O((LogLogn)2

(Logn)3

)∣∣∣∣
(4.12) +

1
2

Jn

∑
j=dvne

1
n2

[
Log

(
2 sin

(π j
n

))
+

1
2

(
LogLogn

Logn

)2

+O
(
(LogLogn)2

(Logn)3

)]2

.

For 1≤ j ≤ Jn, the inequalities 0 < 2sin(π j/n)≤ 1 and Log(2sin(π j/n))< 0 hold. Then
|Log(2sin(π j/n)| ≤ |Log(2sin(π/n))|=O(Logn). On the other hand, the two O( )s in the
rhs of (4.12) involve a constant which does not depend upon j. Therefore, from Proposition
2.7, the rhs of (4.12) is

= O
(((LogLogn)2

(Logn)3

))
+O

(
Log 2n

n

)
= O

(((LogLogn)2

(Logn)3

))
.

On the other hand, the two regimes of asymptotic expansions in the Bump sector (cf Ap-
pendix) give

bvnc

∑
j=dune

Log |z j,n|= O
(
(Logn)2+ε

n

)
,
bunc

∑
j=1

Log |z j,n|= O
(
(Logn)2

n

)
and

dvne

∑
j=dLogne

2
n

Log
(

2sin(
π j
n
)
)
= O

(
(Logn)2+ε

n

)
.

Therefore

(4.13) −2
Jn

∑
j=1

Log |z j,n|=−
Jn

∑
j=dLogne

2
n

Log
(
2 sin

(π j
n

))
+O

((
LogLogn

Logn

)2
)

with the constant 1
2π

arcsin(κ

2 ) (from Proposition 2.7) involved in the Big O.
(iii) third term in (4.10): with the definition of ε and (vn) (Appendix),

(4.14) −2
bvnc

∑
j=1

Log(1+
π

namax
) = O

(
(Logn)1+ε

n

)
;

(iv) fourth term in (4.10): from the Theorem of alternating series,

(4.15) |
Jn

∑
j=dvne

Log(1+
π

na j,n
)−

Jn

∑
j=dvne

1
n

D(
π

a j,n
)−

Jn

∑
j=dvne

1
n

tl(
π

a j,n
)| ≤ 1

2

Jn

∑
j=dvne

(
π

na j,n

)2

.
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The terminant tl( π

a j,n
) =O

(
(LogLogn)2

(Logn)3

)
is given by (2.31). From Theorem 2.11, with B j,n =

2sin(π j
n )
(

1− 1
nLog(2sin(π j

n ))
)

, it is easy to show

D(
π

a j,n
) = Log

[1+B j,n−
√

1−6B j,n +B2
j,n

4B j,n

]

= Log
[1+2sin(π j

n )−
√

1−12sin(π j
n )+4sin(π j

n )2

8sin(π j
n )

]
+O

(
Logn

n

)
.

The rhs of (4.15) is = O
(1

n

)
. Then −2 ∑

Jn
j=dvneLog(1+ π

na j,n
) =

(4.16)
Jn

∑
j=dvne

−2
n

Log
[1+2sin(π j

n )−
√

1−12sin(π j
n )+4sin(π j

n )2

8sin(π j
n )

]
+O

((LogLogn)2

(Logn)3

)
.

The summation ∑
Jn
j=dvne can be replaced by ∑

Jn
j=dLogne. Indeed, from the definition of the

sequence (vn) (cf Appendix),

dvne

∑
j=dLogne

2
n

Log
[1+2sin(π j

n )−
√

1−12sin(π j
n )+4sin(π j

n )2

8sin(π j
n )

]
= O

(
(Logn)2+ε

n

)
.

Inserting the contributions (4.11) (4.13) (4.14) (4.16) in (4.10) leads to

Lr(β )≥ LogΛr +Log µr +
(
−LogΛr−

Jn

∑
j=dLogne

2
n

Log
(
2 sin

(π j
n

)))

+
(
−Log µr−

Jn

∑
j=dLogne

2
n

Log
(1+2sin(π j

n )−
√

1−12sin(π j
n )+4sin(π j

n )2

8sin(π j
n )

)))

(4.17) +O
((LogLogn

Logn

)2)
with the constant 1

2π
arcsin(κ

2 ) involved in the Big O. Let us denote by ∆1 the first term
within brackets, resp. ∆2 the second term within brackets, in (4.17) so that

(4.18) D(Lr(β )) = Log(Λrµr)+∆1 +∆2.

Calculation of |∆1|: let us estimate and give an upper bound of |∆1|=

(4.19)

∣∣∣∣∣−1
π

∫ 2arcsin(κ/2)

0
Log

(
2sin(x/2)

)
dx−

Jn

∑
j=dLogne

−2
n

Log
(
2 sin

(π j
n

))∣∣∣∣∣ .
In (4.19) the sums are truncated Riemann-Stieltjes sums of LogΛr, the integral being
LogΛr. Referring to Stoer and Bulirsch ([23], pp 126–128) we now replace LogΛr by
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an approximate value obtained by integration of an interpolation polynomial by the meth-

ods of Newton-Cotes; we just need to know this approximate value up to O
((LogLogn

Logn

)2)
.

Up to O
((LogLogn

Logn

)2)
, we will show that:

(i–1) an upper bound of (4.19) is (κ stands for κ(1,amax) as in Proposition 2.7)

arcsin(κ/2)
π

1
Logn

,

(ii–1) the approximate value of LogΛr is independent of the integer m (i.e. step length)
used in the Newton-Cotes formulas, assuming the weights (αq)q=0,1,...,m associated with m
all positive. Indeed, if m is arbitrarily large, the estimate of the integral should be very
good by these methods, ideally exact at the limit (m“ = ”+∞).

