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Comment on Three Papers about Hardy-Weinberg Equilibrium

Tests in Autopolyploids

David Gerard

Department of Mathematics and Statistics, American University, Washington, DC, 20016, USA

Abstract

Three similar manuscripts, by many of the same authors, were recently published describ-
ing methods for Hardy-Weinberg equilibrium and random mating testing in autotetraploids
[Sun, et al. Trends in Genetics, 37(6), 2021. doi:10.1016/j.tig.2020.11.006], autohexaploids
[Wang, et al. Horticulture Research, 9, 2022. doi:10.1093/hr/uhac104], and autooctoploids
[Wang, et al. Frontiers in Genetics, 12, 2021. doi:10.3389/fgene.2021.794907]. We found issues
with these manuscripts, which we detail here. The main problems that we see are (i) extensive
mistakes and implementation errors, (ii) confusion between random mating and equilibrium,
(iii) confusion between allo- and autopolyploid inheritance, and (iv) poor hypothesis testing ap-
proaches. We provide examples and simulations when appropriate. All of our results are open
and reproducible.

1 Introduction

This comment pertains to the genotype frequencies of autopolyploids, organisms with more than two
sets of homologous chromosomes. We will need a little notation before we discuss the issues here.
Let q = (q0, q1, . . . , qK) be the genotype frequencies at a single biallelic locus for an autopolyploid
population with ploidy K. That is, qk is the proportion of individuals in the population with k
copies of the minor allele. Let x = (x0, x1, . . . , xK) be the genotype counts in a random sample of
n =

∑K
k=0 xk individuals. Then x is multinomially distributed with size n and probability vector q.

One goal in the population genetics of autopolyploids is to model the genotype frequencies. Under
random mating, we have [Gerard, 2022b]

qk =

min(k,K/2)∑
i=max(0,k−K/2)

pipk−i, (1)

where p = (p0, p1, . . . , pK/2) are the gamete frequencies of the population. That is, pk is the
proportion of gametes in the population that have k copies of the minor allele. Suppose that a
population is randomly mating, then there exists a function f(q, α) = (f0(q, α), . . . , fK(q, α)) that
updates the genotype frequencies from the current generation q, to the next f(q, α). Here, α is
called the double reduction rate, a property of meiosis in autopolyploids [Stift et al., 2010]. If the
population is at equilibrium, then we have

q = f(q, α). (2)
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For each ploidy, there is a q that satisfies (2), called the “equilibrium genotype frequencies” [Huang
et al., 2019]. These frequencies are a function of the double reduction rate α and the allele frequency
r = 1

K

∑K
k=0 kqk, and have been calculated for ploidies less than or equal to ten [Huang et al., 2019].

If α = 0, then these equilibrium genotype frequencies reduce to binomial proportions [Haldane,
1930],

qk =

(
K

k

)
rk(1− r)K−k. (3)

Three similar papers were recently released which attempt to distinguish between hypotheses
(1)–(3): one for tetraploids [Sun et al., 2021], one for hexaploids [Wang et al., 2022], and one
for octoploids [Wang et al., 2021]. These three papers have issues that we have found. We are
well situated to provide this comment because we recently published a manuscript distinguishing
between (1)–(3) [Gerard, 2022b]. We also recently released a preprint on Bayesian tests for (1)
[Gerard, 2022a]. Here, we will list each issue of Sun et al. [2021], Wang et al. [2022], and Wang
et al. [2021] in turn, providing examples as needed. If we made any mistakes in the following, we
would appreciate any corrections the authors could provide.

2 Mistakes and implementation issues

There are many logical and coding issues in Sun et al. [2021], Wang et al. [2021], and Wang et al.
[2022]. We list here the ones we found. But the code Sun et al. [2021] is not available, and the code
from Wang et al. [2021] and Wang et al. [2022] is verbose and sparsely documented, so there might
be more implementation errors that we missed.

