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Abstract

We propose a confidence-based design approach robust to turbulence closures
model-form uncertainty in Reynolds-Averaged Navier-Stokes computational
models. The Eigenspace Perturbation Method is employed to compute tur-
bulence closure uncertainty estimates of the performance targeted by the op-
timizer. The magnitude of the uncertainty estimates is exploited to establish
an indicator parameter associated to the credibility of numerical prediction.
The proposed approach restricts the optimum search only to design space
regions for which the credibility indicator suggests trustworthy RANS model
predictions. In this way, we improve the efficiency of the design process, po-
tentially avoiding designs for which the computational model is unreliable.
The reference test case consists in a two-dimensional single element airfoil
resembling a morphing wing section in a high-lift configuration. Results show
that the prediction credibility constraint has a non negligible impact on the
definition of the optimal design.

Keywords: Robust optimization, RANS model uncertainty, Eigenspace
Perturbation Method, Turbulence closure uncertainty, Aerodynamic design

∗Corresponding author, e-mail: giulio.gori@polimi.it, Permanent Address: Department
of Aerospace Science and Technology, Politecnico di Milano, Via La Masa 34, 20156,
Milano, Italy.

Preprint submitted to Computer & Fluids June 7, 2022



1. Introduction

The relevance of fluid dynamics sciences is undisputed in many indus-
trial fields, from aeronautics to automotive, including naval applications,
biology, medicine, civil engineering, energy production and many other. In
this perspective, Computational Fluid Dynamics (CFD) aims at developing
reliable numerical models that can predict reality with a reasonable level
of accuracy. A popular approach in CFD consists in using the Reynolds-
Averaged Navier-Stokes equations (RANS), an undetermined set of partial
differential equations enforcing the conservation of fundamental quantities in
time-averaged terms. In the RANS context, turbulence closures are needed
to reconstruct the so-called Reynolds stress term. Unfortunately, the strong
inherent model-form assumptions underlying turbulence closures question
the credibility of RANS-based predictions for some particular flow configu-
rations [1, 2, 3, 4, 5, 6, 7, 8]. Despite these evidences, the community still
largely relies on RANS-based simulations for designing new products.

The objection driving the development of this paper is that the efforts
pledged to the design process may be frustrated by the structural uncertainty
inherent turbulence closures. Overall, the optimization process is inefficient,
potentially exploring portions of the design space where the computational
model is unreliable. Although an a posteriori validation is usually possible, it
often requires the implementation of expensive experiments and, in any case,
it provides nothing but a mere confirmation/rejection of the proposed design,
depending on whether it delivers the expected performance or not. That is
particularly true in aerospace applications, for which validation experiments
involve operating costly wind tunnel facilities and for which high-fidelity
simulations (Direct Numerical Simulations) of the full aircraft model are just
prohibitive.

As stated in [9], design exploration and optimization under turbulence
model-form uncertainty was practically never investigated prior to 2020. In
the reference, the authors identify two hurdles. Namely, producing reliable
estimates of the turbulence closure model-form uncertainty, and integrating
this measure into traditional design optimization frameworks. Concerning
the first issue, the high complexity of turbulence phenomena makes the direct
quantification of the errors introduced by RANS closures difficult, if not
intractable, requiring the implementation of formal and effective Uncertainty
Quantification (UQ) techniques. For an updated and comprehensive review
of the available approaches, we direct the reader to the Ref. [10].
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In this paper, we take advantage of a non-parametric approach, the so-
called Eigenspace Perturbation Method (EPM) [2, 3], a formal technique
capable of providing an estimation of the uncertainty corresponding to tur-
bulence modeling approximations in RANS closures. The EPM renders up
a relatively cheap framework for the estimation of the model-form uncer-
tainty relative to the structural deficiencies of the Reynolds stress tensor in
RANS models. As stated in [3], note the deliberate use of the word estima-
tion, rather than quantification, implying the computation of reasonable and
informed uncertainty estimates rather than rigorous and provable bounds.