Proof of (i–1): we consider the decomposition of the interval of integration as(
0,2arcsin(κ/2)

]
=

(4.20)
(
0,

2πdLogne
n

]
∪
( Jn−1⋃

j=dLogne

[2π j
n

,
2π( j+1)

n

])
∪
[2πJn

n
,2arcsin(κ/2)

]
and proceed by calcutating the estimations of

(4.21)

∣∣∣∣∣−1
π

∫ 2π( j+1)
n

2π j
n

Log
(

2sin(x/2)
)

dx− −2
n

Log
(
2 sin

(π j
n

))∣∣∣∣∣
on the intervals I j :=

[2π j
n , 2π( j+1)

n

]
, j = dLogne,dLogne+ 1, . . . ,Jn− 1. On each such

I j, the function f (x) is approximated by its interpolation polynomial Pm(x), where m≥ 1
is the number of subintervals forming an uniform partition of I j given by

(4.22) yq =
2π j

n
+q

2π

n
1
m
, q = 0,1, . . . ,m,

of step length hNC := 2π

nm , and Pm the interpolating polynomial of degree m or less with

Pm(yq) = f (yq), for q = 0,1, . . . ,m.

The Newton-Cotes formulas∫ 2π( j+1)
n

2π j
n

Pm(x)dx = hNC

m

∑
q=0

αq f (yq)

provide approximate values of
∫ 2π( j+1)

n
2π j

n
f (x)dx, where the αq are the weights obtained by

integrating the Lagrange’s interpolation polynomials. Steffensen [?] ([23], p 127) showed
that the approximation error may be expressed as follows:∫ 2π( j+1)

n

2π j
n

Pm(x)dx−
∫ 2π( j+1)

n

2π j
n

f (x)dx = hp+1
NC ·K · f (p+1)(ξ ), ξ ∈

o
I j,

where p≥ 2 is an integer related to m, and K a constant.
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Using [23], p. 128, and m= 1, the method being the “Trapezoidal rule”, we have: “p= 2,
K = 1/12,α0 = α1 = 1/2”. Then (4.21) is estimated by∣∣∣∣12 2π

n

[
−1
π

Log
(
2 sin

(π j
n

))
+
−1
π

Log
(
2 sin

(π( j+1)
n

))]
− −2

n
Log

(
2 sin

(π j
n

))∣∣∣∣
(4.23) =

1
n

∣∣∣∣Log
(
2 sin

(π j
n

))
− Log

(
2 sin

(π( j+1)
n

))
)

∣∣∣∣= 2π

n2

∣∣∣∣ cos(ξ/2)
2sin(ξ/2)

∣∣∣∣≤ 1
n

1
Logn

for some ξ ∈
o

I j, for large n. The (Steffensen’s) approximation error “h3
NC ·(1/12) · f (2)(ξ )”

for the trapezoidal rule, relative to (4.21), is

(4.24)
1
π

(
2π

n

)3 1
12

∣∣∣∣ −1
4sin2(ξ/2)

∣∣∣∣≤ 1
6n

1
(Logn)2 .

By Proposition 2.7 the integral∣∣∣∣−1
π

∫ 2arcsinκ/2

2πJn
n

Log
(
2sin(x/2)

)
dx
∣∣∣∣ is a O

(1
n

)
.

Then, summing up the contributions of all the intervals I j, we obtain the following upper
bound of (4.19)

(4.25)
∣∣∣∣−1

π

∫ (2πLogn)/n

0
Log

(
2sin(x/2)

)
dx
∣∣∣∣+ arcsin(κ/2)

π

1
Logn

.

with global (Steffensen’s) approximation error, from (4.24),

O(
1

(Logn)2 )

By integrating by parts the integral in (4.25), for large n, it is easy to show that this integral
is = O

(
(Logn)2

n

)
. We deduce the following asymptotic expansion

(4.26) ∆1 =
R

Logn
+O(

1
(Logn)2 ) with |R|< arcsin(κ/2)

π
.

Proof of (ii–1): Let us show that the upper bound arcsin(κ/2)
π

1
Logn is independent of the

integer m used, once assumed the positivity of the weights (αq)q=0,1,...,m. For m≥ 1 fixed,
this is merely a consequence of the relation between the weights in the Newton-Cotes
formulas. Indeed, we have ∑

m
q=0 αq = m, and therefore∣∣∣∣∣

∫ 2π( j+1)
n

2π j
n

Pm(x)dx−hNCm f (y0)

∣∣∣∣∣= hNC

∣∣∣∣∣ m

∑
q=0

αq( f (yq)− f (y0))

∣∣∣∣∣
≤ hNC

( m

∑
q=0
|αq|

)
sup

ξ∈L j

∣∣ f ′(ξ )∣∣ .
Since hNCm = 2π

n and that the inequality supξ∈L j
| f ′(ξ )| ≤ | f ′((2πLogn)/n)| holds uni-

formly for all j, we deduce the same upper bound as in (4.23) for the Trapezoidal rule.
Summing up the contributions over all the intervals I j, we obtain the same upper bound
(4.25) of (4.19) as before.
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As for the (Steffensen’s) approximation errors, they make use of the successive deriva-
tives of the function f (x) = Log(2sin(x/2)). We have:

f ′(x) =
cos(x/2)
2sin(x/2)

, f ′′(x) =− 1
4sin2(x/2)

, f ′′′(x) =
cos(x/2)

4sin3(x/2)
. . .

