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Abstract
Peg solitaire is a very popular traditional single-player board game, known to be NP-complete. In
this paper, we present a zero-knowledge proof of knowledge for solutions of peg solitaire instances.
Our proof is straightforward, in the sense that it does not use any reduction to another NP-complete
problem, and uses the standard design of sigma protocols. Our construction relies on cryptographic
commitments, which can be replaced by envelopes to make the protocol physical. As a side
contribution, we introduce the notion of isomorphisms for peg solitaire, which is the key tool of our
protocol.
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1 Introduction

Zero-knowledge proofs are fascinating protocols introduced by Goldreich, Micali, and Rack-
off [8], in which a prover, knowing a secret needed to verify some property, tries to convince
a verifier that the property actually holds, but without revealing anything about the secret.
Although these surprising features seem difficult to achieve, these protocols are often elegant
and very simple to understand. For this reason, zero-knowledge proofs are usually considered
as a beautiful concept.

In [7], Goldreich, Micali, and Wigderson present a protocol for proving the knowledge of a
graph 3-coloring, without revealing anything about the coloring. Such a protocol is said to be
a zero-knowledge proof of knowledge. This protocol is amazingly simple: the prover randomly
permutes the three colors and commits the new color of each vertex, the verifier chooses one
of the edges of the graph, the prover reveals the color of its two endpoints, and the verifier
checks that these two colors are different. On the one hand, the verifier learns nothing else
than the fact that the two endpoints have different (random) colors. On the other hand, if
the prover does not know any 3-coloring, then at least one edge has two endpoints of the same
color. In this case, the prover succeeds its proof with probability of at most (n− 1)/n, where
n is the number of edges. By repeating the protocols λ times, its probability of success falls
to ((n− 1)/n)λ. By adjusting the parameter λ, the probability of deceiving the verifier can
be reduced as much as desired. This protocol can be used physically (i.e. without computer
and without cryptography) by replacing the commitments with paper envelopes.

This construction allows at the same time to show the existence of a zero-knowledge
proof of knowledge for any problem in NP: by reducing the required problem to the graph
3-coloring, the prover can turn the instance of the problem into an instance of the graph
3-coloring, and can prove its knowledge of this 3-coloring. However, using this generic method
results in heavy and unclear proof protocols, and it is often better to design tailor-made
proofs for specific problems in NP that are understandable, elegant and efficient.

If building tailor-made zero-knowledge proofs of knowledge for NP problems is fun in itself,
building such proofs for fun problems is even more fun. Therefore, many proofs of knowledge
for logic puzzles have been proposed, either in a cryptographic or a physical setting. For
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9:2 Zero-Knowledge Proof of Knowledge for Peg Solitaire

instance, cryptographic and physical zero-knowledge proofs of knowledge for sudoku puzzles
are presented in [9] and [16], physical proofs for various logical grid puzzles (namely akari,
takuzu, kakuro and ken-ken) are presented in [4], and cryptographic proofs problems based
on the Rubik’s cube are presented in [19]. Some works use physical properties of playing
cards to optimize the design of the physical proofs [13, 16]. As a fun application, such
proofs can be used as authentication or signature protocols, where authentication amounts
to proving the knowledge of a secret solution for a public logic game instance [19].

Peg solitaire is a traditional board game for one player known all over the world. This
game was already known in the 17th century, and is probably older. Peg solitaire rules are
very simple but the game is deeply complex, which makes it an exciting research topic for
mathematicians and computer scientists, as shown by the many scientific papers that have
already been published about it [1, 2, 10, 11, 12, 15, 18]

The game is played on a board with holes that can contain pegs. The player can jump
a peg over an adjacent peg (which is removed from the board) into a hole. The goal is to
reach a given winning position from a given initial position. Peg solitaire is proven to be
NP-complete [10]. A weaker variant of the game, where the goal is to remove all the pegs
but one, was previously proven to be NP-complete in [18]. In [15], authors show that the
game is no longer NP-complete when one of the dimensions of the board is fixed.

In this paper, we give the first tailor-made cryptographic zero-knowledge proof of know-
ledge for solutions of peg solitaire, in the sense that our protocol does not rely on a reduction
to another problem but uses the specific properties of the peg solitaire. While most logic
games used to build zero-knowledge proofs consist of filling in a grid with a pen within certain
constraints, peg solitaire has a different mechanism, since its solution is a series of successive
moves on a board. The method that we use seems generic and should be applicable to other
similar games: at each proof round, the prover shows to the verifier that one of its moves is
legal.

Our construction

Because of its structure, a peg solitaire board can be formalized as a graph (the link between
the graphs and the peg solitaire is quite natural and has already been studied in [2]). This
representation allows us to extend the notion of graph isomorphisms to define the notion of
peg solitaire isomorphisms. Loosely speaking, two peg solitaires are isomorphic when there is
a bijection that allows to pass from one to the other preserving the existence and the general
structure of their solutions. Considering two isomorphic peg solitaires, we give an efficient
method to transform a solution of one into a solution of the other using the isomorphism.
Our definition of peg solitaire isomorphism is generic and could be of independent interest.

Our proof protocol uses the standard method introduced in [7] with the proof for 3-
coloring: the prover commits its solution, the verifier challenges the prover to show that
one of the constraints of the problem holds in the solution, and the prover shows this by
decommitting one part of the solution. Obviously, the revealed part should not leak anything
else than the respect of the constraint.

More precisely, the prover first chooses an isomorphism of peg solitaire at random, and
computes the image of the peg solitaire instance and its solution by this isomorphism. This
step randomizes the structure of the solution. The prover then commits each part of this
randomized peg solitaire and its solution. The verifier has two ways to challenge the prover:

Either it requests the prover to reveal the isomorphism. In this case the prover also
decommits the isomorphic peg solitaire (but not its solution). The verifier then checks
that the peg solitaire has been correctly randomized, but it learns nothing about the
solution.
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Or it requests the prover to reveal the ith move of the randomized solution. In this case
the prover decommits the corresponding part of the randomised solution, and the verifier
checks that the move is legal (i.e. it is a jump from a peg over an adjacent peg landing
in a hole). Since this move is isolated from the others and takes place on a randomized
board, the verifier does not learn anything else about the solution.

If the prover knows how to answer each challenge, then it knows each move of the solution
for the isomorphic peg solitaire instance, and it knows the isomorphism allowing to pass
from this solution to that of the initial peg solitaire instance. By contrapositive, if the prover
is not able to answer all the challenges, then it does not know a solution. The probability
that the prover deceives the verifier is at most (S − 1)/S, where S is the number of steps in
the solution. By repeating the protocol several times, this probability becomes as small as
desired. Note that this protocol can also be turned into physical proof by replacing each
commitment with a paper envelope.

