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Abstract—This paper presents a new effective measure of un-
certainty (MoU) of basic belief assignments. This new continuous
measure is effective in the sense that it satisfies a small number
of very natural and essential desiderata. Our new simple math-
ematical definition of MoU captures well the interwoven link of
randomness and imprecision inherent to basic belief assignments.
Its numerical value is easy to calculate. This new effective MoU
characterizes efficiently any source of evidence used in the belief
functions framework. Because this MoU coincides with Shannon
entropy for any Bayesian basic belief assignment, it can be also
interpreted as an effective generalization of Shannon entropy. We
also provide several examples to show how this new MoU works.
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I. INTRODUCTION

In the classical probabilistic framework of the theory of

communication developed by Shannon in 1948 [1], [2], the

measure of uncertainty (MoU), also called entropy, for char-

acterizing a source of information (from signal transmission

standpoint) is represented by Shannon entropy. This entropy

measures the randomness of a probability mass function.

Shannon entropy has played a very important role in the

development of modern communication systems during the

second half of the 20th century, and in signal and image

coding, data compression, and cryptography [3] until today.

Shannon theory does not concern the semantic aspects of the

content of a message but only its transmission.

From 1980s and until now, many research works have been

proposed to try to extend Shannon measure of uncertainty

(i.e. entropy) in the belief functions framework since their

introduction by Shafer in the mid of 1970s [5]. In parallel,

other research works have been done on the characterization

of particular aspects of the uncertainty which are related

to the set consistency (or non-specificity) of basic belief

assignments (BBAs). Recently Jousselme et al. [6] proposed

an interesting attempt of mathematical unification of existing

MoU formulations. In our recent survey paper [7], we did

analyze in details 40 years of research works on MoUs. Our

deep analysis of forty-eight MoUs reveals that only very few of

them can be considered as effective in the mathematical sense

defined in Section III. Unfortunately, these existing effective

MoUs are conceptually flawed. The main contribution of this

paper is to provide a clear positive answer with a new well-

justified mathematical solution to the fundamental challenging

question stated in the conclusion of [7]:

Is there a better conceptual effective measure of uncertainty

for the basic belief assignments?

This paper is organized as follows. Section II presents the

basics of belief functions. Section III presents and justifies the

four essential desiderata that a MoU must satisfy in order to be

effective. In the section IV we list the existing effective MoUs

and we explain their conceptual flaws. Section V presents

the new effective MoU for BBA (i.e. generalized Shannon

entropy) with some examples in the section VI. Concluding

remarks and perspectives are given in the section VII.

II. BELIEF FUNCTIONS

The belief functions (BF) were introduced by Shafer [5] for

modeling epistemic uncertainty, reasoning about uncertainty

and combining distinct sources of evidence. The answer of

the problem under concern is assumed to belong to a known

finite discrete frame of discernement (FoD) Θ = {θ1, . . . , θN}
where all elements (i.e. members) of Θ are exhaustive and

exclusive. The set of all subsets of Θ (including empty set

∅, and Θ) is the power-set of Θ denoted by 2Θ. The number

of elements (i.e. the cardinality) of the power-set is 2|Θ|. A

(normalized) basic belief assignment (BBA) associated with a

given source of evidence is a mapping mΘ(·) : 2Θ → [0, 1]
such that mΘ(∅) = 0 and

∑

X∈2Θ mΘ(X) = 1. A BBA mΘ(·)
characterizes a source of evidence related with a FoD Θ. For

notation shorthand, we can omit the superscript Θ in mΘ(·)
notation if there is no ambiguity on the FoD we work with.

The quantity m(X) is called the mass of belief of X . X ∈ 2Θ

is called a focal element (FE) of m(·) if m(X) > 0. The

set of all focal elements of m(·) is denoted1 by FΘ(m) ,

{X ∈ 2Θ|m(X) > 0}. The belief and the plausibility of X
are respectively defined for any X ∈ 2Θ by [5]

Bel(X) =
∑

Y ∈2Θ|Y⊆X

m(Y ) (1)

P l(X) =
∑

Y ∈2Θ|X∩Y 6=∅

m(Y ) = 1− Bel(X̄). (2)

where X̄ , Θ \ {X} is the complement of X in Θ.

1, means equal by definition.

 



One has always 0 ≤ Bel(X) ≤ Pl(X) ≤ 1, see [5]. For

X = ∅, Bel(∅) = P l(∅) = 0, and for X = Θ one has

Bel(Θ) = P l(Θ) = 1. Bel(X) and P l(X) are often inter-

preted as the lower and upper bounds of unknown prob-

ability P (X) of X , that is Bel(X) ≤ P (X) ≤ P l(X).
To quantify the uncertainty (i.e. the imprecision) of

P (X) ∈ [Bel(X), P l(X)], we use u(X) ∈ [0, 1] defined by

u(X) , P l(X)−Bel(X) (3)

The quantity u(X) = 0 if Bel(X) = P l(X) which means that

P (X) is known precisely, and one has P (X) = Bel(X) =
P l(X). One has u(∅) = 0 because Bel(∅) = P l(∅) = 0,

and one has u(Θ) = 0 because Bel(Θ) = P l(Θ) = 1. If

all focal elements of m(·) are singletons of 2Θ the

BBA m(·) is a Bayesian BBA because ∀X ∈ 2Θ one has

Bel(X) = P l(X) = P (X) and u(X) = 0. Hence the belief

and plausibility of X coincide with a probability measure

P (X) defined on the FoD Θ. The vacuous BBA characterizing

a totally ignorant source of evidence is defined by mv(X) = 1
for X = Θ, and mv(X) = 0 for all X ∈ 2Θ different of Θ.

