
HAL Id: hal-03754615
https://hal.science/hal-03754615

Submitted on 19 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CCA Secure A Posteriori Openable Encryption in the
Standard Model

Xavier Bultel

To cite this version:
Xavier Bultel. CCA Secure A Posteriori Openable Encryption in the Standard Model. The Cryp-
tographer’s Track at the RSA Conference (TC-RSA 2022), Mar 2022, San Francisco, United States.
�10.1007/978-3-030-95312-6_16�. �hal-03754615�

https://hal.science/hal-03754615
https://hal.archives-ouvertes.fr

CCA Secure A Posteriori Openable Encryption in the
Standard Model?

Xavier Bultel

INSA Centre Val de Loire, Laboratoire dinformatique fondamentale dOrléans, France
xavier.bultel@insa-cvl.fr

Abstract. A Posteriori Openable Public Key Encryptions (APOPKE) allow any user to generate
a constant-size key that decrypts the messages they have sent over a chosen period of time. As an
important feature, the period can be dynamically chosen after the messages have been sent. This
primitive was introduced in 2016 by Bultel and Lafourcade. They also defined the Chosen-Plaintext
Attack (CPA) security for APOPKE, and designed a scheme called GAPO, which is CPA secure in
the random oracle model. In this paper, we formalize the Chosen-Ciphertext Attack (CCA) security
for APOPKE, then we design a scheme called CHAPO (for CHosen-ciphetext attack resistant A
Posteriori Openable encryption), and we prove its CCA security in the standard model. CHAPO
is approximately twice as efficient as GAPO and is more generic. We also give news applications,
and discuss the practical impact of its CCA security.

1 Introduction

Over the past decade, the development of smartphones has made instant messaging increasingly accessible
and popular with the general public. The security of such applications has become a crucial issue since
Edward Snowden’s revelations in 2013, which made people aware of the importance of protecting their
personal data on the Internet. Today, there are many encrypted messaging protocols that allow anyone
to protect their private conversations from hackers and mass surveillance, such as Signal, Telegram,
Whatsapp, Wire, Keybase, or Line. However, because they are within everyone’s reach, these tools are
also used by criminals. The example of the terrorist group Daesh, which uses Telegram to communicate,
is a good illustration of this. For that reason, encrypting the communications can be seen as a suspicious
act, and can harm a user during a legal case, especially if the judicial authority requests the assistance of
the user’s Internet service provider to use lawful interception: if a user encrypts his communications, then
lawful interception will only intercept unintelligible data. In such a scenario, the authorities requisition
the smartphone and the user has to reveal his access codes and secret keys so that the investigators
exculpate him. However, the investigators get unlimited access to the user’s data, and can get to know
private data that does not concern the investigation.

A Posteriori Openable Public Key Encryption (APOPKE), introduced by Bultel and Lafourcade
in [5], offers a practical solution to this problem. In addition to the standard features of public key
encryptions, an APOPKE scheme implements a mechanism that allows a user to generate a special key
called interval key from any pair of indexes i and j, which allows a user called the opener to decrypt the
messages sent by the user (potentially from several different devices) from the ith to the jth. The interval
can be chosen a posteriori, i.e. after the user has sent the messages. In addition, since the resources
of user’s device(s) are potentially limited, the interval key must be generated in constant time using a
single secret key, and must be of constant size: this prevents the user from storing too much data, from
having to perform a large number of operations on data spread over several devices, or from having to
send very large data to the opener growing with the size of the interval. Moreover, the complexity of
the encryption algorithm and the size of the ciphertexts should not depend on the size of the interval
for similar efficiency reasons. Note that the interval key allows to decrypt any message sent between
the indexes i and j, regardless of the public key of the recipient of the message. Let us consider that
an instant messaging uses an APOKPE scheme, and that each encrypted message is dated and stored
on the server of the application. If a user wants to reveal his conversations over a given time period to
a judge during an investigation, then he can generate an interval key with the indexes of the first and

? This work has been accepted for publication in the proceedings of the CT-RSA 2022 conference.

last messages sent during this period. The judge can then decrypt and view the messages stored on the
server for the time period.

In [5], the authors define a security model for the Chosen-Plaintext Attack (CPA) security and for
the integrity of APOPKE. The integrity property ensures that the messages decrypted by the opener
with the interval keys are the same as the one decrypted by the recipients of the messages. The authors
also design a scheme that is proven CPA secure and has the integrity property in the so-called Random
Oracle Model (ROM). They leave as an open problem the design of a scheme secure against the Chosen-
Ciphertext Attacks (CCA), and the design of a scheme proven secure in the standard model. In this
paper, we solve these two problems. We also show that CPA security is insufficient in practice for the
application of this primitive in secure messaging, but also in the applications proposed in [5].

Our contribution. In this paper, we extend the security model proposed by Bultel and Lafourcade in
order to capture the CCA security of the APOPKE. We instantiate our model with a new scheme called
CHAPO, then we present some applications for the (CCA secure) APOPKE on encrypted messaging
and voice calls. As in [5], we distinguish two CCA security notions: Indistinguishability Against Chosen
Ciphertext Attack security (IND-CCA), and Indistinguishability Against Chosen Set of Ciphertext Attack
(IND-CSCA) security.
IND-CCA: this property is an extension of the IND-CCA property for PKE. The adversary is a mali-
cious opener who tries to guess which message has been encrypted by the challenger between two chosen
messages. This adversary has access to oracles that encrypt, decrypt, and generate an interval key using
the secrets of some honest users. In order to avoid trivial attacks, the challenge ciphertext cannot be
decrypted by the oracles, and cannot be decrypted by the queried interval key.
IND-CSCA: since the opening mechanism of an APOPKE can be viewed as an alternate decryption
algorithm for the opener (where the ciphertext is the association of the interval key with the set of the
ciphertexts in the interval), our CCA model must consider the attacks where the adversary has access
to an oracle that decrypts a set of ciphertexts using the opening algorithm. The IND-CSCA property
considers a collusion of dishonest users who receives the interval keys of an honest opener. These users
try to learn some information about the messages encrypted for the honest users, and can query some
oracles that encrypt, decrypt, generate interval keys, and open intervals, using the secrets of the honest
users and the honest opener.

Note that the two properties IND-CCA and IND-CSCA are complementary. They capture two dif-
ferent adversary models, i.e. a collusion between the opener and some users trying to attack a ciphertext
outside the interval, and a collusion of users attacking the ciphertexts in the interval without the help
of the opener. Neither of the two involves the other. Our second contribution is a new APOPKE scheme
called CHAPO, that have the following features:
Security: We prove that CHAPO is IND-CCA and IND-CSCA secure in the standard model. Moreover
we prove its integrity according to the definition given in [5].
Genericity: Our scheme is based on standard cryptographic tools: it requires a Pseudorandom Fonction
(PRF), a Message Authentication Code scheme (MAC), a Symmetric Key Encryption scheme (SKE)
and a Public Key Encryption scheme (PKE). We stress that unlike GAPO, there is no restriction in the
choice of the PKE, making CHAPO more generic. For instance, CHAPO can be instantiated with the
CPA variant of the McEliece cryptosystem [20] (for a CPA secure instantiation), which is not possible
for GAPO since it is not random coin decryptable (according to a definition given in [5]), i.e. the ran-
dom coin used by the encryption algorithm cannot be used as an alternative secret key to decrypt the
corresponding ciphertext.
Efficiency. The dominating operations in CHAPO are the encryptions and decryptions of the PKE. The
encryption/decryption of a message requires one PKE encryption/decryption, and the opening algorithm
on a set of n ciphertexts requires n PKE encryptions. In comparison, the GAPO encryption/decryption
of a message requires 2 PKE encryptions/decryptions, and the opening algorithm of GAPO on a set of n
ciphertexts requires 2 · n PKE encryptions and 2 · n PKE decryptions by random-coin. Finally, instanti-
ated with a CPA secure PKE, CHAPO is approximately twice as efficient as GAPO for any instantiation
that yields the same level of security (CPA).

As in [5], our model considers only a single dishonest opener (or several openers who do not collude)
who receives only one interval key. Actually, we relax this constraint a bit compared to [5] since we allow
the opener to receive keys for several intervals as long as the index of the challenge is not between the

2

lowest and the greatest index of the queried intervals. We let the design of a secure scheme that allows
multiple disjoint (constant-size) interval keys as an open problem.

Related works. Some encryption primitives have time-dependent decryption properties, and are therefore
related to our work. Time-Release Encryption (TRE) [6, 19] allows to produce ciphertexts that cannot
be decrypted before a given date. Some schemes implement a pre-open mechanism that allows to decrypt
the ciphertexts before the date [14]. In this case, both decryption methods must return the same mes-
sage; this property, called binding property, is similar to the APOPKE integrity property. Time-Specific
Encryption (TSE) [21] extends the TRE concept: the encryption algorithm produces ciphertexts that
can be decrypted in a pre-defined time interval only. Even if this line of research is close to ours, the
goals of TSE differ significantly from APOPKE: in TSE, the time is bounded by a max value T , and the
time interval is chosen a priori in [0, T −1], i.e. before than the message is encrypted. TSE constructions
are less generic than CHAPO [15, 16], and there is no scheme that ensures that both ciphertexts and
keys are of constant size [15]. Key-Insulated Encryption (KIE) [8, 25] deals with the problem of storing
secret keys on insecure device. The keys are refreshed periodically by a secure server using a master
secret key. The encryption algorithm encrypts the messages from a time period tag and a public key that
remains unchanged over time. In [8] the authors show that KIE can be used to delegate the decryption
on a time interval by sending the keys that match the interval. However, the periods are fixed, which
avoids the fine-grained management of the opener decryption capabilities if the interval does not perfectly
match the periods, and the opener decryption key grows linearly with the number of periods. Moreover,
this solution allows the opener to decrypt messages received by the user, whereas APOPKE allows the
opener to decrypt messages sent by the user (potentially with different public keys), which constitutes
an important conceptual break between these two primitives. Delegatable pseudorandom functions [17]
allow to delegate the computation of a pseudorandom function over an interval of inputs. By using such
a function to generate the encryption keys of successive ciphertexts, a user can delegate the generation of
decryption keys over a given interval, and thus obtain features similar to APOPKE. However, using [17]
the total number of ciphertexts is bounded and the interval key is logarithmic in this bound, whereas an
APOPKE must allow the generation of an unlimited number of ciphertexts while ensuring an interval
key of constant size.

On the application side, Key-Escrow (KE) and Key-Recovery (KR) [13,18,23,24] schemes deal with
the capability of an authority to decrypt the messages exchanged between two users by recovering their
secret key. Some works deal with KR mechanisms for lawful interception [1, 13, 24], where a set of
authorities has to collude to open an encrypted phone conversation between two users. As in APOPKE,
the security model ensures that the recovered conversation is the same as the exchanged one. However,
the motivations of such schemes differ from ours since the authorities recover the keys one by one,
contrary to APOPKE where a single key makes it possible to open all the messages between two dates.
In this paper, we discuss the advantage of using our solution in the voice call lawful interception context.

Finally, to the best of our knowledge, with the exception of [5], there are no encryption schemes
with features similar to CHAPO. Note that such a scheme could be obtained with generic primitives
such as functional encryption [10], by considering the set of ciphertexts as the blocks of a single large
ciphertext, and by considering a function that returns the plaintexts of an interval on the blocks. However,
such a solution would be inefficient and would limit the number of possible ciphertexts. We could also
use attribute-based encryption [12], and give the judge a key to decrypt on the attributes used during
the time interval, but to the best of our knowledge, no attribute-based encryption scheme offers both
constant-size ciphertexts and keys, and the limit on the number of attributes would limit the number of
possible messages.

2 Cryptographic Tools

Notation. In this paper, y ← Alg(x) denotes that the output of the deterministic algorithm Alg running
on the input x is assigned to y. Moreover, Alg(x; r) denotes that the probabilistic algorithm Alg uses
the random coin r to generate its randomness. If the context is clear, we omit to mention the random
coin in the description of some algorithms, especially for adversaries (denoted A) and key generators

(denoted Gen). x ← y denotes the assignment of the value of y to the variable x, and x
$← X denotes

the random sample of x in the uniform distribution on X. We assume that any variable has the value

3

⊥ by default, which means that it is not defined, or not instantiated. For any security property denoted
Prop defined in this paper, any cryptographic scheme P , and any Probabilistic Polynomial Time (PPT)

algorithm A, we define an avantage denoted AdvProp
P,A (λ), where λ is a security parameter. We say that P

is Prop-secure when the following function, called the Prop-advantage of P , is negligible: AdvProp
P (λ) =

max
A∈poly(λ)

{
AdvProp

P,A (λ)
}
.

Definition 1 (PRF [9]). Let λ be a security parameter, Kλ be a set, and (α, β) be two integers. A
Pseudorandom Function (PRF) is a function PRF : Kλ × {0, 1}α → {0, 1}β.
For any PPT algorithm A, and for F = {f : {0, 1}α → {0, 1}β}, the advantage of A on the pseudoran-
domness of PRF is defined by the function: AdvPR

PRF,A(λ) =∣∣∣∣Pr [f $← F : 1← Af(·)(λ)
]
− Pr

[
rk

$← Kλ;
f(.)← PRF(rk, ·); : 1← Af(·)(λ)

]∣∣∣∣
Definition 2 (MAC [3]). Let λ be a security parameter. A Message Authentication Code scheme
(MAC) is defined by a tuple (Kλ,Mac,Ver) such that Kλ is a set, and the algorithms Mac and Ver are
defined by:
Mac(mk,m): On input a key mk ∈ Kλ, and a message m ∈ {0, 1}∗, return a tag t. This algorithm is

deterministic.
Ver(mk, t,m): On input a key mk ∈ Kλ, a tag t, and a message m ∈ {0, 1}∗. Return a bit b.
Let P be a MAC scheme, and let A be a PPT algorithm. The Existential UnForgeability against Chosen
Message Attack (EUF-CMA) security experiment for P is defined by:

ExpEUF-CMA
P,A (λ):
S ← ∅;
mk∗

$← Kλ;
(t∗,m∗)← AMac(mk∗,·),Ver(mk∗,·,·)(λ);
If 1 = Ver(mk∗, t∗,m∗) and (t∗,m∗) 6∈ S,
then return 1, else 0;

where the oracle Mac(mk∗, ·) takes a message m as input, runs t← Mac(mk∗,m), updates S ← S ∪ {(t,
m)} and returns t, and the oracle Ver(mk∗, ·, ·) takes (t,m) as input, runs b← Ver(mk∗, t,m) and returns
b. The EUF-CMA-advantage of A is defined by AdvEUF-CMA

P,A (λ) = Pr[ExpEUF-CMA
P,A (λ) = 1].

Definition 3 (SKE [4]). Let λ be a security parameter. A Symmetric Key Encrytion scheme (SKE)
is defined by a tuple (Kλ,Rλ,SEnc,SDec) such that Kλ, and Rλ are two sets, and the algorithms SEnc
and SDec are defined by:
PEnc(ek,m; r): On input a key ek ∈ Kλ, a message m ∈ {0, 1}∗, and a random coin r ∈ Rλ, return a

ciphertext c.
PDec(ek, c): On input a key ek ∈ Kλ, and a ciphertext c, return a message m.
Let P be a SKE, and let A = (A0,A1) be a pair of PPT algorithms. The Indistinguishability against
Chosen Ciphertexts Attacks security (IND-CCA) security experiment for P is defined by:

ExpIND-CCA
b,P,A (λ):

ek∗
$← Kλ;

(m0,m1, st)← ASEnc(ek∗,·),SDec(ek∗,·)
1 (λ);

If |m0| 6= |m1|, then return a random bit;

r
$←Rλ; c∗ ← Enc(ek∗,mb; r);

b∗ ← ASEnc(ek∗,·),SDec(ek∗,·)
2 (λ, st, c∗);

If b = b∗, then return 1, else 0;

where the oracle SEnc(ek∗, ·) takes a message m as input, picks a random coin r
$← Rλ, and returns

PEnc(ek∗,m; r), and the oracle SDec(ek∗, ·) takes a ciphertext c as input, and returns SDec(ek∗, c),
except if c = c∗ during the second phase. The IND-CCA-advantage of A is defined by AdvIND-CCA

P,A (λ) =

|Pr[b $← {0, 1} : 1← ExpIND-CCA
b,P,A (λ)]− 1/2|.

Definition 4 (PKE [11]). Let λ be a security parameter. A Public Key Encryption scheme (PKE) is
defined by a tuple P = (Rλ,Mλ,PGen,PEnc,PDec) such that Rλ is a set, and the algorithms PGen,
PEnc, and PDec are defined by:
PGen(1λ): Return a pair of public/secret keys (pk, sk).

4

PEnc(pk,m; r): On input a public key pk, a message m ∈ Mλ, and a random coin r ∈ Rλ, return a
ciphertext c.

PDec(sk, c): On input a secret key sk and a ciphertext c, return a message m.

P is said to be correct if for any (pk, sk) ← PGen(1λ), any m ∈ Mλ and any r ∈ Rλ it holds that
m = PDec(sk,PEnc(pk,m; r)).
Let A = (A0,A1) be a pair of PPT algorithms. The Indistinguishability against Chosen-Ciphertext at-
tack (IND-CCA) security experiment for P is defined by:

ExpIND-CCA
b,P,A (λ):

(pk∗, sk∗)← PGen(1λ);

(m0,m1, st)← APDec(sk∗,·)
1 (λ, pk∗);

r
$←Rλ; c∗ ← PEnc(pk∗,mb; r);

b∗ ← APDec(sk∗,·)
2 (λ, pk∗, st, c∗);

If b = b∗, then return 1, else 0;

where the oracle PDec(sk∗, ·) takes a ciphertext c as input, and returns PDec(sk∗, c), except if c = c∗
during the second phase. The IND-CCA-advantage of A is defined by AdvIND-CCA

P,A (λ) = |Pr[b $← {0, 1} :

← ExpIND-CCA
b,P,A (λ)]− 1/2|.