2 Cryptographic background

In this section, we recall the definitions of negligible functions, zero-knowledge proofs of
knowledge, sigma protocols, and commitments.

We use the notion of negligible function to formalize the concept of unrealistic event. A
function is negligible when it tends to zero faster than the inverse of any polynomial. We
consider that an attack is not feasible in practice if its probability is negligible in some
security parameter.

▶ Definition 1. A positive function ϵ : N → R is said to be negligible if for any positive
polynomial t, there exists an integer n such that for all integer x > n, |ϵ(x)| < 1

t(x) .

A zero-knowledge proof of knowledge [3] is a protocol where two parties interact, a prover
and a verifier. The prover knows a secret value (in our case, the solution of a peg solitaire)
and tries to convince the verifier of this knowledge, without leaking any other information
about the solution.

A zero-knowledge proof of knowledge has the three following properties:
Completness: If the prover actually knows the secret and runs the protocol honestly, then

the proof is accepted.
Validity: If the prover does not know the secret, then the probability that its proof is accepted

in a reasonable time is negligible. This probability is called the knowledge error. More
precisely, assuming the existence of a prover able to perform an accepted proof with a
reasonable probability, the validity ensures that the secret of that prover can be extracted
in a similar running time.

Zero-knowledge: The verifier learns nothing about the secret of the prover. More precisely,
the verifier is able to simulate its interaction with the prover in such a way that no
efficient algorithm can distinguish the simulated transcripts from the real transcripts with
non-negligible probability.

The protocol that we present in this paper is a sigma protocol [5], i.e. it is a repetition
of the three following interactions: the prover sends a commitment, the verifier sends a
challenge, and the prover sends a response. Due to their structure, validity of such protocols
can be proven using the definition of the n-Special-soundness. This property holds when it is
possible to extract the secret from n transcripts containing different challenges but sharing
the same commitment. A n-special-sound sigma protocol is valid with a knowledge error of
(n− 1)/n [5]. By repeating the protocol λ times, the knowledge error falls to ((n− 1)/n)λ,
which is negligible in λ.

FUN 2022



9:4 Zero-Knowledge Proof of Knowledge for Peg Solitaire

▶ Definition 2 (Sigma protocol [3, 5]). Let RL be a relation for a language L in NP, we say
that an element x is a witness for the instance y ∈ L if (x, y) ∈ RL. Let λ be a security
parameter; in what follows, p.p.t algorithm means probabilistic polynomial-time algorithm
in λ. Let us consider two p.p.t algorithms P (the Prover) knowing a witness x and V (the
verifier) knowing an instance y interacting in a proof protocol ⟨P(x),V(y)⟩ using the following
pattern: P sends a commitment, V sends a challenge, P sends a response, after which V
accepts or rejects the proof. This proof protocol is said to be a sigma-protocol for RL. We
denote the set of the accepted transcripts for any instance y by Acc(y). Moreover, a sigma
protocol can have the following properties:
Completeness: For every (x, y) ∈ RL:

Pr[⟨P(x),V(y)⟩ ∈ Acc(y)] = 1.

n-Special-soundness: For any y ∈ L, there exists an efficient algorithm E (polynomial in
|y|) such that for any set of n valid transcripts τ ∈ Acc(y)n sharing the same commitment
but having n different challenges from each other, we have:

Pr[x← E(τ, y) : (x, y) ∈ RL] = 1.

(Computational) Zero-knowledge: For every (x, y) ∈ RL and every p.p.t verifier V∗ there
exists a probabilistic p.p.t algorithm S (called simulator) such that for every p.p.t algorithm
D, the following is negligible in λ:

|Pr[tr← ⟨P(x),V∗(y)⟩; b← D(tr) : b = 1]− Pr[tr← S(y); b← D(tr) : b = 1]|.

A sigma protocol which is complete, special-sound, and zero-knowledge is said to be a zero-
knowledge proof of knowledge.

A cryptographic commitment scheme [6, 7] C = (Gen,Commit) is a pair of algorithms
that allows a user to commit a value with a secret key. More precisely, Gen(1λ) generates a
commitment key sk from a security parameter λ, and Commit(sk,m) generates a commitment c
from a key sk and a value m. To open the commitment c, the user reveals the committed value
m and the key sk. The validity of the opened commitment is verified if c = Commit(sk,m).
Such a scheme should verify two properties:
Biding: The user is constrained to open the value that it actually committed. In other words,

the user cannot open a commitment in two different ways with non-negligible probability.
If this probability is zero, we say that the commitment has the perfect binding property.

Hiding: Without the key, a commitment reveals nothing about the committed value. In
other words, a user cannot distinguish which value is committed out of two chosen values
in a given commitment with non-negligible probability.

▶ Definition 3 (Commitment Scheme [6, 7]). A commitment scheme C = (Gen,Commit) is a
pair of algorithms defined as follows:

Gen(1λ) generates a commitment key sk from a security parameter λ.
Commit(sk,m) generates a commitment c from a key and a message.

A commitment scheme C has the binding (resp. perfect biding) security property if for any
p.p.t algorithm A, the following is negligible in λ (resp. null), where ExpBinding

C,A (λ) denotes
the experiment given in Figure 1 (right side):

Pr
[
1← ExpBinding

C,A (λ)
]
.
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Experiment ExpBinding
C,A (λ): Experiment ExpHiding

C,A,b(λ):
(sk0, sk1, m0, m1)← A(1λ) sk← Gen(1λ)
if Commit(sk0, m0) = Commit(sk1, m1) (m0, m1, st)← A1(sk)
then return m0 ̸= m1 cb ← Commit(sk, mb)
else return 0 b′ ← A2(cb, st)

return b = b′

Figure 1 The binding and the hiding experiments.

A commitment scheme has the hiding security property if for any two-party p.p.t algorithms
A = (A1,A2), the following is negligible in λ, where ExpHiding

C,A (λ) denotes the experiment
given in Figure 1 (left side):∣∣∣Pr

[
1← ExpHiding

C,A,1(λ)
]
− Pr

[
0← ExpHiding

C,A,0(λ)
]∣∣∣ .

In [7], the authors show how to construct a commitment scheme that has both hiding and
perfect binding properties under the hypothesis of the existence of an ideal hash function,
and use it as a key tool to construct zero-knowledge proofs of knowledge for NP problems. A
perfect hiding commitment scheme is given in [14]. Note that a commitment scheme cannot
be both perfect hiding and perfect binding.