This very particular BBA plays a major role in the establish-

ment of a new effective measure of uncertainty for BBA.

III. ESSENTIAL DESIDERATA FOR A MOU

Before defining our new effective measure of uncertainty,

denoted by U(m), for any basic belief assignment m(·) related

to a (non-empty) FoD Θ, we present the four essential and very

natural desiderata that an effective MoU must satisfy [7].

Desideratum D1: For any non-empty frame of discernment

Θ and for any BBA m(·) focused on a singleton X of 2Θ one

must have

U(m) = 0 (4)

Justification of D1: this desideratum is natural and intuitive

because any particular BBA for which a singleton X has

m(X) = 1 characterizes its certainty, which means that there

is no uncertainty about the choice of this element since it does

not include other smaller element in it. So, in this case U(m)
must take zero value.

Desideratum D2: The measure of uncertainty of a total

ignorant source of evidence must increase with the cardinality

of the frame of discernment. That is

U(mΘ
v ) < U(mΘ′

v ), if |Θ| < |Θ′|. (5)

Justification of D2: this second desideratum makes perfect

sense because the total ignorant source of evidence on

Θ = {θ1, . . . , θN} for which mΘ
v (Θ) = 1 knows absolutely

nothing about only N elements, whereas the total ignorant

source of evidence on Θ′ = {θ1, . . . , θN , θN+1, . . . , θN ′} with

mΘ′

v (Θ′) = 1 knows absolutely nothing about more elements

because N ′ > N . This clearly indicates that mΘ′

v must be in

fact more ignorant than mΘ
v .

Desideratum D3: The measure of uncertainty U(m) must

coincide with Shannon entropy [1]–[3] if the BBA m(·) is a

Bayesian BBA. This desideratum is mathematically expressed

for any Bayesian BBA m(·) defined on the FoD Θ by the

condition2

U(m) = −
∑

X∈Θ

m(X) log(m(X)) (6)

Justification of D3: this third desideratum is also very natural

because Shannon entropy is the most well-known and justified

[9] measure used to characterize the uncertainty (the random-

ness, or variability) of a probability mass function. Because

any Bayesian BBA induces belief and plausibility functions

that coincide with a probability measure, one must have a

coherence of U(m) with Shannon entropy when the BBA is

Bayesian.

Desideratum D4: For any non-vacuous BBA m(·) and for

the vacuous BBA mv(·) defined with respect to the same FoD

one must have

U(m) < U(mv) (7)

Justification of D4: this last desideratum is also a very impor-

tant one and it makes perfect sense because the total ignorant

source is always characterized by the vacuous BBA mv(·),
and obviously no source of evidence can be more uncertain

than the total ignorant source.

Effectiveness of a measure of uncertainty: A measure of

uncertainty (MoU) is said effective if and only if it satisfies

the four essential desiderata D1, D2, D3, and D4.

Any MoU that fails to satisfy at least one of these four

desiderata is said non-effective, and in this case it cannot

be considered seriously as a good measure of uncertainty

for characterizing a basic belief assignment of a source of

evidence. Consequently, a non-effective MoU should not be

used in applications involving MoU.

As justified in [7], we voluntarily do not include the sub-

additivity desideratum in the list of our desiderata for the

search of an effective MoU in the belief function framework

because this desideratum does not make sense when working

with general (i.e. non-Bayesian) BBAs, and it is incompatible

with the essential desideratum D4. We recall that the sub-

additivity condition is defined by U(mΘ×Θ′

) ≤ U(m↓Θ) +
U(m↓Θ′

) or any joint BBA defined on the cartesian product

Θ × Θ′ of FoDs Θ and Θ′, where m↓Θ is the marginal (i.e.

projection) of mΘ×Θ′

(·) on the power-set 2Θ, and m↓Θ′

is the

marginal (i.e. projection, see [10], [11]) of mΘ×Θ′

(·) on the

power-set 2Θ
′

. To justify our choice, just consider a simple

example with |Θ| = 5 and |Θ′| = 8, which means that the

cartesian product space Θ×Θ′ has |Θ×Θ′| = 40 elements.

Why the MoU of the vacuous BBA mΘ×Θ′

v related to 40

elements of Θ × Θ′ should be less (or equal) to the sum

of MoU of vacuous BBA mΘ
v related to only 5 elements of

Θ and the MoU of the vacuous BBA mΘ′

v only related to

the 8 elements of Θ′? We do not see any solid theoretical

reason, nor intuitive reason, for justifying and requiring the

2Shannon entropy [1] is given here in nats, and we take 0 log(0) = 0
because limx→0+

x log(x) = 0 which is proved using L’Hôpital’s rule [4].

 



subadditivity desideratum in the general framework of belief

functions, and to select it as an axiom to satisfy in general as

done in [12]. Unlike Vejnarova and Klir opinions [15] (p.28)

(and some authors following them), we do not consider that

the meaningful (or effective) measure of uncertainty of basic

belief assignment must satisfy the sub-additivity desideratum

in general.