Recursively, it is easy to show that the q-th derivative of f (x), q≥ 1, is a rational function of
the two quantities cos(x/2) and sin(x/2) with bounded numerator on the interval (0,π/3],
and a denominator which is sinq(x/2). For the needs of majoration in the Newton-Cotes
formulas over each interval of the collection (I j), this denominator takes its smallest value
at ξ =(2πdLogne)/n. Therefore, for large n, the (Steffensen’s) approximation error “hp+1

NC ·
K · f (p)(ξ )” on one interval I j is

O
((2π

nm

)p+1
·K · np

(π Logn)p

)
= O

(
1

n(Logn)p

)
.

By summing up over the intervals I j, we obtain the global (Steffensen’s) approximation
error (p≥ 2)

O
(

1
(Logn)p

)
which is a O

((
LogLogn

Logn

)2
)
.

Calculation of |∆2|: we proceed as above for establishing an upper bound of

|∆2|=
∣∣∣−1

π

∫ 2arcsin( κ(1,amax)
2 )

0
Log

[1+2sin( x
2)−

√
1−12sin( x

2)+4(sin( x
2))

2

8sin( x
2)

]
dx

(4.27) −
Jn

∑
j=dLogne

−2
n

Log
(1+2sin(π j

n )−
√

1−12sin(π j
n )+4sin(π j

n )2

8sin(π j
n )

)∣∣∣
In (4.27) the sums are truncated Riemann-Stieltjes sums of Log µr, the integral being

Log µr. As above, the methods of Newton-Cotes (Stoer and Bulirsch ([23], pp 126–128)

will be applied to compute an approximate value of the integral up to O
((LogLogn

Logn

)2)
. Up

to O
((LogLogn

Logn

)2)
, we will show that:

(i–2) an upper bound of (4.27) is

(4.28)
4 arcsin(κ/2)

κ
√

2κ(3−κ)Log(1/κ)

1√
n

which is a O
((LogLogn

Logn

)2)
,

in other terms that (4.27) is equal to zero up to O
((LogLogn

Logn

)2)
,

(ii–2) the approximate value of Log µr is independent of the step length m used in the
Newton-Cotes formulas, assuming the weights (αq)q=0,1,...,m associated with m all posi-
tive.

Proof of (i–2): The decomposition of the interval of integration
(
0,2arcsin(κ/2)

]
re-

mains the same as above, given by (4.20). Let us treat the complete interval of integration
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0,2arcsin(κ/2)

]
by subintervals. We first proceed by estimating an upper bound of

∣∣∣−1
π

∫ 2π( j+1)
n

2π j
n

Log
[1+2sin( x

2)−
√

1−12sin( x
2)+4(sin( x

2))
2

8sin( x
2)

]
dx

(4.29) −−2
n

Log
(1+2sin(π j

n )−
√

1−12sin(π j
n )+4sin(π j

n )2

8sin(π j
n )

)∣∣∣
on the intervals I j :=

[2π j
n , 2π( j+1)

n

]
, j = dLogne,dLogne+1, . . . ,Jn−1. Let

F(x) := Log
[1+2sin( x

2)−
√

1−12sin( x
2)+4(sin( x

2))
2

8sin( x
2)

]
.

On each interval I j the function F(x) is approximated by its interpolation polynomial (say)
PF,m(x), where m ≥ 1 is the number of subintervals of I j given by their extremities yq by
(4.22), of step length hNC := 2π

nm , and PF,m the interpolating polynomial of degree m or less
with

PF,m(yq) = F(yq), for q = 0,1, . . . ,m.

The Newton-Cotes formulas

(4.30)
∫ 2π( j+1)

n

2π j
n

PF,m(x)dx = hNC

m

∑
q=0

αqF(yq)

provide the approximate values
∫ 2π( j+1)

n
2π j

n
F(x)dx, where the αqs are the weights obtained by

integrating the Lagrange’s interpolation polynomials. Using [23], p. 128, and m = 1, the
method being the “Trapezoidal rule”, we have: p = 2, K = 1/12,α0 = α1 = 1/2. Then
(4.29) is estimated by∣∣∣∣12 2π

n

[
−1
π

F
(2π j

n

)
+
−1
π

F
(2π( j+1)

n

)]
− −2

n
F
(2π j

n

)∣∣∣∣
(4.31) =

1
n

∣∣∣∣F(2π j
n

)
− F

(2π( j+1)
n

)
)

∣∣∣∣= 2π

n2

∣∣F ′(ξ )∣∣
for some ξ ∈

o
I j, for large n. As in Remark 2.8, let x = 2arcsin(κ/2). The derivative

(4.32) F ′(y) =
cos(y/2)(−2sin(y/2)+1−

√
4sin2(y/2)−12sin(y/2)+1

4sin(y/2)
√

4sin2(y/2)−12sin(y/2)+1)
> 0

is increasing on the interval (0,x). When y = 2πJn
n < x tends to x−, by Proposition 2.7 and

Remark 2.8, since 0 <
√

4sin2(y/2)−12sin(y/2)+1≤ 1 is close to zero for y = 2πJn/n,
the following inequality holds

(4.33) F ′(
2πJn

n
)≤ 2/κ√

4sin2(πJn
n )−12sin(πJn

n )+1
.
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The upper bound is a function of n which comes from the asymptotic expansion of πJn
n −

x
2 ,

as deduced from (2.19). Indeed, from (2.19) and using Remark 2.8 (ii),

4sin2(
πJn

n
)−12sin(

πJn

n
)+1=(

πJn

n
− x

2
)[8sin(x/2)cos(x/2)−12cos(x/2)]+O(

1
n2 )

(4.34) =
2κ(3−κ)Log(1/κ)

n
+

1
n

O
((LogLogn

Logn

)2)
From (4.33) and (4.34) we deduce |F ′(2πJn

n )| < (2/κ)√
2κ(3−κ)Log(1/κ)

√
n. From (4.31), we

deduce the following upper bound of (4.29) on each I j :=
[2π j

n , 2π( j+1)
n

]
:

(4.35)
4π

κ
√

2κ(3−κ)Log(1/κ)

1
n3/2 .