Finally, we recall the notion of Verifiable Key defined in [5].

Definition 5 (Verifiable key generator). A public/private keys pair generation algorithm PGen is
verifiable if there exists a deterministic polynomial-time algorithm KVer such that, for any security pa-
rameter λ, it holds that:
KVer(pk∗, sk∗) = 1⇔ (pk∗, sk∗) ∈ {(pk, sk) : (pk, sk)← PGen(1λ)}.

We show a simple trick to turn any key generator PGen into a verifiable key generator PGen′. In what
follows we explicit the use of the random coin (denoted r) by the key generator: (pk, sk)← PGen(1λ; r).
We define a new key generator PGen′ that runs (pk, sk) ← PGen(1λ; r) and returns (pk′, sk′) = (pk, (sk,
r)). The generator PGen′ can be used to replace PGen because it outputs the same public key as the one
returned by PGen, and it returns a secret key sk′ that contains the secret key sk outputted by PGen.
Moreover, PGen′ is verifiable because KVer(pk∗, sk∗) can be instantiated by the following algorithm: parse
sk∗ as (sk, r), run (pk′, sk′) ← PGen(1λ; r), if pk∗ = pk′ and sk∗ = (sk′, r), then return 1, else return 0.
Thus, in this paper, we will implicitly consider that any key generator is verifiable.

3 Formal Definitions

An APOPKE is defined by a public/private key pair generator, an encryption key generator that generates
an encryption key for each user, an encryption algorithm that encrypts a message from its index, the
user encryption key, and the recipient public key, a decryption algorithm that decrypts a ciphertext from
the secret key of the recipient, an extractor algorithm that generates an interval key for an opener from
two indexes (i, j), the user encryption key and the opener public key, and an opening algorithm that
allows the opener to decrypt each message labelled by an index in Ji, jK using his interval key and his
secret key.

Definition 6 (APOPKE). Let λ be a security parameter. An APOPKE scheme is defined by a tuple
(Rλ,Mλ,Gen,EGen,Enc,Dec,Ext,Open) such that Rλ and Mλ are two sets, and are defined by:
Gen(1λ): Return a pair of public/secret keys (pk, sk). The same algorithm is used to generate the keys of

the users and the opener. In what follows, we will use the notation (pko, sko) to designate the opener
keys.

EGen(1λ): Return an encryption secret key k.
Enc(pkl, k,ml, l; rl): On input a receiver public key pkl, a sender secret encrytion key k, a message ml ∈
Mλ, an index l ∈ N , and a random coin rl ∈ Rλ, return a ciphertext cl.

Dec(skl, cl): On input a receiver secret key skl and a ciphertext cl, return a message ml.
Ext(pko, k, i, j; r): On input an opener public key pko, a sender secret encrytion key k, two indexes i and

j, and a random coin r ∈ Rλ. Return an interval key iki�j.
Open(sko, i, j, iki�j , (cl, pkl)i≤l≤j): On input an opener secret key sko, two indexes i and j, an interval

key iki�j, and a vector of ciphertexts couped with their respective public keys (cl, pkl)i≤l≤j. Return
messages (ml)i≤l≤j.

5

The IND-CCA experiment features an adversary who knows the public key of an honest user, chooses
two messages, receives the encryption of one of them as challenge, and tries to guess which one has
been encrypted with that public key. The adversary has access to an encryption oracle that encrypts
chosen messages using an index n incremented by the experiment after each encryption and the (secret)
encryption key of the honest user, as well as a decryption oracle that decrypts any chosen ciphertext
except the challenge. At the beginning of the experiment, n is initialized to 1. Note that the experiment
simulates an honest user encrypting several successive messages. Allowing forks in the ciphertext sequence
would introduce trivial and unrealistic attacks to deal with (in practice the attacked user would have no
interest in using non-successive indices) artificially complicating the model and the proofs. In addition,
the adversary has access to an extraction oracle that generates interval keys for chosen intervals. However,
the adversary cannot query the oracle for intervals (ik, jk) such that the index of the challenge is between
mink(ik) and maxk(jk).

Definition 7 (IND-CCA experiment). Let P = (Rλ,Mλ,Gen,EGen,Enc,Dec,Ext,Open) be an APOPKE,
let λ be a security parameter, and let A = (A0,A1) be a pair of PPT algorithms. The Indistinguishability
against Chosen Ciphertext Attack (IND-CCA) security experiment for P is defined by:

ExpIND-CCA
b,P,A (λ):
n← 1; (i∗, j∗)← (0, 0);
(pk∗, sk∗)← Gen(1λ);
k∗ ← EGen(1λ);

O ←
{
Enc(·, k∗, ·, n);Dec(sk∗, ·);
Ext(·, k∗, ·, ·);

}
;

(m(∗,0),m(∗,1), st)← AO1 (λ, pk∗);

l∗ ← n; r∗
$←Rλ;

cl∗ ← Enc(pk∗, k∗,m(∗,b), l∗; r∗);
n← n+ 1;
b∗ ← AO2 (λ, pk∗, st, cl∗);
If l∗ ∈ Ji∗, j∗K, then return a random bit;
If b = b∗, then return 1, else 0;

where the oracles are defined by:
Enc(·, k∗, ·, n): On input (pkn,mn), pick rn

$← Rλ, run cn ← Enc(pkn, k∗,mn, n; rn) and increment
n← (n+ 1), then return cn.

Dec(sk∗, ·): On input c, during the second phase if cl∗ = c, then return ⊥. Finally, run m← Dec(sk∗, c)
and return m.

Ext(·, k∗, ·, ·): On input (pko, i, j), if i ≤ 0 or j ≤ 0 or i ≥ j or j ≥ n, then return ⊥. if i∗ = j∗ = 0,

then set (i∗, j∗) ← (i, j). If i < i∗, then i∗ ← i. If j > j∗, then j∗ ← j. Finally, pick r
$← Rλ, run

iki�j ← Ext(pko, k∗, i, j; r) and return iki�j.
The IND-CCA-advantage of A is defined by:

AdvIND-CCA
P,A (λ) =

∣∣∣Pr[b $← {0, 1} : 1← ExpIND-CCA
b,P,A (λ)]− 1/2

∣∣∣ .
The IND-CSCA experiment features an adversary who knows the public keys of a set of honest users

and the public key of an honest opener. The adversary chooses two vectors of messages and a vector
of public keys (of same size), then the experiment picks one of the two vectors and generates a vector
of ciphertexts by encrypting each message using the corresponding public key and the encryption key
of a designated honest user. For each encryption, if the public key belongs to an honest user, then the
experiment encrypts the message of the picked vector, else it encrypts the message of the first vector (this
disables the trivial attacks where the adversary receives messages of the picked vector encrypted with his
own keys). The experiment also generates an interval key for the vector of ciphertexts using the opener
public key and the designated user encryption key. The adversary receives the vector of ciphertexts and
the interval key as challenge and tries to guess which vector has been encrypted.

The adversary has access to an encryption oracle that encrypts chosen messages using an index n
incremented by the experiment after each encryption and the encryption key of the designated user, as
well as a decryption oracle that decrypts any chosen ciphertext with the secret key of an honest user
except the ciphertexts in the challenge. At the beginning of the experiment, the index n is initialized
to 1, then n is incremented at each call to the encryption oracle, and at each encryption performed
by the experiment in order to build the challenge. The adversary has access to an extraction oracle

6

that generates interval keys for chosen intervals using the designated user encryption key and the public
key of the honest opener, except for the intervals that contain the index of one of the ciphertexts of
the challenge. Note that without the secret key of the honest opener, the interval keys are supposed to
be unusable by the adversary. Finally the adversary has access to an opening oracle that decrypts the
ciphertexts on a chosen interval using a chosen vector of ciphertexts, a chosen interval key, and the secret
key of the honest opener as the opening algorithm, except if the query exactly matches the challenge. The
role of this oracle is more subtle than that of the decryption oracle : it allows the IND-CSCA security
to prevent not only attacks where the adversary opens some modified ciphertexts from the challenge,
but also attacks where the adversary adds or removes ciphertexts from the challenge, or reorders them
before sending it to the opening oracle.

Definition 8 (µ-IND-CSCA experiment). Let P = (Rλ,Mλ,Gen,EGen,Enc,Dec,Ext,Open) be an
APOPKE, let λ be a security parameter and µ be an integer, and let A = (A0,A1) be a pair of PPT algo-
rithms. The µ-Indistinguishability Against Chosen Set of Ciphertexts security (IND-CSCA) experiment
for P is defined by:

Expµ-IND-CSCA
b,P,A (λ):
n← 1;
(pko∗, sko∗)← Gen(1λ);
∀l ∈ J1, µK, (pk(∗,l), sk(∗,l))← Gen(1λ);

k∗ ← EGen(1λ);

O ←
{
Enc(·, k∗, ·, n);Dec(·, ·);
Ext(pko∗, k∗, ·, ·);Open(sko∗, ·, ·, ·, ·);

}
;

(j∗, (m(0,l),m(1,l), p̄kl)n≤l≤j∗ , st∗)← AO1 (λ, pko∗, (pk(∗,l))1≤l≤µ);
i∗ ← n;

∀ l ∈ Ji∗, j∗K: r(∗,l)
$←Rλ;

If ∃ q, pk(∗,q) = p̄kl, then c(∗,l) ← Enc(p̄kl, k∗,m(b,l), l);

Else c(∗,l) ← Enc(p̄kl, k∗,m(0,l), l);
n← j∗ + 1;

r∗
$←Rλ; iki∗�j∗ ← Ext(pko∗, k∗, i∗, j∗; r∗);

b∗ ← AO2 (λ, pko∗, (pk(∗,l))1≤l≤µ, st, iki∗�j∗ , (c(∗,l))i∗≤l≤j∗);
If b = b∗, then return 1, else 0;

where the oracles are defined by:

Enc(·, k∗, ·, n): On input (pkn,mn), pick rn
$← Rλ, run cn ← Enc(pkn, k∗,mn, n; rn) and increment

n← (n+ 1), then return cn.
Dec(·, ·): On input (q, c), if q ≤ 0 or q > µ then return ⊥. During the second phase if ∃ l such that

pk(∗,q) = p̄kl and c(∗,l) = c, then return ⊥. Finally, run m← Dec(sk(∗,q), c) and return m.
Ext(pko∗, k∗, ·, ·): On input (i, j), if i ≤ 0 or i ≥ j or j ≥ n, then return ⊥. During the second phase, if

Ji, jK∩ Ji∗, j∗K 6= ∅, then return ⊥. Finally, pick r
$← Rλ, run iki�j ← Ext(pko∗, k∗, i, j; r) and return

iki�j.
Open(sko∗, ·, ·, ·, ·): On input (i, j, iki�j , (cl, pkl)i≤l≤j), if i ≤ 0 or i ≥ j or j ≥ n, then return ⊥. During

the second phase, if (iki�j , (cl, pkl)i≤l≤j) = (iki∗�j∗ , (c(∗,l), p̄kl)i∗≤l≤j∗), then return ⊥. Finally, run
(ml)i≤l≤j ← Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j) and return (ml)i≤l≤j.

The µ-IND-CSCA-advantage of A is defined by:

Advµ-IND-CSCA
P,A (λ) =

∣∣∣Pr[b $← {0, 1} : 1← Expµ-IND-CSCA
b,P,A (λ)]− 1/2

∣∣∣ .
Finally, we recall the integrity experiment of [5]. This property ensures that for the same ciphertext

produced by an adversary, an honest receiver and an honest opener do not decrypt different plaintexts.
This property should not be confused with the correctness, which ensures that a ciphertext will be
decrypted correctly by the decryption algorithms only if it is generated by an honest user.

Definition 9 (Integrity experiment). Let P = (Rλ,Mλ,Gen,EGen,Enc,Dec,Ext,Open) be an APOPKE,
let λ be a security parameter, and let A be a PPT algorithm. We define the integrity (Integrity) experi-
ment for P as follows:

7

Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5 Ĉ6

C̃1 C̃2 C̃3 C̃4 C̃5 C̃6

m̂1⊕ ? m̂2 ⊕ m̃2 m̂3 ⊕ m̃3 m̂4 ⊕ m̃4 ? ⊕ m̃5 ? ⊕ m̃6

Fig. 1. Opening mechanism for the interval [2, 4]

ExpIntegrity
P,A (λ):

(pko∗, sko∗)← Gen(1λ);
(i, j, (cl, pkl)i≤l≤j , x, skx, iki�j)← A(λ, pko∗);
(ml)i≤l≤j ← Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j);
m′x ← Dec(skx, cx);
If mx 6= ⊥ and m′x 6= ⊥ and mx 6= m′x and 1 = KVer(pkx, skx),
then return 1, else 0;

The Integrity-advantage is defined by AdvIntegrity
P,A (λ) = Pr[ExpIntegrity

P,A (λ) = 1].

4 Our Scheme: CHAPO

Designing APOPKE schemes. CHAPO is based on the opening technique introduced in GAPO [5]:
each message ml is split in two parts m̂l and m̃l such that ml = m̂l ⊕ m̃l. The encryption algorithm
uses four indexed keys denoted êkl, êkl−1, ẽkl and ẽkl+1, and encrypts the message ml in two blocs Ĉl
and C̃l such that the part Ĉl encrypts m̂l and êkl−1, and can be decrypted by the key êkl, and the part

C̃l encrypts m̃l and ẽkl+1, and can be decrypted by the key ẽkl. The interval key for the interval [i, j] is

generated by encrypting the pair of keys (ẽki, êkj) for the opener. Using êkj , the opener decrypts Ĉj and

obtains m̂j and êkj−1, then he uses êkj−1 to decrypt Ĉj−1 and repeats this operation recursively until

he gets (m̂l)i≤l≤j . On the other hand, using ẽki, the opener decrypts C̃i and obtains m̃i and ẽki+1, then

it uses ẽki+1 to decrypt C̃i+1 and repeats this operation recursively until he gets (m̃l)i≤l≤j . Finally, he
computes (ml)i≤l≤j = (m̂l ⊕ m̃l)i≤l≤j .

We stress that the opener cannot decrypt the ciphertexts C̃l for l < i and Ĉl for l > j, hence he
is missing one share of each message ml such that l 6∈ [i, j], so he cannot rebuild these messages. The
Figure 1 illustrates this mechanism for the interval [2, 4]. Note that this mechanism does not protect the
messages between two openable intervals. However, it is possible to enlarge the interval over which the
opener can decrypt the messages without altering the security of the scheme.
CHAPO overview. CHAPO uses a PRF, a MAC, a SKE and a PKE. The public/private keys (pk, sk)
generation algorithm is defined as in the PKE scheme. The encryption key generator returns a secret
pair (rk,mk) where rk is a PRF key and mk is a MAC key. For each index l, the keys êkl and ẽkl are the
outputs of the PRF on the (secret) key rk and the index l. Our scheme also requires a MAC key mkl for
each index l, that is also generated from the PRF on rk and l.

The encryption algorithm takes as input the encryption key (rk,mk) of the user, the message ml and
the public key pk of the message recipient. The algorithm first generates the ciphertext Dl by encrypting
[ml‖mkl‖l] using the public key pk and a random coin denoted by vl, then it splits ml, mkl, and vl in two

parts (m̂l, m̃l), (m̂kl, m̃kl), and (v̂l, ṽl), such that ml = m̂l ⊕ m̃l, mkl = m̂kl ⊕ m̃kl, and vl = v̂l ⊕ ṽl. The

algorithm generates C̃l by encrypting [ẽkl+1‖m̃l‖m̃kl‖ṽl‖pk‖l] with the key ẽkl using the SKE, and Ĉl
by encrypting [êkl−1‖m̂l‖m̂kl‖v̂l‖pk‖l] with the key êkl using the SKE. Finally, the algorithm generates

the MAC tag Sl using the key mk on [C̃l‖Ĉl‖Dl‖pk‖l] and the MAC tag Tl using mkl on [C̃l‖Ĉl‖Dl‖Sl‖
pk‖l]. The ciphertext is the tuple (C̃l, Ĉl, Dl, Sl, Tl, l).

The recipient of (C̃l, Ĉl, Dl, Sl, Tl, l) decrypts Dl using sk in order to obtain the message ml and the
key mkl, then it checks the MAC tag Tl using mkl. The interval key extraction algorithm on the interval
[i, j] returns mk, ẽki, and êkj encrypted with the public key of the opener. Using these keys, the opener

recovers the messages (ml)i≤l≤j by running the algorithm described above on the parts C̃l and Ĉl of each

8

ciphertext. The opener also verifies the tags Sl, and verifies the correctness of Dl ans Tl by regenerating
them.

Definition 10 (CHAPO). Let λ be a security parameter. CHAPO = (Rλ,Mλ,Gen,EGen,Enc,Dec,Ext,
Open) is an APOPKE scheme instantiated by a set Mλ, an (unforgeable) message authentication code
scheme MAC = (Kmλ ,Mac,Ver), an (IND-CCA secure) symmetric encryption scheme SKE = (Ksλ,Rsλ,
SEnc,SDec), a pseudorandom function PRF : Krλ × {0, 1}λ+1 → Ksλ, and an (IND-CCA secure) public
key encryption scheme PKE = (Rpλ,M

p
λ,PGen,PEnc,PDec). CHAPO is defined by:

Gen(1λ): Run (pk, sk)← PGen(1λ) and return (pk, sk).

EGen(1λ): Pick (rk,mk)
$← Krλ ×Kmλ , set k← (rk,mk) and return k.

Enc(pkl, k,ml, l; rl): Parse k as (rk,mk). Using the random coin rl, pick at random (ûl, ũl)
$← (Rsλ)2,

vl
$← Rpλ, mkl

$← Kmλ , m̂kl
$← {0, 1}|mkl|, v̂l

$← {0, 1}|vl|, and m̂l
$← {0, 1}|ml|.