IV. EXISTING EFFECTIVE MOUS

Before presenting our new effective MoU (or generalized

entropy) in the next section, we must discuss a bit of the

few existing effective measures of uncertainty proposed in

the literature. As shown in [7], most3 of existing MoUs are

actually non-effective, and only eight MoUs can be considered

as effective in the mathematical sense defined in the previous

section. Most of effective MoUs share two basic principles:

1) approximate the BBA m by a probability measure (i.e. a

Bayesian BBA) Pm based on some method of approximation

and evaluate its Shannon entropy to estimate the randomness

(or conflict) inherent to the BBA, and 2) add a term to Shannon

entropy that characterizes the level of ambiguity (or non-

specificity) inherent of the BBA (usually thanks to Dubois

& Prade U -uncertainty [16]). For instance in [7] the BetP

and DSmP transformations are used, in [17] the Cobb-Shenoy

transformation [18] is used, and in [19] the authors suggest to

use4 the Bayesian BBA compatible with belief intervals drawn

from m(·) that maximizes Shannon entropy. This general

2-steps principle is rather simple and quite intuitive but it

seriously lacks of theoretical justification. We consider that

such type of effective MoU construction is conceptually flawed

and not very satisfactory for two main reasons:

Reason 1: these effective MoUs highly depend on the

method of approximation whose choice is quite arbitrary.

Worse, a method of approximation of a BBA m(·) to a

Bayesian BBA can be totally misleading as for instance Cobb-

Shenoy P lPrm transformation [18] because for this trans-

formation the evaluation of probabilities can be inconsistent

with belief interval values. More precisely, one can have

P lPrm(θi) /∈ [Bel(θi), P l(θi)] with Cobb-Shenoy method,

which is obviously not reasonable, nor acceptable at all, see

discussion in [7] with example. We emphasize the fact that

if a method of approximation of a BBA m by a probability

measure Pm is chosen, it must be at least consistent with

belief interval values generated by the BBA m under concern.

Clearly, we cannot recommend Cobb-Shenoy transformation

for building an effective MoU based on aforementioned prin-

ciples 1) and 2) as proposed recently by Jiroušek and Shenoy

in [17].

Reason 2: In fact, there is no solid reason or evidence that

necessitates to approximate any (non-Bayesian) BBA by

a Bayesian BBA (for using Shannon entropy measure) in

the construction of MoU. Also, there is no reason why

3Forty-eight MoUs have been analyzed in [7].
4found using a complicate optimization method, see [20], [21] for details.

we need (or request) to make the distinction of the two

aspects of uncertainty (conflict and non-specificity), and to

consider them as additively separable. This is conceptually

very disputable because the randomness (or conflict) and

ambiguity (or non-specificity) are actually interwoven through

the mass value of the focal elements of the BBA and their

belief intervals.

Very recently, Zhang et al. in [22] did propose three new

effective MoUs not directly based on the aforementioned 2-

steps principle approach, and that is why they have attracted

our attention. These MoUs are denoted by H1(m), H2(m)
and H3(m) and they are respectively defined by5

H1(m) = −
∑

X⊆Θ

m(X) log2(P l(X)) +
∑

X⊆Θ

m(X)2 log2(|X|)

H2(m) = −
∑

X⊆Θ

m(X) log2(P l(X)) +
∑

X⊆Θ

m(X) log2(2
|X| − 1)

H3(m) = −
∑

X⊆Θ

m(X) log2(P l(X)) +
∑

X⊆Θ

|X|>1

m(X)|X|

Unfortunately, Zhang et al. fail to capture well the interwoven

link between conflict and non-specificity (or imprecision).

Actually the authors set arbitrarily the range of their MoU as

a simple parameter, either taken arbitrarily as [0, 2 log2(|Θ|)],
[0, log2(2

|Θ| − 1)] or [0, |Θ|], to define their H1(m), H2(m)
and H3(m) measures of uncertainty. Zhang’s approach is very

questionable, and actually other ranges could have been chosen

instead. Moreover Zhang et al. do not identify (nor propose)

the best MoU to use between H1(m), H2(m) and H3(m).
The other serious problem with Zhang’s approach is its lack

of solid justification for using the plausibility function in the

summation −
∑

X⊆Θ m(X) log2(P l(X)). Although effective

in the mathematical sense defined in section III, Zhang’s

new MoUs are ill-justified and they can also be considered

as conceptually flawed. That is why we present a better

conceptual effective measure of uncertainty for BBA in the

next section.

V. A NEW EFFECTIVE MEASURE OF UNCERTAINTY

A. Mathematical definition

The new effective measure of uncertainty we propose is

given by the following simple formula

U(m) =
∑

X∈2Θ

s(X) (8)

with

s(X) , −(1− u(X))m(X) log(m(X))

+ u(X)(1−m(X)) (9)

s(X) is the uncertainty contribution of X in the MoU U(m).
We call s(X) the entropiece of X . Because u(X) ∈ [0, 1]
and m(X) ∈ [0, 1] one has s(X) ≥ 0, and U(m) ≥ 0. The

5We have corrected here the definition of H3(m) which is mathematically
ill-formulated in [22].