The aim of this paper is to provide a solution concerning the second hurdle
exposed in [9]. Namely, integrating the measure of the turbulence model-form
uncertainty into traditional design optimization frameworks by proposing an
original approach devised to systematically account for the RANS model
credibility limitations. Namely, the optimization problem is formulated un-
der the constraint of that a credibility indicator, representative of the EPM
turbulence closure uncertainty estimates, falls below a given threshold. The
algorithm is expected to avoid exploring regions of the design space associated
to unreliable numerical predictions, increasing its efficiency and ensuring the
robustness of the optimal design w.r.t the reliability of RANS predictions.
Naturally, the optimization procedure comes at an increased computational
cost, inherent to the evaluation of the uncertainty estimates. For the sake
of completeness, we remind here that the EPM approach can be formally
applied also to obtain the uncertainty estimates associated to the closures
provided for modeling the unresolved scales in LES simulation [11]. There-
fore, the design approach described in our paper also formally applies to
LES-based optimization frameworks.

The relevance of relying on credible computational predictions is undeni-
able in the aircraft preliminary design phase [12]. At the time of the writ-
ing, only three contributions are identified concerning the exploitation of the
EPM for developing optimization strategies accounting for the epistemic un-
certainty included in the RANS closure models. In Ref. [13], the authors
optimize a turbine stator blade by weakly imposing a model error constraint
as a penalty term included in the objective function. In Ref. [14], the authors
maximize the aerodynamic performances of an airfoil targeting the lowest tur-
bulence model-form uncertainty estimate. In Ref. [9], the optimization still
targets the worst turbulence model-form uncertainty estimate, considering
several geometries.

In this work, the proposed design strategy is applied to a single element
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airfoil resembling a morphing wing section in a high-lift configuration. The
paper is structured as follows. Section 2 describes the formulation of the
optimization problem constrained to a threshold of some sort of estimator
of the RANS model accuracy. Section 3 briefly summarizes the EPM ap-
proach, describing how it can be exploited to derive an estimator of the
credibility of numerical simulations of turbulent flows. In particular, the
computational model representing the baseline test case is presented and a
preliminary EPM analysis is reported. Section 4 concerns a detailed descrip-
tion of the optimization procedure from the technical point of view, including
the parametrization of the geometry. Sec. 5 reports the results achieved using
the proposed optimization strategy, for different problem settings. Eventu-
ally, Sec. 6 summarizes the findings reported in this paper.

2. Formulation of the optimization problem

A mono-objective optimization problem is classically formulated as

minx∈Ω⊂Rd f(x),
subject to gi(x) = g̃i, for i = 1, . . . , N,

hj(x) ≤ h̃j, for j = 1, . . . ,M,
(1)

where f (x) is the objective function, gi a set of N equality constraints and hj
a set of M inequality constraints. The target function f (x) depends upon a
set of design parameters listed in vector x ∈ Ω ⊂ Rd, where d is the dimension
of the design space. Usually, the design space Ω is bounded by the physics
of the problem or by limits set based on the designer’s experience.

In this paper, the optimization problem is formulated to maximize the lift
produced by a two-dimensional NACA airfoil. By defining the lift coefficient
cl, the optimization problem reads

maxx∈[0,1]d cl(x),

subject to ∆pj(x) ≤ ∆̃pj for j = 1, . . . ,M,
(2)

where x ∈ [0, 1]d is a vector including the d design parameters (min-max
normalized) described later in Sec. 4.4. The lift coefficient cl(x) is the per-
formance targeted by the optimizer, and it is computed using the baseline
turbulence closure. The turbulence uncertainty estimate ∆pj(x) of a generic
performance pj is computed according to the EPM, described in Sec. 3. Note
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that the designer may decide to apply as many credibility constraints as de-
sired, depending on the specific application. For instance, one may chose to
simultaneously apply credibility constraints on both the lift and the drag.
The subscript j indicates indeed different performances. Hereinafter, we will
only consider M = 1, therefore dropping the subscript and referring to ∆p(x)
directly. Briefly, the EPM ultimately results into the definition of several
RANS models, each implementing a significantly different physics underly-
ing turbulent phenomena. Predictions from the different RANS models can
be exploited to define the trustworthiness indicator ∆p(x), which basically
measures their maximum discrepancy or, in other words, their dispersion. In
the following, p will be either the lift (cl) or the drag (cd) coefficient, depend-
ing on the test case. We stress here again that the EPM only provides an
estimation of the performance prediction uncertainty. As such, ∆p(x) does
not represent a bounded set of possible values but, rather than that, it can be
interpreted as a trustworthiness indicator related to the turbulence closure.
By constraining ∆p(x) below a maximum threshold ∆̃p, we basically focus
on designs for which the credibility of RANS prediction is endorsed, at least
to an arbitrary extent.

