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We present a novel photonic time-delay reservoir computing architecture based on an asymmetric reconfigurable Mach-Zehnder interferometer. Our simulation results show excellent performance on benchmark tasks such as NARMA10. We also explore a novel energy-efficient technique for reconfiguring the memory capacity of the system through coupling modulation, which may find application for performing tasks with different memory requirements using the same system, thus reducing complexity and footprint.

INTRODUCTION

The ever-growing computational demands in deep learning applications call for a paradigm shift in information processing. Reservoir computing aims to perform computations in an intertwined, brain-inspired manner, in contrast to traditional Von Neumann architectures. Due to the presence of feedback connections between the nodes, reservoir computing is especially well-suited to solve tasks which require the knowledge of previous inputs, such as time series prediction, speech recognition, and temporal bitwise operations [START_REF] Tanaka | Recent advances in physical reservoir computing: A review[END_REF]. Through a nonlinear, dynamical system (i.e., reservoir), the input is mapped onto a higher dimensional state space which can then be spatially and/or temporally sampled. The rich dynamics of the output response allows to solve non-linear, memorydependent tasks through a linear combination of the read-out responses with output weights obtained by linear regression methods. Fortunately, only the output weights need be considered for training; the input weights, and internal weights of the reservoir, which constitute the connection strengths between the different nodes, are set and fixed to values which depend on the desired dynamical operating point and fabrication requirements of the system. Recently, it has become of great interest to implement reservoir computing architectures on photonic integrated circuits (PICs) thanks to their improved performance compared to electronic approaches in terms of power consumption and speed [START_REF] Vandoorne | Experimental demonstration of reservoir computing on a silicon photonics chip[END_REF][START_REF] Donati | Microring resonators with external optical feedback for time delay reservoir computing[END_REF]. Time-delay reservoir computing (TDRC) offers a footprint-friendly solution, requiring only a single physical non-linear node with feedback. The feedback line is sampled N times in the span of one input bit, such that the N samples can thus be viewed as the responses of N "virtual" nodes. A weighted linear combination of the output over every N samples constitutes one prediction made by the reservoir. In this work, we demonstrate a novel photonic architecture based on an asymmetric Mach-Zehnder Interferometer (MZI) for TDRC and suggest coupling modulation [START_REF] Sacher | Coupling modulation of microrings at rates beyond the linewidth limit[END_REF] as a means of reconfiguring the memory capacity of the system. This provides a more energy-efficient approach compared to approaches introducing a feedback attenuation block where a portion of the optical power is simply lost in the attenuation block rather than being re-routed to the read-out. Our approach also allows to shift the resonance wavelength, fine tune the resonator coupling condition to compensate for fabrication tolerances (e.g., to achieve critical coupling), and modify the memory capacity of the system with only one reconfigurable MZI.

RESERVOIR ARCHITECTURE

The reservoir architecture is based on an asymmetric MZI formed by two 3dB directional couplers and different arm lengths (1 mm and 3.88 mm) found through parametric sweeps, and a delay line, as shown in Fig. 1(a). In simulation, this difference in arm lengths has been found to enhance the richness of the output response by increasing the asynchronous character of the system i.e., the bit period versus the feedback loop duration. The bottom ports of the MZI are connected to each other by a delay line of length 13.12 cm chosen to almost match the bit period (τ ≈ 1 ns), thus allowing direct coupling (without relying on light recycling) of the nearest neighboring input bits. This architecture resembles an all-pass ring resonator, though the asymmetric MZI leads to different dynamics. In fact, it allows for the light to effectively propagate and interfere in multiple optical cavities, formed between the MZI arms and the feedback delay line. An integrated photonics platform based on thin-film lithium niobate on insulator [START_REF] Boes | Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits[END_REF] was considered for simulations to set the parameters as in Fig. 1(b).

The architecture is simulated using Photontorch [START_REF] Laporte | Highly parallel simulation and optimization of photonic circuits in time and frequency domain based on the deep-learning framework PyTorch[END_REF] and trained on two well-known tasks in literature, first introduced in [7]:

• the NARMA10 (10 th order Nonlinear Auto-Regressive Moving Average) task, which is a discrete-time nonlinear task with 10 th order lag, and where the output series is generated through a recursive formula and the input is drawn from a uniform distribution. Due to non-linearity and long time lag, predicting the output of NARMA10 poses a challenge for classical computing systems • the linear memory capacity task, which is a measure of how many past inputs the system can "remember". 