 



entropiece s(X) takes into account the belief mass m(X), and

the uncertainty (or imprecision) u(X) = P l(X) − Bel(X)
about the unknown probability of X in a subtle interwoven

manner. The cardinality of X enters indirectly (i.e. not ex-

plicitly) in the derivations of Bel(X) and P l(X), and thus

in the calculation of u(X) and in the entropiece s(X). The

quantity −(1−u(X)) log(m(X)) = (1−u(X)) log(1/m(X))
entering in s(X) in (9) is the surprisal [8] log(1/m(X)) of

X discounted by the confidence (1−u(X)) one has about the

precision of P (X). The term −m(X)(1− u(X)) log(m(X))
is the weighted discounted surprisal of X . The second term

u(X)(1 − m(X)) corresponds to the imprecision of P (X)
discounted by (1 − m(X)) because the greater m(X) the

less one should take into account the imprecision u(X) in

the MoU. As we will prove next, this new very simple MoU

U(m) satisfies the four essential desiderata, and thus it is

effective and conceptually well justified, and it presents several

advantages over existing effective MoUs given in Section VII.

Because for X = ∅, one has m(∅) = 0 and u(∅) = 0 the

entropiece of the empty set ∅ is s(∅) = 0. Hence the expression

of U(m) can be written equivalently as

U(m) = s(∅) +
∑

X∈2Θ|X 6=∅

s(X) =
∑

X∈2Θ|X 6=∅

s(X) (10)

It is worth noting that for any BBA focused on X 6= ∅
with m(X) = 1, we have m(X) = Bel(X) = P l(X) = 1,

and thus u(X) = 0. In this case, the entropiece of X is6

s(X) = −(1− u(X))m(X) log(m(X)) + u(X)(1−m(X))

= −(1− 0)1 log(1) + 0(1− 1) = 0

In particular, if m(Θ) = 1 (which corresponds to the vacuous

BBA) we have the entropiece s(Θ) = 0.

U(m) is expressed in nats because we use the natural log-

arithm which makes derivations simpler, specially for making

some proofs in the sequel. U(m) can be expressed in bits by

dividing the U(m) value in nats by log(2) = 0.69314718....
This measure of uncertainty U(m) is a continuous function in

its basic belief mass arguments because it is a summation of

continuous functions.

B. Entropy of the vacuous BBA

Consider the FoD Θ of cardinality |Θ| = N greater than

zero, and the vacuous BBA mv defined on this FoD for

which mv(Θ) = 1 and mv(X) = 0 for any X 6= Θ in 2Θ.

For this vacuous BBA one always has Bel(Θ) = Pl(Θ) = 1
and thus u(Θ) = Pl(Θ)−Bel(Θ) = 0, and one has also

u(∅) = 0. For all elements X 6= Θ with X ∈ 2Θ \ {∅} one

has also necessarily Bel(X) = 0, Pl(X) = 1 and thus

6because log(1) = 0.

u(X) = Pl(X)−Bel(X) = 1. Consequently, the expression

(10) with the BBA mv becomes7

U(mv) = −
∑

X∈2Θ|X 6=∅

(1− u(X))mv(X) log(mv(X))

+
∑

X∈2Θ|X 6=∅

u(X)(1−mv(X))

= −(1− u(Θ))mv(Θ) log(mv(Θ))

−
∑

X∈2Θ|(X 6=∅)∧(X 6=Θ)

(1− u(X))mv(X) log(mv(X))

+ u(Θ)(1−mv(Θ))

+ [
∑

X∈2Θ|(X 6=∅)∧(X 6=Θ)

u(X)(1−mv(X))]

In this expression of U(mv) we have8







−(1− u(Θ))mv(Θ) log(mv(Θ)) = −(1− 0)1 log(1) = 0

−
∑

X∈2Θ|(X 6=∅)∧(X 6=Θ)(1 − u(X))mv(X) log(mv(X)) = 0

u(Θ)(1−mv(Θ)) = 0(1− 1) = 0
∑

X∈2Θ|(X 6=∅)∧(X 6=Θ) u(X)(1−mv(X)) = 2N − 2

Therefore, it comes finally for the vacuous BBA mv defined

on a FoD of size N > 0 the following MoU value

U(mv) = 2N − 2 (11)

The entropy U(m) makes perfect sense because for

the vacuous BBA mv(·) there is no information about

the conflicts between the elements of the FoD. One has

u(∅) = 0 because [Bel(∅), P l(∅)] = [0, 0], u(Θ) = 0 because

[Bel(Θ), P l(Θ)] = [1, 1], and for all X ∈ 2Θ \ {∅,Θ} one

has u(X) = 1 because [Bel(X), P l(X)] = [0, 1]. Hence, the

sum of all imprecisions of P (X) for all X ∈ 2Θ is exactly

equal to 2N − 2 when |Θ| = N . In the degenerate case where

|Θ| = N = 1, one has U(mv) = 21 − 2 = 0 which indicates

that there is absolutely no uncertainty in this very particular

case. This result makes perfect sense also. For non-degenerate

FoD (i.e. when |Θ| > 1) one has always U(mv) > log(N)
which means that the vacuous BBA representing the totally

ignorant source of evidence has an entropy greater than the

maximum of Shannon entropy log(N) obtained with the

uniform probability mass function distributed on Θ. This is

an expected result because no BBA can represent the total

ignorance, but the vacuous BBA.

C. Effectiveness of U(m)

In this subsection we establish the effectiveness of our new

generalized entropy U(m) defined in (8). For this, we prove

the following four lemmas.

Lemma 1: U(m) satisfies the desideratum D1.

Proof: Consider at first the very special case where

Θ includes only one element θ, that is Θ = {θ} and

|Θ| = 1. In this case there exists only one possible

7The notation a ∧ b means that the conditions a and b are both satisfied.
8For X 6= Θ, mv(X) = 0 and mv(X) log(mv(X)) = 0 log(0) = 0.