3 The game

Initial position: A legal first move: Final winning position:

Figure 2 The english peg solitaire.

Step 1 (start): Step 2: Step 3: Step 4 (solved):

Figure 3 The solution of the tee peg solitaire.

Peg solitaire is a board game for one player, which is played on a board containing holes
where pegs can be inserted. Each hole can hold at most one peg. At the beginning of the
game, the pegs are placed in a given initial position, and the goal is to move them in order
to reach a given winning position. The moves are jumps: if two pegs and an empty hole are

FUN 2022



9:6 Zero-Knowledge Proof of Knowledge for Peg Solitaire

aligned and adjacent, the first peg can jump over the second one to land in the empty hole.
The jumped peg is removed from the game. Since at each move a single peg is removed from
the game, the number of moves to reach the wining position is equal to the number of pegs
in the initial position less the number of pegs in the winning one.

In Figure 2 we present the English peg solitaire, which is one of the most popular variants
of this game. The black circles are holes containing pegs, and the white circles are empty
holes. In this variant, the holes are placed orthogonaly and form a cross. In the initial
position, only the central hole is empty. The goal is to remove all the pegs except one, which
must be moved into the center hole. Note that the possibilities of boards are endless, and
are not limited to orthogonal boards.

Throughout this paper, we will use a simple example of peg solitaire to illustrate our
definitions: the tee peg solitaire. The initial board contains 5 holes that form a tee, with the
rightmost hole being the only empty hole. The winning position contains only one peg in the
leftmost hole. In Figure 3, we show how to solve this peg solitaire, i.e. we show successive
moves that allow to reach the winning position from the initial one.

4 Formalism

In this section, we present how we formalize the peg solitaires. In a first step, we represent
the state of the game board by a graph, where each hole corresponds to a vertex labeled by
an index. The value of a vertex is 1 if the corresponding hole contains a peg, 0 otherwise.
The vertices corresponding to adjacent holes on the board are linked by an edge labeled by
a direction (horizontal or vertical). Note that this representation can be generalized for a
number of directions greater than two (for example for hexagonal boards).

1
1

1
2

0
3

1
4

1
5

0
1

0
2

1
3

1
4

1
5

0
1

1
2

1
3

0
4

0
5

1
1

0
2

0
3

0
4

0
5

Step 1 (start): Step 2: Step 3: Step 4 (solved):

Figure 4 The graph representation of the steps of the tee peg solitaire solution.

For instance, the steps of the solution of the tee peg solitaire can be represented as in
Figure 4, where the direction of each edge implicitly corresponds to its actual direction on
the diagram.

A peg solitaire instance is defined by the shape of the board, the position of the pegs at
the beginning of the game, and the position of the pegs that must be reached to win. We
can therefore represent any instance by the graph of its initial position and the graph of its
winning position. Note that only the values of the vertices differ between these two graphs,
so we can give only the structure of the graph and the values of the vertices in the initial
position and in the winning position.

Finally, we can encode an instance of peg solitaire by giving a set of triplets, containing
the ordered combinations of 3 indexes of vertices that are adjacent and aligned in the graph
(i.e. the triplets (a, b, c) such that (a, b) and (b, c) are edges labeled by the same direction).
This is sufficient to rebuild the entire structure of the graph. For instance, the graph of the
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tee peg solitaire and the graph of the English peg solitaire are encoded by 2 and 38 triplets
of vertices respectively. The encoding must also contain two vectors f (for first) and l (for
last), containing the values of the vertices in the initial position and in the winning position
respectively, ordered by the indexes of the vertices. This leads us to the following definition,
where N denotes the number of vertices, T the number of triplets, and S the number of
steps in the solution.

▶ Definition 4 (Peg solitaire instance). Let N , S, and T be three positive integers. A
(N,T, S)-peg solitaire instance is a tuple (t, f, l) where

t = (ti)1≤i≤T is a vector of T triplets of integers, where:
Each ti is in J1, NK3.
For each i, parsing ti as (ti,1, ti,2, ti,3), we have ti,1 ̸= ti,2, ti,2 ̸= ti,3 and ti,1 ̸= ti,3
(the values in the triplets are different).
For each i ≠ i′, parsing ti as (ti,1, ti,2, ti,3) and ti′ as (ti′,1, ti′,2, ti′,3), we have
{ti,1, ti,2, ti,3} ≠ {ti′,1, ti′,2, ti′,3} (each triplet contains different values).

f = (fi)1≤i≤N and l = (li)1≤i≤N are vectors of N bits and S = 1 +
N∑
i=1

(fi − li) (S is the

difference between the number of 1 in f and l plus one, because at each step, a peg is
removed).

Note that our definition is generic, and accepts instances that could not be represented
by graphs.

▶ Example 5 (Tee peg solitaire instance). Using the previous definition, the tee peg solitaire
is encoded by a (5, 2, 4)-peg solitaire instance (t, f, l) defined as follows:

t = ((1, 2, 3), (2, 4, 5)).
f = (1, 1, 0, 1, 1) and l = (1, 0, 0, 0, 0).

We now show how to encode a solution and how to verify its validity for a given peg
solitaire instance. A solution is simply the set of vectors representing the values of the
vertices at each step of the game. Thus, the first vector of the solution must be f , and the
last vector must be l (i.e. the sequence of vectors must show how to go from the position of
f to the position of l).

To be considered as valid, the solution must match steps that respect the rules of the
game. To formalize this, let us notice two properties:

At each step, there are exactly three aligned holes whose state changes: the hole containing
the jumping peg, the hole containing the jumped peg, and the hole receiving the jumping
peg.
The state of these three aligned holes is (  #) or (#  ) before the move, and (## )
or ( ##) respectively after the move. The direction (horizontal or vertical) does not
matter here, since both cases are symmetric.

Thus, we must verify that exactly three bits are different between each vector of the solution,
and that these three bits are the values of three vertices indexed in one of the triplets of the
instance. Moreover, we must verify that :

either the two first vertices of the triplet have the value 1 and the last one has the value
0 in the first vector,
or the first vertex of the triplet has the value 0 and the two last ones have the value 1 in
the first vector.

Finally, we obtain the following definition.

FUN 2022



9:8 Zero-Knowledge Proof of Knowledge for Peg Solitaire

▶ Definition 6 (Solution for a peg solitaire instance). Let (t, f, l) be a (N,T, S)-peg solitaire
instance. A solution for this instance is a binary matrix Z = (Z[i, j])1≤i≤S;1≤j≤N . Through-
out this paper, by abuse of notation, for any solution Z and any index i, we will denote the
ith line of a solution by Z[i], i.e Z[i] = (Z[i, j])1≤j≤N .