Set m̃kl ← m̂kl ⊕mkl, ṽl ← v̂l ⊕ vl, and m̃l ← m̂l ⊕ml.
∀ h ∈ {l − 1, l, l + 1}, run êkh ← PRF(k, 0‖h) and ẽkh ← PRF(k, 1‖h). Set:

– C̃l ← SEnc(ẽkl, [ẽki+1‖m̃l‖m̃kl‖ṽl‖pkl‖l]; ũl) and Ĉl ← SEnc(êkl, [êki−1‖m̂l‖m̂kl‖v̂l‖pkl‖l]; ûl)
– Dl ← PEnc(pkl, [ml‖mkl‖l]; vl)
– Sl ← Mac(mk, [C̃l‖Ĉl‖Dl‖pkl‖l]) and Tl ← Mac(mkl, [C̃l‖Ĉl‖Dl‖Sl‖pkl‖l])

Set cl ← (C̃l, Ĉl, Dl, Sl, Tl, i) and return cl.

Dec(skl, cl): Parse cl as (C̃l, Ĉl, Dl, Sl, Tl, l) and run [ml‖mkl‖l′]← PDec(skl, Dl). If l = l′ and Ver(mkl,

Tl, [C̃l‖Ĉl‖Dl‖Sl‖pkl‖l]) = 1, then return ml, else return ⊥.

Ext(pko, k, i, j; r): Parse k as (rk,mk). Using the random coin r, pick at random u
$← Rpλ Run êkj ←

PRF(rk, 0‖j) and ẽki ← PRF(rk, 1‖i), then run Xi�j ← PEnc(pko, [ẽki‖êkj‖mk];u) and Yi�j ←
Mac(mk, [i‖j‖Xi�j]). Set iki�j ← (Xi�j , Yi�j , i, j) and return iki�j.

Open(sko, i, j, iki�j , (cl, pkl)i≤l≤j): Parse iki�j as (Xi�j , Yi�j , i
′, j′), run [ẽki‖êkj‖mk]← PDec(sko, Xi�j).

If 1 6= Ver(mk, Yi�j , [i‖j‖Xi�j]) or (i, j) 6= (i′, j′), then abort and return ⊥.

∀ l ∈ Ji, jK, from i to j, parse cl as (C̃l, Ĉl, Dl, Sl, Tl, l) and run [ẽkl+1‖m̃l‖m̃kl‖ṽl‖p̃kl‖l̃]← SDec(ẽkl,

C̃l).

∀ l ∈ Ji, jK, from j to i, run [êkl−1‖m̂l‖m̂kl‖v̂l‖p̂kl‖l̂]← SDec(êkl, Ĉl). If:

– p̃kl 6= pkl or l̃ 6= l or p̂kl 6= pkl or l̂ 6= l, or

– Dl 6= PEnc(pkl, [m̃l ⊕ m̂l‖m̃kl ⊕ m̂kl‖l]; (ṽl ⊕ v̂l)), or

– Tl 6= Mac((m̃kl ⊕ m̂kl), [C̃l‖Ĉl‖Dl‖Sl‖pkl‖l]), or

– 1 6= Ver(mk, Sl, [C̃l‖Ĉl‖Dl‖pkl‖l]),
then return ⊥.
Finally, return (m̃l ⊕ m̂l)i≤l≤j.

Moreover, let le be a function such that for any set S, le(S) = maxx∈S(|x|), the set Rλ is defined by
Rλ = (Rsλ)2×Rpλ×Kmλ ×{0, 1}le(K

m
λ)×{0, 1}le(Rsλ)×{0, 1}le(Rsλ)×{0, 1}le(Mλ), and the set Mp

λ verifies
{0, 1}(le(Mλ)+le(Kmλ)+λ) ⊆Mp

λ.

Security of CHAPO. The CCA security is achieved when the decryption oracles give no advantage to
the adversary. The idea being that the decryption oracles will reject the ciphertexts that have not been
produced by the experiment, or that have not been encrypted correctly by the adversary. In particular,
the decryption oracles should reject any alteration of the challenge.

In the IND-CCA scenario, if the adversary alters the challenge cl∗ , then the tag Tl∗ is no longer valid,
and should be refreshed by the adversary. Hence, the adversary should recover the corresponding MAC
key mkl∗ . This key is encrypted in C̃l∗ and Ĉl∗ , however the adversary can decrypt only one of these
two ciphertexts. Indeed, the challenge cannot be in the interval that the adversary can decrypt using
his interval keys, according to the winning conditions of the IND-CCA experiment. In this case, one of
the shares of mkl∗ remains encrypted by the SKE. mkl∗ is also encrypted in Dl∗ , but since SKE and

PKE are IND-CCA, the adversary cannot recover mkl∗ from C̃l∗ and Ĉl∗ , or from Dl∗ . Moreover, since
the adversary does not know the key rk, he cannot generate mkl∗ from the PRF. Finally, the adversary
cannot alter the challenge cl∗ .

In the IND-CSCA scenario, if the adversary alters a ciphertext c in the challenge, then the tag T is
no longer valid for the key mk, and should be refreshed by the adversary. Otherwise, the opening oracle

9

will fail on any vector of ciphertexts that contains the alteration of c. However, the adversary has not the
key mk. To recover it, the adversary would have to decrypt one of the interval keys without the secret
key sko of the honest opener, which is not possible since the PKE scheme is IND-CCA secure. Similarly,
the opening oracle rejects any query that contains new ciphertexts created by the adversary because he
cannot generate the corresponding MAC tags. On the other hand, the adversary could try to use the
opening oracle on a vector that contains the ciphertexts of the challenge in a new order. However, since
the MAC tags authenticate the indexes of the ciphertexts, the opening oracle will always fail on such
a query. Note that since there is only one opener in our model, using a single MAC key mk for all the
ciphertexts produced by the same user does not lead to security problem: the key mk can be seen as an
authentication key shared between the user who encrypts the messages and the opener.

Finally, when the opener decrypts the ciphertext cl = (C̃l, Ĉl, Dl, Sl, Tl, l) encrypted with a key pkl
in some interval, he recovers the message ml and learns the values mkl and vl, then he checks that
Dl = PEnc(pkl, [ml‖mkl‖l]; vl), which ensures that [ml‖mkl‖l] = PDec(skl, Dl). This implies that the
decryption algorithm returns the same message ml as the opening algorithm, which shows that CHAPO
has the integrity property.

Comparaison with GAPO. CHAPO is based on the same approach as GAPO. However, the design
of GAPO does not achieve the functionality required by CHAPO, and the two schemes differ in several
points. First, the extraction algorithm of GAPO takes as input the first and last ciphertexts of the
interval instead of using the corresponding indices, and the encryption algorithm uses a secret state that
is updated with each encryption. This implies that the user must have access to all the ciphertexts they
sent, and that their devices must synchronize to share the secret state in a secure way, which limits the
practicality of GAPO.

GAPO uses a PKE family called Random Coin Decryptable (RCD) PKE, which means that the ci-
phertext can be decrypted with its random coin in addition to the standard decryption via the secret
key. A GAPO ciphertext consists of two RCD ciphertexts. The first one contains half of the message, and
the (symmetric) encryption of the seed of the random coin and the (symmetric) key used for the next
encryption, and the second one contains the other half of the message, and the (symmetric) encryption
of the seed of the random coin and the (symmetric) key used by the previous encryption. This method
makes it very easy to achieve integrity because the opener and the receiver decrypt the same ciphertext.
On the other hand, it is slightly less generic since it uses a specific family of encryption, and it requires
two public key encryptions, doubling the encryption time of GAPO compared to CHAPO. Moreover, the
random coins are obtained by hashing the seeds, and the hash function must be modeled by a random
oracle so that the coins are truly random. This makes GAPO’s security highly relying on the random
oracle. Finally, GAPO is not CCA secure by design. To achieve this security, CHAPO uses messages
authentication codes, as explained in the previous paragraph.

Security proofs. We prove each theorem by using a sequence of games between a challenger and an
adversary where the adversary plays an experiment run by the challenger. Due to page limitation, we
only give the sequences of games, but we omit the reductions between the games. The full proofs are
given in Appendix A.

Theorem 1. If PRF is pseudorandom, MAC is EUF-CMA, SKE is IND-CCA, and PKE is correct and
IND-CCA, then CHAPO is IND-CSCA. Moreover, the following holds, where qn (resp. qx) denotes the
number of queries to the oracle Enc (resp. Ext) during the experiment, and q∗ is an upper bound on
j∗ − i∗:

AdvIND-CSCA
CHAPO (λ) ≤ 2 ·

(
qx + q∗ · µ · (1 + (qn + q∗)

2)
)
·AdvIND-CCA

PKE (λ)

+ (2 + (qn + q∗)
2 · q∗) ·AdvEUF-CMA

MAC (λ) + 4 · (qn + q∗) ·AdvIND-CCA
SKE (λ)

+ AdvPR
PRF(λ).

Proof (sketch). Let A be a PPT algorithm, we use the following sequence of games:
Game G0: This game is the original IND-CSCA experiment.
Game G1: This game is similar to G0, but the challenger replaces each output of the PRF by a random
value picked at random in Ksλ. We prove by reduction that:

|Pr [A wins G0]− Pr [A wins G1]| ≤ AdvPR
PRF(λ).

10

Game G2: Let qx be the number of queries sent to the oracle Ext(pko∗, k∗, ·, ·). This game is similar to
G1, but the challenger replaces the elements encrypted in the interval keys by random values:
– At the beginning of the experiment, the challenger initializes an empty list LX [].
– Each time that the oracle Ext(pko∗, k∗, ·, ·) receives a query (i, j), the challenger parses k∗ as (rk∗,

mk∗). If i ≤ 0, or i ≥ j, or j ≥ n, or Ji, jK∩ Ji∗, j∗K 6= ∅, then it returns ⊥ according to the definition

of the oracle Ext. It then picks r
$← Rpλ and rnd

$← {0, 1}|ẽki‖êkj‖mk∗|, runs Xi�j ← PEnc(pko∗, rnd; r),
sets LExt[Xi�j]← [i‖j], runs Yi�j ← Mac(mk∗, [i‖j‖Xi�j]), sets iki�j ← (Xi�j , Yi�j , i, j) and returns
iki�j .

– Each time that the challenger runs Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j) such that, parsing iki�j as

(Xi�j , Yi�j , i, j), LX [Xi�j] 6= ⊥, it replaces the instruction [ẽk
′
i‖êk

′
j‖mk′]← PDec(sko∗, Xi�j) by the

instructions [i′‖j′]← LX [Xi�j]; ẽk
′
i ← ẽki′ ; êk

′
j ← êkj′ ; mk′ ← mk∗.

We prove by reduction that:

|Pr [A wins G1]− Pr [A wins G2]| ≤ 2 · qx ·AdvIND-CCA
PKE (λ).

We stress that from this game, the key mk∗ is never used by the challenger except to gener-
ate/verify the message authentication codes.
Game G3: In this game, the challenger aborts and returns a random bit if the adversary sends a valid
query with a fresh interval key iki�j to the oracle Open, i.e. an interval key that has not been generated
by the experiment and that does not abort the oracle. more precisely, this game is similar to G2, but:
– At the beginning, the challenger initializes an empty set Sik.
– Each time that the challenger generates an interval key iki�j , the challenger sets Sik ← Sik ∪ {iki�j}.
– Each time that the oracle Open(sko∗, ·, ·, ·, ·) receives a query (i, j, iki�j , (cl, pkl)i≤l≤j) such that the

oracle does not returns⊥, if parsing iki�j as (Xi�i, Yi�i, i, j) it holds that iki�j 6∈ Sik and 1 = Ver(mk∗,
Yi�j , [i‖j‖Xi�i]), then the challenger sets Abort3 ← 1, aborts the experiment and returns a random
bit.

We claim that:
|Pr [A wins G2]− Pr [A wins G3]| ≤ AdvEUF-CMA

MAC (λ).

We have that |Pr [A wins G2]− Pr [A wins G3]| ≤ Pr[Abort3 = 1]. We prove this claim by showing that
Pr[Abort3 = 1] ≤ AdvEUF-CMA

MAC (λ).
Game G4: In this game, the challenger aborts and returns a random bit if the adversary sends a valid
query with a fresh ciphertext cl to the oracle Open, i.e. a ciphertext that has not been generated by the
experiment and that does not abort the oracle. more precisely, this game is similar to G3, but:
– At the beginning of the experiment, the challenger initializes an empty set SEnc.
– Each time that the challenger runs the encryption algorithm c← Enc(pk(∗,q), k∗,m, l; r) for any input
m and l, and any key index q, the challenger sets SEnc ← SEnc ∪ {(pk(∗,q), c)}.

– Each time that the oracle Open(sko∗, ·, ·, ·, ·) receives a query (i, j, iki�j , (cl, pkl)i≤l≤j) such that ∃ l
such that parsing cl as (C̃l, Ĉl, Dl, Sl, Tl, l), it holds that (pkl, cl) 6∈ SEnc and 1 = Ver(mk∗, Sl, [C̃l‖
Ĉl‖Dl‖pkl‖l]), and such that the oracle do not return ⊥, the challenger sets Abort4 ← 1, aborts the
experiment and returns a random bit.

We claim that:
|Pr [A wins G3]− Pr [A wins G4]| ≤ AdvEUF-CMA

MAC (λ).

We have that |Pr [A wins G3]− Pr [A wins G4]| ≤ Pr[Abort4 = 1]. We prove this claim by showing that
Pr[Abort4 = 1] ≤ AdvEUF-CMA

MAC (λ).
Game G5: In what follows, cl denotes the encryption of the lth message ml by the experiment, and

p̄kl denotes the corresponding public key. Moreover, for any pair of indexes (i, j), ikhi�j denotes the hth

interval key returned by the oracle Ext(pko∗, k∗, ·, ·) on the input (i, j). This game is the same as G5 but
the oracle Open(sko∗, ·, ·, ·, ·) is re-defined by:
– On input (i, j, ik′i�j , (c

′
l, pk

′
l)i≤l≤j), if i ≤ 0 or i ≥ j or j ≥ n, then return ⊥. During the second

phase, if (ik′i�j , (c
′
l, pk

′
l)i≤l≤j) = (iki∗�j∗ , (c(∗,l), p̄kl)i∗≤l≤j∗), then return ⊥.

– If (c′l, pk
′
l)i≤l≤j = (cl, pkl)i≤l≤j and ∃ h such that ik′i�j = ikhi�j , then return (ml)i≤l≤j , else return ⊥.

From the properties of G4 given above, we deduce that:

Pr [A wins G4] = Pr [A wins G5] .

11

We stress that from this game, the challenger no longer use the algorithm SDec during the
experiment.
Game G6: In this game, the challenger replaces the message encrypted in each ciphertext C̃l by a
random value. More precisely, this game is similar to G5, but each time that the encryption algorithm
cn ← Enc(pkn, k∗,mn, n; rn) is run by the Enc oracle or by the experiment during the generation of

the challenge, the challenger replaces the instruction C̃n ← SEnc(ẽkn, [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; ũn)

by the sequence of instructions strn ← [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; rndn
$← {0, 1}|strn|; C̃n ← SEnc(ẽkn,

rndn; ũn);
Let q∗ be an upper bound on the number of ciphertexts sending by the adversary A1, i.e. j∗ − i∗ ≤ q∗.
We claim that:

|Pr [A wins G5]− Pr [A wins G6]| ≤ 2 · (qn + q∗) ·AdvIND-CCA
SKE (λ).

We prove this claim by using an hybrid argument. We define an hybrid game G6,h as follows:

Game G6,h: In this game, the challenger replaces the messages encrypted in the h first ciphertexts C̃l
by random values. More precisely, If h = 0, then G6,h = G5, else if 1 ≤ h ≤ (qn+q∗), then the game G6,h

is the same as G6,h−1, but when the encryption algorithm cn ← Enc(pkn, k∗,mn, n; rn) is run for n = h
by the Enc oracle or by the experiment during the generation of the challenge, the challenger replaces

the instructions C̃n ← SEnc(ẽkn, [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; ũn) by strn ← [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n];

rndn
$← {0, 1}|strn|; C̃n ← SEnc(ẽkn, rndn; ũn). We prove by reduction that, for all h ∈ J1, qn + q∗K:

|Pr [A wins G6,h−1]− Pr [A wins G6,h]| ≤ 2 ·AdvIND-CCA
SKE (λ).

Game G7: In this game, the challenger replaces the message encrypted in each ciphertext Ĉl by a random
value. More precisely, this game is similar to G6, but when the encryption algorithm cn ← Enc(pkn, k∗,
mn, n; rn) is run for n = h by the Enc oracle or by the experiment during the generation of the challenge,

the challenger replaces the instructions Ĉn ← SEnc(êkn, [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; ûn) by the sequence

strn ← [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; rndn
$← {0, 1}|strn|; Ĉn ← SEnc(êkn, rndn; ûn). Let q∗ be an uper

bound on the number of ciphertexts sending by the adversary A1, i.e. j∗ − i∗ ≤ q∗. We claim that:

|Pr [A wins G6]− Pr [A wins G7]| ≤ 2 · (qn + q∗) ·AdvIND-CCA
SKE (λ).

This claim can be proved using the following hybrid argument: We define an hybrid game G7,h as
follows:
Game G7,h: In this game, the challenger replaces the messages encrypted in the (qn + q∗ + 1 − h)

last ciphertexts C̃l by random values. More precisely, if h = qn + q∗ + 1, then G7,h = G6, else if
1 ≤ h ≤ (qn + q∗), then the game G7,h is the same as G7,h+1, but each time the challenger runs
the encryption algorithm cn ← Enc(pkn, k∗,mn, n; rn) during the Enc oracle or during the challenge

generation such that n = h, it replaces the instruction Ĉn ← SEnc(êkn, [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; ûn)

by the sequence strn ← [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; rndn
$← {0, 1}|strn|; Ĉn ← SEnc(êkn, rndn; ûn). We

prove by reduction that, for all h ∈ J1, qn + q∗K:

|Pr [A wins G7,h+1]− Pr [A wins G7,h]| ≤ 2 ·AdvIND-CCA
SKE (λ).