 



BBA over 2Θ = {∅, θ} defined by m(∅) = 0 and

m(θ) = 1. Hence Bel(θ) = P l(θ) = 1, u(θ) = 0, and

s(θ) = (1 − u(θ))m(θ) log(m(θ)) + u(θ)(1 −m(θ)) = 0.

Therefore U(m) = s(∅) + s(θ) = 0. In more general (i.e.

when |Θ| > 1) if X is a singleton of 2Θ (i.e. |X | = 1) and

if m(X) = 1 then Bel(X) = P l(X) = 1 and u(X) = 0.

For the elements Y of 2Θ \ {∅} containing X one has

also Bel(Y ) = P l(Y ) = 1 and therefore u(Y ) = 0. For all

elements Y of 2Θ \ {∅} not containing X one has always

Bel(Y ) = P l(Y ) = 0 and therefore u(Y ) = 0. In summary,

one has: 1) m(X) = 1, u(X) = 0, s(X) = 0, 2) m(Y ) = 0,

u(Y ) = 0, s(Y ) = 0 for all Y 6= X , Y ∈ 2Θ \ {∅}, and

3) s(∅) = 0. Applying formula (8) (or (10)) we obtain

U(m) = 0, which completes the proof of lemma 1.

Lemma 2: U(m) satisfies the desideratum D2.

Proof: Consider two FoD Θ et Θ′ with |Θ| = N and

|Θ′| = N ′ greater than zero, and suppose N < N ′. For

the vacuous BBA mΘ
v defined on the FoD Θ, one has

U(mΘ
v ) = 2N − 2. Similarly, for the vacuous BBA mΘ′

v de-

fined on the FoD Θ′, one has U(mΘ′

v ) = 2N
′

− 2. Because

the exponential function is an increasing function, one has

always 2N < 2N
′

, and also 2N − 2 < 2N
′

− 2. Therefore

U(mΘ
v ) < U(mΘ′

v ) when |Θ| < |Θ′|, which completes the

proof of lemma 2.

Lemma 3: U(m) satisfies the desideratum D3.

Proof: When the BBA m is Bayesian, its focal elements are

only singletons of 2Θ and Bel(X) = P l(X) for all X ∈ 2Θ.

Hence u(X) = 0 for all X ∈ 2Θ. Thus, in the expression (9)

of s(X) one has always −(1 − u(X))m(X) log(m(X)) =
−m(X) log(m(X)) and u(X)(1−m(X)) = 0(1−m(X)) =
0, so that s(X) = −m(X) log(m(X)). Therefore U(m) =
∑

X∈2Θ s(X) = −
∑

X∈2Θ m(X) log(m(X)). Because the

masses of all non-singleton elements of 2Θ are zero, we

finally obtain U(m) = −
∑

X∈2Θ||X|=1 m(X) log(m(X)) =
−
∑

X∈Θ m(X) log(m(X)), and this is Shannon entropy. This

completes the proof of lemma 3.

Lemma 4: U(m) satisfies the desideratum D4.

Proof: see the appendix.

Theorem: U(m) is an effective measure of uncertainty of a

basic belief assignment.

Proof: Because U(m) satisfies all desiderata D1, D2, D3, and

D4 as proved in lemmas 1–4, the measure of uncertainty U(m)
defined in (8) is effective.

D. Remarks about U(m)

Remark 1: It is worth noting that we do not have specified

a priori what should be the range of an effective MoU in

contrary to some axiomatic attempts made by different authors

as reported, for instance, in [12]. We consider that the choice

of the range must not be chosen a priori. The maximum range

must result of the effective MoU mathematical definition. We

only request the satisfaction of the desideratum D4, which is

much more general, natural and essential.

Remark 2: The choice of the desideratum D3 (compatibility

with Shannon probabilistic entropy) could be disputed be-

cause other entropy definitions and generalizations exist in

the probabilistic framework (as those defined by Rényi [13],

Tsallis [14], etc). We think however that Shannon entropy is

still the most used and preferred one for engineers working

in information fusion. The measure of uncertainty U(m)
presented in this paper could be (hopefully) generalized by

replacing the desideratum D3 by another one using another

choice of generalized entropy definition, which would obvi-

ously necessitate a modification of the definition of U(m).
This theoretical question has not yet been explored, and is left

for future research.

Remark 3: It can be proved9 that U(m) verifies the mono-

tonicity property. More precisely, if mY and mZ are two

distinct BBAs defined on the same FoD Θ and respec-

tively focused on Y and on Z in 2Θ, then one has always

U(mY ) < U(mZ) if |Y | < |Z|. As a special case, one has

U(mY ) < U(mZ) if Y ⊂ Z .

Remark 4: Consider a BBA mΘ defined on a FoD Θ. Its

zero-extension mΘ′

on a FoD Θ′ including Θ (i.e. Θ ⊆ Θ′)

is defined by mΘ′

(X) = 0 for all X ∈ 2Θ
′

not included in

2Θ, and mΘ′

(X) = mΘ(X) for all X ∈ 2Θ. It means that

[Bel(θi), P l(θi)] = [0, 0] for all θi ∈ Θ′\Θ. Under this condi-

tion, one has always U(mΘ) ≤ U(mΘ′

) because uΘ′

(X) ≥ 0
if X ∩ Y 6= ∅ for some Y ∈ 2Θ. Hence there exists at least

an extra term sΘ
′

(X) > 0 entering in U(mΘ′

) calculation

(w.r.t. U(mΘ)) if mΘ 6= mΘ′

v . Therefore, the extendability

property of Shannon entropy for probability measures must

be extended as U(mΘ) ≤ U(mΘ′

) for (non-Bayesian) basic

belief assignments. The equality U(mΘ) = U(mΘ′

) holds

if mΘ is a Bayesian BBA because U(mΘ) coincides with

Shannon entropy in this case.