TIME-SERIES PREDICTION

The 10 th order NARMA (NARMA10) function is given by:

𝑦𝑦[𝑛𝑛 + 1] = 0.3𝑦𝑦[𝑛𝑛] + 0.05𝑦𝑦[𝑛𝑛] � 𝑦𝑦[𝑛𝑛 -𝑖𝑖] 9 𝑖𝑖=0 + 1.5𝑢𝑢[𝑛𝑛]𝑢𝑢[𝑛𝑛 -9] + 0.1
where 𝑦𝑦[𝑛𝑛] and 𝑢𝑢[𝑛𝑛] are the function output and input values, respectively, at discrete timestep 𝑛𝑛. The performance metric is the normalized mean square error (NMSE) between target and predicted values of the function, whereby a value of 1 refers to a constant prediction of the average value (i.e., containing no prediction of the function itself) and the desired value of 0 to a perfect prediction of the function. A training stream of 3000 samples is constructed from a uniform distribution of random numbers between 0 and 0.5. A mask based on random numbers from a uniform distribution is generated and applied to each input sample for the sample holding duration. This enables the reservoir to respond in a much richer way within the span of one input sample. In our case, the mask length is equal to the number of virtual nodes (𝐿𝐿 𝑀𝑀 = 𝑁𝑁 = 50). For validation, we used a different stream of similar length to the training stream. The NMSE obtained for 50 nodes is 0.13, which is close to the NARMA10 performance obtained in [START_REF] Paquot | Optoelectronic Reservoir Computing[END_REF]. The non-linearity produced by the photodetector, by virtue of squaring the optical field, proves to be sufficient for this kind of task. The prediction results, along with a study of the effect of the number of virtual nodes on the NMSE, are shown in Fig. 2. 

TUNABLE MEMORY CAPACITY

The memory capacity 𝑀𝑀𝑀𝑀 𝑘𝑘 of the system for an input shifted by 𝑘𝑘 timesteps is given by:

𝑀𝑀𝑀𝑀 𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐 2 (𝑢𝑢[𝑛𝑛 -𝑘𝑘], 𝑦𝑦 𝑘𝑘 [𝑛𝑛]) 𝜎𝜎 2 (𝑢𝑢[𝑛𝑛])𝜎𝜎 2 (𝑦𝑦 𝑘𝑘 [𝑛𝑛]) , 𝑘𝑘 = 1,2,3, …
where 𝑦𝑦 𝑘𝑘 [𝑛𝑛] is the prediction. In this task, the reservoir is trained to reconstruct the input 𝑢𝑢[𝑛𝑛] from a time-shifted version of it. An 𝑀𝑀𝑀𝑀 𝑘𝑘 of 1 means a perfect memory of the k-shifted input stream and 0 means the opposite. The linear memory capacity of the system is given by ∑ 𝑀𝑀𝑀𝑀 𝑘𝑘

𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘=1

where 𝑘𝑘 𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑁𝑁.

For a 2x2 MZI, changing the phase difference between the two arms changes the portion of total power exiting the coupler at each port. In essence, one can view this as tuning the coupling to the resonator. By placing optical phase shifters on the MZI arms, we can obtain different linear memory capacities of the system, as shown in Fig. 3(a). For this task we used the same configuration and simulation parameters as shown in Fig. 1(b). The input stream was constructed out of 500 random numbers within a uniform distribution between 0 and 1. To calculate 𝑀𝑀𝑀𝑀 𝑘𝑘 at 𝑘𝑘 = 50 requires that at least the first 50 input points are removed. The results obtained show a change in linear memory capacity from 17.5 to 6.2, with the minimum value occurring around 22° and 180° phase shifts. This is analogous to changing the coupling coefficient of the all-pass resonator.

The power coupled as a function of the applied phase shift is shown by a frequency domain simulation of the asymmetric MZI in Fig. 3(b). This approach allows the architecture to be adjusted for the optimal coupling coefficient after fabrication and to choose a specific feedback attenuation, while at the same time also tuning the resonance frequency. The power that is not coupled to the feedback delay line is routed to the read-out rather than being lost as in standard configuration where an attenuation block is used. The proposed architecture allows using just one active control element to achieve all these different functions and also takes into account fabrication tolerances, which can heavily affect coupling gaps in ring resonators as used in previous architectures [START_REF] Donati | Microring resonators with external optical feedback for time delay reservoir computing[END_REF].

CONCLUSION

We have shown a novel photonic reservoir computing architecture based on an asymmetric MZI allowing reconfigurable memory capacity at a system-level. Results show excellent performance on NARMA10 benchmark task. Furthermore, a new way of tuning the memory capacity is demonstrated achieving almost a threefold change. This could be used for training and optimizing a single system for tasks with different memory requirements.
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 1 Fig. 1. (a) Asymmetric MZI-based reservoir; (b) Simulation parameters
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 2 Fig. 2. (a) Target and predicted values for 100 samples; (b) NMSE as a function of number of virtual nodes N
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 3 Fig. 3. (a) Memory capacity as a function of the phase difference between the MZI arms; (b) MZI power coupling coefficient (κ 2 )for different values of phase difference between its arms
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