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A B S T R A C T   

To understand the long-term self-association of gum arabic (GA) in water, the time-course development during 
aggregation of GA molecules with or without an oil/water interface was studied. A simple experimental setup, 
using a rheometer was employed. The transparent cone-plate geometry was filled with gum arabic solution, and 
the periphery of the geometry was covered with oils or left uncovered. The observed time-course increase in 
shear modulus revealed that the continuous structuration of GA molecules occurs in the presence of oil at the 
interface. The network structure of the GA molecules was mostly re-dispersible with a flow test. In addition, the 
degree of structuration of GA aggregates depended on the type of oil. The physical properties of the aqueous GA 
solution, as measured by the rheological experimentation, were found to be strongly influenced by the interfacial 
conditions, namely air/water or oil/water.   

1. Introduction 

Emulsion plays a pivotal role in beverage and salad dressing appli-
cations. The oily flavor compounds are dispersed into the aqueous phase 
through emulsification (Given, 2009; Mao, Roos, Biliaderis & Miao, 
2017; Molet-Rodríguez, Salvia-Trujillo & Martín-Belloso, 2018). 
Small-molecule surfactants (sucrose esters, Tweens, and SDS) or bio-
polymers (proteins and polysaccharides) are often employed (Mole-
t-Rodríguez et al., 2018). However, with increasing consumer demand 
for natural products in foods (Dickinson, 1993), synthetic 
small-molecule surfactants are being replaced with natural emulsifiers, 
especially using biopolymers (McClements & Gumus, 2016; McCle-
ments, Bai & Chung, 2017; Ozturk & McClements, 2016). 

Gum arabic (GA), a tree-based proteoglycan secreted from Acacia 
trees (Acacia senegal), is a typical biopolymer used in food applications 
(Phillips & Williams, 2000; Rideal & Youle, 1891). Owing to its 
amphiphilic nature, GA serves as a powerful emulsifying agent in 
beverage applications. Such amphiphilic nature originates from the 
hydrophilic negatively charged highly branched polysaccharides 
(~98 wt.%) and hydrophobic peptide residues (~2 wt.%) (Randall, 

Phillips & Williams, 1988). Unlike the protein-based emulsifiers, GA can 
form stable micron or submicron oil droplets over a wide range of pH, 
ionic strength, and temperature (McClements et al., 2017). However, 
one of its drawbacks is the high surfactant-to-oil ratio, as a highly 
concentrated (5–20 wt.%) GA solution is necessary for emulsification. 
Moreover, several studies have reported that the long-term emulsion 
stability of GA is inferior to that of other types of tree-based gums, such 
as gum ghatti and modified starch (Chanamai & McClements, 2001; Ido 
et al., 2008). 

In a previous investigation (Isobe et al., 2020), the authors attempted 
to clarify the key parameter that can further improve the long-term 
emulsion stability of GA on a structural basis. It was found that the 
mode of adsorption of GA molecules onto the oil surface is dependent on 
the interfacial tension of oils. Further, it was also observed that inter-
facial adsorption behavior may be governed not by the primary structure 
of GA but by the secondary aggregating structure of GA molecules 
formed through self-association. This insight was obtained over a rela-
tively short period, having a surface age less than 2000s. Hence, the 
practically important long-term behavior of the GA’s self-association 
remains unclear. 
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This study aims to understand the long term self-association of GA 
molecules, ranging up to one day in a practically important concentrated 
GA solution. The structuration of GA molecules was monitored with a 
simple rheological experimental setup: cone-plate geometry. Generally, 
to avoid the undesirable evaporation of water from the liquid sample in 
cone-plate geometry, two conditions are chosen for a cone-plate geom-
etry, (i) covered with semi-closed high-humidity conditions (Sato & 
Breedveld, 2005) or (ii) covered with oils (Boger & Rama Murthy, 
1969). However, as mentioned above, GA molecules can adsorbe onto 
the oil/water interface. Therefore, the structuration of GA, observed 
under two different conditions, i.e., semi-closed or oil-covered condi-
tions, can be different. Here, to understand the effect of oils around 
cone-plate geometry, the structuration of GA molecules, with or without 
oils around the cone-plate geometry, was monitored and compared. The 
obtained insights should be beneficial in understanding the time-course 
change in the quality of oil/water-based products. For example, the 
required rigorousness to shake the salad dressing prior to use after a 
certain period of shelf time can also be gauged with the help of this 
study. 