The model for meiosis in Wang et al. [2021] is incorrect. This leads to incorrect equilibrium
genotype frequencies in their “recursive” test for equilibrium, and thus an incorrect test for equi-
librium. We can determine that their model is incorrect by looking at what it implies when α = 0.
In this case, the distribution of gamete dosages is known to follow a hypergeometric distribution
[Table 1 from Haldane, 1930, Bever and Felber, 1992, Huang et al., 2019]. If X is the parental
genotype and Y is the gamete genotype, the reader can see this result by thinking of the probability
of obtaining Y minor alleles out of K/2 chosen alleles from an individual with K total alleles and
X total minor alleles. Therefore, the correct segregation frequencies are obtained via

Pr(Y = y|X = x) =

(
x
y

)(
K−x
K/2−y

)(
K

K/2

) . (4)

Table 1 shows that the model for meiosis from Table 1 of Wang et al. [2021] does not equal the
probabilities from (4) when α = 0, indicating that their model for meiosis is incorrect. We can
empirically show that their equilibrium frequencies also do not equal binomial proportions when
α = 0 (Appendix S2), which they should [Haldane, 1930].

The χ2 statistics testing hypotheses (1) and (2) are implemented incorrectly in Wang et al.
[2022]. The χ2 statistic in equation (1) of Wang et al. [2022] is correct in the manuscript, but in
their code they left out the N term. This affects both their equilibrium testing results and their
random mating results. We know this because we reproduced their the 6.602 and 6.649 values on
page 5 of their manuscript (Appendix S3). Thus, their tests are improperly implemented.

The random mating test is implemented incorrectly in Wang et al. [2022], even after we include
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Gamete Genotype

Parent Genotype Method 4 3 2 1 0

8 Wang et al. [2021] 1 0 0 0 0
8 Correct 1 0 0 0 0

7 Wang et al. [2021] 9/16 3/8 1/16 0 0
7 Correct 1/2 1/2 0 0 0

6 Wang et al. [2021] 225/784 45/98 87/392 3/98 1/784
6 Correct 3/14 8/14 3/14 0 0

5 Wang et al. [2021] 25/196 75/196 285/784 45/392 9/784
5 Correct 1/14 6/14 6/14 1/14 0

4 Wang et al. [2021] 9/196 12/49 41/98 12/49 9/196
4 Correct 1/70 16/70 36/70 16/70 1/70

3 Wang et al. [2021] 9/784 45/392 285/784 75/196 25/196
3 Correct 0 1/14 6/14 6/14 1/14

2 Wang et al. [2021] 1/784 3/98 87/392 45/98 225/784
2 Correct 0 0 3/14 8/14 3/14

1 Wang et al. [2021] 0 0 1/16 3/8 9/16
1 Correct 0 0 0 1/2 1/2

0 Wang et al. [2021] 0 0 0 0 1
0 Correct 0 0 0 0 1

Table 1: Segregation frequencies for an autooctoploid when there is no double reduction, either
according to Table 1 from Wang et al. [2021] or according to the correct calculation using the
hypergeometric distribution (4). The two approaches are different, so the general model for meiosis
in Wang et al. [2021] is incorrect.
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the N term. That is, the authors calculate it differently than what they state in their manuscript.
Specifically, in their code, they first estimate the gamete frequencies via maximum likelihood, then
put the resulting genotype frequencies through the recursive formula to come up with equilibrium
values. However, using this recursive formula just results in the same genotype frequencies as the
equilibrium “recursive” test. So, the 6.602 value and the 6.649 value above are different merely
because the authors ran the recursive relationship for a different number of iterations.

The degrees of freedom for the both the equilibrium and random mating tests are incorrect in
Sun et al. [2021]. They list the degrees of freedom to be four in both tests. But there are already
four free parameters under the alternative (since q0 + q1 + q2 + q3 + q4 = 1). Since Sun et al. [2021]
assume the double reduction rate is known, under the null of equilibrium there is one free parameter
(the allele frequency), and so the degrees of freedom for the test for equilibrium is 4− 1 = 3, not 4.
Under the null of random mating, there are 2 free parameters (since p0 + p1 + p2 = 1), and so the
degrees of freedom for the test of random mating is 4− 2 = 2, not 4.