A solution is said to be valid if f = Z[1], l = Z[S], and for any i ∈ J1, S− 1K, there exists
j ∈ J1, T K such that, parsing tj as (tj,1, tj,2, tj,3):

For any k ∈ J1, NK, (k ∈ {tj,1, tj,2, tj,3} ⇔ Z[i, k] ̸= Z[i + 1, k]) (exactly three bits,
corresponding to a triplet of vertices, are different).
Z[i, tj,1] ̸= Z[i, tj,3] and Z[i, tj,2] = 1 (the three vertices are in a state where the jump is
possible).

▶ Example 7 (Solution for the tee peg solitaire). Using the previous definition, the solution
for the tee peg solitaire instance given in Example 5 is encoded by the following matrix:

Z =


1 1 0 1 1
0 0 1 1 1
0 1 1 0 0
1 0 0 0 0


We now define the notion of peg solitaire isomorphism. Loosely speaking, two peg

solitaires are isomorphic when one can be obtained by permuting the vertices, permuting the
triplets, and reversing the order of the triplets of the other.

▶ Definition 8 (Peg solitaire isomorphism). A (N,T, S)-peg solitaire ismorphism is a triplet
of bijections ξ = (ϕ, χ, ψ) defined as follows:

ϕ : J1, NK→ J1, NK,
χ : J1, T K→ J1, T K, and
ψ : {1, 3} → {1, 3}.

For any (N,T, S)-peg solitaire instance Σ = (t, f, l), we define the (N,T, S)-peg solitaire
instance Σ′ = (t′, f ′, l′) isomorphic to Σ by ξ as follows:

for any i ∈ J1, T K, t′χ(i) = (ϕ(ti,ψ(1)), ϕ(ti,2), ϕ(ti,ψ(3))), and
for any i ∈ J1, NK, f ′

i = fϕ−1(i) and l′i = lϕ−1(i).

▶ Remark 9. A more generic definition of peg solitaire isomorphism can be obtained by
choosing a different function ψ for each triplet ti. However, as this property is not required
for our purpose and would make the notations more cumbersome, we do not mention it
explicitly in our definition.

An isomorphism can be used to transform a solution for a peg solitaire instance into a
solution for its isomorphic instance. We show this result in the following theorem.

▶ Theorem 10. Let Σ = (t, f, l) be a (N,T, S)-peg solitaire instance, Z =
(Z[i, j])1≤i≤S;1≤j≤N be a solution for Σ, ξ = (ϕ, χ, ψ) be a (N,T, S)-peg solitaire isomorph-
ism, and Σ′ = (t′, f ′, l′) be the (N,T, S)-peg solitaire instance isomorphic to Σ by ξ. Let
Z ′ = (Z ′[i, j])1≤i≤S;1≤j≤N be a solution for Σ′ such that, for any i ∈ J1, SK and j ∈ J1, NK,
Z ′[i, j] = Z[i, ϕ−1(j)]. We have that Z ′ is a valid solution for Σ′ if and only if Z is a valid
solution for Σ.

Proof. Throughout this proof, we use the same notation as in Definition 4, Definition 6 and
Definition 8. We first prove the three following claims:

▷ Claim 11. f = Z[1]⇔ f ′ = Z ′[1] and l = Z[S]⇔ l′ = Z ′[S].
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Proof. For any j ∈ J1, NK, f ′
j = fϕ−1(j) and Z ′[1, j] = Z[1, ϕ−1(j)] and fϕ−1(j) = Z[1, ϕ−1(j)],

so:

f = Z[1]⇔ f ′ = Z ′[1].

Moreover, l′j = lϕ−1(j) and Z ′[S, j] = Z[S, ϕ−1(j)] and lϕ−1(j) = Z[S, ϕ−1(j)], so:

l = Z[S]⇔ l′ = Z ′[S]. ◁

▷ Claim 12. for any i ∈ J1, S − 1K, any j ∈ J1, T K and any k ∈ J1, NK:

(k ∈ {tj,1, tj,2, tj,3} ⇔ Z[i, k] ̸= Z[i+ 1, k])
⇔(k ∈ {t′χ(j),1, t

′
χ(j),2, t

′
χ(j),3} ⇔ Z ′[i, k] ̸= Z ′[i+ 1, k])

Proof. For any i ∈ J1, S − 1K, any j ∈ J1, T K and any k ∈ J1, NK:(
k ∈ {tj,1, tj,2, tj,3} ⇔ Z[i, k] ̸= Z[i+ 1, k]

)
(1)

⇔
(
ϕ−1(k) ∈ {tj,1, tj,2, tj,3} ⇔ Z[i, ϕ−1(k)] ̸= Z[i+ 1, ϕ−1(k)]

)
(2)

⇔
(
k ∈ {ϕ(tj,1), ϕ(tj,2), ϕ(tj,3)} ⇔ Z[i, ϕ−1(k)] ̸= Z[i+ 1, ϕ−1(k)]

)
(3)

⇔
(
k ∈ {ϕ(tj,1), ϕ(tj,2), ϕ(tj,3)} ⇔ Z ′[i, k] ̸= Z ′[i+ 1, k]

)
(4)

⇔
(
k ∈ {ϕ(tj,ψ(1)), ϕ(tj,2), ϕ(tj,ψ(3))} ⇔ Z ′[i, k] ̸= Z ′[i+ 1, k]

)
(5)

⇔
(
k ∈ {t′χ(j),1, t

′
χ(j),2, t

′
χ(j),3} ⇔ Z ′[i, k] ̸= Z ′[i+ 1, k]

)
(6)

Equivalency (2) holds because ϕ is bijective, so {ϕ−1(k)}k∈J1,NK = J1, NK. Equivalency (3)
holds because (ϕ−1(k) ∈ {tj,1, tj,2, tj,3}) ⇔ (k ∈ {ϕ(tj,1), ϕ(tj,2), ϕ(tj,3)}). Equivalency (4)
holds because by definition of Z ′, for all i and k, Z[i, ϕ−1(k)] = Z ′[i, k]. Equivalency (5)
holds because (ψ(1), ψ(3)) = (1, 3) or (3, 1), which implies {ϕ(tj,ψ(1)), ϕ(tj,2), ϕ(tj,ψ(3))} =
{ϕ(tj,1), ϕ(tj,2), ϕ(tj,3)}. Finally, Equivalency (6) holds because by definition of Σ′ we have
that (ϕ(tj,ψ(1)), ϕ(tj,2), ϕ(tj,ψ(3))) = (t′χ(j),1, t