Game G8: In what follows, we parse the lth ciphertext c(∗,l) of the challenge by (C̃(∗,l), Ĉ(∗,l), D(∗,l),
S(∗,l), T(∗,l), l). In this game, the challenger replaces the keys mkl for all l in Ji∗, j∗K encrypted by a public
key generated by the challenger (i.e. in {pk(∗,q)}1≤q≤µ) in each ciphertext D(∗,l) by a random value.
More precisely, this game is similar to G7, except that when the challenger build the challenge (iki∗�j∗ ,
(c(∗,l))i∗≤l≤j∗), ∀ l ∈ Ji∗, j∗K such that ∃ q, pk(∗,q) = p̄kl:

– the challenger picks mk′l
$← Kmλ ,

– when the challenger runs c(∗,l) ← Enc(p̄kl, k∗,m(b,l), l), it replaces the instructionD(∗,l) ← PEnc(pk(∗,q),

[m(b,l)‖mkl‖l]; vl) by D(∗,l) ← PEnc(pk(∗,q), [m(b,l)‖mk′l‖l]; vl).
– For each query (p, c) (where we parse c as (C̃, Ĉ,D, S, T, l′)) sending to the oracle Dec(·, ·) such that
p = q, c 6= c(∗,l) and D = D(∗,l), the challenger runs Dec(sk(∗,q), c) as in the real experiment except
that it replaces the instruction [m‖mk‖l′′]← PDec(sk(∗,q), D) by [m‖mk‖l′′]← [m(b,l)‖mkl‖l].

12

We prove by reduction that:

|Pr [A wins G7]− Pr [A wins G8]| ≤ 2 · q∗ · µ ·AdvIND-CCA
PKE (λ).

We stress that from this game, for each index l in Ji∗, j∗K such that p̄kl ∈ {pk(∗,q)}1≤q≤µ, the key
mkl is only used to produced the MAC tag T(∗,l). Especially, mkl is never encrypted in a
ciphertext known by the adversary.
Game G9: In this game, the challenger tries to guess the indexes i∗ and j∗, and aborts in case of
failure. More precisely, this game is similar to G8, but the challenger picks (i′∗, j

′
∗)← J1, qn + q∗K2 at the

beginning of the experiment. At the end of the experiment, if i′∗ 6= j∗ or i′∗ 6= j∗, then the challenger
returns a random bit. The adversary increases its winning advantage by a factor equalling the probability
of guessing correctly i∗ and j∗:

|Pr [A wins G8]− 1/2| = (qn + q∗)
2 · |Pr [A wins G9]− 1/2|

We stress that n is incremented (qn + q∗) times during the experiment: qn times by the oracle Enc(·, k∗,
·, n) and q∗ times after the generation of (c(∗,l))i∗≤l≤j∗ .

Game G10: We parse the challenge (c(∗,l))i∗≤l≤j∗ as (C̃(∗,l), Ĉ(∗,l), D(∗,l), S(∗,l), T(∗,l), l)i∗≤l≤j∗ . In this
game, the challenger aborts if the adversary tries to reuse the element D(∗,l) in a ciphertext c 6= c(∗,l)
sending to the decryption oracle for all l in Ji∗, j∗K such that p̄kl ∈ {pk(∗,q)}1≤q≤µ. More concretely, this

game is similar to G9, but if the adversary sends a query (p, c) (where we parse c as (C̃, Ĉ,D, S, T, l))

to the oracle Dec(·, ·) such that, pk(∗,q) = p̄kl and D = D(∗,l) and c 6= c(∗,l) and Ver(mkl, T, [C̃‖Ĉ‖D‖S‖
pk(∗,q)‖l]) = 1, then the challenger set Abort10 ← 1, aborts the game G10 and returns a random bit. We
claim that:

|Pr [A wins G9]− Pr [A wins G10]| ≤ q∗ ·AdvEUF-CMA
MAC (λ).

We prove this claim by using an hybrid argument. We define the game G10,h as follows:
Game G10,h: We define G10,0 as G9, and for all 1 ≤ h ≤ q∗, we define G10,h as G10,h−1 but the

challenger aborts if (i) p̄k(∗,i′∗+h) ∈ {pk(∗,q)}1≤q≤µ, and (ii) the adversary tries to reuse the element
D(∗,i′∗+h) in a ciphertext c 6= c(∗,i′∗+h) sending to the decryption oracle. More concretely, we define G10,h

as the same game as G10,h−1 except that parsing the challenge (c(∗,l))i∗≤l≤j∗ as (C̃(∗,l), Ĉ(∗,l), D(∗,l),
S(∗,l), T(∗,l))i∗≤l≤j∗ , if the adversary sends a query (p, c) to the oracle Dec(·, ·) such that, parsing c as

(C̃, Ĉ,D, S, T, l), it holds that pk(∗,q) = p̄ki′∗+h and D = D(∗,i′∗+h) and c 6= c(∗,i′∗+h) and Ver(mki′∗+h, T,

[C̃‖Ĉ‖D‖S‖pk(∗,q)‖l]) = 1, then the challenger set Abort10,h ← 1, aborts the game G10,h and returns a
random bit. We note that G10,q∗ = G10. We prove by reduction that:

|Pr [A wins G10,h−1]− Pr [A wins G10,h]| ≤ AdvEUF-CMA
MAC (λ).

Game G11: This game is similar to G10, but the challenger substitutes each message that depends on b
by a random message of same length. More formally, for each l ∈ Ji′∗, j′∗K such that p̄kl ∈ {pk(∗,q)}1≤q≤µ
it replaces the message m(b,l) encrypted in c(∗,l) by the public key p̄kl by a message m(∗,l)

$← {0, 1}|m(b,l)|

chosen at random. We prove by reduction that:

|Pr [A wins G10]− Pr [A wins G11]| = 2 · q∗ · µ ·AdvIND-CCA
PKE (λ).

By composing the winning probabilities of A in all games, we obtain the upper bound on AdvIND-CSCA
CHAPO (λ)

given in the theorem, which concludes the proof. ut

Theorem 2. If PRF is pseudorandom, MAC is EUF-CMA, SKE and PKE are correct and IND-CCA,
then CHAPO is IND-CCA. Moreover, the following holds, where qn denotes the number of queries to the
oracle Enc during the experiment:

AdvIND-CCA
CHAPO (λ) ≤2 ·AdvPR

PRF(λ) + 4 · (qn + 1) ·AdvIND-CCA
SKE (λ)

+ 8 · (qn + 1) ·AdvIND-CCA
PKE (λ) + 2 · (qn + 1) ·AdvEUF-CMA

MAC (λ).

Proof (sketch). We recall that in order to win the IND-CCA experiment with a non negligible advantage,
the following must hold: l∗ 6∈ Ji∗, j∗K. We separate our proof in two distinct cases: l∗ < i∗ and l∗ > j∗.

13

More concretely, we define two variants of the IND-CCA experiment: the IND-CCA0 (resp. IND-CCA1)
experiment denotes the same experiment as IND-CCA except that if l∗ < i∗ (resp. l∗ > j∗), then the
challenger returns a random bit. We have that:

AdvIND-CCA
CHAPO,A(λ) ≤ AdvIND-CCA0

CHAPO,A(λ) + AdvIND-CCA1

CHAPO,A(λ).

Case IND-CCA0 (i.e. l∗ < i∗): We use the following sequence of games. Let A be a PPT algorithm:
Game G0: This game is the original IND-CCA0 experiment.
Game G1: This game is similar to G0, but the challenger replaces each output of the PRF by a random
value picked in Ksλ. We prove by reduction that:

|Pr [A wins G0]− Pr [A wins G1]| ≤ AdvPR
PRF(λ).

Game G2: In this game, the challenger tries to guess the index i∗ and aborts in case of failure. Let qn
be the number of calls to the oracle Enc(·, k∗, ·, n). This game is similar to G1, but the challenger picks
i′∗ ← J1, qn + 1K at the beginning of the experiment. At the end of the experiment, if i′∗ 6= i∗, then the
challenger returns a random bit. The adversary increases its winning advantage by a factor equalling the
probability of guessing correctly i∗:

|Pr [A wins G1]− 1/2| = (qn + 1) · |Pr [A wins G2]− 1/2|

Note that n is incremented (qn + 1) times during the experiment: qn times by the oracle Enc(·, k∗, ·, n)
and one time after the generation of cl∗ .

Game G3: In this game, for all n ≤ i∗, the challenger replaces the part C̃n of the ciphertext cn by the
encryption of a random message, which includes the challenge cl∗ if l∗ ≤ i∗ (otherwise, the challenger
returns a random bit by definition of the IND-CCA0 experiment). This game is similar to G2, but while
n < i′∗, each time the oracle Enc(·, k∗, ·, n) is called on a query (pkn,mn) and runs cn ← Enc(pkn, k∗,

mn, n; rn), it replaces the instruction C̃n ← SEnc(ẽkn, [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; ũn) by the sequence of

instructions strn ← [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; rndn
$← {0, 1}|strn|; C̃n ← SEnc(ẽkn, rndn; ũn). Moreover,

when it computes the challenge cl∗ ← Enc(pk∗, k∗,m(∗,0), l∗; r∗), the challenger replaces the instruction

C̃l∗ ← SEnc(ẽkl∗ , [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖l∗]; ũl∗); by the sequence strl∗ ← [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖
pk∗‖l∗]; rndl∗

$← {0, 1}|strl∗ |; C̃l∗ ← SEnc(ẽkl∗ , rndl∗ ; ũl∗). We claim that:

|Pr [A wins G2]− Pr [A wins G3]| ≤ 2 · (qn + 1) ·AdvIND-CCA
SKE (λ).

We prove this claim by using an hybrid argument. We define the hybrid game G3,i as follows:

Game G3,i: If i = 0, then G3,0 = G2, else for all n ≤ i, if i ≤ i′∗, then the challenger replaces the part C̃n
of the ciphertext cn by the encryption of a random message. More concretely, if 1 ≤ i ≤ (qn + 1), then
the game G3,i is the same as G3,i−1, but if i < i′∗ and l∗ 6= i, then when the oracle Enc(·, k∗, ·, i) is called

on a query (pki,mi) and runs ci ← Enc(pki, k∗,mi, i; ri), it replaces the instruction C̃i ← SEnc(ẽki,

[ẽki+1‖m̃i‖m̃ki‖ṽi‖pki‖i]; ũi) by the sequence of instructions stri[ẽki+1‖m̃i‖m̃ki‖ṽi‖pki‖i]; rndi
$← {0,

1}|stri|; C̃i ← SEnc(ẽki, rndi; ũi). Moreover, if l∗ = i, then when it computes the challenge cl∗ ← Enc(pk∗,

k∗,m(∗,0), l∗; r∗), the challenger replaces the instruction C̃l∗ ← SEnc(ẽkl∗ , [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖
l∗]; ũl∗) by strl∗ ← [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖l∗]; rndl∗

$← {0, 1}|strl∗ |; C̃l∗ ← SEnc(ẽkl∗ , rndl∗ ; ũl∗). We
prove by reduction that, for all i ∈ J1, qn + 1K:

|Pr [A wins G3,i−1]− Pr [A wins G3,i]| ≤ 2 ·AdvIND-CCA
SKE (λ).

Game G4: This is the same game as G3, but m̂(∗,b), m̂kl∗ and v̂l∗ are substituted by random bit-strings of

same length. At this step, since m̃(∗,b) is replaced by a random bit string in C̃l∗ and m̂(∗,b) = m(∗,b)⊕m̃(∗,b),
then m̂(∗,b) is indistinguishable from a random bit string, so it no longer depends on b, and can be
substituted by a random bit-string without any influence on the adversary advantage. Using a similar

argument, we have that m̂kl∗ and v̂l∗ can also be substituted by random bit-strings. We deduce that:

Pr [A wins G3] = Pr [A wins G4] .

Game G5: In this game, the challenger replaces the MAC key mkl∗ by a random value in the part Dl∗

(encrypted by PKE) of the ciphertext challenge cl∗ . More concretely, This game is similar to G5, except
that:

14

– when it computes the challenge by running cl∗ ← Enc(pk∗, k∗,m(∗,b), l∗; r∗), it replaces the instruction

Dl∗ ← PEnc(pk∗, [m(∗,b)‖mkl∗‖l∗]; vl∗) by the sequence of instructions mk′l∗
$← Kmλ ;Dl∗ ← PEnc(pk∗,

[m(∗,b)‖mk′l∗‖l∗]; vl∗),
– For each query c = (C̃, Ĉ,D, S, T, l) sending to the oracle Dec(sk∗, ·) such that c 6= cl∗ and D = Dl∗ ,

the challenger runs Dec(sk∗, c) as in the real experiment except that it replaces the instruction [m‖
mk‖l]← PDec(sk∗, D) by [m‖mk‖l]← [m(∗,b)‖mkl∗‖l∗].

We prove by reduction that:

|Pr [A wins G4]− Pr [A wins G5]| ≤ 2 ·AdvIND-CCA
PKE (λ).

Game G6: In what follows, we parse the challenge cl∗ as (C̃l∗ , Ĉl∗ , Dl∗ , Sl∗ , Tl∗). In this game, the
challenger aborts if the adversary tries to reuse Dl∗ in a ciphertext c 6= cl∗ sending to the decryption

oracle. More concretely, this game is similar to G5, but if the adversary sends a query c = (C̃, Ĉ,D, S, T,

l) to the oracle Dec(sk∗, ·) such that D = Dl∗ , c 6= cl∗ and Ver(mkl∗ , T, [C̃‖Ĉ‖D‖S‖pk∗‖l]) = 1, then the
challenger set Abort6 ← 1, aborts the game G6 and returns a random bit. We prove by reduction that:

|Pr [A wins G5]− Pr [A wins G6]| ≤ AdvEUF-CMA
MAC (λ).

Game G7: This game is similar to G6, but the challenger substitutes the message m(∗,b) by a random

message m∗
$← {0, 1}|m(∗,b)|. We prove by reduction that:

|Pr [A wins G6]− Pr [A wins G7]| = 2 ·AdvIND-CCA
PKE (λ).

At this step, the parts Ĉl∗ , C̃l∗ , and Dl∗ of the challenge cl∗ encrypts random values instead of the
messages m̂(∗,b), m̃(∗,b), and m(∗,b), which implies that the game G7 do not depend on the challenge
bit b. We deduce that Pr [A wins G7] = 1/2. Case IND-CCA1 (l∗ > j∗) is similar to case IND-CCA0. By
composing the winning probabilities of A in all games, we obtain the upper bound on AdvIND-CCA

CHAPO (λ)
given in the theorem, which concludes the proof. ut

Theorem 3. If PKE is correct and key verifiable, then CHAPO is Integrity-secure. Moreover, it holds
that AdvIntegrity

CHAPO (λ) = 0.

Proof. We prove this theorem by negation. Assume that the adversary returns (i, j, (cl, pkl)i≤l≤j , x, skx,
iki�j) to the challenger such that running (ml)i≤l≤j ← Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j) and m′x ←
Dec(skx, cx), it holds that mx 6= ⊥ and m′x 6= ⊥ and mx 6= m′x and 1 = KVer(pkx, skx). We show that
this implies the following contradiction: m′x = mx.

We parse cx as (C̃x, Ĉx, Dx, Sx, Tx, x). According to the algorithm Open, if mx 6= ⊥, then during
the run of Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j), the challenger computes two values mkx and vx such that
Dx = PEnc(pkx, [mx‖mkx‖x]; vl). We have that 1 = KVer(pkx, skx), so (pkx, skx) ∈ {(pk, sk) : (pk,
sk) ← KVer(1λ)}. Moreover, since PKE is correct, then we have that for any (pk, sk) ← KVer(1λ), any
message m and any random coin r, it holds that m = PDec(sk,PEnc(pk,m; r)). We deduce that [mx‖
mkx‖x] = PDec(skx, Dx).

On the other hand, According to the algorithm Dec, m′x ← Dec(skx, cx) implies that there exists a
values mk′x such that [m′x‖mk′x‖x] = PDec(skx, Dx). We deduce that m′x = mx, which concludes the
proof. ut

5 Applications

Chosen ciphertext security in practice. Our CCA security model provides several properties that are
essential for practical applications: the IND-CCA security ensures that the ciphertexts are not malleable,
and the IND-CSCA ensures that if an adversary modifies, drops, adds or rearranges the encrypted
messages in the open interval, the open algorithm fails. In what follows, we show several applications of
APOPKE, and we discuss the practical impact of the CCA security.
Encrypted invoices during tax audit. Bultel and Lafourcade give the following application for their
APOPKE scheme. A company sends invoices to its customers by encrypted e-mail. One day, the company
has to pass a tax audit, and the court asks the company’s mail server to provide the invoices sent over

15

a given period of time. The company does not want to reveal the invoices of its customers that were
not sent over the period of the tax audit. It therefore uses an APOPKE to reveal only the invoices sent
over the time period. The CPA security only takes into account the cases where the server is passive: a
dishonest server could discredit the company in court by adding or removing invoices, or changing their
amounts in an undetectable way. The dishonest server can also modify the invoices before the clients
receive them. Our CCA security fixes this drawback by preventing this kind of attacks.
Interception of secure messaging and vocal chat. In the introduction, we have already mentioned
the use of APOPKE to reveal his textual conversations during a given period of time in a court of law,
in order to prove his honesty. Again, a dishonest server might want to alter the user’s conversations,
so the CCA security is necessary. Often messaging applications also implement voice calls. In this case,
encrypting the conversation with a public key encryption becomes infeasible for the sake of effectiveness.
However, it is possible to use an APOPKE to encapsulate a session key used throughout the call to
encrypts the packets with an authenticated encryption scheme. [22]. To open the conversations over
the interval, the opener will decrypt each session key using his interval key, then use each session key
to decrypt the packets from the corresponding conversation. From a security point of view, the CCA
security prevents the server from altering the session key, and the authenticated encryption ensures the
integrity of the conversations decrypted with the session key.
Bypass the limitations. The main limitation of CHAPO is that the user cannot securely generate keys
for two disjoint intervals. This limitation can be bypassed in practice by refreshing the user’s encryption
key from time to time. In this case, the refresh rate must be chosen so as to obtain the best tradeoff
between the number of encryption keys and the number of ciphertexts in the period covered by each key.
To take the example of the instant messaging, we can consider that the user must refresh his encryption
key every year. On the one hand, he is unlikely to accumulate several court cases for different periods
during a year, and on the other hand, even if he uses the instant messaging all his life, he will only need
to store less than one hundred keys. The user will have to send as many interval keys as there are years
in the selected period to the opener, which seems reasonable in practice.