The degrees of freedom for the random mating test is incorrect in Wang et al. [2022]. On page
4 of Wang et al. [2022], the authors say about their test for random mating that “this test statistic
follows the chi-square distribution with an unknown degree of freedom. However, we can empirically
determine it as a value between 7 - 1 - 1 = 5 to 7 - 1 = 6.” We can theoretically determine the degrees
of freedom here. There are 6 free parameters under the alternative (since q0+q1+q2+q3+q4+q5+q6 =
1), and there are 3 free parameters under the null (since p0 + p1 + p2 + p3 = 1), and so the degrees
of freedom is 6 - 3 = 3, which is neither 5 nor 6.

The degrees of freedom for the recursive test is incorrect in Wang et al. [2022]. They say, right
after their equation (1) that the degrees of freedom is 6. But there are already 6 free parameters
under the alternative. Because Wang et al. [2022] assume the double reduction rate is known, there
is only 1 free parameter under the null, the allele frequency. Thus, the true degrees of freedom is 6
- 1 = 5, not 6. See Appendix S4 for an empirical demonstration.

The degrees of freedom for the recursive test is incorrect in Wang et al. [2021]. Right after
their equation (3), they state that their χ2 statistic “is thought to follow a chi-square distribution
with eight degrees of freedom.” But there are already 8 parameters under the alternative (since∑8

k=0 qk = 1). The number of parameters under the null is unclear since they are using a different
(incorrect) model for meiosis than we have studied for octoploids, but it likely at least 1 (for the
allele frequency). Empirically, it seems the degrees of freedom is 7, not 8 (Appendix S4).

The estimates of α are implemented incorrectly in Wang et al. [2022]. The authors do not
modularize their code into functions, and this led to some logical errors. They have a variable in
their simulations called alpha that is the true double reduction rate. Their code returns alpha1,
the estimated double reduction rate. However, their EM algorithm uses alpha, not the current
version of alpha1, to update the parental gamete frequencies. Thus, they use the true value of α
in their code that estimates α. This clearly results in unwarranted advantages. We fixed this bug
and reran their simulations, obtaining very biased estimates of α (Appendix S5). This indicates
that either their EM algorithm is wrong, or their code is incorrect. It is hard for us to judge if their
EM algorithm is wrong since the EM algorithm used to estimate α is neither in the manuscript nor
in the Supplementary Materials. We also note that when we ran the authors’ “estimate alpha.R”,
which should produce the simulation results in their Table 3, we were not able to actually reproduce
their Table 3.

From what we can understand through their code (in files “table2 power.R” and “LR.R”), Wang
et al. [2021] implement their tests by using the true genotype frequencies when constructing their
test statistics. Needless to say, researchers would not have access to the true genotype frequencies
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in reality. In their “table2 power.R”, they set some genotype frequencies q1 and then obtain the
underlying true genotype frequencies via a perturbation of q = f(q1, α), where α = 0. They
obtain two equivalently valued variables called prob and prob1. They use a perturbation of prob

to generate the data, and prob1 to construct the test statistic, but both prob and prob1 are equal
to q. We provide an annotated version of “table2 power.R” in the Supplementary Material so that
it is easier for the reader to see the issue here. Though, the reader is warned, their code is rather
verbose and spans 49 8.5×11” pages. Because their test statistic is impossible to calculate in real
analyses (because it uses the true genotype frequencies), the simulation results of Wang et al. [2021]
are invalid. We also note that when we ran “table2 power.R” using the authors’ original code, we
were not able to actually reproduce their power results in their Table 2.

3 Distinguishing between random mating and equilibrium

Sun et al. [2021], Wang et al. [2022], and Wang et al. [2021] suggest that (1) and (2) are the same
hypothesis, or at least approximately so. In their manuscripts, they have a “recursive” test and a
“gamete-based” test that they claim both test for “asymptotic Hardy-Weinberg equilibrium”. Their
“recursive” test does indeed evaluate (2) (assuming α is known). However, the “gamete-based” test
actually evaluates (1).