2. Materials and methods 

2.1. Materials 

Commercial gum arabic (Acacia senegal, GA) in spray-dried form was 
supplied by San-Ei Gen F.F.I., Inc., Japan. Pure water (Milli-Q) was used 
in this study. Reagent-grade dodecane (Wako Chemical Co., Ltd., Japan) 
was used without further purification. Further, commercial colza oil 
(purchased at Carrefour, France) was utilized as the vegetable oil. GA 
was dissolved in pure water at room temperature to obtain a 10 wt.% GA 
solution, which was stored at 4 ◦C until further use. 

2.2. Multi-angle dynamic light scattering 

Multi-angle dynamic light scattering (DLS) was performed using an in- 
house DLS instrument, as detailed in Supplementary Materials (Figure S1). 
A green laser (MSL-FN-532, wavelength: 532 nm, power: 100 mW, 
Changchun New Industries Optoelectronics Technology Co. Ltd., China), 
stepper motor (NEMA23, 57HS25), CCD camera (AcA640–100 gm/gc, 
Basler AG, Germany), photomultiplier (SPCM-AQR-13, Excelitas Technol-
ogies, USA), and a correlator (Flex03-LQ-1, Correlator.com, USA) were 
employed. The GA solution sample was placed in a glass tube having a 
diameter of 8 mm, and a wall thickness of 1 mm (LS Instruments AG, 
Switzerland). DLS measurements were performed at diffraction angles 
ranging from 30◦ to 150◦

2.3. Rheometry 

Rheological measurements were performed using an MCR301 in-
strument (Anton Paar, GmbH). The GA solution was filled in the trans-
parent cone-plate geometry (gap: 0.36 mm, cone diameter: 49.923 mm, 
cone angle: 0.983◦, and cone truncation: 98 μm, CP50–1/PC, Anton 
Paar, GmbH). The oils were poured between the GA solution and the 
stainless-steel ring wall, as summarized in Fig. 2. Each run consisted of 
four steps: (1) flow sweep test, wherein the shear rate was increased 
from 0.01 to 1000 s − 1), (2) a series of oscillatory tests with an angular 
frequency of 1.03 rad/s and shear strain of 0.5%, at certain time in-
tervals up to 20 h, (3) flow sweep test wherein the shear rate was 
increased from 0.01 to 1000 s − 1, and (4) an oscillatory test at an 
angular frequency of 1.03 rad/s and shear strain of 0.5%. Using a strain 
sweep test (Figure S2), it was confirmed that at a shear strain of 0.5%, 
the loss and storage moduli were constant. Therefore, the oscillatory test 
at a shear strain of 0.5% did not destroy the network structure made of 
GA molecules. All the experiments were performed at 25 ◦C. Moreover, 
the reproducibility of the measurements was checked by refilling the 
samples and performing the same experiments at least three times, with 

less than 5% difference among the runs. Additionally, to remove the 
effect originating from the air/GA solution interface, and to confirm 
rotational rheometry measurements, dynamic viscosity was measured 
using a rolling ball viscometer (Lovis 2000 M, Anton Paar, GmbH). 

3. Results and discussion 

The rheological experimental setup under semi-closed high-humidity 
conditions is depicted by Fig. 1. The GA solution was filled in the 
transparent cone geometry, and the water was filled in the water 
channel of a stainless-steel ring placed around the cone-plate geometry. 
In this manner, a sufficiently high humidity was maintained to avoid 
water evaporation from the GA solution. The entire setup was covered 
with a lid composed of two parts, and a hole in the middle to allow free 
movement of the shaft of the upper cone geometry. It was confirmed 
that, under this semi-closed environment, the increase in GA concen-
tration was negligibly small, i.e., less than 0.2 wt.% even 24 h after 
filling. This indicates that the effect of evaporation was negligible. 

First, to dissociate the pre-formed aggregates of GA molecules, the 
GA solution was subjected to a flow sweep test, as shown in Fig. 2. The 
viscosity flow curve clearly shows the shear thinning behavior, i.e., 
decrease in viscosity with an increase in shear rate. The viscosity 
reached an almost constant value of approximately 3.5 mPa∙s at a high 
shear rate (~1000 s − 1), which corresponds well to the dynamic vis-
cosity measured by a rolling-ball viscometer. 