6 Conclusion

In this paper, we revisited the a posteriori openable encryption schemes introduced by Bultel and Lafour-
cade in [5]. We gave a security model for the chosen-ciphertext attack security of this primitive, and we
proposed a new scheme called CHAPO which improves four points of the scheme given in [5]: it is more
secure (CCA security), more generic, more efficient, and it does not require the random oracle model. We
also presented new applications for this primitive. In the future, we would like to put these applications
into practice. Moreover, it would be interesting to adapt the a posteriori openable encryptions to the
secure messaging based on the double ratchet algorithm [7], such as Signal or Watsapp.

Acknowledgements

I would like to thank Angèle Bossuat and David Gérault for their helpful comments and suggestions.

References

1. G. Arfaoui, O. Blazy, X. Bultel, P.-A. Fouque, A. Nedelcu, and C. Onete. Legally keeping secrets from mobile
operators: Lawful interception key exchange (like). In ESORICS 2021 (forthcoming), 2021.

2. M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in a multi-user setting: Security proofs and
improvements. In EUROCRYPT 2000. Springer, 2000.

3. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message authentication. In CRYPTO
’96. Springer, 1996.

4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption.
In Proceedings 38th Annual Symposium on Foundations of Computer Science, 1997.

5. X. Bultel and P. Lafourcade. A posteriori openable public key encryption. In ICT Systems Security and
Privacy Protection. Springer International Publishing, 2016.

6. G. Choi and S. Vaudenay. Timed-release encryption with master time bound key. In Information Security
Applications. Springer International Publishing, 2020.

16

7. K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila. A formal security analysis of the
signal messaging protocol. In EuroS&P 2017, 2017.

8. Y. Dodis, J. Katz, S. Xu, and M. Yung. Key-insulated public key cryptosystems. In EUROCRYPT 2002,
LNCS. Springer, 2002.

9. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. J. ACM, 1986.
10. S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zeldovich. Reusable garbled circuits

and succinct functional encryption. In 45th ACM STOC. ACM Press, 2013.
11. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System Sciences, 1984.
12. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for fine-grained access control of

encrypted data. In CCS ’06. ACM, 2006.
13. K. Han, C. Y. Yeun, T. Shon, J. H. Park, and K. Kim. A scalable and efficient key escrow model for lawful

interception of idbc-based secure communication. Int. J. Communication Systems, 2011.
14. Y. H. Hwang, D. H. Yum, and P. J. Lee. Timed-release encryption with pre-open capability and its application

to certified e-mail system. In ISC 2005, LNCS. Springer, 2005.
15. M. Ishizaka and S. Kiyomoto. Time-specific encryption with constant-size secret-keys secure under standard

assumption. Cryptology ePrint Archive, Report 2020/595, 2020. https://eprint.iacr.org/2020/595.
16. K. Kasamatsu, T. Matsuda, K. Emura, N. Attrapadung, G. Hanaoka, and H. Imai. Time-specific encryp-

tion from forward-secure encryption: generic and direct constructions. International Journal of Information
Security, 2015.

17. A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. Delegatable pseudorandom functions and
applications. In ACM CCS. ACM, 2013.

18. K. M. Martin. Increasing efficiency of international key escrow in mutually mistrusting domains. In Cryp-
tography and Coding, LNCS. Springer, 1997.

19. T. May. Time-release crypto. Manuscript, 1993.
20. R. Nojima, H. Imai, K. Kobara, and K. Morozov. Semantic security for the mceliece cryptosystem without

random oracles. Des. Codes Cryptography, 2008.
21. K. G. Paterson and E. A. Quaglia. Time-specific encryption. In SCN’10, 2010.
22. P. Rogaway. Authenticated-encryption with associated-data. In CCS. ACM, 2002.
23. A. Shamir. Partial key escrow: A new approach to software key escrow. Presented at Key Escrow Conference,

1995.
24. Z. Wang, Z. Ma, S. Luo, and H. Gao. Key escrow protocol based on a tripartite authenticated key agreement

and threshold cryptography. IEEE Access, 2019.
25. Y. Watanabe and J. Shikata. Identity-based hierarchical key-insulated encryption without random oracles.

In PKC 2016. Springer, 2016.

A Full Security Proofs

In this section, we give the full verion of the proofs, including the reductions.
We prove each theorem by using a sequence of games between a challenger and an adversary where

the adversary plays an experiment run by the challenger. Our proofs use the following lemmas (Lemma 2
is proven in [2]):

Lemma 1. For any security property Prop, any PPT algorithm A, and any scheme P , if AdvProp
P,A (λ) =

|Pr[b $← {0, 1} : 1← ExpProp
b,P,A(λ)]−1/2|, then it holds that|Pr[1← ExpProp

1,P,A(λ)]−Pr[0← ExpProp
0,P,A(λ)]| =

2 ·AdvProp
P,A (λ).

Proof. First, we show that:

Pr[b
$← {0, 1} : 1← ExpProp

b,P,A(λ)]

= Pr[b
$← {0, 1} : b = 1] · Pr[1← ExpProp

1,P,A(λ)]

+ Pr[b
$← {0, 1} : b = 0] · Pr[1← ExpProp

0,P,A(λ)]

=
1

2
·
(
Pr[1← ExpProp

1,P,A(λ)] + 1− Pr[0← ExpProp
0,P,A(λ)]

)
=

1

2
·
(
Pr[1← ExpProp

1,P,A(λ)]− Pr[0← ExpProp
0,P,A(λ)]

)
+

1

2
.

We deduce that:

2 ·AdvProp
P,A (λ) = 2 ·

∣∣∣Pr[b $← {0, 1} : 1← ExpProp
b,P,A(λ)]− 1/2

∣∣∣
=
∣∣∣Pr[1← ExpProp

1,P,A(λ)]− Pr[0← ExpProp
0,P,A(λ)]

∣∣∣ .
17

Lemma 2. Let λ be a security parameter and P = (Rλ,PGen,PEnc,PDec) be a PKE, and let A be a
PPT algorithm. The (qe, µ)-indistinguishability against chosen ciphertexts attacks security in a multi-
users/challenges setting ((qe, µ)-IND-CCA) experiment for P is defined by:

Exp
(qe,µ)-IND-CCA
b,P,A (λ):

C ← ∅;∀i ∈ J1, µK, (pk(∗,i), sk(∗,i))← PGen(1λ);

b∗ ← APEnc(·,LRb(·,·)),PDec(·,·)(λ, (pki)1≤i≤µ); If b = b∗, then return 1, else 0;
where the oracle PEnc(·, LRb(·, ·)) cannot be called more than qe times and takes as input (i, (m0,m1)),
picks r ← Rλ, runs c ← PEnc(pki,mb; r), sets C ← C ∪ {(i, c)}, and returns c, and where the oracle
PDec(·, ·) takes a pair (i, c) as input, and returns PDec(ski, c) if (i, c) 6∈ C. The (qe, µ)-IND-CCA-advantage

is defined by Adv
(qe,µ)-IND-CCA
P,A (λ) =

∣∣∣Pr[b $← {0, 1} : 1← Exp
(qe,µ)-IND-CCA
b,P,A (λ)]− 1/2

∣∣∣ .
It holds that Adv

(qe,µ)-IND-CCA
P (λ) ≤ qe · µ ·AdvIND-CCA

P (λ).

A.1 IND-CSCA Security Proof.

Proof. (Theorem 1) Let A be a PPT algorithm, we use the following sequence of games:
Game G0: This game is the original IND-CSCA experiment:

Pr [A wins G0] = Pr
[
b

$← {0, 1} : 1← ExpIND-CSCA
b,CHAPO,A(λ)

]
Game G1: This game is similar to G0, but the challenger replaces each output of the PRF by a random
value picked at random in Ksλ. We claim that:

|Pr [A wins G0]− Pr [A wins G1]| ≤ AdvPR
PRF(λ).

We prove this claim by reduction. We build an algorithm B that plays the PR experiment using A as a
black box. B faithfully simulates G0 to A, except that it instantiates k∗ by picking mk∗

$← Kmλ and setting
k∗ ← (⊥,mk∗), and it calls the oracle f(·) instead of running the pseudo random function PRF(rk∗, ·) on
any input (B cannot run the decryption algorithm since it does not know the real key rk∗). If A wins the
game, then B returns 1, else it returns 0. We have that:

– Pr
[
rk

$← Kλ; f(.)← PRF(rk, ·); : 1← Bf(·)(λ)
]

= Pr [A wins G0],

– Pr
[
f

$← F : 1← Bf(·)(λ)
]

= Pr [A wins G1].

This concludes the proof of the claim.
Game G2: Let qx be the number of queries sent to the oracle Ext(pko∗, k∗, ·, ·). This game is similar to
G1, but the challenger replaces the elements encrypted in the interval keys by random values:
– At the beginning of the experiment, the challenger initializes an empty list LX [].
– Each time that the oracle Ext(pko∗, k∗, ·, ·) receives a query (i, j), the challenger parses k∗ as (rk∗,

mk∗). If i ≤ 0, or i ≥ j, or j ≥ n, or Ji, jK∩ Ji∗, j∗K 6= ∅, then it returns ⊥ according to the definition

of the oracle Ext. It then picks r
$← Rpλ and rnd

$← {0, 1}|ẽki‖êkj‖mk∗|, runs Xi�j ← PEnc(pko∗, rnd; r),
sets LExt[Xi�j]← [i‖j], runs Yi�j ← Mac(mk∗, [i‖j‖Xi�j]), sets iki�j ← (Xi�j , Yi�j , i, j) and returns
iki�j .

– Each time that the challenger runs Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j) such that, parsing iki�j as

(Xi�j , Yi�j , i, j), LX [Xi�j] 6= ⊥, it replaces the instruction [ẽk
′
i‖êk

′
j‖mk′]← PDec(sko∗, Xi�j) by the

instructions [i′‖j′]← LX [Xi�j]; ẽk
′
i ← ẽki′ ; êk

′
j ← êkj′ ; mk′ ← mk∗.

We claim that:
|Pr [A wins G1]− Pr [A wins G2]| ≤ 2 · qx ·AdvIND-CCA

PKE (λ).

We prove this claim by reduction. We build an algorithm B that plays the (qx, 1)-IND-CCA experiment
on PKE using A as a black box. B receives the public key (pk′∗), then it simulates honestly the game G2

to A, except that:
– B sets pko∗ ← pk′∗ and sko∗ ← ⊥.
– Each time that the oracle Ext(pko∗, k∗, ·, ·) receives a query (i, j), it parses k∗ as (rk∗,mk∗). If i ≤ 0,

or i ≥ j, or j ≥ n, or Ji, jK ∩ Ji∗, j∗K 6= ∅, then it returns ⊥, else it picks rnd
$← {0, 1}|ẽki‖êkj‖mk∗|.

It build the query q = (1, ([ẽki‖êkj‖mk∗], rnd)) and sends it to its encryption oracle PEnc(·, LRb′(·,
·)), that retunrs a ciphertext c, then B sets Xi�j ← c and LX [Xi�j]← [i‖j], runs Yi�j ← Mac(mk∗,
[i‖j‖Xi�j]), sets iki�j ← (Xi�j , Yi�j , i, j) and returns iki�j .

18

– Each time that the challenger runs Open(sko∗, i, j, iki�j , (cl, pkl)i≤l≤j), parsing iki�j as (Xi�j , Yi�j ,
i, j):

• if LX [Xi�j] 6= ⊥, then the challenger replaces the instruction [ẽk
′
i‖êk

′
j‖mk′]← PDec(sko∗, Xi�j)

by the instructions [i′‖j′]← LX [Xi�j]; ẽk
′
i ← ẽki′ ; êk

′
j ← êkj′ ; mk′ ← mk∗.

• if LX [Xi�j] = ⊥, then instead of running the instruction [ẽk
′
i‖êk

′
j‖mk′] ← PDec(sko∗, Xi�j) (B

cannot run the PDec algorithm since it does not know the key sko∗), B sends the query (1, Xi�j)

to the oracle PDec(·, ·) and parses the answer as [ẽk
′
i‖êk

′
j‖mk′].

At then end of the game simulation, A returns b∗, then B returns 1 to its challenger iff (b = b∗).

In what follows, b′ denotes the challenge bit of B. If b′ = 0, then the challenger encrypts [ẽki‖êkj‖
mk∗] in c, so iki�j = c is formed as in the game G1, and the oracle Open is perfectly simulated because

the instruction [ẽk
′
i‖êk

′
j‖mk′] ← PDec(sko∗, Xi�j) and the instructions [i′‖j′] ← LX [Xi�j]; ẽk

′
i ← ẽki′ ;

êk
′
j ← êkj′ ; mk′ ← mk∗ are equivalent. Else, the challenger encrypts a random bit-string in c, so iki�j = c

is formed as in the game G2.

We deduce that Pr[0 ← Exp
(qx,1)-IND-CCA
0,PKE,B (λ)] = Pr[1 ← B((pk′∗), λ)|b′ = 0] = Pr[b∗ = b|b′ = 0] =

Pr [A wins G1] and Pr[1 ← Exp
(qx,1)-IND-CCA
1,PKE,B (λ)] = Pr[1 ← B((pk′∗), λ)|b′ = 1] = Pr[b∗ = b|b′ = 1] =

Pr [A wins G2]. By Lemma 1, we have that |Pr [A wins G1]− Pr [A wins G2]| ≤ 2 ·Adv
(qx,1)-IND-CCA
SKE,B (λ).

By Lemma 2, we have that Adv
(qx,1)-IND-CCA
SKE (λ) ≤ qx ·AdvIND-CCA

SKE (λ), which concludes the proof of the
claim.

We stress that from this game, the key mk∗ is never used by the challenger except to gener-
ate/verify the message authentication codes.
Game G3: In this game, the challenger aborts and returns a random bit if the adversary sends a valid
query with a fresh interval key iki�j to the oracle Open, i.e. an interval key that has not been generated
by the experiment and that does not abort the oracle. more precisely, this game is similar to G2, but:
– At the beginning, the challenger initializes an empty set Sik.
– Each time that the challenger generates an interval key iki�j , the challenger sets Sik ← Sik ∪ {iki�j}.
– Each time that the oracle Open(sko∗, ·, ·, ·, ·) receives a query (i, j, iki�j , (cl, pkl)i≤l≤j) such that the

oracle does not returns⊥, if parsing iki�j as (Xi�i, Yi�i, i, j) it holds that iki�j 6∈ Sik and 1 = Ver(mk∗,
Yi�j , [i‖j‖Xi�i]), then the challenger sets Abort3 ← 1, aborts the experiment and returns a random
bit.

We claim that:

|Pr [A wins G2]− Pr [A wins G3]| ≤ AdvEUF-CMA
MAC (λ).

We have that |Pr [A wins G2]− Pr [A wins G3]| ≤ Pr[Abort3 = 1]. We prove this claim by showing that
Pr[Abort3 = 1] ≤ AdvEUF-CMA

MAC (λ) using a reduction. Assume that the adversary A sends a query to the
oracle Open that makes the experiment aborting with probability εA(λ), i.e. Pr[Abort3 = 1] = εA(λ). We
build an algorithm B that plays the EUF-CMA experiment on MAC using A as a black box. B simulates
G3 to A as in the real game, except that:
– B sets mk∗ ← ⊥.
– If B has to run t ← Mac(mk∗,m) on some input m, then it sends m to the oracle Mac(mk∗, ·) and

instantiates t with the answer of the oracle.
– If B has to check that 1 = Mac(mk∗, t,m) for some input (t,m), then it sends (t,m) to the oracle

Ver(mk∗, ·, ·).
– If A sends a query to the oracle Open(sko∗, ·, ·, ·, ·) such that:
• the oracle do not return ⊥, and
• parsing iki�j = (Xi�i, Yi�ii, j), it holds that iki�j 6∈ Sik and 1 = Ver(mk∗, Yi�j , [i‖j‖Xi�i]),

then B returns (Yi�j , [i‖j‖Xi�i]) to its challenger, sets Abort3 ← 1, and aborts the experiment for
A. In this case, the (valid) pair of tag/message (Yi�j , [i‖j‖Xi�i]) as not been produced by the oracle
Mac(mk∗, ·). We deduce that B wins his EUF-CMA experiment.

Finally, we observe that B perfectly simulates G3 to A, and if Abort3 triggers, then B wins its EUF-CMA
experiment. We deduce that εA(λ) = AdvEUF-CMA

MAC,B (λ), which concludes the proof of the claim.
Game G4: In this game, the challenger aborts and returns a random bit if the adversary sends a valid
query with a fresh ciphertext cl to the oracle Open, i.e. a ciphertext that has not been generated by the
experiment and that does not abort the oracle. more precisely, this game is similar to G3, but:

19

– At the beginning of the experiment, the challenger initializes an empty set SEnc.
– Each time that the challenger runs the encryption algorithm c← Enc(pk(∗,q), k∗,m, l; r) for any input
m and l, and any key index q, the challenger sets SEnc ← SEnc ∪ {(pk(∗,q), c)}.