VI. EXAMPLES

In this section we give several simple numerical examples

of the value of the measure of uncertainty U(m) expressed in

nats. The examples are given in Table I and they correspond

to different BBAs mi (i = 1, 2, . . . , 6), and to the vacuous

BBA mv defined on a FoD Θ. For |Θ| = 2, we have only

one possible union/disjunction θ1 ∪ θ2 in 2Θ which makes

the examples too simple and not very interesting. Because for

|Θ| ≥ 4 we have 24 = 16 elements of 2Θ to list, and due to

paper length restriction we just give here some examples for

|Θ| = 3 with Θ = {θ1, θ2, θ3}.

The numerical values of U(m) have been truncated to their

third decimal. m1 and m2 are Bayesian BBAs, and m2 is the

uniform Bayesian BBA. Hence we have U(m2) = log(|Θ|) =
log(3) ≈ 1.098 which is the maximum of Shannon entropy for

this FoD. The BBAs m3, . . . , m6 and mv are non-Bayesian

9Sketch of proof: prove that U(mY ) = 2|Θ| − 1 − |{X ∈ 2Θ|Y ⊆
X}| − |{X ∈ 2Θ|X ∩Y = ∅}| and U(mZ ) = 2|Θ| − 1− |{X ∈ 2Θ|Z ⊆
X}| − |{X ∈ 2Θ|X ∩ Z = ∅}|, and compare U(mY ) and U(mZ ) when
|Y | < |Z| to complete the proof.

 



BBAs, and U(mv) = 23 − 2 = 6 is the maximum value of

the new proposed generalized entropy.

X ∈ 2Θ m1 m2 m3 m4 m5 m6 mv

∅ 0 0 0 0 0 0 0
θ1 0.2 1/3 0.1 0.1 1/7 0 0
θ2 0.3 1/3 0.2 0.2 1/7 0 0

θ1 ∪ θ2 0 0 0.7 0.05 1/7 1 0
θ3 0.5 1/3 0 0.3 1/7 0 0

θ1 ∪ θ3 0 0 0 0.03 1/7 0 0
θ2 ∪ θ3 0 0 0 0.02 1/7 0 0

Θ 0 0 0 0.3 1/7 0 1

U(mi) 1.029 1.098 3.005 3.100 3.435 4 6

Table I
EXAMPLES FOR U(mi), i = 1, 2 . . . , 6 AND U(mv).

It is worth noting that a non-Bayesian BBA m can have an

entropy value U(m) smaller than the maximum of Shannon

entropy, which is normal and not surprising. For instance, if

we consider Θ = {θ1, θ2, θ3} and the BBA m(θ1) = 0.1,

m(θ2) = 0.8 and m(θ1 ∪ θ2) = 0.1, we get U(m) ≈ 0.909
which is smaller than log(|Θ|) = log(3) ≈ 1.098. Therefore,

the condition U(m) < log(|Θ|) does not imply that the BBA

m is necessarily a Bayesian BBA, but if U(m) > log(|Θ|) we

are sure that m is a non-Bayesian BBA. We recall also that

any BBA focused on a singleton has always zero uncertainty

because lemma 1 holds.

Abellán and Moral’s example revisited

We revisit Abellán and Moral’s example [23] with the FoD

Θ = {θ1, θ2, θ3} and the BBAs m(·) and m′(·) defined by
{

m(θ1) = m(θ2) = m(θ3) = 0.2

m(Θ) = 0.4






m′(θ1) = m′(θ2) = m′(θ3) = 0.161

m′(θ2 ∪ θ3) = 0.317

m′(Θ) = 0.2

Abellán and Moral’s intuitively think it is reasonable that m
should represent more uncertainty than m′ as m is completely

symmetrical and m′ points to θ2 ∪ θ3. We disagree with

this intuition because the authors did not take into account

the changes of masses values between m and m′, nor the

imprecisions of all unknown probabilities P (X) generated by

m, and the imprecisions of P ′(X) generated by m′.

If we analyze more carefully these two basic belief assign-

ments we get the belief intervals [Bel(X), P l(X)] based on

m, and the belief intervals [Bel′(X), P l′(X)] based on m′

listed in Table II. Based on the belief interval values listed in

Table II, it is clear that m′ generates in fact globally more

uncertainty (imprecisions on probabilities of elements of the

power set of Θ) than m if we compare u(X) and u′(X) values.

If we apply our new effective MoU definition, we obtain

U(m) = 3.1059 nats, and U(m′) = 3.3384 nats. One sees

that U(m) < U(m′), which well reflects that m′ is actually a

bit more uncertain than m, contrary to what one would expect

based on an incorrect intuition. This simple example is very

interesting because it shows clearly how a simplistic intuition

can easily fail.