At the time of the writing, three most notable contributions employing the
EPM in the context of robust optimization are found [13, 14, 9]. In Ref. [13],
the turbulence model error ∆p(x) is treated as an arbitrarily weighted penalty
term included in the objective function. Though effective for some problems,
this approach does not allow for a stiff control over the magnitude of the
performance uncertainty. Since no hard constraint is applied, the formula-
tion does not prevent the optimizer from exploring and converging to designs
associated to unreliable predictions. At the same time, the approach of maxi-
mizing (minimizing) a functional based on the worst (best) prediction among
the diverse EPM RANS models, implemented in [14, 9], also leaves room to
objections. Indeed, the EPM only provides reasonable and informed turbu-
lence uncertainty estimates, and not rigorous and provable bounds [3]. In
other words, there is absolutely no guarantee that the true performance will
be higher (lower) than the worst (best) EPM prediction, making the pro-
posed strategy misleading and, possibly, dangerous. Secondly, the approach
does not prevent the optimizer from exploring regions of the design space as-
sociated to unreliable predictions, possibly wasting computational resources,
and converging to not credible solutions, thus frustrating the optimization
effort. Moreover, a theoretical analysis of the EPM [15] shows that there
exist necessary and sufficient conditions that must be fulfilled to ensure the
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physical plausiblity (not realizability) of the CFD model. According to this
analysis, relying on the worst/best EPM design may entail relying on a CFD
solution associated to a non-plausible physics, with an not quantified risk of
being either overly or poorly conservative.

In the strategy we propose, we explicitly limit the optimum search only
to regions where we are confident we can obtain credible predictions, possibly
improving the efficiency of the process. The optimum search is carried out
using a state-of-the-art turbulence closure. At the same time, by enforcing
a ∆p(x) ≤ ∆̃p we require that the optimal design should perform consis-
tently under RST model-form uncertainty. Practically, we aim at limiting
the dispersion of prediction from the diverse EPM RANS model, which we
recall implement a very different physics. In doing so, the relevance of the
plausibility of the EPM realization diminishes, since the EPM predictions
contribute only in establishing the credibility estimator. However, our strat-
egy relies on the arbitrary definition of the maximum credibility estimator
threshold ∆̃p, the choice of which is still left to the experienced designer,
depending on the particular application and on the confidence required. In
particular, a too restrictive ∆̃p would lead to designs that are completely not
sensitive to turbulent fluctuations. On the other hand, a loose constraint
would allow selecting solutions associated to not credible RANS predictions.
At the same time, we recall here that, within the realizability limits, the
EPM methodology relies on arbitrary perturbation of the RST. Choices may
be different and the designer may decide to explore extremal states or limit
the magnitude of perturbation in order to explore the close proximity of the
baseline solution. Naturally, the credibility threshold must be selected also
in view of the applied perturbations. Moreover, it has to be stressed that the
approach and the results presented in this paper are limited by the strong
hypothesis of that the turbulence closure model-form error is the only source
of uncertainty. Naturally, this assumption may be relaxed in future develop-
ments, extending the confidence-based strategy with the inclusion of other
uncertainty sources.