– Each time that the oracle Open(sko∗, ·, ·, ·, ·) receives a query (i, j, iki�j , (cl, pkl)i≤l≤j) such that ∃ l
such that parsing cl as (C̃l, Ĉl, Dl, Sl, Tl, l), it holds that (pkl, cl) 6∈ SEnc and 1 = Ver(mk∗, Sl, [C̃l‖
Ĉl‖Dl‖pkl‖l]), and such that the oracle do not return ⊥, the challenger sets Abort4 ← 1, aborts the
experiment and returns a random bit.

We claim that:

|Pr [A wins G3]− Pr [A wins G4]| ≤ AdvEUF-CMA
MAC (λ).

We have that |Pr [A wins G3]− Pr [A wins G4]| ≤ Pr[Abort4 = 1]. We prove this claim by showing that
Pr[Abort4 = 1] ≤ AdvEUF-CMA

MAC (λ) using a reduction. Assume that the adversary A sends a query to the
oracle Open that makes the experiment aborting with probability εA(λ), i.e. Pr[Abort4 = 1] = εA(λ). We
build an algorithm B that plays the EUF-CMA experiment on MAC using A as a black box. B simulates
G4 to A as in the real game, except that:

– B sets mk∗ ← ⊥.
– If B has to run t ← Mac(mk∗,m) on some input m, then it sends m to the oracle Mac(mk∗, ·) and

instantiates t with the answer of the oracle.
– If B has to check that 1 = Mac(mk∗, t,m) for some input (t,m), it sends (t,m) to the oracle Ver(mk∗,
·, ·).

– If A sends a query (i, j, iki�j , (cl, pkl)i≤l≤j) to the oracle Open such that ∃ l such that parsing cl
as (C̃l, Ĉl, Dl, Sl, Tl, l) it holds that (pkl, cl) 6∈ SEnc and 1 = Ver(mk∗, Sl, [C̃l‖Ĉl‖Dl‖pkl‖l]), then we
distinguish two cases:
• If ∃ (pk, c) ∈ SEnc such that parsing c as (C̃, Ĉ,D, S, T, l′) it holds that (C̃, Ĉ,D, S, l′) = (C̃l, Ĉl,
Dl, Sl, l) and T 6= Tl and pkl = pk, then B aborts the oracle and returns ⊥.
We note that in this case, the games G3 and G4 are correctly simulated: in the real games, when
it runs the algorithm Open, the challenger computes the values ml, mkl and vl, and checks that
Dl = PEnc(pkl, [ml‖mkl‖l]; vl) and Tl = Mac(mkl, [C̃l‖Ĉl‖Dl‖Sl‖pkl‖l]), otherwise it returns ⊥
by definition of the algorithm Open. Since PKE is correct, there does not exist any (m′, v′) such
that m′ 6= [ml‖mkl‖l] and Dl = PEnc(pkl,m

′; v′), so if the algorithm Open does not abort, then
mkl is fixed by Dl and cannot be altered. Moreover, Mac is a deterministic algorithm, which
implies that if (C̃, Ĉ,D, S, l′) = (C̃l, Ĉl, Dl, Sl, l) and Tl 6= T , then Tl 6= Mac(mkl, [C̃l‖Ĉl‖Dl‖Sl‖
pkl‖l]), so the algorithm Open should return ⊥ in this case.

• Else, B returns (Sl, [C̃l‖Ĉl‖Dl‖pkl‖l]) to its challenger, it sets Abort4 ← 1, and it aborts the
experiment for A.
In this case, since ∀ {(pk, c)} ∈ SEnc such that pkl = pk, and parsing c as (C̃, Ĉ,D, S, l′), it holds

that (C̃, Ĉ,D, l′) 6= (C̃l, Ĉl, Dl, l), c has not be produced by B, which implies that the (valid)

pair of tag/message (Sl, [C̃l‖Ĉl‖Dl‖pkl‖l]) as not been produced by the oracle Mac(mk∗, ·). We
deduce that in this case, B wins his EUF-CMA experiment.

Finally, B perfectly simulates G4 to A, and if Abort4 triggers, then B wins its EUF-CMA experiment. We
deduce that εA(λ) = AdvEUF-CMA

MAC,B (λ), which concludes the proof of the claim.

We stress that from this game:

– The oracle Open aborts if it receives a query that contains pairs of public key/ciphertext
that has not been created by the challenger, or if the key iki�j has not been created by
the challenger.

– Moreover, since the index is a part of the ciphertext, the oracle Open aborts if it receives a
query that contains a vector of public keys/ciphertexts which are not ordered by their
encryption order.

– Since the index of the first and the last ciphertexts are parts of the interval key iki�j , the oracle
aborts if it receives an interval key that has not been created for matching the ciphertext
interval.

– Finally, since the experiment never produce an interval key for an interval (i, j) such that Ji, jK∩ Ji∗,
j∗K 6= ∅ except for iki∗�j∗ , and since the oracle aborts on the query (iki∗�j∗ , (c(∗,l), p̄kl)i∗≤l≤j∗), then
the oracle Open aborts and returns ⊥ on any interval (i, j) such that it holds that Ji,
jK ∩ Ji∗, j∗K 6= ∅.

20

Game G5: In what follows, cl denotes the encryption of the lth message ml by the experiment, and

p̄kl denotes the corresponding public key. Moreover, for any pair of indexes (i, j), ikhi�j denotes the hth

interval key returned by the oracle Ext(pko∗, k∗, ·, ·) on the input (i, j). This game is the same as G5 but
the oracle Open(sko∗, ·, ·, ·, ·) is re-defined by:
– On input (i, j, ik′i�j , (c

′
l, pk

′
l)i≤l≤j), if i ≤ 0 or i ≥ j or j ≥ n, then return ⊥. During the second

phase, if (ik′i�j , (c
′
l, pk

′
l)i≤l≤j) = (iki∗�j∗ , (c(∗,l), p̄kl)i∗≤l≤j∗), then return ⊥.

– If (c′l, pk
′
l)i≤l≤j = (cl, pkl)i≤l≤j and ∃ h such that ik′i�j = ikhi�j , then return (ml)i≤l≤j , else return ⊥.

From the properties of G4 given above, we deduce that:

Pr [A wins G4] = Pr [A wins G5] .

We stress that from this game, the challenger no longer use the algorithm SDec during the
experiment.
Game G6: In this game, the challenger replaces the message encrypted in each ciphertext C̃l by a
random value. More precisely, this game is similar to G5, but each time that the encryption algorithm
cn ← Enc(pkn, k∗,mn, n; rn) is run by the Enc oracle or by the experiment during the generation of

the challenge, the challenger replaces the instruction C̃n ← SEnc(ẽkn, [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; ũn)

by the sequence of instructions strn ← [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; rndn
$← {0, 1}|strn|; C̃n ← SEnc(ẽkn,

rndn; ũn);
Let q∗ be an upper bound on the number of ciphertexts sending by the adversary A1, i.e. j∗ − i∗ ≤ q∗.
We claim that:

|Pr [A wins G5]− Pr [A wins G6]| ≤ 2 · (qn + q∗) ·AdvIND-CCA
SKE (λ).

We prove this claim by using an hybrid argument. We define an hybrid game G6,h as follows:

Game G6,h: In this game, the challenger replaces the messages encrypted in the h first ciphertexts C̃l
by random values. More precisely, If h = 0, then G6,h = G5, else if 1 ≤ h ≤ (qn+q∗), then the game G6,h

is the same as G6,h−1, but when the encryption algorithm cn ← Enc(pkn, k∗,mn, n; rn) is run for n = h
by the Enc oracle or by the experiment during the generation of the challenge, the challenger replaces

the instructions C̃n ← SEnc(ẽkn, [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; ũn) by strn ← [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n];

rndn
$← {0, 1}|strn|; C̃n ← SEnc(ẽkn, rndn; ũn).

We claim that, for all h ∈ J1, qn + q∗K:

|Pr [A wins G6,h−1]− Pr [A wins G6,h]| ≤ 2 ·AdvIND-CCA
SKE (λ).

We prove this claim by reduction. We build an algorithm B that plays the IND-CCA experiment on SKE
using A as a black box. B simulates honestly the game G6,h−1 to A, except that:

– It sets ẽkh ← ⊥.
– If B runs cn ← Enc(pkn, k∗,mn, n; rn) such that n = h (by simulating the Enc oracle or by generating

the challenge), then B replaces the instruction C̃n ← SEnc(ẽkn, [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; ũn) by

running strn ← [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; rndn
$← {0, 1}|strn|; (m̄0, m̄1) ← (strn, rndn); then by

sending (m̄0, m̄1) to its challenger and by instantiating C̃n with the ciphertext c∗ returned by the
challenger.

At the end of the game simulation, A returns b∗, then B returns 1 to its challenger iff (b = b∗).
In what follows, b′ denotes the challenge bit of the IND-CCA experiment on SKE played by B. We

first note that in G6,h−1, the ciphertext C̃h−1 encrypts a random message, which means that the key ẽkh
is never used in the game G6,h, except for encrypting C̃h. If (b′ = 0), then the IND-CCA challenger of B
encrypts m̄0 = strh, so G6,h−1 is perfectly simulated by B, else, (b′ = 1) and C̃h encrypts the random value

m̄1 = rndh, so G6,h is perfectly simulated. We deduce that Pr[1← ExpIND-CCA
1,SKE,B (λ)] = Pr[1← B2(λ)|b′ =

1] = Pr[b∗ = b|b′ = 1] = Pr [A wins G6,h]. On the other hand, Pr[0 ← ExpIND-CCA
0,SKE,B (λ)] = Pr[1 ←

B2(λ)|b′ = 0] = Pr[b∗ = b|b′ = 0] = Pr [A wins G6,h−1]. By Lemma 1, we have that |Pr [A wins G6,h−1]−
Pr [A wins G6,h] | = 2 ·AdvIND-CCA

SKE,B (λ), which concludes the proof of the claim. Moreover, we have that
G6,qn+q∗ = G6, which concludes the proof of the claim of the Game 6.

Game G7: In this game, the challenger replaces the message encrypted in each ciphertext Ĉl by a random
value. More precisely, this game is similar to G6, but when the encryption algorithm cn ← Enc(pkn, k∗,

21

mn, n; rn) is run for n = h by the Enc oracle or by the experiment during the generation of the challenge,

the challenger replaces the instructions Ĉn ← SEnc(êkn, [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; ûn) by the sequence

strn ← [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; rndn
$← {0, 1}|strn|; Ĉn ← SEnc(êkn, rndn; ûn). Let q∗ be an uper

bound on the number of ciphertexts sending by the adversary A1, i.e. j∗ − i∗ ≤ q∗. We claim that:

|Pr [A wins G6]− Pr [A wins G7]| ≤ 2 · (qn + q∗) ·AdvIND-CCA
SKE (λ).

This claim can be proved using the following hybrid argument: We define an hybrid game G7,h as
follows:
Game G7,h: In this game, the challenger replaces the messages encrypted in the (qn + q∗ + 1 − h)

last ciphertexts C̃l by random values. More precisely, if h = qn + q∗ + 1, then G7,h = G6, else if
1 ≤ h ≤ (qn + q∗), then the game G7,h is the same as G7,h+1, but each time the challenger runs
the encryption algorithm cn ← Enc(pkn, k∗,mn, n; rn) during the Enc oracle or during the challenge

generation such that n = h, it replaces the instruction Ĉn ← SEnc(êkn, [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; ûn)

by the sequence strn ← [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; rndn
$← {0, 1}|strn|; Ĉn ← SEnc(êkn, rndn; ûn). We

claim that, for all h ∈ J1, qn + q∗K:

|Pr [A wins G7,h+1]− Pr [A wins G7,h]| ≤ 2 ·AdvIND-CCA
SKE (λ).

This claim can be proven by reduction. We omit the details of this proof because it is very similar to the
proof in the game G6,h.

Game G8: In what follows, we parse the lth ciphertext c(∗,l) of the challenge by (C̃(∗,l), Ĉ(∗,l), D(∗,l),
S(∗,l), T(∗,l), l). In this game, the challenger replaces the keys mkl for all l in Ji∗, j∗K encrypted by a public
key generated by the challenger (i.e. in {pk(∗,q)}1≤q≤µ) in each ciphertext D(∗,l) by a random value.
More precisely, this game is similar to G7, except that when the challenger build the challenge (iki∗�j∗ ,
(c(∗,l))i∗≤l≤j∗), ∀ l ∈ Ji∗, j∗K such that ∃ q, pk(∗,q) = p̄kl:

– the challenger picks mk′l
$← Kmλ ,

– when the challenger runs c(∗,l) ← Enc(p̄kl, k∗,m(b,l), l), it replaces the instructionD(∗,l) ← PEnc(pk(∗,q),

[m(b,l)‖mkl‖l]; vl) by D(∗,l) ← PEnc(pk(∗,q), [m(b,l)‖mk′l‖l]; vl).
– For each query (p, c) (where we parse c as (C̃, Ĉ,D, S, T, l′)) sending to the oracle Dec(·, ·) such that
p = q, c 6= c(∗,l) and D = D(∗,l), the challenger runs Dec(sk(∗,q), c) as in the real experiment except
that it replaces the instruction [m‖mk‖l′′]← PDec(sk(∗,q), D) by [m‖mk‖l′′]← [m(b,l)‖mkl‖l].

We claim that:

|Pr [A wins G7]− Pr [A wins G8]| ≤ 2 · q∗ · µ ·AdvIND-CCA
PKE (λ).

We prove this claim by reduction. We build an algorithm B that plays the (q∗, µ)-IND-CCA experiment
on PKE using A as a black box. B receives a public key set (pk(∗,l))1≤l≤µ, then it runs A1((pk(∗,l))1≤l≤µ,
λ). It simulates honestly the game G7 to A, except that ∀ l ∈ J1, µK it sets sk(∗,l) = ⊥, and ∀ l ∈ Ji∗, j∗K
such that ∃ q, pk(∗,q) = p̄kl:

– B picks mk′l
$← Kmλ ,

– when B runs c(∗,l) ← Enc(p̄kl, k∗,m(b,l), l) during the challenge phase, it replaces the instruction

D(∗,l) ← PEnc(pk(∗,q), [m(b,l)‖mkl‖l]; vl) by the following instructions: B picks mk′l
$← Kmλ , then it

sends (q, [m(b,l)‖mkl|l], [m(b,l)‖mk′l|l]) to its oracle PEnc(·, LRb(·, ·)), and it instantiates D(∗,l) by the
value returned by PEnc(·, LRb(·, ·)).

– For each query (p, c) (where we parse c as (C̃, Ĉ,D, S, T, l′)) sending by A to the oracle Dec(·, ·) such
that c 6= c(∗,l) and p = q, B runs Dec(sk(∗,q), c) as in the real experiment except that if D = D(∗,l),
it replaces the instruction [m‖mk‖l′′]← PDec(sk(∗,q), D(∗,l)) by [m‖mk‖l′′]← [m(b,l)‖mkl‖l]. Else, B
sends (q,D) to the oracle PDec(·, ·) and parses the output of the oracle as [m‖mk‖l′′].

Finally, A2 returns b∗ and B returns 1 iff (b = b∗).
Let b′ be the challenge bit of the IND-CCA experiment on PKE played by B. If b′ = 0, then D(∗,l)

encrypts [m(b,l)‖mkl‖l], so G7 is perfectly simulated to A. We deduce that Pr[0← Exp
(q∗,µ)-IND-CCA
0,PKE,B (λ)] =

Pr[1 ← B(λ, (pk(∗,q))1≤q≤µ)|b′ = 0] = Pr[b∗ = b|b′ = 0] = Pr [A wins G7]. On the other hand, if b′ = 1,

then D(∗,l) encrypts [m(b,l)‖mk′l‖l], so G8 is perfectly simulated to A. In this case, we have that Pr[1←
Exp

(q∗,µ)-IND-CCA
1,PKE,B (λ)] = Pr[1 ← B(λ, (pk(∗,q))1≤q≤µ)|b′ = 1] = Pr[b∗ = b|b′ = 1] = Pr [A wins G8]. By

22

Lemma 1 and Lemma 2, we deduce that |Pr [A wins G7]− Pr [A wins G8]| = 2 ·Adv
(q∗,µ)-IND-CCA
PKE,B (λ) ≤

2 · q∗ · µ ·AdvIND-CCA
PKE (λ), which concludes the proof of the claim.

We stress that from this game, for each index l in Ji∗, j∗K such that p̄kl ∈ {pk(∗,q)}1≤q≤µ, the key
mkl is only used to produced the MAC tag T(∗,l). Especially, mkl is never encrypted in a
ciphertext known by the adversary.
Game G9: In this game, the challenger tries to guess the indexes i∗ and j∗, and aborts in case of
failure. More precisely, this game is similar to G8, but the challenger picks (i′∗, j

′
∗)← J1, qn + q∗K2 at the

beginning of the experiment. At the end of the experiment, if i′∗ 6= j∗ or i′∗ 6= j∗, then the challenger
returns a random bit. The adversary increases its winning advantage by a factor equalling the probability
of guessing correctly i∗ and j∗:

|Pr [A wins G8]− 1/2| = (qn + q∗)
2 · |Pr [A wins G9]− 1/2|

We stress that n is incremented (qn + q∗) times during the experiment: qn times by the oracle Enc(·, k∗,
·, n) and q∗ times after the generation of (c(∗,l))i∗≤l≤j∗ .