X ∈ 2Θ [Bel(X), P l(X)] u(X) [Bel′(X), P l′(X)] u′(X)
∅ [0,0] 0 [0,0] 0
θ1 [0.2,0.6] 0.4 [0.161,0.361] 0.200
θ2 [0.2,0.6] 0.4 [0.161,0.678] 0.517

θ1 ∪ θ2 [0.4,0.8] 0.4 [0.322,0.839] 0.517
θ3 [0.2,0.6] 0.4 [0.161,0.678] 0.517

θ1 ∪ θ3 [0.4,0.8] 0.4 [0.322,0.839] 0.517
θ2 ∪ θ3 [0.4,0.8] 0.4 [0.639,0.839] 0.200

Θ [1,1] 0 [1,1] 0

Table II
BELIEF INTERVALS DRAWN FROM m AND m′ .

Entropic surface for all BBAs m(.) defined on Θ = {θ1, θ2}

The figure 1 shows the entropic surface corresponding to

U(m) when m(θ1) ∈ [0, 1], m(θ2) ∈ [0, 1] such that m(θ1)+
m(θ2) ≤ 1, and with m(θ1 ∪ θ2) = 1−m(θ1)−m(θ2).

Figure 1. Entropy value U(m) for all m(.) defined on Θ = {θ1, θ2}.

One verifies visually that U(m) surface is smooth. Its border

in the vertical plane passing through the points (m(θ1) =
1,m(θ2) = 0) and (m(θ1) = 0,m(θ2) = 1) corresponds to

Shannon entropy curve whose maximum value is log(2) ≈
0.6931, which is what we naturally expect. The unique max-

imum value of U(m) is for the vacuous BBA mv, and it is

U(mv) = 2|Θ| − 2 = 2.

VII. CONCLUSION

In this paper we have presented a new effective measure of

uncertainty for basic belief assignments which is conceptually

better justified than the few existing effective measures defined

so far. This new generalized entropy measure verifies all the

four very natural and essential desiderata, and presents the

main advantages of simplicity, continuity, monotonicity and

it also responds to the change of dimension of the frame of

discernment. It is based on the interwoven link between the

randomness and the imprecision of unknown probabilities of

 



all elements of the power set of the frame of discernment

which is inherent to any basic belief assignment.

This new entropy measure makes a clear distinction be-

tween the maximum uncertainty of the vacuous BBA, and the

uncertainties related to all non-vacuous BBAs, in particular

with respect to Bayesian BBAs. Hence, we have answered

positively to the challenging question about the existence

of a better conceptual effective measure of uncertainty for

BBAs. We hope that this new effective entropy measure will

arouse the interest of users of belief functions who need an

effective entropy measure in their own applications. It is worth

mentioning that a dual of this new measure of entropy can be

defined to characterize the information content of any BBA,

as well as the notion of information gain and information

loss between two BBAs. This will be reported in a future

publication.

As a first perspective of this theoretical work, this new

entropy measure could be useful to develop advanced methods

for performance evaluation of information fusion techniques,

and for reasoning under uncertainty using the belief functions.

As a second perspective, this new entropy could also serve to

measure the uncertainty of quantitative possibility measures

in the possibility theory because any quantitative possibility

measure is a special case of a plausibility function which is

one-to-one with a consonant belief mass function (i.e. a BBA

having nested focal elements).
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APPENDIX

Proof of Lemma 4

We first note from the expression (9) of s(X) that we always

have s(X) = u(X) for X ∈ 2Θ and X 6= ∅ if m(X) = 0. We

have also s(X) = 0 for X ∈ 2Θ and X 6= ∅ if m(X) = 1.

For X ∈ 2Θ and X 6= ∅, if 0 < m(X) < 1 one has

s(X) = −(1− u(X))m(X) log(m(X)) + u(X)(1−m(X))

= (1− u(X))m(X) log(
1

m(X)
) + u(X)(1−m(X))

< (1− u(X))m(X)(
1

m(X)
− 1) + u(X)(1−m(X))

This strict inequality comes from the fact that for any real

number x > 0 with x 6= 1, the strict inequality log(x) < x−1
holds10 (see [24], p. 68). Because (1− u(X))m(X)( 1

m(X) −
1) + u(X)(1 − m(X)) = 1 − m(X), one has finally the

following inequality

s(X) < 1−m(X) (12)

10because the derivative f ′(x) of f(x) = x−1− log(x) is always positive
for x > 0 except for x = 1 where f ′(1) = 0.

To prove that U(m) < U(mv), we consider all the cases for

the distribution of the belief masses in the BBA m 6= mv as

follows:

Case 1: 0 < m(X) < 1 for all X 6= ∅ of 2Θ.

In this (most general) case we have

U(m) =
∑

X∈2Θ|X 6=∅

s(X) <
∑

X∈2Θ|X 6=∅

(1−m(X))

The majorant
∑

X∈2Θ|X 6=∅(1−m(X)) can be written as

∑

X∈2Θ|X 6=∅

1−m(X) =
∑

X∈2Θ|X 6=∅

1−
∑

X∈2Θ|X 6=∅

m(X)

Because one has
∑

X∈2Θ|X 6=∅ 1 = 2N − 1, and
∑

X∈2Θ|X 6=∅ m(X) = 1, the majorant is given by

∑

X∈2Θ|X 6=∅

1−m(X) = 2N − 1− 1 = 2N − 2

This majorant corresponds exactly to U(mv), therefore we

have proved that

U(m) < U(mv) (13)

when 0 < m(X) < 1 for all X 6= ∅ of 2Θ.

Case 2: Consider the particular BBA for which m(X) = 1
for some X 6= ∅ and X 6= Θ in 2Θ.