′
χ(j),2, t

′
χ(j),3). ◁

▷ Claim 13. For any i ∈ J1, S − 1K, and any j ∈ J1, T K:

(Z[i, tj,1] ̸= Z[i, tj,3] and Z[i, tj,2] = 1)⇔ (Z ′[i, t′χ(j),1] ̸= Z ′[i, t′χ(j),3] and Z ′[i, t′χ(j),2] = 1)

Proof. For any i ∈ J1, S − 1K, and any j ∈ J1, T K:(
Z[i, tj,1] ̸= Z[i, tj,3] and Z[i, tj,2] = 1

)
(7)

⇔
(
Z ′[i, ϕ(tj,1)] ̸= Z ′[i, ϕ(tj,3)] and Z ′[i, ϕ(tj,2)] = 1

)
(8)

⇔
(
Z ′[i, ϕ(tj,ψ(1))] ̸= Z ′[i, ϕ(tj,ψ(3))] and Z ′[i, ϕ(tj,2)] = 1

)
(9)

⇔
(
Z ′[i, t′χ(j),1] ̸= Z ′[i, t′χ(j),3] and Z ′[i, t′χ(j),2] = 1

)
(10)

Equivalency (8) holds because by definition of Z ′, for all i and k, Z[i, ϕ−1(k)] = Z ′[i, k],
so Z[i, k] = Z ′[i, ϕ(k)]. Equivalency (9) holds because (ψ(1), ψ(3)) = (1, 3) or (3, 1),
so (Z ′[i, ϕ(tj,1)] ̸= Z ′[i, ϕ(tj,3)]) ⇔ (Z ′[i, ϕ(tj,ψ(1))] ̸= Z ′[i, ϕ(tj,ψ(3))]). Finally, Equival-
ency (10) holds because by definition of Σ′, we have that (ϕ(tj,ψ(1)), ϕ(tj,2), ϕ(tj,ψ(3))) =
(t′χ(j),1, t

′
χ(j),2, t

′
χ(j),3). ◁

We show that (Z is a valid solution for Σ) ⇔ (Z ′ is a valid solution for Σ′). By definition,
(Z is a valid solution for Σ) is equivalent to the following property :
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9:10 Zero-Knowledge Proof of Knowledge for Peg Solitaire

Property 1: f = Z[1], l = Z[S], and for any i ∈ J1, S − 1K, there exists j ∈ J1, T K such that,
parsing tj as (tj,1, tj,2, tj,3):

for any k ∈ J1, NK, (k ∈ {tj,1, tj,2, tj,3} ⇔ Z[i, k] ̸= Z[i+ 1, k]), and
Z[i, tj,1] ̸= Z[i, tj,3] and Z[i, tj,2] = 1.

By Claim 11, 12 and 13, Property 1 is equivalent to the following property:
Property 2: f ′ = Z ′[1], l′ = Z ′[S], and for any i ∈ J1, S − 1K, there exists j ∈ J1, T K such

that, parsing t′χ(j) as (t′χ(j),1, t
′
χ(j),2, t

′
χ(j),3):

for any k ∈ J1, NK, (k ∈ {t′χ(j),1, t
′
χ(j),2, t

′
χ(j),3} ⇔ Z ′[i, k] ̸= Z ′[i+ 1, k]), and

Z ′[i, t′χ(j),1] ̸= Z ′[i, t′χ(j),3] and Z ′[i, t′χ(j),2] = 1.
χ is a bijection, so {χ(j)}j∈J1,T K = J1, T K, which implies that Property 2 is equivalent to the
following property:
Property 3: f ′ = Z ′[1], l′ = Z ′[S], and for any i ∈ J1, S − 1K, there exists j ∈ J1, T K such

that, parsing t′j as (t′j,1, t′j,2, t′j,3):
for any k ∈ J1, NK, (k ∈ {t′j,1, t′j,2, t′j,3} ⇔ Z ′[i, k] ̸= Z ′[i+ 1, k]), and
Z ′[i, t′j,1] ̸= Z ′[i, t′j,3] and Z ′[i, t′j,2] = 1.

Finally, by definition, Property 3 is equivalent to (Z ′ is a valid solution for Σ′), which
concludes the proof. ◀

0
4

1
3

1
2

1
5

1
1

1
4

0
3

0
2

1
5

1
1

1
4

1
3

0
2

0
5

0
1

0
4

0
3

1
2

0
5

0
1

Step 1 (start): Step 2: Step 3: Step 4 (solved):

Figure 5 The graph representation of the steps of the solution for a peg solitaire which is
isomorphic to the tee peg solitaire, by the isomorphism given in Example 14.

▶ Example 14. Let ξ = (ϕ, χ, ψ) be a (5, 2, 4)-peg solitaire isomorphism defined by:
For any x ∈ J1, NK, ϕ(x) = (x mod 5) + 1.
χ(1) = 2 and χ(2) = 1.
ψ(1) = 3 and ψ(3) = 1.

The (5, 2, 4)-peg solitaire instance Σ′ isomorphic to the tee peg solitaire instance (given in
Example 5) by ξ is defined by:

t′ = ((1, 5, 3), (4, 3, 2)).
f ′ = (1, 1, 1, 0, 1) and l′ = (0, 1, 0, 0, 0).

Using Theorem 10 on the valid solution for the tee peg solitaire (given in Example 7), we
obtain the following valid solution Z ′ for Σ′:

Z ′ =


1 1 1 0 1
1 0 0 1 1
0 0 1 1 0
0 1 0 0 0


We give the graph representation of this solution in Figure 5.



X. Bultel 9:11

5 Protocol

In this section we present our proof protocol for the peg solitaire. This protocol has a sigma
structure, it therefore consists of three interractions between a prover, knowing a solution
Z for a (N,T, S)-peg solitaire instance Σ, and a verifier, knowing only Σ. We first give a
high-level description of the protocol :

The prover chooses an (N,T, S)-isomorphism ξ and computes the peg solitaire instance
Σ′, isomorphic to Σ by the isomorphism ξ, together with a valid solution Z ′ of Σ′ (using
the method given in Theorem 10). The prover commits each part of Σ′ and Z ′, and sends
the commitments to the verifier.
The verifier chooses σ ∈ J1, SK at random, and sends it to the prover.
The prover computes the response in terms of σ :

If σ = S, then the prover reveals the isomorphism ξ and the peg solitaire instance Σ′

to the verifier. The verifier checks the validity of the commitments of Σ′, and checks
that Σ′ is isomorphic to Σ by the isomorphism ξ.
Else, the prover reveals the integer γ ∈ J1, T K, which is the index of the triplet t′γ in
Σ′ that contains the indexes of the vertices that change their values between step σ

and step (σ + 1) of the solution. Such an integer always exists by definition of a valid
solution. The prover reveals t′γ and reveals the lines σ and (σ + 1) of the solution Z ′

(i.e. the vectors that correspond to the state of the peg solitaire before and after the
σth move) to the verifier. The verifier checks the validity of the commitments of t′γ
and of the two revealed lines of Z ′, and checks that the σth move is legal according to
the triplet t′γ .