Game G10: We parse the challenge (c(∗,l))i∗≤l≤j∗ as (C̃(∗,l), Ĉ(∗,l), D(∗,l), S(∗,l), T(∗,l), l)i∗≤l≤j∗ . In this
game, the challenger aborts if the adversary tries to reuse the element D(∗,l) in a ciphertext c 6= c(∗,l)
sending to the decryption oracle for all l in Ji∗, j∗K such that p̄kl ∈ {pk(∗,q)}1≤q≤µ. More concretely, this

game is similar to G9, but if the adversary sends a query (p, c) (where we parse c as (C̃, Ĉ,D, S, T, l))

to the oracle Dec(·, ·) such that, pk(∗,q) = p̄kl and D = D(∗,l) and c 6= c(∗,l) and Ver(mkl, T, [C̃‖Ĉ‖D‖S‖
pk(∗,q)‖l]) = 1, then the challenger set Abort10 ← 1, aborts the game G10 and returns a random bit. We
claim that:

|Pr [A wins G9]− Pr [A wins G10]| ≤ q∗ ·AdvEUF-CMA
MAC (λ).

We prove this claim by using an hybrid argument. We define the game G10,h as follows:
Game G10,h: We define G10,0 as G9, and for all 1 ≤ h ≤ q∗, we define G10,h as G10,h−1 but the

challenger aborts if (i) p̄k(∗,i′∗+h) ∈ {pk(∗,q)}1≤q≤µ, and (ii) the adversary tries to reuse the element
D(∗,i′∗+h) in a ciphertext c 6= c(∗,i′∗+h) sending to the decryption oracle. More concretely, we define G10,h

as the same game as G10,h−1 except that parsing the challenge (c(∗,l))i∗≤l≤j∗ as (C̃(∗,l), Ĉ(∗,l), D(∗,l),
S(∗,l), T(∗,l))i∗≤l≤j∗ , if the adversary sends a query (p, c) to the oracle Dec(·, ·) such that, parsing c as

(C̃, Ĉ,D, S, T, l), it holds that pk(∗,q) = p̄ki′∗+h and D = D(∗,i′∗+h) and c 6= c(∗,i′∗+h) and Ver(mki′∗+h, T,

[C̃‖Ĉ‖D‖S‖pk(∗,q)‖l]) = 1, then the challenger set Abort10,h ← 1, aborts the game G10,h and returns a
random bit. We note that G10,q∗ = G10. We claim that:

|Pr [A wins G10,h−1]− Pr [A wins G10,h]| ≤ AdvEUF-CMA
MAC (λ).

We have that |Pr [A wins G10,h−1]− Pr [A wins G10,h]| ≤ Pr[Abort10,h = 1]. To prove this claim,

we show that Pr[Abort10,h = 1] ≤ AdvEUF-CMA
MAC (λ). Assume that the adversary A sends a query (p,

c) to the oracle Dec(·, ·) such that, parsing c as (C̃, Ĉ,D, S, T, l), it holds that pk(∗,q) = p̄ki′∗+h and

D = D(∗,i′∗+h) and c 6= c(∗,i′∗+h) and Ver(mki′∗+h, T, [C̃‖Ĉ‖D‖S‖pk(∗,q)‖l]) = 1 with probability εA(λ),
i.e. Pr[Abort10,h = 1] = εA(λ). We build the following algorithm B that plays the MAC experiment using
A as a black box.
B simulates G10,h to A as in the real game, except that:

– B sets mki′∗+h ← ⊥.

– In what follows, we parse the (i′∗ + h)th ciphertext of the challenge c(∗,i′∗+h) as (C̃(∗,i′∗+h), Ĉ(∗,i′∗+h),

D(∗,i′∗+h), S(∗,i′∗+h), T(∗,i′∗+h), i
′
∗ + h). When B runs c(∗,i′∗+h) ← Enc(p̄ki′∗+h, k∗,m(b,i′∗+h), i

′
∗ + h; r(∗,i′∗+h)),

instead of running T(∗,i′∗+h) ← Mac(mki′∗+h, [C̃(∗,i′∗+h)‖Ĉ(∗,i′∗+h)‖D(∗,i′∗+h)‖S(∗,i′∗+h)‖p̄ki′∗+h‖i
′
∗ + h])

(B cannot run the Mac algorithm since it does not know the real key mki′∗+h), it sends [C̃(∗,i′∗+h)‖
Ĉ(∗,i′∗+h)‖D(∗,i′∗+h)‖S(∗,i′∗+h)‖p̄ki′∗+h‖i

′
∗ + h] to the oracle Mac(mk∗, ·) which retuns a tag t, then B

sets T(∗,i′∗+h) ← t.

– If A sends a query (p, c) to the oracle Dec(·, ·) such that, parsing c as (C̃, Ĉ,D, S, T, l), it holds that
p̄ki′∗+h = pk(∗,p) and D = D(∗,i′∗+h) and c 6= c(∗,i′∗+h) and the oracle Ver(mk∗, ·, ·) returns 1 on (T,

[C̃‖Ĉ‖D‖S‖pk(∗,p)‖l]), then B sets Abort10,h = 1, aborts G10,h, and returns (T, [C̃‖Ĉ‖D‖S‖pk(∗,p)‖

23

l]). We remark that if c 6= c(∗,i′∗+h), then T 6= T(∗,i′∗+h) or (C̃, Ĉ,D, S, l) 6= (C̃(∗,i′∗+h), Ĉ(∗,i′∗+h),

D(∗,i′∗+h), S(∗,i′∗+h), i
′
∗ + h), which implies that (T, [C̃‖Ĉ‖D‖S‖pk(∗,p)‖l]) 6= (T(∗,i′∗+h), [C̃(∗,i′∗+h)‖

Ĉ(∗,i′∗+h)‖D(∗,i′∗+h)‖S(∗,i′∗+h)‖p̄ki′∗+h‖i
′
∗ + h]).

We observe that that if Abort10,h = 1, then B wins the EUF-CMA experiment since it returns a fresh pair
of tag/message, i.e. a pair that has not been outputted by the oracle Mac(mk∗, ·). Hence, it holds that
AdvEUF-CMA

B,MAC (λ) = εA(λ), which concludes the proof of this claim, and therefor the proof of the claim in
G10.

We stress that from this step, if the adversary sends a query (p, c) to the oracle Dec(·, ·) such that,

parsing c as (C̃, Ĉ,D, S, T, l), there exists l′ in Ji∗, j∗K such that pk(∗,q) = p̄kl′ and D = D(∗,l′), then:
– If l 6= l′, then the oracle returns ⊥: indeed, this oracle runs the algorithm Dec, which runs m̄ ←

PDec(sk(∗,q), D(∗,l′)). According to how D(∗,l′) has been encrypted by the challenger, it holds that
m̄ = [m(b,l′)‖mkl′‖l′], and Dec returns ⊥ if l 6= l′.

– If c = c(∗,l′), then the oracle returns ⊥ by definition of the oracle Dec(·, ·).
– If Ver(mkl′ , T, [C̃‖Ĉ‖D‖S‖pk(∗,q)‖l]) 6= 1, then the oracle returns ⊥ by definition of the algorithm

Dec.
– If c 6= c(∗,l′) and Ver(mkl′ , T, [C̃‖Ĉ‖D‖S‖pk(∗,q)‖l]) = 1, then the experiment aborts by definition of
G10

In any case, if ∃l′ ∈ Ji∗, j∗K such that pk(∗,q) = p̄kl′ and D = D(∗,l′), then the oracle does not
return Dec(sk(∗,q), c) to the challenger, which implies that the adversary can no longer use
the decryption oracle to decrypt the ciphertexts of the challenge that depend on b.
Game G11: This game is similar to G10, but the challenger substitutes each message that depends on b
by a random message of same length. More formally, for each l ∈ Ji′∗, j′∗K such that p̄kl ∈ {pk(∗,q)}1≤q≤µ
it replaces the message m(b,l) encrypted in c(∗,l) by the public key p̄kl by a message m(∗,l)

$← {0, 1}|m(b,l)|

chosen at random. We claim that:

|Pr [A wins G10]− Pr [A wins G11]| = 2 · q∗ · µ ·AdvIND-CCA
PKE (λ).

We prove this claim by reduction. We build an algorithm B that plays the (q∗, µ)-IND-CCA experiment on
PKE using A as a black box. B receives a set of public key (pk(∗,l))1≤l≤µ, then it runs A1((pk(∗,l))1≤l≤µ,
λ). It simulates honestly the game G10 to A, except that ∀l ∈ Ji′∗, j′∗K it sets sk(∗,l) = ⊥ and:

– In what follows, we parse the each ciphertext c(∗,l) of the challenge as (C̃(∗,l), Ĉ(∗,l), D(∗,l), S(∗,l),
T(∗,l), l). ∀l ∈ Ji′∗, j′∗K such that ∃q such that p̄kl = pk(∗,q), when B runs c(∗,l) ← Enc(p̄kl, k∗,m(b,l),

l; rl), instead of running D(∗,l) ← PEnc(pk(∗,q), [m(b,l)‖mk′l‖l]; vl), it picks m(∗,l)
$← {0, 1}|m(b,l)|, then

it sends (q, ([m(b,l)‖mk′l‖l], [m(∗,l)‖mk′l‖l])) to the oracle PEnc(·, LRb(·, ·)) and instantiates D(∗,l) by
the answer.

– For each query (q, c) sending by A to the oracle Dec(sk∗, ·), we parse c as (C̃, Ĉ,D, S, T, l), and:

• If ∃l ∈ Ji∗, j∗K such that pk(∗,q) = p̄kl and D = D(∗,l) and Ver(mkl, T, [C̃‖Ĉ‖D‖S‖pk(∗,q)‖l]) 6= 1,
then B aborts the game according to the algorithm Dec.

• If ∃l ∈ Ji∗, j∗K such that pk(∗,q) = p̄kl and D = D(∗,l) and Ver(mkl, T, [C̃‖Ĉ‖D‖S‖pk(∗,q)‖l]) = 1,
then B aborts the game according to the condition introduced in G10.

• Else , B runs Dec(sk(∗,q), c) as in the real experiment except that instead of running [m‖mk‖
l]← PDec(sk(∗,q), D) (B cannot run the decryption algorithm since it does not know the real key
sk(∗,q)), it sends D to the oracle PDec(sk(∗,q), ·) and parses the answer of the oracle as [m‖mk‖l].

– B simulates Ext(pko∗, k∗, ·, ·) and Open(sko∗, ·, ·, ·, ·) as in the real game G10. Concerning Open, we
recall that B never answers to the queries that contain some pairs of public key/ciphertext or some
key iki�j that has not been created by the challenger, and never answers to the queries concerning
some interval (i, j) such that Ji, jK∩ Ji∗, j∗K 6= ∅. We deduce that B never answers to the queries that
contain any ciphertext c(∗,l) for l ∈ Ji∗, j∗K. All other kind of queries can be answered by B as in the
real game G10.

Finally, A2 returns b∗ and B returns 1 iff (b = b∗).
Let b′ be the challenge bit of the (q∗, µ)-IND-CCA experiment. If b′ = 0, then each D(∗,l) encrypts

[m(b,l)‖mk′l‖l], so G10 is perfectly simulated to A. We deduce that Pr[0 ← Exp
(q∗,µ)-IND-CCA
0,PKE,B (λ)] =

Pr[b∗ = b|b′ = 0] = Pr [A wins G10]. On the other hand, if b′ = 1, then D(∗,l) encrypts [m(∗,l)‖mk′l‖
l], so G11 is perfectly simulated to A. In this case, we have that Pr[1 ← Exp

(q∗,µ)-IND-CCA
1,PKE,B (λ)] =

24

Pr[b∗ = b|b′ = 1] = Pr [A wins G11]. By Lemma 1 and Lemma 2, we deduce that |Pr [A wins G10] −
Pr [A wins G11] | = 2 ·Adv

(q∗,µ)-IND-CCA
PKE,B (λ) ≤ 2 · q∗ · µ ·AdvIND-CCA

PKE (λ), which concludes the proof of the
claim.
Conclusion: Finally, since the gameG11 do not depend on the challenge bit b, we have that Pr [A wins G11] =
1/2. By composing the winning probabilities ofA in all games, we obtain the upper bound on AdvIND-CSCA

CHAPO (λ)
given in the theorem, which concludes the proof. ut

A.2 IND-CCA Security Proof.

Proof. (Theorem 2) We recall that in order to win the IND-CCA experiment with a non negligible
advantage, the following must hold: l∗ 6∈ Ji∗, j∗K. We separate our proof in two distinct cases: l∗ < i∗
and l∗ > j∗. More concretely, we define two variants of the IND-CCA experiment: the IND-CCA0 (resp.
IND-CCA1) experiment denotes the same experiment as IND-CCA except that if l∗ < i∗ (resp. l∗ > j∗),
then the challenger returns a random bit. We have that:

AdvIND-CCA
CHAPO,A(λ) ≤ AdvIND-CCA0

CHAPO,A(λ) + AdvIND-CCA1

CHAPO,A(λ).

Case IND-CCA0 (i.e. l∗ < i∗): We use the following sequence of games. Let A be a PPT algorithm:

Game G0: This game is the original IND-CCA0 experiment:

Pr [A wins G0] = Pr
[
b

$← {0, 1} : 1← ExpIND-CCA0

b,CHAPO,A(λ)
]

Game G1: This game is similar to G0, but the challenger replaces each output of the PRF by a random
value picked in Ksλ. We claim that:

|Pr [A wins G0]− Pr [A wins G1]| ≤ AdvPR
PRF(λ).

We prove this claim by reduction in the same way as in the game G1 of the proof of Theorem 1.
Game G2: In this game, the challenger tries to guess the index i∗ and aborts in case of failure. Let qn
be the number of calls to the oracle Enc(·, k∗, ·, n). This game is similar to G1, but the challenger picks
i′∗ ← J1, qn + 1K at the beginning of the experiment. At the end of the experiment, if i′∗ 6= i∗, then the
challenger returns a random bit. The adversary increases its winning advantage by a factor equalling the
probability of guessing correctly i∗:

|Pr [A wins G1]− 1/2| = (qn + 1) · |Pr [A wins G2]− 1/2|

Note that n is incremented (qn + 1) times during the experiment: qn times by the oracle Enc(·, k∗, ·, n)
and one time after the generation of cl∗ .

Game G3: In this game, for all n ≤ i∗, the challenger replaces the part C̃n of the ciphertext cn by the
encryption of a random message, which includes the challenge cl∗ if l∗ ≤ i∗ (otherwise, the challenger
returns a random bit by definition of the IND-CCA0 experiment). This game is similar to G2, but while
n < i′∗, each time the oracle Enc(·, k∗, ·, n) is called on a query (pkn,mn) and runs cn ← Enc(pkn, k∗,

mn, n; rn), it replaces the instruction C̃n ← SEnc(ẽkn, [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; ũn) by the sequence of

instructions strn ← [ẽkn+1‖m̃n‖m̃kn‖ṽn‖pkn‖n]; rndn
$← {0, 1}|strn|; C̃n ← SEnc(ẽkn, rndn; ũn). Moreover,

when it computes the challenge cl∗ ← Enc(pk∗, k∗,m(∗,0), l∗; r∗), the challenger replaces the instruction

C̃l∗ ← SEnc(ẽkl∗ , [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖l∗]; ũl∗); by the sequence strl∗ ← [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖
pk∗‖l∗]; rndl∗

$← {0, 1}|strl∗ |; C̃l∗ ← SEnc(ẽkl∗ , rndl∗ ; ũl∗). We claim that:

|Pr [A wins G2]− Pr [A wins G3]| ≤ 2 · (qn + 1) ·AdvIND-CCA
SKE (λ).

We prove this claim by using an hybrid argument. We define the hybrid game G3,i as follows:

Game G3,i: If i = 0, then G3,0 = G2, else for all n ≤ i, if i ≤ i′∗, then the challenger replaces the part C̃n
of the ciphertext cn by the encryption of a random message. More concretely, if 1 ≤ i ≤ (qn + 1), then
the game G3,i is the same as G3,i−1, but if i < i′∗ and l∗ 6= i, then when the oracle Enc(·, k∗, ·, i) is called

on a query (pki,mi) and runs ci ← Enc(pki, k∗,mi, i; ri), it replaces the instruction C̃i ← SEnc(ẽki,

25

[ẽki+1‖m̃i‖m̃ki‖ṽi‖pki‖i]; ũi) by the sequence of instructions stri[ẽki+1‖m̃i‖m̃ki‖ṽi‖pki‖i]; rndi
$← {0,

1}|stri|; C̃i ← SEnc(ẽki, rndi; ũi). Moreover, if l∗ = i, then when it computes the challenge cl∗ ← Enc(pk∗,

k∗,m(∗,0), l∗; r∗), the challenger replaces the instruction C̃l∗ ← SEnc(ẽkl∗ , [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖
l∗]; ũl∗) by strl∗ ← [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖l∗]; rndl∗

$← {0, 1}|strl∗ |; C̃l∗ ← SEnc(ẽkl∗ , rndl∗ ; ũl∗). We
claim that, for all i ∈ J1, qn + 1K:

|Pr [A wins G3,i−1]− Pr [A wins G3,i]| ≤ 2 ·AdvIND-CCA
SKE (λ).

We prove this claim by reduction. We build an algorithm B that plays the IND-CCA experiment on SKE
using A as a black box. B simulates honestly the game G3,i−1 to A, except that:
– If i < i′∗ and l∗ 6= i, then when the oracle Enc(·, k∗, ·, i) is called on a query (pki,mi), B runs ci ←

Enc(pki, k∗,mi, i; ri) as in the definition of CHAPO, except that it sets ẽki ← ⊥, sets m̄0 ← [ẽki+1‖
m̃i‖m̃ki‖ṽi‖pki‖i], picks m̄1

$← {0, 1}|m̄0|, sends (m̄0, m̄1) to its challenger, receives the challenge c∗
and uses it to instantiate C̃i, i.e. C̃i ← c∗.