By summing up the contributions, for j = dLogne, . . . ,Jn−1, from (4.35) and the asymp-
totics of Jn given by (2.19), we deduce the upper bound (4.28) of |∆2|.

Let us prove that the method of numerical integration we use leads to a (Steffensen’s)
approximation error which is a O

((LogLogn
Logn

)2). The (Steffensen’s) approximation error

“h3
NC · (1/12) ·F(2)(ξ )” for the trapezoidal rule applied to (4.29) ([23], p. 127–128) is

(4.36)
1
π

(
2π

n

)3 1
12

∣∣∣F(2)(ξ )
∣∣∣ for some ξ ∈

o
I j .

The second derivative F ′′(y) is positive and increasing on (0, 2πJn
n ). It is easy to show that

there exists a constant C0 > 0 such that

F ′′(
2πJn

n
)≤ C0

(4sin2(πJn
n )−12sin(πJn

n )+1)3/2
.

Using the asymptotic expansion of Jn ((2.19); Remark 2.8 (ii); (4.34)), there exist C1 > 0
such that

(4.37) F ′′(
2πJn

n
)≤C1 n3/2.

From (4.36) and (4.37), summing up the contributions for j = dLogne, . . . ,Jn−1, the global
(Steffensen’s) approximation error of (4.27) for |∆2| admits the following upper bound, for
some constants C′2 > 0,C2 > 0,

C′2
Jn

n3 n3/2 =C2
1√
n

which is a O
((LogLogn

Logn

)2)
.

Now let us turn to the extremity intervals. Using the Appendix, and (2.19) in Proposition
2.7, it is easy to show that the two integrals

−1
π

∫ 2πdLogne
n

0
and

−1
π

∫ 2arcsin(κ/2)

2πJn
n

are O

((
LogLogn

Logn

)2
)
.

Proof of (ii–2): On each interval I j :=
[2π j

n , 2π( j+1)
n

]
, j = dLogne, . . . ,Jn−1, let us assume

that the number m of subintervals of I j given by their extremities yq by (4.22), is ≥ 2. The
weights αq in (4.30) are assumed to be positive.
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The upper bound 4 arcsin(κ/2)
κ
√

2κ(3−κ)Log(1/κ)

1√
n of (4.27) is independent of m≥ 2, once assumed

the positivity of the weights (αq)q=0,1,...,m, since, due to the relation between the weights
in the Newton-Cotes formulas ∑

m
q=0 αq = m,∣∣∣∣∣

∫ 2π( j+1)
n

2π j
n

Pm(x)dx−hNCmF(y0)

∣∣∣∣∣= hNC

∣∣∣∣∣ m

∑
q=0

αq(F(yq)−F(y0))

∣∣∣∣∣
≤ hNC

( m

∑
q=0
|αq|

)
sup

ξ∈L j

∣∣F ′(ξ )∣∣ .
Since hNCm = 2π

n and that supξ∈L j
|F ′(ξ )| ≤ |F ′((2πJn)/n)| holds uniformly for all j =

dLogne, . . . ,Jn− 1, we deduce the same upper bound (4.35) as for the Trapezoidal rule.
Summing up the contributions over all the intervals I j, we obtain the same upper bound
(4.28) of (4.27), as before.

As for the (Steffensen’s) approximation errors involved in the numerical integration
(4.30) there are “hp+1

NC ·K ·F(p)(ξ )” on one interval I j, for some p ≥ 2. They make use
of the successive derivatives of the function F(x). It can be shown that they contribute

negligibly, after summing up over all the intervals I j, as O
((

LogLogn
Logn

)2
)
.

Gathering the different terms from (i–1)(i–2), the Steffenssen’s error terms and the error
terms due to the numerical integration by the Newton-Cotes method (ii–1)(ii–2), we have
proved the following theorem.

Theorem 4.2. Let β > 1 be a real number such that n = dyg(β ) ≥ 260, with β 6∈ {θ−1
n :

n≥ 259}. The minorant Lr(β ) of LogSlent(β ) admits the following asymptotic expansion
as lower bound, as a function of n = dyg(β ),

(4.38) Lr(β )≥ LogΛrµr +
R

Logn
+O

((LogLogn
Logn

)2)
, with 0 < R <

arcsin(κ/2)
π

and R depending upon n.

4.3. A Dobrowolski-type inequality - Proof of Theorem 1.2. Let Rn denote the n-depend-
ing positive real number R in (4.38). Let us show that it is substantially smaller than the
bound arcsin(κ/2)

π
.

Lemma 4.3. With the same notations as in Theorem 4.2, there exists an integer η ≥ 260
such that

(4.39)
∣∣∣∣Rn +O

((LogLogn)2

Logn

)∣∣∣∣< arcsin(κ/2)
π

, for all n≥ η .

Proof. Let Xn := cdLogne with c a positive constant such that dLogne< Xn < Jn. The limit
limn→∞ Xn/n = 0 holds. Recall that Jn is given by (2.19).
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The quantity Rn comes from the integration of the jth-subdivision step (4.21) by (4.23),
in order to give an estimate of the development term of |∆1| given by (4.19). This jth-
subdivision step of integration provides the estimated term (cf (4.23))

(4.40)
2π

n2

∣∣∣∣ cos(ξ/2)
2sin(ξ/2)

∣∣∣∣ for some ξ ∈
(2π j

n
,
2π( j+1)

n

)
.