Further, right after the flow sweep test shown in Fig. 2, a frequency 
sweep test was performed. The frequency dependence of the shear 
moduli in the 10 wt.% GA solution observed under semi-closed high- 
humidity conditions is shown in Fig. 3. The storage modulus was 1.5 
times higher than the loss modulus, up to an angular frequency of 
10 rad/s. This suggests that 10 wt.% GA solution behaved as a weak gel 
(Winter & Mours, 1997), where the aggregates of GA molecules form the 
network structure. Since this measurement was performed just after a 
flow sweep test (Fig. 2), the network structure of GA molecules was 
formed within a few minutes, suggesting a fast structuration that pro-
ceeds on a minute time scale. Above 10 rad/s, the viscous and elastic 
moduli follow a power law with an exponent of 2, owing to the inertia of 
the upper cone geometry (Auffret et al., 2009; Krieger, 1990; Läuger & 
Stettin, 2016; Yao, Larsen & Weitz, 2008) and fluid inertia (Böhme & 
Stenger, 1990). 

To monitor the time-course change on an hour time scale in shear 
modulus, namely storage and loss modulus, in semi-closed high-hu-
midity conditions, oscillatory tests were performed at a certain time 
interval (Fig. 4a). The shear moduli increased, up to 3–5 h, and 
decreased to a steady state at 15 h (Fig. 4a). This fluctuation before 
stabilization is possibly due to the stabilization of humidity in the 
experimental setup. At steady state, while the loss modulus is close to the 
initial value (~0.03 Pa), the storage modulus (~0.11 Pa) was approxi-
mately twice as high as the initial value (~0.05 Pa). This suggests that a 
relatively slow structuration of GA molecules proceeds on an hourly 
time scale. These structured GA molecules were subjected to flow sweep 
tests (Fig. 4b). As in Fig. 2, the viscosity reached almost the same level of 
3.5 mPa∙s at high shear rate (1000 s − 1), indicating the complete 
dissociation of GA molecules by shearing. However, the thinning 
behavior was more prominent than that observed in the initial state, 
shown by the open triangles in Fig. 4b. The viscosity at the lowest shear 
rate (0.01 s − 1) increased by three times from the initial state. This also 
corroborates the structuration of GA molecules with time, leading to the 
thixotropic nature of the aqueous GA solution (Li et al., 2011). 

Further, the effect of oil at the interface in the cone-plate geometry 
was examined, as shown in Fig. 5. The GA solution was filled in the 
transparent cone geometry, and oil was gently poured between the GA 
solution and stainless-steel ring wall. The transparent appearance of the 
cone geometry allowed the visual confirmation that there was no 
penetration of oil beneath or onto the cone geometry. Thus, the oil 
contacted the GA solution and the lower edge of the cone geometry. 
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With this setup, the time-course change in shear modulus, namely 
storage and loss modulus, was monitored by performing oscillatory tests 
at a certain time interval. The obtained shear moduli cannot be dis-
cussed quantitatively. However, the monitoring of the structure of GA 
molecules was successful as follows. 

Before starting to monitor the time-course change in shear modulus, 
a flow sweep test was performed to dissociate the pre-formed network 
structure of aggregated GA molecules (open circle in Fig. 6b). A typical 
shear thinning behavior was observed, as in the semi-closed high-hu-
midity condition shown in Fig. 2 and Fig. 4b. Using the following 
oscillatory tests at a certain time interval, the formation of the network 
structure of GA molecules from the completely dissociated state was 
monitored. The time-course changes in the storage (G’) and loss (G’) 
moduli of the GA solution filled with vegetable oil are shown in Fig. 6a. 
Both G’ and G’’ showed a similar trend, i.e., a steep rise up to 2 h fol-
lowed by a slow but continuous increase up to 20 h. This continuously 
increasing trend of shear moduli was opposite to the case with semi- 
closed high humidity conditions. This infers that the structuration of 
aggregated GA molecules in the oil-covered geometry developed more 
highly than in the case of semi-closed high-humidity conditions. 

To determine whether this structure can be dissociated, a flow sweep 
test was performed (filled circle in Fig. 6b). The viscosity decreased with 
increasing shear rate, and reached an almost constant value of approx-
imately 10 mPa∙s at a high shear rate (~1000 s − 1). This indicates that 
the GA solution recovered the initial state. However, the viscosity at the 
lowest shear rate (3000 mPa∙s at 0.05 s − 1) was thirty-times higher than 
that of the initial flow sweep test (100 mPa∙s), whereas the increase in 
viscosity was only three times in the case of semi-closed high humidity 
conditions (Fig. 4b). Therefore, this also corroborates the higher 
development of structured GA molecules in the oil-covered geometry in 
comparison with the semi-closed high humidity condition. 