– If i < i′∗ and l∗ = i, then B runs cl∗ ← Enc(pk∗, k∗,m(∗,b), l∗; rl∗) as in the real game, except that it

sets ẽkl∗ ← ⊥, sets m̄0 ← [ẽkl∗+1‖m̃(∗,b)‖m̃kl∗‖ṽl∗‖pk∗‖l∗], picks m̄1
$← {0, 1}|m̄0|, sends (m̄0, m̄1) to

its challenger, receives the challenge c∗ and uses it to instantiate C̃l∗ , i.e. C̃l∗ ← c∗.
At then end of the game simulation, A returns b∗, then B returns 1 to its challenger iff (b = b∗).

We first note that in G3,i−1, if i−1 < i < i′∗, then C̃i−1 encrypts a random message, which means that

the key ẽki is never used in the experiment, except for encrypting C̃i. Moreover, if the IND-CCA challenger
of B encrypts m̄0, then G3,i−1 is perfectly simulated by B, else, C̃i encrypts the random value m̄1, so G3,i

is perfectly simulated. Let b′ be the challenge bit of the IND-CCA experiment of B, we deduce that Pr[1←
ExpIND-CCA

1,SKE,B (λ)] = Pr[1← B2(λ, st, c∗)|b′ = 1] = Pr[b∗ = b|b′ = 1] = Pr [A wins G3,i] . On the other hand,

Pr[0 ← ExpIND-CCA
0,SKE,B (λ)] = Pr[1 ← B2(λ, st, c∗)|b′ = 0] = Pr[b∗ = b|b′ = 0] = Pr [A wins G3,i−1] . By

Lemma 2, |Pr [A wins G3,i−1]− Pr [A wins G3,i]| = 2 ·AdvIND-CCA
SKE,B (λ), which concludes the proof of the

claim. Moreover, we have that G3,qn+1 = G3, which concludes the proof of the claim of the Game 3.

Game G4: This is the same game as G3, but m̂(∗,b), m̂kl∗ and v̂l∗ are substituted by random bit-strings of

same length. At this step, since m̃(∗,b) is replaced by a random bit string in C̃l∗ and m̂(∗,b) = m(∗,b)⊕m̃(∗,b),
then m̂(∗,b) is indistinguishable from a random bit string, so it no longer depends on b, and can be
substituted by a random bit-string without any influence on the adversary advantage. Using a similar

argument, we have that m̂kl∗ and v̂l∗ can also be substituted by random bit-strings. We deduce that:

Pr [A wins G3] = Pr [A wins G4] .

Game G5: In this game, the challenger replaces the MAC key mkl∗ by a random value in the part Dl∗

(encrypted by PKE) of the ciphertext challenge cl∗ . More concretely, This game is similar to G5, except
that:
– when it computes the challenge by running cl∗ ← Enc(pk∗, k∗,m(∗,b), l∗; r∗), it replaces the instruction

Dl∗ ← PEnc(pk∗, [m(∗,b)‖mkl∗‖l∗]; vl∗) by the sequence of instructions mk′l∗
$← Kmλ ;Dl∗ ← PEnc(pk∗,

[m(∗,b)‖mk′l∗‖l∗]; vl∗),
– For each query c = (C̃, Ĉ,D, S, T, l) sending to the oracle Dec(sk∗, ·) such that c 6= cl∗ and D = Dl∗ ,

the challenger runs Dec(sk∗, c) as in the real experiment except that it replaces the instruction [m‖
mk‖l]← PDec(sk∗, D) by [m‖mk‖l]← [m(∗,b)‖mkl∗‖l∗].

We claim that:
|Pr [A wins G4]− Pr [A wins G5]| ≤ 2 ·AdvIND-CCA

PKE (λ).

We prove this claim by reduction. We build an algorithm B that plays the IND-CCA experiment on PKE
using A as a black box. B receives a public key pk∗, then it runs A1(λ, pk∗), and simulates honestly the
game G5 to A = (A1,A2), except that it sets sk∗ = ⊥ and:
– when it computes the challenge by running cl∗ ← Enc(pk∗, k∗,m(∗,b), l∗; r∗), instead of running Dl∗ ←

PEnc(pk∗, [m(∗,b)‖mkl∗‖l∗]; vl∗), it sets mk′l∗
$← Kmλ and sends ([m(∗,b)‖mkl∗ |l∗], [m(∗,b)‖mk′l∗‖l∗]) to

its challenger, which returns the challenge c∗, then B sets Dl∗ ← c∗.

– For each query c = (C̃, Ĉ,D, S, T, l) sending by A to the oracle Dec(sk∗, ·) such that c 6= cl∗ :
• ifD = Dl∗ , then B runs Dec(sk∗, c) as in the real experiment except that it replaces the instruction

[m‖mk‖l]← PDec(sk∗, D) by [m‖mk‖l]← [m(∗,b)‖mkl∗‖l∗].

26

• else, B runs Dec(sk∗, c) as in the real experiment except that instead of running [m‖mk‖l] ←
PDec(sk∗, D) (B cannot run the decryption algorithm since it does not know the real key sk∗),
it sends D to the oracle PDec(sk∗, ·) and parses the output of the oracle as [m‖mk‖l].

Finally, A2 returns b∗ and B returns 1 iff B did not abort the game and (b = b∗).
Let b′ be the challenge bit of the IND-CCA experiment. If b′ = 0, then Dl∗ encrypts [m(∗,0)‖mkl∗‖

l∗], so G5 is perfectly simulated to A. We deduce that Pr[0 ← ExpIND-CCA
0,PKE,B (λ)] = Pr[1 ← B2(λ, pk∗,

st, c∗)|b′ = 0] = Pr[b∗ = b|b′ = 0] = Pr [A wins G4]. On the other hand, if b′ = 1, then Dl∗ encrypts
[m(∗,0)‖mk′l∗‖l∗], so G6 is perfectly simulated to A. In this case, we have that Pr[1← ExpIND-CCA

1,PKE,B (λ)] =
Pr[1 ← B2(λ, pk∗st, c∗)|b′ = 1] = Pr[b∗ = b|b′ = 1] = Pr [A wins G5]. By Lemma 2, we deduce that
|Pr [A wins G4]− Pr [A wins G5]| = 2 ·AdvIND-CCA

PKE,B (λ), which concludes the proof of the claim.

Game G6: In what follows, we parse the challenge cl∗ as (C̃l∗ , Ĉl∗ , Dl∗ , Sl∗ , Tl∗). In this game, the
challenger aborts if the adversary tries to reuse Dl∗ in a ciphertext c 6= cl∗ sending to the decryption

oracle. More concretely, this game is similar to G5, but if the adversary sends a query c = (C̃, Ĉ,D, S,

T, l) to the oracle Dec(sk∗, ·) such that D = Dl∗ , c 6= cl∗ and Ver(mkl∗ , T, [C̃‖Ĉ‖D‖S‖pk∗‖l]) = 1, then
the challenger set Abort6 ← 1, aborts the game G6 and returns a random bit. We claim that:

|Pr [A wins G5]− Pr [A wins G6]| ≤ AdvEUF-CMA
MAC (λ).

We have that |Pr [A wins G5]− Pr [A wins G6]| ≤ Pr[Abort6 = 1]. Hence, We prove this claim by showing
that Pr[Abort6 = 1] ≤ AdvEUF-CMA

MAC (λ) using a reduction. Assume that the adversary A sends a query

c = (C̃, Ĉ,D, S, T, l) to the oracle Dec(sk∗, ·) during the game G6 such that D = Dl∗ , c 6= cl∗ and

Ver(mkl∗ , T, [C̃‖Ĉ‖D‖S‖pk∗‖l]) = 1 with probability εA(λ), i.e. Pr[Abort6 = 1] = εA(λ). We build an
algorithm B that plays the MAC experiment using A as a black box.
B simulates G6 to A as in the real game, except that:

– When B computes the challenge by running cl∗ ← Enc(pk∗, k∗,m(∗,b), l∗; r∗), instead of running

Tl∗ ← Mac(mkl∗ , [C̃l∗‖Ĉl∗‖Dl∗‖Sl∗‖pk∗‖l∗]) (B cannot run the MAC algorithm since it does not know

the real key mkl∗), it sets mkl∗ ← ⊥ and sends [C̃l∗‖Ĉl∗‖Dl∗‖Sl∗‖pk∗‖l∗] to the oracle Mac(mk∗, ·)
which retuns a tag t, then B sets Tl∗ ← t.

– If A sends a query c = (C̃, Ĉ,D, S, T, l) to the oracle Dec(sk∗, ·) during the game G7 such that

D = Dl∗ , c 6= cl∗ and the oracle Ver(mk∗, ·, ·) returns 1 on (T, [C̃‖Ĉ‖D‖S‖pk∗‖l]), then B sets

Abort6 = 1, aborts G6, and returns (T, [C̃‖Ĉ‖D‖S‖pk∗‖l]) to its challenger. We remark that if

c 6= cl∗ , then T 6= Tl∗ or (C̃, Ĉ,D, S, l) 6= (C̃l∗ , Ĉl∗ , Dl∗ , Sl∗ , l∗), which implies that:

(T, [C̃‖Ĉ‖D‖S‖pk∗‖l]) 6= (Tl∗ , [C̃l∗‖Ĉl∗‖Dl∗‖Sl∗‖pk∗‖l∗]).

We observe that if Abort6 = 1, then B wins the EUF-CMA experiment since it returns a fresh pair of
tag/message, i.e. a pair that has not been outputted by the oracle Mac(mk∗, ·). This concludes the proof
of the claim.

We stress that at this step, if the adversary sends a query c = (C̃, Ĉ,D, S, T, l) to the oracle Dec(sk∗,
·) such that D = Dl∗ , then:
– If c = cl∗ , then the oracle returns ⊥ by definition of the oracle Dec(sk∗, ·) in the IND-CCA experiment

of APOPKE.
– If Ver(mkl∗ , T, [C̃‖Ĉ‖D‖S‖pk∗‖l∗]) 6= 1, then the oracle returns ⊥ by definition of the algorithm Dec.

– If c 6= cl∗ and Ver(mkl∗ , T, [C̃‖Ĉ‖D‖S‖pk∗‖l∗]) = 1, then the experiment aborts by definition of G6

In any case, if D = Dl∗ then the oracle does not return Dec(sk∗, c) to the challenger.
Game G7: This game is similar to G6, but the challenger substitutes the message m(∗,b) by a random

message m∗
$← {0, 1}|m(∗,b)|. We claim that:

|Pr [A wins G6]− Pr [A wins G7]| = 2 ·AdvIND-CCA
PKE (λ).

We prove this claim by reduction. We build an algorithm B that plays the IND-CCA experiment on PKE
using A as a black box. B receives a public key pk∗, then it runs A1(λ, pk∗), and simulates honestly the
game G6 to A, except that it sets sk∗ = ⊥ and:
– When B computes the challenge by running cl∗ ← Enc(pk∗, k∗,m(∗,b), l∗; r∗), instead of running

Dl∗ ← PEnc(pk∗, [m(∗,b)‖mk′l∗‖l∗]; vl∗), it picks m∗
$← {0, 1}|m(∗,b)| and sends ([m(∗,b)‖mk′l∗‖l∗], [m∗‖

mk′l∗‖l∗]) to its challenger, which returns the challenge c∗, then B sets Dl∗ ← c∗.

27

– For each query c = (C̃, Ĉ,D, S, T, l) sending by A to the decryption oracle Dec(sk∗, ·):
• if D = Dl∗ and Ver(mkl∗ , T, [C̃‖Ĉ‖D‖S‖pk∗‖l∗]) = 1, then B aborts G7 according to the condition

introduced in G6.
• if D = Dl∗ and Ver(mkl∗ , T, [C̃‖Ĉ‖D‖S‖pk∗‖l∗]) 6= 1, then B returns ⊥, according to the defini-

tion of the oracle Dec(sk∗, ·).
• if D 6= Dl∗ , B runs Dec(sk∗, c) as in the real experiment except that instead of running [m‖mk‖
l] ← PDec(sk∗, D) (B cannot run the decryption algorithm since it does not know the real key
sk∗), it sends D to the oracle PDec(sk∗, ·) and parses the output of the oracle as [m‖mk‖l].

Finally, A2 returns b∗ and B returns 1 iff (b = b∗).
Let b′ be the challenge bit of the IND-CCA experiment on PKE played by B. If b′ = 0, then Dl∗

encrypts [m(∗,b)‖mk′l∗‖l∗], so G7 is perfectly simulated to A. We deduce that Pr[0 ← ExpIND-CCA
0,PKE,B (λ)] =

Pr[1 ← B2(λ, pk∗, st, c∗)|b′ = 0] = Pr[b∗ = b|b′ = 0] = Pr [A wins G6] . On the other hand, if b′ = 1,
then Dl∗ encrypts [m∗‖mk′l∗‖l∗], so G7 is perfectly simulated to A. In this case, we have that Pr[1 ←
ExpIND-CCA

1,PKE,B (λ)] = Pr[1 ← B2(λ, pk∗, st, c∗)|b′ = 1] = Pr[b∗ = b|b′ = 1] = Pr [A wins G7]. By Lemma 2,

we deduce that |Pr [A wins G6]− Pr [A wins G7]| = 2 ·AdvIND-CCA
PKE,B (λ), which concludes the proof of the

claim.
Conclusion of the case IND-CCA1: At this step, the parts Ĉl∗ , C̃l∗ , and Dl∗ of the challenge cl∗ en-
crypts random values instead of the messages m̂(∗,b), m̃(∗,b), and m(∗,b), which implies that the game G7

do not depend on the challenge bit b. We deduce that Pr [A wins G7] = 1/2. By composing the winning
probabilities of A in all games, we have that:

AdvIND-CCA0

CHAPO (λ) ≤AdvPR
PRF(λ) + 2 · (qn + 1) ·AdvIND-CCA

SKE (λ)

+ 4 · (qn + 1) ·AdvIND-CCA
PKE (λ) + (qn + 1) ·AdvEUF-CMA

MAC (λ).

Case IND-CCA1 (l∗ > j∗): We use a similar sequence of games, but G0, G2, G3, and G4 are replaced by

the games G′0, G′2, G′3, and G′4, such that:

Game G′0: This game is the original IND-CCA1 experiment.

Game G′2: This game is similar to G2, but the challenger picks j′∗ ← J1, qn + 1K at the beginning of the
experiment and returns a random bit if j′∗ 6= j∗. The winning probability of the adversary is the same as
in G2.

Game G′3: This game is similar to G′2, but from the moment when n > j′∗, each time the oracle Enc(·,
k∗, ·, n) is called on a query (pkn,mn) and runs cn ← Enc(pkn, k∗,mn, n; rn), it replaces the following

instructions Ĉn ← SEnc(êkn, [êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; ûn); by the sequence of instructions strn ← êkn,

[êkn−1‖m̂n‖m̂kn‖v̂n‖pkn‖n]; rndn
$← {0, 1}|strn|; Ĉn ← SEnc(êkn, rndn; ûn);

Moreover, when it computes the challenge cl∗ ← Enc(pk∗, k∗,m(∗,0), l∗; r∗), the challenger replaces the

instruction Ĉl∗ ← SEnc(êkl∗ , [êkl∗−1‖m̂(∗,b)‖m̂kl∗‖v̂l∗‖pk∗‖l∗]; ûl∗); by the sequence of instructions strl∗ ←
[êkl∗−1‖m̂(∗,b)‖m̂kl∗‖v̂l∗‖pk∗‖l∗]; rndl∗

$← {0, 1}|strl∗ |; Ĉl∗ ← SEnc(êkl∗ , rndl∗ ; ûl∗). We claim that:

|Pr [A wins G′2]− Pr [A wins G′3]| ≤ 2 · (qn + 1) ·AdvIND-CCA
SKE (λ).

We proof this claim by using an hybrid argument. We define an hybrid game G′3,i as follows:

Game G′3,i: If i = qn + 2, then G′3,i = G′2, else if 1 ≤ i ≤ (qn + 1), then the game G′3,i is the same as

G′3,i+1, but if i > j′∗ and l∗ 6= i, then when the oracle Enc(·, k∗, ·, i) is called on a query (pki,mi) and
runs ci ← Enc(pki, k∗,mi, i; ri), the challenger replaces the following instructions :

Ĉi ← SEnc(êki, [êki−1‖m̂i‖m̂ki‖v̂i‖pki‖i]; ûi);
by:

stri ← [êki−1‖m̂i‖m̂ki‖v̂i‖pki‖i]; rndi
$← {0, 1}|stri|; Ĉi ← SEnc(êki, rndi; ûi);

Moreover, if l∗ = i, then when it computes the challenge cl∗ ← Enc(pk∗, k∗,m(∗,0), l∗; r∗), the challenger
replaces the instruction:

Ĉl∗ ← SEnc(êkl∗ , [êkl∗−1‖m̂(∗,b)‖m̂kl∗‖v̂l∗‖pk∗‖l∗]; ûl∗);

28

by:

strl∗ ← [êkl∗−1‖m̂(∗,b)‖m̂kl∗‖v̂l∗‖pk∗‖l∗]; rndl∗
$← {0, 1}|strl∗ |; Ĉl∗ ← SEnc(êkl∗ , rndl∗ ; ûl∗);

We claim that, for all i ∈ J1, qn + 1K:∣∣Pr [A wins G′3,i+1

]
− Pr

[
A wins G′3,i

]∣∣ ≤ 2 ·AdvIND-CCA
SKE (λ).

This claim can be proven by reduction. We omit the details of this proof because it is very similar to the
proof in the game G3,i.

Game G′4: This is the same game as G′3, but m̃(∗,b), m̃kl∗ and ṽl∗ are substituted by random bit-strings
of same length. The winning probability of the adversary is the same as in G4.

Finally, we have that AdvIND-CCA0

CHAPO (λ) = AdvIND-CCA1

CHAPO (λ). This concludes the proof. ut

29