If all the checks are valid, then the verifier accepts the transcript, else it rejects it.

A classical variant of peg solitaire consists in not imposing a final position, but only the
number of pegs that must be removed from the board. We note that our protocol can be
adapted to this (less constraining) version of the game simply by not revealing the vector of
the final position in the case σ = S.

The formal definition of the protocol is given in Protocol 1. In Corollary 16, we show
that this protocol is complete, valid, and zero-knowledge under the hypothesis that the
commitment scheme has both perfect binding and hiding properties.

▶ Protocol 1. Let P be a prover knowing a solution Z for a (N,T, S)-peg solitaire instance
Σ = (t, f, l), and V be a verifier knowing Σ. Our protocol uses a commitment scheme
C = (Gen,Commit) and a security parameter λ. Our protocol is a sigma protocol having the
following successive interactions, repeated λ times:

The prover P chooses an isomorphism ξ = (ϕ, χ, ψ) at random, and computes the
(N,T, S)-peg solitaire instance Σ′ = (t′, f ′, l′), isomorphic to Σ by ξ. The prover P
computes a valid solution Z ′ for Σ′ by using the method given in Theorem 10 on Σ, Z
and ξ. For all i ∈ J1, T K, and all j ∈ J1, SK:
P generates skti ← Gen(1λ) and computes the commitment t̂i = Commit(skti, t′i).
P generates skzj ← Gen(1λ) and computes Ẑj = Commit(skzj , Z ′[j]).

Finally, P sends (t̂i)1≤i≤T and (Ẑj)1≤j≤S to the verifier.
The verifier V chooses σ ∈ J1, SK at random, and sends it to the prover.
The prover P computes the response in terms of σ :

If σ = S, then P sends ξ, (skti, t′i)1≤i≤T , (skz1, Z
′[1]), and (skzS , Z ′[S]) to the verifier.

Else, the prover P chooses the integer γ ∈ J1, T K, which is the index of the triplet t′γ
containing the indexes of the vertices that change their values between step σ and step
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9:12 Zero-Knowledge Proof of Knowledge for Peg Solitaire

(σ + 1) of the solution (such an integer always exists by definition of a valid solution).
P then sends (sktγ , t′γ), (skzσ, Z ′[σ]) and (skzσ+1, Z

′[σ + 1]) to the verifier.
The verifier’s verification depends on the value of σ:

If σ = S, then V verifies the following commitments:
∗ For i ∈ J1, T K, V checks that t̂i = Commit(skti, t′i),
∗ V checks that Ẑ1 = Commit(skz1, Z

′[1]).
∗ V checks that ẐS = Commit(skzS , Z ′[S]).
V then checks that ((t′i)1≤i≤T , Z

′[1], Z ′[S]) is isomorphic to Σ by ξ.
Else, V verifies the following commitments:
∗ V checks that t̂γ = Commit(sktγ , t′γ).
∗ V checks that Ẑσ = Commit(skzσ, Z ′[σ]).
∗ V checks that Ẑσ+1 = Commit(skzσ+1, (Z ′[σ + 1]).
V then checks that:
∗ for any k ∈ J1, NK, (k ∈ {t′γ,1, t′γ,2, t′γ,3} ⇔ Z ′[σ, k] ̸= Z ′[σ + 1, k]), and
∗ Z ′[σ, t′γ,1] ̸= Z ′[σ, t′γ,3] and Z ′[σ, t′γ,2] = 1.

If all the checks are valid, then V accepts the transcript, else V rejects it.

▶ Theorem 15. If the sigma protocol given in Protocol 1 is instantiated with a commitment
scheme having the hiding and the perfect binding properties, then it is complete, S-special-
sound, and (computational) zero-knowledge, where S is the number of steps in the solution
of the peg solitaire instance.

As mentioned in Section 2, if a sigma protocol repeated λ times is n-special-sound, then it
is a valid proof of knowledge whose the knowledge error is ((n− 1)/n)λ, which implies the
following corollary.

▶ Corollary 16. If Protocol 1 is instantiated with a commitment scheme having the hiding and
the perfect binding properties, then it is a complete, valid, and (computational) zero-knowledge
proof of knowledge whose the knowledge error is ((S− 1)/S)λ, where S is the number of steps
in the solution of the peg solitaire instance and λ is the number of rounds of the protocol.

In what follows, we prove Theorem 15.

Proof. First, let us present a sketch of the proof.
Completeness: The prover knows a valid solution for Σ, so it is able to compute a peg

solitaire instance isomorphic to Σ and its valid solution using the method described in
Theorem 10. Since the solution of the isomorphic instance is valid, the prover can always
answer the verifier correctly.

S-Special-soundness: Assume that the prover is able to respond correctly whatever the
challenge it receives for the same commitment. Since the commitment scheme has the
perfect binding property, the prover opens its commitments in a consistent way (i.e. the
same commitment is not valid for two different values). We have that:

The response to the challenge S reveals an isomorphism ξ and a peg solitaire instance
Σ′ that is isomorphic to Σ by ξ.
The response to each challenge σ < S reveals one move of the valid solution Z ′ for Σ′.

By putting all the moves of Z ′ together, we can extract the whole solution Z ′. Using
Theorem 10, we extract a valid solution Z for Σ from Z ′ and the isomorphism ξ.