Additionally, even after the flow test, no artifacts, such as emulsion 
formation, were observed in the experimental set-up (Figure S3a). This 
ensured the validity of the data obtained with the present setup. After 
the flow test (Fig. 6b), an oscillatory measurement was performed to 
determine whether the shear modulus recovered the initial values. As 
shown in Fig. 6a, the storage and loss moduli were almost identical to 
the initial state, indicating that the dissociation of the network structure 
by a simple flow test was successful. 

To check the reversible nature of the structuration of GA molecules, a 
second run of the oscillatory test was conducted at certain time intervals 
(Fig. 7a). As in the case of first run (Fig. 6a), the second run exhibited the 
following trend: a steep rise at an early stage (up to 2 h) followed by a 

Fig. 1. Schematic representation of the experimental set-up used on rheometer for semi-closed high-humidity condition.  

Fig. 2. Viscosity flow curve of GA solution just after the filling in an experi-
mental set-up with semi-closed high-humidity condition (Fig. 1). The mea-
surement was performed by a flow sweep test, wherein the shear rate was 
increased from 0.01 to 1000 s − 1. 

Fig. 3. Frequency dependence of shear moduli observed in semi-closed high- 
humidity condition. This measurement was performed just after a flow sweep 
test (Fig. 2). Each point in the figure was obtained in a stationary viscos-
ity condition. 
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slow but continuous increase. The rate in the second run was faster than 
the first run, whereas the shear modulus in the second run was 
approximately 30% higher than the first run. This is probably because 
the remaining undissociated GA species may facilitate the reformation of 
the network structure. 

At the end of the second run, a flow sweep test was conducted to 
dissociate the network structure of the GA molecules (Fig. 7b). In the 
second run, the shear rate was increased up to 5000 s − 1, being five 

times faster than the first run. The flow curve showed an almost identical 
trend to the first run (Fig. 6b), except for the outlier at 5000 s − 1. This 
anomaly was caused by the formation of emulsion droplets, as shown in 
Figure S3b. This result indicates that the current experimental setup is 
valid and repeatable when the shear rate does not exceed 1000 s − 1 in 
the flow test. 

As shown above, the developed structure of GA molecules in the oil- 
covered geometry was observed. The origin of this higher development 
can be the condensation of GA molecules in the vicinity of the oil/water 
interface, namely the combination of the adsorption of GA molecules 
onto the oil/water interface and non-adsorbed concentrated GA network 
in the vicinity of the interface. This was reported by the use of interfacial 
rheology experiments that require special instruments such as the Du 
Noüy ring (W. Li et al., 2018) or biconical disk geometry (Erni et al., 
2007). However, vegetable oil contains impurities; thus, the effect of 
such impurities needs to be examined (Kershaw, 1986). For this, the 
same experiment was performed using dodecane (Fig. 8), which is a type 
of liquid alkane hydrocarbon, and is often employed as a model oil in 
lab-scale emulsion experiments. The storage modulus increased mono-
tonically for up to 20 h, as in the case of vegetable oil (Fig. 8a). In 
addition, the enhancement of shear thinning was observed (Fig. 8b). The 
network structure was dissociated by the flow test (Fig. 8b), and the 
storage and loss moduli almost recovered to their initial values (Fig. 8a). 
The principal difference between vegetable oil and dodecane was the 
magnitude of change in storage modulus after 20 h from the start: 1.2 Pa 
for vegetable oil and 0.4 Pa for dodecane. This difference arises from the 
different adsorption capacities of the GA molecules at the oil surface 
(Isobe et al., 2020). Consequently, it can be concluded that the effect of 
impurities in vegetable oil is not significant. 

The continuous increase in the shear moduli observed in a cone-plate 
geometry covered with oils was likely due to the condensation of GA 

Fig. 4. (a) Time-course change in Storage (filled tri-
angle) and loss (open triangle) modulus. Storage and 
loss modulus just after the complete shearing with flow 
sweep test are shown with filled (storage) and open 
(loss) circles in violet; (b) Viscosity flow curve of GA 
solution 14 h after the filling (filled triangles in black) 
and just after the filling (open triangles, same plots as 
in Fig. 2). The measurement was performed by a flow 
sweep test, wherein the shear rate was increased by 
steps from 0.01 to 1000 s − 1.   