Since the cotangent function is positive and strictly decreasing on (0,π/2), the upper bound
of (4.40) is naturally the one given by the first interval of the subdivision[

2πdLogne
n , 2π(dLogne+1)

n

]
, that is 1

n
1

Logn . We now separate the following summation into two
parts.

(4.41)
−1
π

∫ 2πJn
n

2πdLogne
n

Log
(

2sin(x/2)
)

dx−
Jn

∑
j=dLogne

−2
n

Log
(
2 sin

(π j
n

))

(4.42) =
Xn−1

∑
j=dLogne

(
−1
π

∫ 2π( j+1)
n

2π j
n

Log
(

2sin(x/2)
)

dx− −2
n

Log
(
2 sin

(π j
n

)))

(4.43) +
Jn−1

∑
j=Xn

(
−1
π

∫ 2π( j+1)
n

2π j
n

Log
(

2sin(x/2)
)

dx− −2
n

Log
(
2 sin

(π j
n

)))
.

Each term of (4.42) is bounded by 1
n

1
Logn from above, as previously. On the contrary, each

term of (4.43) is such that

2π

n2

∣∣∣∣ cos(ξ/2)
2sin(ξ/2)

∣∣∣∣≤ 1
n2

∣∣∣∣ 1
Xn/n

∣∣∣∣= 1
n

1
cLogn

.

Summing up the two contributions, we obtain the following upper bound of (4.41):

(Xn−1−dLogne)1
n

1
Logn

+(Jn−Xn−1)
1
n

1
cLogn

≤ (c−1)
1
n
+

1
c

arcsin(κ/2)
π Logn

The first term (c−1)1
n is a O

(1
n

)
and, multiplied by Logn, is inserted in the Big O of (4.39).

The second term 1
c

arcsin(κ/2)
π Logn is an upper bound of Rn/Logn. Let us fix the constant c. Take

for instance c = 3. The function (LogLogx)2/Logx tends to 0 when x goes to infinity.
Therefore there exists an integer η such that all the functions, depending upon n, “grouped
in the Big O” of (4.39) satisfy (in short form):∣∣∣O((LogLogn)2

Logn

)∣∣∣< 2
3

arcsin(κ/2)
π

, n≥ η .

We deduce Lemma 4.3. �
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Proof of Theorem 1.2.– For any real number β > 1, dyg(β ) ≥ 260 and β 6∈ {θ−1
n : n ≥

259}, we have

Slent(β )≥ exp(Lr(β ))≥ Λrµr

(
1+

R

Logn
+O

((LogLogn
Logn

)2))
from Theorem 4.2. Using Lemma 4.3, for all n≥ η for some η ≥ 260, we can improve the
above inequality to

Slent(β )≥ exp(Lr(β ))≥ Λrµr

(
1− 1

Logn
arcsin(κ/2)

π

)
.

Recall that C = Λrµr. We deduce Theorem 1.2.

5. APPENDIX: TRINOMIALS −1+ z+ zn, MAHLER MEASURES AND ANGULAR
SECTORIZATION

5.1. Notations, factorization, lenticular roots. The following notations are used through-
out this paper. They come from the factorization of Gn(X) := −1+X +Xn ([19], Section
2 in [27]). Summing in pairs over complex conjugated imaginary roots, the indexation of
the roots and the factorization of Gn(X) are taken as follows:

(5.1) Gn(X) = (X−θn)

(b n
6c

∏
j=1

(X− z j,n)(X− z j,n)

)
×qn(X),

where θn is the only (real) root of Gn(X) in the interval (0,1), where

qn(X) =



 n−2
2

∏
j=1+b n

6 c
(X− z j,n)(X− z j,n)

× (X− z n
2 ,n

) if n is even, with

z n
2 ,n

real <−1,
n−1

2

∏
j=1+b n

6 c
(X− z j,n)(X− z j,n) if n is odd,

where the index j = 1,2, . . . is such that z j,n is a (nonreal) complex zero of Gn(X), except
if n is even and j = n/2, such that the argument arg(z j,n) of z j,n is roughly equal to 2π j/n
(Proposition 5.11) and that the family of arguments (arg(z j,n))1≤ j<bn/2c forms a strictly
increasing sequence with j:

0 < arg(z1,n)< arg(z2,n)< .. . < arg(zb n
2c,n)≤ π.

For n ≥ 2 all the roots of Gn(X) are simple, and the roots of G∗n(X) = XnGn(1/X) = 1+
Xn−1−Xn, as inverses of the roots of Gn(X), are classified in the reversed order (Figure 3).

Proposition 5.1. Let n ≥ 2. If n 6≡ 5 (mod 6), then Gn(X) is irreducible over Q. If
n ≡ 5 (mod 6), then the polynomial Gn(X) admits X2− X + 1 as irreducible factor in
its factorization and Gn(X)/(X2−X +1) is irreducible.

Proof. Selmer [19]. �
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FIGURE 3. The roots (black bullets) of Gn(z) (represented here with n = 71
and n = 12) are uniformly distributed near |z| = 1. A slight bump appears
in the half-plane ℜ(z)> 1/2 in the neighbourhood of 1, at the origin of the
different regimes of asymptotic expansions. The dominant root of G∗n(z) =
znGn(1/z) is the Perron number θ−1

n > 1, with θn the unique root of Gn in
the interval (0,1).