• If X is a singleton of 2Θ then Bel(X) = Pl(X) = 1
and u(X) = 0. For the elements Y of 2Θ including X
one has Bel(Y ) = P l(Y ) = 1 and thus u(Y ) = 0.

for the elements Y of 2Θ not including X one always

has Bel(Y ) = P l(Y ) = 0 and thus u(Y ) = 0. Hence,

m(X) = 1, u(X) = 0, s(X) = 0, and also m(Y ) = 0,

u(Y ) = 0, s(Y ) = 0 for all Y 6= X . Therefore we get

U(m) = 0 which is smaller than U(mv) = 2N − 2, i.e.

U(m) < U(mv) in this case.

• If X is not a singleton of 2Θ and if m(X) = 1 then

Bel(X) = P l(X) = 1, u(X) = 0 and s(X) = 0.

We have also s(Θ) = 0 because m(Θ) = 0, and we

have u(Θ) = 0 because Bel(Θ) = P l(Θ) = 1. For all

Y 6= ∅, Y 6= X and Y 6= Θ such that X ∩ Y = ∅,

we always have u(Y ) = 0 because Bel(Y ) = 0 and

P l(Y ) = 0. For all Y 6= ∅, Y 6= X and Y 6= Θ such

that X ∩ Y 6= ∅, we always have u(Y ) = 1 because

Bel(Y ) = 0 and P l(Y ) = m(X) = 1 because X
has a non-empty intersection with Y . Consequently, the

expression of U(m) can be reformulated as

U(m) = s(∅) + s(X) + s(Θ)

+
∑

Y ∈2Θ\{∅,X,Θ}|Y ∩X=∅

s(Y )

+
∑

Y ∈2Θ\{∅,X,Θ}|Y ∩X 6=∅

s(Y ) (14)

We have s(∅) + s(X) + s(Θ) = 0 because s(∅) = 0,

s(Θ) = 0 and s(X) = 0 when m(X) = 1. For

Y ∈ 2Θ \ {∅, X,Θ} such that Y ∩ X = ∅, we have

 



u(Y ) = 0 and m(Y ) = 0, hence s(Y ) = −(1 −
u(Y ))m(Y ) log(m(Y )) + u(Y )(1 − m(Y )) = (1 −
0)0 log(0) + 0(1− 0) = 0. Consequently

∑

Y ∈2Θ\{∅,X,Θ}|Y ∩X=∅

s(Y ) = 0

For Y ∈ 2Θ \ {∅, X,Θ} such that Y ∩ X 6= ∅,

we have u(Y ) = 1 and m(Y ) = 0, hence s(Y ) =
−(1 − u(Y ))m(Y ) log(m(Y )) + u(Y )(1 − m(Y )) =
(1− 1)0 log(0) + 1(1− 0) = 1. Consequently,

∑

Y ∈2Θ\{∅,X,Θ}|Y ∩X 6=∅

1 < 2N − 2

Therefore, if a BBA is focused on any element X 6= Θ
(singleton, or not), that is if m(X) = 1, we have proved that

the strict inequality U(m) < U(mv) always holds.

Case 3: Some elements of the BBA have at least a zero

mass value, and others have some strictly positive mass values

strictly smaller than 1.

The measure of uncertainty U(m) defined in (10) requires

2N − 1 terms s(X) to calculate in general (i.e. when all

X ∈ 2Θ \ {∅} are focal elements of m). If some elements

X have zero mass value, this measure U(m) can always be

decomposed as

U(m) =
∑

X∈2Θ|(X 6=∅)∧(m(X)=0)

s(X)

+
∑

X∈2Θ|(X 6=∅)∧(0<m(X)<1)

s(X) (15)

Because one has s(X) = u(X) when m(X) = 0, the first

summation of (15) is equal to
∑

X∈2Θ|(X 6=∅)∧(m(X)=0) u(X).
Because u(X) ≤ 1, and s(X) < 1−m(X) when m(X) < 1,

one has the following strict inequality that holds

U(m) <
∑

X∈2Θ|(X 6=∅)∧(m(X)=0)

1

+
∑

X∈2Θ|(X 6=∅)∧(0<m(X)<1)

(1−m(X))

We can have at most 2N−3 elements of 2Θ\{∅} having a mass

equal to zero because we must have at least (2N −1)− (2N −
3) = 2 elements X1 and X2 of 2Θ for which 0 < m(X1) < 1,

0 < m(X2) < 1 with m(X1) + m(X2) = 1. If we assume

that there are 1 < M ≤ 2N −3 elements of 2Θ \{∅} that have

zero mass value, then there exist K = 2N − 1−M elements

X1, X2, . . . , XK of 2Θ \ {∅} for which 0 < m(Xk) < 1,

k = 1, . . . , K and with
∑(2N−1)−M

k=1 m(Xk) = 1. Hence,

U(m) < M +

(2N−1)−M
∑

k=1

(1−m(Xk))

or equivalently,

U(m) < M + (2N − 1)−M
︸ ︷︷ ︸

2N−1

−

(2N−1)−M
∑

k=1

m(Xk)

︸ ︷︷ ︸

1

Hence, U(m) < 2N − 2, and consequently we have U(m) <
U(mv) because U(mv) = 2N − 2.

In summary, we have examined all possible cases for the

distribution of the belief masses, and we have proved that we

always have the strict inequality U(m) < U(mv) satisfied.

This completes the proof of the Lemma 4.
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