Zero-knowledge: First, assume that the commitments perfectly hide the committed values.
If the verifier chooses the challenge S, then it receives an isomorphism ξ randomly
chosen, and the image of Σ by ξ.
In this case the verifier can simulate the protocol by choosing a random isomorphism.
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If the challenger chooses a challenge σ < S, then it receives a triplet t′γ = (x, y, z) of
Σ′ and two successive vectors of the solution Z ′. The index of the triplet depends on
the unknown random permutation χ, and seems to be randomly chosen in J1, T K from
the verifier point of view. Since the indexes of the nodes are shuffled by the unknown
random permutation ϕ, the triplet (x, y, z) contains three different integers in J1, NK
that seem randomly chosen from the verifier point of view. Let F be the number of 1
in the vector f of Σ; since at each step of the solution only one peg is removed from
the board, the number of 1 in the first revealed vector of the solution is F + σ − 1.
Note that this property does not depend on the valid solution, and does not need to be
hidden from the verifier. Except for the bits indexed by x, y and z, the 1 seem to be
randomly distributed in the vector from the verifier point of view, because the indexes
of the nodes are shuffled by the unknown random permutation ϕ. According to the
verification requirements, the three bits indexed by x, y and z have a specific structure
in the two vectors: they must match one of the two positions (  #) or (#  ) in
the first vector, and (## ) or ( ##) respectively in the second one. The chosen
position depends on the unknown random permutation ψ and seems to be randomly
chosen from the verifier point of view. The other bits are the same in the two vectors.
In this case the verifier can simulate the protocol by choosing the index of a triplet
in J1, T K at random, choosing three random indexes in J1, NK at random, putting the
bits of these three indexes as in one of the two legal positions (chosen at random) in
the two vectors of the solution, and choosing the joint positions of the other 1 in the
two vectors at random.

In both case, the verifier simulates the unrevealed commitments by committing a random
bit-string, so the real protocol is perfectly simulated. Now, consider that the commitments
do not perfectly hide the committed values. In this case, the zero-knowledge property
depends on the ability of the verifier to distinguish which value is hidden in a commitment.
Zero-knowledge is thus ensured by the hiding property of the commitment scheme.

We now give the technical details for the proof of each propertie.

▷ Claim 17. The protocol is complete.

Proof. The honest prover knows the (N,T, S)-isomorphism ξ and the committed (N,T, S)-
peg solitaire instance Σ′, which is isomorphic to Σ by ξ. It also knows the committed valid
solution Z ′ for Σ′. We recall that according to Theorem 10, a honest prover knowing Z, Σ
and ξ is able to efficiently generate a valid solution Z ′ for Σ′, because it is isomorphic to Σ
by ξ.

If the challenge is S, then it is clear that the verifier accepts the proof of an honest prover
revealing its isomorphism.

By definition of a valid solution (Definition 6), if Z ′ = (t′, f ′, l′) is a solution for Σ′, then
for any σ ∈ J1, S − 1K, there exists γ ∈ J1, T K such that, parsing t′γ as (t′γ,1, t′γ,2, t′γ,3):

For any k ∈ J1, NK, (k ∈ {t′γ,1, t′γ,2, t′γ,3} ⇔ Z ′[σ, k] ̸= Z ′[σ + 1, k]).
Z ′[σ, t′γ,1] ̸= Z ′[σ, t′γ,3] and Z ′[σ, t′γ,2] = 1.

Thus, for any challenge σ ∈ J1, S − 1K, by choosing the index γ, the honest prover convinces
the verifier, which concludes the proof of completeness. ◁

▷ Claim 18. If the commitment scheme C has the perfect binding property, then the protocol
is S-special-sound.
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Proof. Assume that a prover gives an accepted response for any challenge σ ∈ J1, SK on the
same commitment. Since the commitment scheme is assumed to have the binding property,
the same commitment cannot be opened in several different ways in the S responses of the
prover. We show how to build a polynomial time knowledge extractor that computes a valid
solution Z for Σ from these transcripts.

Since all responses are accepted, all checks required during the protocol are valid, which
implies that:

Σ′ = ((t′i)1≤i≤T , Z
′[1], Z ′[S]) is isomorphic to Σ by ξ = (ϕ, χ, ψ).

for each challenge σ ∈ J1, S− 1K, the prover reveals an index γ ∈ J1, T K such that, parsing
t′γ as (t′γ,1, t′γ,2, t′γ,3):

For any k ∈ J1, NK, (k ∈ {t′γ,1, t′γ,2, t′γ,3} ⇔ Z ′[σ, k] ̸= Z ′[σ + 1, k]).
Z ′[σ, t′γ,1] ̸= Z ′[σ, t′γ,3] and Z ′[σ, t′γ,2] = 1.

By definition of a valid solution (Definition 6), we deduce that Z ′ is a valid solution for Σ′.
Let Z = (Z[i, j])1≤i≤S;1≤j≤N be a solution for Σ such that, for any i ∈ J1, SK and

j ∈ J1, NK, Z[i, j] = Z ′[i, ϕ(j)]. Our knowledge extractor computes and returns this solution
Z. We have that for any i ∈ J1, SK and j ∈ J1, NK, Z ′[i, j] = Z[i, ϕ−1(j)], we deduce that Z
is a valid solution for Σ according to Theorem 10, which concludes the proof. ◁

▷ Claim 19. If the commitment scheme C has the hiding property, then the protocol is
zero-knowledge.

Proof. In what follows, by abuse of language, we use the expression "pick in X at random"
for "pick from the uniform distribution on X". Let V∗ be a p.p.t verifier, Σ be a (N,T, S)-
peg solitaire instance, and Z be a valid solution for Σ. Let str be a bit-string and p be
a polynomial. We define the simulator Sim(Σ) for V∗ as follows, where Σ = (t, f, l) is a
(N,T, S)-peg solitaire instance.

The simulator. Sim picks σ ∈ J1, SK at random. We distinguish the two following cases:
If σ = S, Sim chooses an isomorphism ξ = (ϕ, χ, ψ) at random, and computes the
(N,T, S)-peg solitaire instance Σ′ = (t′, f ′, l′) isomorphic to Σ by ξ. Sim then generates
the following commitments:

For all i ∈ J1, T K, Sim generates skti ← Gen(1λ) and computes the commitment
t̂i = Commit(skti, t′i).
Sim generates skz1 ← Gen(1λ) and computes Ẑ1 = Commit(skz1, f

′
1).

For all j ∈ J2, S − 1K, Sim generates skzj ← Gen(1λ) and computes Ẑj =
Commit(skzj , str).
Sim generates skzS ← Gen(1λ) and computes ẐS = Commit(skzS , l′S).

Finally, Sim sets the prover commitment as com = ((t̂i)1≤i≤T , (Ẑj)1≤j≤S), the verifier
challenge as σ, and the prover response as res = (ξ, (skti, t′i)1≤i≤T , (skz1, f

′), (skzS , l′)).
Else, Sim picks γ ∈ J1, T K and picks a triplet t′γ = (t′γ,1, t′γ,2, t′γ,3) ∈ J1, NK3 at random
that verifies t′γ,1 ̸= t′γ,2, t′γ,2 ̸= t′γ,3 and t′γ,1 ̸= t′γ,3. Let F be the number of 1 in the vector
f of Σ. Sim picks a bit b at random, then Sim picks a vector Z ′[σ] of N bits at random
such that Z ′[σ] verifies the following properties:
Z ′[σ] contains exactly F + σ − 1 times the bit 1, and
Z ′[σ, t′γ,1] = b, Z ′[σ, t′γ,2] = 1, and Z ′[σ, t′γ,3] = 1− b.