Fig. 5. Schematic presentation of the experimental set-up of the rheometer 
with oils. 

Fig. 6. Time-course change in (a) Storage (filled circles 
in dark blue) and loss modulus (open circles in dark 
blue) of GA solution filled with vegetable oil. Storage 
and loss modulus just after the complete shearing with 
flow sweep test are shown with filled (storage) and 
open (loss) circles in light-blue; (b) Viscosity flow curve 
of GA solution 22 h later from the filling (filled circles 
in dark blue) and just after the filling (open circles). 
The measurement was performed by a flow sweep test, 
wherein the shear rate was increased by steps from 
0.01 to 1000 s − 1.   
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molecules at the oil/water interface. To determine if such preferential 
condensation of GA molecules affects the structure of GA molecules in 
the bulk phase, the time-course structuration of GA was monitored by 
multi-angle dynamic light scattering (DLS) measurements (Fig. 9). The 
GA solution was filled in two test tubes, in which vegetable oil was 
added on top. DLS measurements were then performed in the middle of 
the bulk solution. Irrespective of the presence of oil on top of the GA 
solution, the autocorrelation functions shifted toward longer decay 

times and remained unchanged 2 h after filling the GA solution into the 
test tubes. This indicated that the structuration of GA molecules pro-
ceeds similarly, regardless of the oil on top. The size of the structured GA 
aggregates became larger than the observable size in this DLS setup 
(6 μm) within 2 h after filling. 

Therefore, the oil does not affect the bulk properties, and the 
observed structure in the oil-covered cone-plate geometry should orig-
inate from the preferential condensation of GA molecules in the vicinity 

Fig. 7. Second run of time-course change in (a) Storage (filled circles) and loss modulus (open circles) of GA solution filled with vegetable oil; (b) Viscosity flow 
curve of GA solution 20 h later from the filling (filled circles). Open circle corresponds to the viscosity measured at the shear rate of 5000 s − 1. The measurement was 
performed by a flow sweep test, wherein the shear rate was increased from 0.01 to 5000 s − 1. 

Fig. 8. (a)Time-course change in storage (filled rect-
angles in red) and loss modulus (open rectangles in red) 
of GA solution filled with dodecane. Storage and loss 
modulus just after the complete shearing with flow 
sweep test are shown with filled (storage) and open 
(loss) rectangles in orange; (b) Viscosity flow curve of 
GA solution 22 h later from the filling (filled rectangles 
in red) and just after the filling (open rectangles). The 
measurement was performed by a flow sweep test, 
where the shear rate was increased from 0.01 to 1000 
s − 1.   

Fig. 9. Autocorrelation functions of GA solution (a) Without oil (b) With oil (vegetable oil) on top obtained by multi-angle dynamic light scattering (DLS) mea-
surement 0, 0.5, 2, and 5.5 h after the filling in sample tube at the scattering angle of 90◦ DLS measurements were performed in the middle of sample tube, thereby 
measuring the bulk solution property. The g2(τ) − 1 is an auto correlation function. 
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of the oil/water interface. To clarify whether the condensation origi-
nates from either or both adsorption of GA onto the oil surface (Isobe 
et al., 2020; Renard et al., 2021) or the development of self-aggregation 
(Atgié, Garrigues, Chennevière, Masbernat & Roger, 2019), further 
studies based on rheological experiments combined with scattering 
measurements such as rheo-SANS, rheo-SAXS, and rheo-SALS (Eberle & 
Porcar, 2012; Pignon et al., 2021) are necessary. 

5. Conclusions 

The viscoelastic properties of the highly concentrated GA solution 
were found to be dependent on the experimental conditions. When the 
geometry was covered with oils to avoid water evaporation of the so-
lution sample, a continuous increase in storage and loss modulus up to 1 
day occurred. This indicates the development of a network structure 
composed of aggregates of GA molecules. In addition, the magnitude of 
the structuration was dependent on the type of oil. Therefore, with this 
simple experimental setup, one can detect the different modes of inter-
facial condensation, depending on the type of oil used. This approach 
can be extended to other oil/water/emulsifier systems, especially in 
food applications. 
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