Proposition 5.2. For all n ≥ 2, all zeros z j,n and θn of the polynomials Gn(X) have a
modulus in the interval

(5.2)
[

1− 2Logn
n

, 1+
2Log2

n

]
,

(ii) the trinomial Gn(X) admits a unique real root θn in the interval (0,1). The sequence
(θn)n≥2 is strictly increasing, limn→+∞ θn = 1, with θ2 =

2
1+
√

5
= 0.618 . . .,

(iii) the root θn is the unique root of smallest modulus among all the roots of Gn(X); if
n≥ 6, the roots of modulus < 1 of Gn(z) in the closed upper half-plane have the following
properties:

(iii-1) θn < |z1,n|,
(iii-2) for any pair of successive indices j, j+1 in {1,2, . . . ,bn/6c},

|z j,n|< |z j+1,n|.

Proof. (i)(ii) Selmer [19], pp 291–292; (iii-1) Flatto, Lagarias and Poonen [6], (iii-2)
Verger-Gaugry [27]. �

From [27], or by Smyth’s Theorem [20] since the trinomials Gn(X) are not reciprocal,
the Mahler measure of Gn satisfies

(5.3) M(θn) = M(Gn) ≥ Θ = 1.3247 . . . , n≥ 2,

where Θ = θ
−1
5 is the smallest Pisot number, dominant root of the Pisot polynomial X3−

X−1 =−X5G5(1/X)/(X2−X +1).

Proposition 5.3. Let n≥ 2. Then (i) the number pn of roots of Gn(X) which lie inside the
open sector S = {z | |arg(z)|< π/3} is equal to

(5.4) 1+2bn
6
c,
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(ii) the correlation between the geometry of the roots of Gn(X) which lie inside the unit
disk and the upper half-plane and their indexation is given by:

(5.5) j ∈ {1,2, . . . ,bn
6
c} ⇐⇒ ℜ(z j,n)>

1
2
⇐⇒ |z j,n|< 1,

and the Mahler measure M(Gn) of the trinomial Gn(X) is

(5.6) M(Gn) = M(G∗n) = θ
−1
n

bn/6c

∏
j=1
|z j,n|−2.

Proof. [27], Proposition 3.7. �

Definition 5.4. Let n≥ 2. The set of the lenticular poles of ζ
θ
−1
n
(z), equivalently the set of

the lenticular roots of Gn(z), is L
θ
−1
n

= {zbn/6c,n, . . . ,z1,n,θn,z1,n, . . . ,zbn/6c,n}.

5.2. Asymptotic expansions: poles of ζ
θ
−1
n
(z) and useful relations. The poles of ζ

θ
−1
n
(z),

n≥ 3, inside the open unit disk are the zeroes of Gn(z) of modulus < 1, in C. In the follow-
ing, for being self-contained, we summarize the main results on the asymptotic expansions
of the roots of the Gns useful to the expansions of the lower bounds of the lenticular mea-
sures Slent(β ) in Section 4.

The (Poincaré) asymptotic expansions of the roots z j,n of Gn are generically written:
Re(z j,n) = D(Re(z j,n))+ tl(Re(z j,n)), Im(z j,n) = D(Im(z j,n))+ tl(Im(z j,n)), θn = D(θn)+
tl(θn), where ”D” and ”tl” stands for “development”, or “limited expansion”, or “lowest
order terms”, and ”tl” for “tail” or “remainder”, or “terminant” [3].

Poincaré [14] introduced this method of divergent series for the N-body problem in celes-
tial mechanics; the analogue of the variable time t (of celestial mechanics) is the dynamical
degree dyg(β ) when β > 1 is a real number; for the trinomial Gn it is n.

The Poincaré asymptotic expansions of the roots z j,n of Gn(z) =−1+ z+ zn, lying in the
first quadrant of C, are recalled in Proposition 5.10. They are divergent formal series of
functions of the couple of two variables which is:

•
(
n,

j
n

)
, in the (“main” sector) angular sector:

π

2
> argz > 2π

Logn
n

,

•
(
n,

j
Logn

)
, in the angular sector (“bump” sector): 2π

Logn
n

> argz ≥ 0.

In the bump sector (cusp sector of Solomyak’s fractal [22] in the open unit disk), the roots
z j,n are dispatched into the two subsectors:

• 2π

√
(Logn)(LogLogn)

n > argz > 0,

• 2π
Logn

n > argz > 2π

√
(Logn)(LogLogn)

n .

The relative angular size of the bump sector, as (2π
Logn

n )/(π

2 ), tends to zero, as soon as
n is large enough. By transition region, we mean a small neighbourhood of the argument :

argz = 2π
Logn

n
or of 2π

√
(Logn)(LogLogn)

n
.

Outside these two transition regions, a dominant asymptotic expansion of z j,n exists. In a
transition region an asymptotic expansion contains more n-th order terms of the same order
of magnitude (n = 2,3,4). These two neighbourhoods are defined as follows. Let ε ∈ (0,1)
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small enough. Two strictly increasing sequences of real numbers (un),(vn) are introduced,
which satisfy:

bn/6c > vn > Logn, Logn > un >
√

(Logn)(LogLogn), for n≥ n0 = 18,

such that

lim
n→∞

vn

n
= lim

n→∞

√
(Logn)(LogLogn)

un
= lim

n→∞

un

Logn
= lim

n→∞

Logn
vn

= 0

and

(5.7) vn−un = O((Logn)1+ε)

with the constant 1 involved in the big O. The roots z j,n lying in the first transition region
about 2π(Logn)/n are such that:

2π
vn

n
> argz j,n > 2π

(2Logn− vn)

n
,

and the roots z j,n lying in the second transition region about 2π
√

(Logn)(LogLogn)
n are such

that:

2π
un

n
> argz j,n > 2π

2
√
(Logn)(LogLogn)−un

n
.