Since the authors say that (1) is about the same as (2) for any choice of α, this is worth some
exploration. As an extreme counterexample (Appendix S1), let p = (0, 0, 1, 0), then hypothesis (1)
states that

q1 = (0, 0, 0, 0, 1, 0, 0). (5)

But q1 is not at equilibrium, and we can use q1 as the starting point for many rounds of random
mating to reach equilibrium (2). When we do, we obtain

q2 = (0.001, 0.016, 0.082, 0.219, 0.329, 0.263, 0.088), (6)

when α = 0, the lower bound of the double reduction rate. We also obtain

q3 = (0.005, 0.032, 0.098, 0.204, 0.277, 0.251, 0.133), (7)

when α = 0.3, the upper bound of the double reduction rate [Huang et al., 2019]. Clearly, q1, q2,
and q3 are very different. But Sun et al. [2021], Wang et al. [2022], and Wang et al. [2021] suggest
that they should be about the same.

As a less contrived example, S1 populations (a single generation of selfing) are technically random
mating populations, but hardly any researcher would claim that an S1 population is at equilibrium.
See Gerard [2022b] for details.

The only real data example used in Wang et al. [2022] consists of four markers from an F1
population. This is insufficient to explore their methods, as F1 populations exhibit neither random
mating (1) nor equilibrium (2). Furthermore, they did not apply their test for random mating on
these data, but rather a test for binomial frequencies (3), which is a standard approach, though an
incorrect one for F1 populations.
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4 Confusion between allo- and autopolyploids

Wang et al. [2021] state on page 4 that “The case of no double reduction in the autopolyploid model
reduces to allopolyploids if no preferential pairing is assumed.” Sun et al. [2021] states on page 3
that “When α = 0, the pattern of allelic inheritance reduces from autotetraploids to allotetraploids.”
Since allopolyploids exhibit disomic inheritance within each subgenome [Stift et al., 2010], this is
true only if all subgenomes of an allopolyploid have the exact same allele frequency. This is likely
not the case in true allopolyploids. In an extreme example, suppose we have an allooctoploid
population with an allele frequency of 0 in two of its subgenomes, and an allele frequency of 1 in the
other two subgenomes. Then the overall allele frequency is 0.5, and the allooctoploid equilibrium
genotype frequencies are

qallo = (0, 0, 0, 0, 1, 0, 0, 0, 0), (8)

because every individual will have two minor alleles each from two subgenomes, and two major
alleles each from two subgenomes, and therefore all individuals will have genotype 4. Compare this
to the genotype frequencies of an autooctoploid with allele frequency 0.5, at equilibrium when there
is no double reduction

qauto = (0.004, 0.031, 0.109, 0.219, 0.273, 0.219, 0.109, 0.031, 0.004). (9)

Clearly, qallo and qauto are very different. This is not a contrived example, as it might be the case
that some subgenomes have fixed an allele before the polyploidization event [“fixed heterozygosity”,
Cornille et al., 2016].

The tests created in Sun et al. [2021], Wang et al. [2022], and Wang et al. [2021] are only
applicable to autopolyploids, but the only real-data example in Sun et al. [2021] and Wang et al.
[2021] are allopolyploids. So the authors did not adequately evaluate their method on a reasonable
dataset.

5 Poor hypothesis testing strategies

The test for equilibrium (2) in Sun et al. [2021], Wang et al. [2021], and Wang et al. [2022] assumes
the double reduction rate is known. But it would not be clear to the reader that this is the case
from a reading of the manuscripts. The double reduction rate is never known in practice.

The “recursive” approach in Sun et al. [2021], Wang et al. [2021], and Wang et al. [2022] for
equilibrium testing is unnecessary. The equilibrium frequencies of tetraploids, hexaploids, and
octoploids in the presence of double reduction are well documented in the excellent paper of Huang
et al. [2019]. For example, for hexaploids, we have that the equilibrium gamete frequencies are

p0 =

(
1− 9(3− α)(6− α)

(9 + α)(9 + 2α)
r +

27(1− α)(3− α)

(9 + α)(9 + 2α)
r2
)

(1− r), (10)

p1 =

(
9(3− α)(9− 4α)

(9 + α)(9 + 2α)
− 81(1− α)(3− α)