Sim sets a vector Z ′[σ + 1] of N bits such that for all k ∈ J1, NK, (k ∈ {t′γ,1, t′γ,2, t′γ,3} ⇔
Z ′[σ, k] ̸= Z ′[σ + 1, k]). Sim then generates the following commitments:

For all i ∈ J1, T K\{γ}, Sim generates skti ← Gen(1λ) and computes the commitment
t̂i = Commit(skti, str).



X. Bultel 9:15

Sim generates sktγ ← Gen(1λ) and computes the commitment t̂γ = Commit(sktγ , t′γ).
For all j ∈ J1, SK\{σ, σ + 1}, Sim generates skzj ← Gen(1λ) and computes Ẑj =
Commit(skzj , str).
Sim generates skzσ ← Gen(1λ) and computes Ẑσ = Commit(skzσ, Z ′[σ]).
Sim generates skzσ+1 ← Gen(1λ) and computes Ẑσ+1 = Commit(skzσ+1, Z

′[σ + 1]).
Finally, Sim sets the prover commitment as com = ((t̂i)1≤i≤T , (Ẑj)1≤j≤S), the verifier
challenge as σ, and the prover response as res((sktγ , t′γ), (skzσ, Z ′[σ]), (skzσ+1, Z

′[σ + 1])).

Finally, Sim runs a proof protocol with V∗(Σ), sends com, receives a challenge σ′, and aborts
the protocol. If σ′ = σ, then Sim returns (com, σ, res), else, the simulator starts all over again
with a new random σ. After p(λ) unsuccessful tries, Sim returns the failure symbol ⊥.

We show that no p.p.t distinguisher D is able to distinguish between real transcripts from
the protocol and transcripts simulated by Sim. We use a sequence of game between D and a
p.p.t challenger C as described by Shoup in [17]. In what follows, ϵ(λ) denotes the probability
of the best algorithm attacking the hiding property of the commitment scheme (which is
assumed to be negligible).

Game G0: In this game, the challenger C runs the real protocol tr← ⟨P(Z),V∗(Σ)⟩, and
runs b← D(tr).

Game G1: We define the following algorithm:
P1(Z) is the same algorithm as P except that it starts by picking a challenge σ ∈ J1, SK
at random, then it aborts if the verifier chooses a challenge σ′ such that σ′ = σ.

In this game, the challenger C runs the protocol tr← ⟨P1(Z),V∗(Σ)⟩ until the prover does
not abort. If P1 aborts p(λ) times successively, then C sets tr =⊥. Since P1 aborts with
probability (S − 1)/S, the challenger C sets tr =⊥ with probability ((S − 1)/S)p(λ). We have
that:

|Pr[D returns 1 in G0]−Pr[D returns 1 in G1]| ≤ Pr[C sets tr =⊥ in G1] =
(
S − 1
S

)p(λ)
.

We note that from this game, the prover knows in advance (i.e., before generating
the commitments) which commitments will be revealed and which will not. We
also recall that the prover generates S + T commitments during the protocol.

Game G1,i (for 0 ≤ i ≤ S + T): We define the following algorithm:
P1,i(Z) is the same algorithm as P1 except that for the first i commitments that will not
be revealed to the verifier in the response phase, the prover P1,i commits the value str
instead of the value that is committed in the real protocol.

This game is the same as G1 except that it uses P1,i instead of P1. Clearly, G1 = G1,0. We
claim that, for all i ∈ J1, S + T − 1K:

|Pr[D returns 1 in G1,i]− Pr[D returns 1 in G1,i+1]| ≤ ϵ(λ).

We prove this claim by reduction. We use D to build a p.p.t algorithm A that plays
the experiment ExpHiding

C,A,b′(λ). The algorithm A plays the role of C and simulates tr ←
⟨P1,i(Z),V∗(Σ)⟩ exactly as in G1,i, except that A sets m0 as the value that is committed
in the (i+ 1)th unrevealed commitment produced by P1,i, sets m1 = str, sends (m0,m1) to
the experiment ExpHiding

C,A,b′(λ), receives the commitment cb′ of mb′ , and replaces the (i+ 1)th

FUN 2022



9:16 Zero-Knowledge Proof of Knowledge for Peg Solitaire

unrevealed commitment of P1,i by cb′ in tr. (Obviously, C replaces this commitment in the
transcript of the protocol instance that did not abort). Finally, A runs b← D(tr) and returns
b to the experiment. We have that:

|Pr[D returns 1 in G1,i]− Pr[D returns 1 in G1,i+1]| =∣∣∣Pr
[
0← ExpHiding

C,A,0(λ)
]
− Pr

[
1← ExpHiding

C,A,1(λ)
]∣∣∣ ≤ ϵ(λ),

which concludes the proof of the claim. We note that from the game G1,T+S, all the
commitments that are not revealed to the verifier commit the value str as in our
simulator.

Game G2: In this game, C runs tr ← S(Σ) and b ← D(tr). We have that G1,T+S = G2
(the justification of this equivalence has already been given in the sketch of the proof). Finally,
using each of these game hops, we deduce that:

|Pr[tr← ⟨P(Z),V∗(Σ)⟩; b← D(tr) : b = 1]− Pr[tr← Sim(Σ); b← D(tr) : b = 1]|

= |Pr[D returns 1 in G0]− Pr[D returns 1 in G2]| ≤ (S + T )ϵ(λ) +
(
S − 1
S

)p(λ)
.

Since ϵ is negligible and p is a polynomial, this value is negligible, which concludes the proof.
◁

◀

6 Conclusion

In this paper, we have given a tailor-made zero-knowledge proof of knowledge for the peg
solitaire, which does not use any reduction to another NP-complete problem. Our proof can
be used physically by using envelopes instead of commitments. We also define the notion
of peg solitaire isomorphism, which is of independent interest. In the future, it would be
interesting to reduce the soundness error of our protocol, either by reducing the number
of challenges in the cryptographic version of the protocol, or by using techniques that are
specific to the physical proof protocols, such as the one introduced in [16]. Another possible
future work would be to extend our protocol to the many variants of the peg solitaire, and
more generally, to other single-player board games.
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