In Proposition 5.10, for simplicity’s sake, these two transition regions are schematically
denoted by

argz� 2π
(Logn)

n
resp. argz� 2π

√
(Logn)(LogLogn)

n
.

By complementarity, the other sectors are schematically written:

2π

√
(Logn)(LogLogn)

n
> argz > 0

instead of

2π
2
√

(Logn)(LogLogn)−un

n
> argz > 0;

resp.

2π
Logn

n
> argz > 2π

√
(Logn)(LogLogn)

n
instead of

2π
2Logn− vn

n
> argz > 2π

un

n
;

resp.
π

2
> argz > 2π

Logn
n

instead of
π

2
> argz > 2π

vn

n
.

Proposition 5.5. Let n ≥ 2. The root θn can be expressed as: θn = D(θn)+ tl(θn) with
D(θn) = 1−

(5.8)
Logn

n

(
1−
( n−Logn

nLogn+n−Logn

)(
LogLogn−nLog

(
1− Logn

n

)
−Logn

))
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and

(5.9) tl(θn) =
1
n

O

((
LogLogn

Logn

)2
)
,

with the constant 1/2 involved in O( ).

Proof. [27] Proposition 3.1. �

Lemma 5.6. Given the limited expansion D(θn) of θn as in (5.8), denote

λn := 1− (1−D(θn))
n

Logn
.

Then λn = D(λn)+ tl(λn), with

(5.10) D(λn) =
LogLogn

Logn

(
1

1+ 1
Logn

)
, tl(λn) = O

(
LogLogn

n

)
with the constant 1 in the Big O.

Proof. [27] Lemma 3.2. �

Lemma 5.7. Let n ≥ 6. The difference θn− θn−1 > 0 admits the following asymptotic
expansion, reduced to its terminant:

(5.11) θn−θn−1 =
1
n

O

((
LogLogn

Logn

)2
)
,

with the constant 1 involved in O( ).

Proof. From (5.8) and Lemma 5.6, we have

θn = 1− Logn
n

(1−λn)+
1
n

O

((
LogLogn

Logn

)2
)

with the constant 1/2 involved in O( ), and

λn =
LogLogn

Logn

(
1

1+ 1
Logn

)
+O

(
LogLogn

n

)
with the constant 1 in the Big O. Then we deduce

D(θn)−D(θn−1) =
Logn

n2 +O
(

LogLogn
n2

)
.

The real function x−2Logx on (1,+∞) is decreasing for x ≥
√

e. Hence the sequence
(D(θn)−D(θn−1)) is decreasing for n large enough. By Proposition 5.2 (θn− θn−1)n is
already known to tend to 0.

Since tl(θn) =
1
nO
((

LogLogn
Logn

)2
)

, we have

θn−θn−1 = (θn−D(θn))+ [D(θn)−D(θn−1)]− (θn−1−D(θn−1))

= tl(θn)+

(
Logn

n2 +O
(

LogLogn
n2

))
− tl(θn−1)
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(5.12) =
1
n

O

((
LogLogn

Logn

)2
)

where the constant involved in O( ) is now 1 = 1/2+1/2. Hence the claim. �

Theorem 5.8. Let n ≥ 6. Let β > 1 be a real number of dynamical degree dyg(β ) = n.
Then β−1 can be expressed as: β−1 = D(β−1)+ tl(β−1) with D(β−1) = 1−

(5.13)
Logn

n

(
1−
( n−Logn

nLogn+n−Logn

)(
LogLogn−nLog

(
1− Logn

n

)
−Logn

))
and

(5.14) tl(β−1) =
1
n

O

((
LogLogn

Logn

)2
)
,

with the constant 1 involved in O( ).

Proof. By definition θn≤ β−1 < θn−1. The development term of β−1 is D(β−1)=D(β−1−
θn)+D(θn), with |β−1− θn| < θn−θn−1. By Lemma 5.7, D(θn− θn−1) = 0. Therefore
β−1 = D(β−1)+ tl(β−1) is deduced from D(θn) in (5.8). �

Theorem 5.9. Let β ∈ (1,θ−1
6 ) be a real number. The asymptotic expansion of the locally

constant function n = dyg(β ), as a function of the variable β −1, is

(5.15) n =−Log(β −1)
β −1

[
1+O

((Log(−Log(β −1))
Log(β −1)

)2)]
with the constant 1 in O( ).

Proof. Inverting (5.13) gives the asymptotic expansion of n as a function of β : from (5.13)
readily comes

(5.16) n =
β

β −1
Log

(
β

β −1

)[
1+O

((LogLog
(

β

β−1

)
Log

(
β

β−1

) )2)]
then (5.15) as β → 1. �

In the sequel, for short, we write λn instead of D(λn).

Proposition 5.10. Let n ≥ n0 = 18 and 1 ≤ j ≤ bn−1
4 c. The roots z j,n of Gn(X) have the

following asymptotic expansions: z j,n = D(z j,n)+ tl(z j,n) in the following angular sectors:

(i) Sector π

2 > argz > 2π
Logn

n (main sector):

D(ℜ(z j,n)) = cos
(
2π

j
n

)
+

Log
(
2 sin

(
π

j
n

))
n

,

D(ℑ(z j,n)) = sin
(
2π

j
n

)
+ tan

(
π

j
n

) Log
(
2 sin

(
π

j
n

))
n

,

with

tl(ℜ(z j,n)) = tl(ℑ(z j,n)) =
1
n

O

((
LogLogn

Logn

)2
)