(9 + α)(9 + 2α)
r

)
r(1− r), (11)

p2 =

(
45α(3− α)

(9 + α)(9 + 2α)
+

81(1− α)(3− α)

(9 + α)(9 + 2α)
r

)
r(1− r), and (12)
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p3 =

(
20α2

(9 + α)(9 + 2α)
+

45α(3− α)

(9 + α)(9 + 2α)
r +

27(1− α)(3− α)

(9 + α)(9 + 2α)
r2
)
r. (13)

The equilibrium genotype frequencies are discrete linear convolutions of these proportions. Equa-
tions (10)–(13) look complicated, but they are not complicated for a computer. It is easy to
implement a likelihood approach to test for equilibrium using these gamete frequencies, and such
an approach, advantageously, does not depend on knowing the double reduction rate, which is a
huge benefit over the iterative approach of Sun et al. [2021], Wang et al. [2021], and Wang et al.
[2022]. Indeed, this likelihood approach is what we did in Gerard [2022b].

Genotype uncertainty is a major issue in polyploids [Gerard et al., 2018, Gerard and Ferrão,
2019, Gerard, 2021a,b], and so methods should be adjusted to account for this uncertainty. The
standard approach to do so is using genotype likelihoods [Li et al., 2011], and this is what we did in
Gerard [2022b]. However, Sun et al. [2021], Wang et al. [2021], and Wang et al. [2022] approach this
by aggregating heterozygous genotypes into a single count, which leaves them with only enough
degrees of freedom to test for binomial frequencies (3). They thus provide no way to evaluate
hypotheses (1) and (2) in the presence of genotype uncertainty.

6 Discussion

We thank the authors of Wang et al. [2022] and Wang et al. [2021] for posting their code to GitHub.
Without doing so, our review here would have been much less comprehensive. E.g., our review of
Sun et al. [2021] is more limited because their code was not available. Open research is a vital tool for
scientific advancement. In the future, however, we would encourage the authors to take greater steps
for defensive programming, such as unit testing [Wickham, 2011], continuous integration [Hilton
et al., 2016], and code review [Vable et al., 2021]. Other steps the authors could take to improve
their computational pipeline include (i) modularizing their code into functions, ideally in a package
[Wickham, 2015], (ii) using a workflow management software to aid in reproducibility and decrease
the chance for coding errors [Blischak et al., 2019], (iii) providing instructions (ideally automation)
on specifically how to reproduce their methods [Heil et al., 2021], and (iv) posting their code on a
repository that is committed to permanency and produces DOI’s, such as Zenodo or Figshare, as
this extends the lifetime of a work’s reproducibility. We would also encourage greater sanity checks,
such as demonstrating that the authors’ test-statistics produce p-values that are uniform under the
null. This alone could have detected the test-statistic and degrees of freedom issues we discuss in
Section 2 (Appendix S4).

If the authors would have submitted their manuscript as a preprint, this would have given us
time to provide them feedback so that they could correct their work before publication. This is one
of the many benefits of preprint culture. However, because this work is now published and bears
the mark of “peer reviewed”, we felt the need to prepare a more formal discussion of their work.
We exhort all authors to consider preprinting before publication.
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Supplementary material

All supplementary material is available on GitHub: https://github.com/dcgerard/hwesupp.

• The file “hwesupp.Rmd” is an R Markdown file that contains Appendices S1–S5, and is suffi-
cient to reproduce all of the results of this manuscript. It has been knitted into “hwesupp.pdf”.

• The file “sims.csv” contains the simulation output from Appendix S5 of “hwesupp.Rmd”.

• The file “table2 power.Rmd” contains one iteration of “table2 power.R” from Wang et al.
[2021], annotated to demonstrate the mistakes here. It has been knitted into “table2 power.pdf”.

Much of the code from Wang et al. [2021] and Wang et al. [2022] was packaged by us in the
hexocto package on GitHub https://github.com/dcgerard/hexocto.

A fork of the original code from Wang et al. [2021] and Wang et al. [2022] may be found at at
https://github.com/dcgerard/hexaploid and https://github.com/dcgerard/OctoploidDeer.
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