A DOBROWOLSKI-TYPE INEQUALITY AND THE DYNAMICAL ZETA FUNTION OF THE BETA-SHIFT44

and the constant 1 in the Big O,

(ii) “Bump” sector 2π
Logn

n > argz > 0 :

• Subsector 2π

√
(Logn)(LogLogn)

n > argz > 0:

D(ℜ(z j,n)) = θn +
2π2

n

(
j

Logn

)2 (
1+2λn

)
,

D(ℑ(z j,n)) =
2πLogn

n

(
j

Logn

)[
1− 1

Logn
(1+λn)

]
,

with

tl(ℜ(z j,n)) =
1

nLogn

(
j

Logn

)2

O

((
LogLogn

Logn

)2
)
,

tl(ℑ(z j,n)) =
1

nLogn

(
j

Logn

)
O

((
LogLogn

Logn

)2
)
,

• Subsector 2π
Logn

n > argz > 2π

√
(Logn)(LogLogn)

n :

D(ℜ(z j,n)) = θn +
2π2

n

(
j

Logn

)2
(

1+
2π2

3

(
j

Logn

)2

(1+λn)

)
D(ℑ(z j,n)) =

2πLogn
n

(
j

Logn

)[
1− 1

Logn

(
1− 4π2

3

(
j

Logn

)2(
1− 1

Logn
(1−λn)

))]
,

with

tl(ℜ(z j,n)) =
1
n

O

((
j

Logn

)6
)
, tl(ℑ(z j,n)) =

1
n

O

((
j

Logn

)5
)
.

Proof. [27] Proposition 3.4. �

Outside the “bump sector” the moduli of the roots z j,n are readily obtained as (Proposi-
tion 3.5 in [27]):

(5.17) |z j,n|= 1+
1
n

Log
(
2 sin

(π j
n

))
+

1
n

O
(
(LogLogn)2

(Logn)2

)
,

with the constant 1 in the Big O (independent of j).

Proposition 5.11.

arg(z j,n) = 2π(
j
n
+A j,n) with A j,n =−

1
2πn

[
1− cos(2π j

n )

sin(2π j
n )

Log(2sin(
π j
n
))

]

and tl(arg(z j,n)) =
1
n

O
((LogLogn

Logn

)2)
.

Proof. §6 in [27]. �
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Proposition 5.12. For all j such that π/3 ≥ argz j,n > 2π
dvne

n , the asymptotic expansions
of the moduli of the roots z j,n are

|z j,n|= D(|z j,n|)+ tl(|z j,n|)
with

(5.18) D(|z j,n|) = 1+
1
n

Log
(
2 sin

(π j
n

))
+

1
2n

(
LogLogn

Logn

)2

and

(5.19) tl(|z j,n|) =
1
n

O
(
(LogLogn)2

(Logn)3

)
where the constant involved in O( ) is 1 (does not depend upon j).

Proof. [27] Section 5.1. �

Proposition 5.13. For n≥ 18, the modulus of the first root z1,n of Gn(z) =−1+ z+ zn is

(5.20) |z1,n|= 1− Logn−LogLogn
n

+
1
n

O
(

LogLogn
Logn

)
and

(5.21) |−1+ z1,n|=
Logn−LogLogn

n
+

1
n

O
(

LogLogn
Logn

)
with the constant 1 in the two Big Os.

Proof. The root z1,n belongs to the subsector 2π

√
(Logn)(LogLogn)

n > argz > 0: first, from
Lemma 5.6, the asymptotic expansion of λn is

λn =
LogLogn

Logn
+O(

LogLogn
(Logn)2 )

with the constant 1 in the Big O. Since D(|z1,n|) = D(ℜ(z1,n))(1+
(D(ℑ(z1,n))

D(ℜ(z1,n))

)2
)1/2, that

D(ℜ(z1,n)) = θn +
2π2

n

( 1
Logn

)2(1+2λn
)
, D(ℑ(z1,n)) =

2π

n

[
1− 1

Logn
(1+λn)

]
(Proposition 5.10) and

θn = 1− Logn
n

(1−λn)+
1
n

O

((
LogLogn

Logn

)2
)

(Proposition 5.5) we deduce (5.20) and the expansion (5.21) from the expansion of λn. �

Proposition 5.14. For n ≥ 18, the modulus of −1 + z j,n, where z j,n is the j-th root of
Gn(z) =−1+ z+ zn, dvne ≤ j ≤ bn/6c, is

(5.22) |−1+ z j,n| = 2sin(
π j
n
)+

1
n

O
((LogLogn

Logn

)2)
with the constant 1 in the Big O.
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Proof. From (5.17), Proposition 5.10 and Proposition 5.12, the identity

|−1+ z j,n|2 = (−1+ℜ(z j,n))
2 +(ℑ(z j,n))

2 = 1+ |z j,n|2−2ℜ(z j,n)

implies: |−1+ z j,n|2 =

2−2cos
(
2π

j
n

)
+

1
n

O
((LogLogn

Logn

)2)
= 4sin2(π j

n

)
+

1
n

O
((LogLogn

Logn

)2)
with the constant 4 in the Big O. We deduce (5.22). �

Proposition 5.15. For n ≥ 18, the modulus of (−1+ z j,n)/z j,n, where z j,n is the j-th root
of Gn(z) =−1+ z+ zn, dvne ≤ j ≤ bn/6c, is

(5.23)
|−1+ z j,n|
|z j,n|

= 2sin(
π j
n
)
(

1− 1
n

Log(2sin(
π j
n
))
)
+

1
n

O

((
LogLogn

Logn

)2
)

with the constant 2 in the Big O.

Proof. The expansion (5.23) readily comes (5.22) and |z j,n| given by Proposition 5.12. �
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