3. Estimate of the turbulence model uncertainty

The Reynolds-Averaged Navier-Stokes model (RANS) is a popular ap-
proach for describing the motion of turbulent fluid flows. According to the
Reynolds decomposition, the RANS model is obtained from the more gen-
eral Navier-Stokes equations, by separating unsteady quantities into a time-
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average term 〈φ〉 plus a random fluctuation φ. The so-called Reynolds Stress
Tensor (RST) is a byproduct of the Reynolds averaging operation, and it
incorporates all the effects of turbulent motions. By definition, the RST is
symmetric and turbulence closures are required for estimating the six in-
dependent components. A large body of literature deals with the problem
of specifying the RST components. Nonetheless, it is widely acknowledged
that the strong inherent model-form assumptions underlying turbulence clo-
sures limit the credibility of CFD predictions, at least for some particular
flow configurations [1]. Unfortunately, the direct quantification of the errors
introduced in turbulent modeling is practically intractable and the imple-
mentation of advanced UQ techniques is required.

In the following, we illustrate the EPM for estimating the turbulence
model uncertainty ∆p(x) and we apply it to an exemplary test case concern-
ing a subsonic flow past a NACA0012 airfoil. This very same test case and
its setting are used later in the optimization problems.

3.1. Eigenspace Perturbation Method

The Eigenspace Perturbation Method [2, 3] was devised to estimate the
L2 [1] uncertainty arising from the process of relating the microscopic state
of a flow to macroscopic quantities. By definition, the RST 〈uiuj〉, with
i, j = {1, 2, 3}, must be positive semi-definite. Hence, it must fulfill a set of
realizability conditions [16, 17]

〈uiui〉 ≥ 0, 〈uiui〉+ 〈ujuj〉 ≥ |2 〈uiuj〉| , det (〈uiuj〉) ≥ 0. (3)

Notoriously, the RST is decomposed into an anisotropy and a deviatoric part

〈uiuj〉 = 2k

(
bij +

δij
3

)
. (4)

being k the turbulent kinetic energy and δij the Kronecker delta. Naturally,
the realizability conditions (3) must apply also to the anisotropy tensor bij,
which can be expressed in its spectral form bij = vikΛklvjl, being vik and vjl
the left and the right eigenvectors, whereas Λkl is a diagonal matrix contain-
ing the eigenvalues λi in a decreasing order.

The EPM consists in applying perturbations of finite amplitude to the
RST eigenspace during the CFD solution iterations, yet fulfilling the realiz-
ability conditions (3). Hereinafter, we will take advantage of superscript ∗ to
point out a perturbed entity. In the most general approach, perturbations
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consist in increasing/decreasing the amount of turbulent kinetic energy (k∗),
in varying the anisotropy tensor spectral distribution (Λ∗kl), or in changing
the orientation of the anisotropy tensor basis (v∗ik), obtaining

〈uiuj〉∗ = 2k∗
(
v∗ikΛ

∗
klv
∗
jl +

δij
3

)
. (5)

By means of perturbations, the whole RST realizability space is explored,
thus allowing for the estimation of turbulence closure uncertainty. The in-
terested reader is referred to [2, 3] for a thorough overview of the EPM.
In principle, perturbations are subject to a spatial variation, leading to a
very high dimensionality hindering practical applications. To overcome the
challenge, researchers follow diverse approaches e.g., see [3, 7, 18].

In this paper we adopt the approach described in [4]. Namely, we assume
uniform spatial perturbations Λ∗kl and v∗ik, while neglecting the perturbation
of the k value. According to the realizability conditions (3), there exist
three limiting states of turbulence componentiality that can be attained by
perturbing the spectral energy distribution i.e., the eigenvalues in Λ∗kl. These
extremal states, labeled 1C, 2C and 3C, correspond to the 1-, 2-, and 3-
component (isotropic) turbulence. In our setting, the componentiality of
turbulence is first perturbed towards one of these limiting states. After, we
apply a perturbation to the orientation of the eigenvectors which, according
to [4], corresponds to modulating the production of turbulent kinetic energy
P . Naturally, it is possible to perturb the eigenvectors in order to maximize
or to minimize the production of turbulent kinetic energy.

Summarizing, a total of six combinations would arise considering the
three extremal states of turbulent componentiality (1C, 2C and 3C) and
two extremal states associated to the production of turbulent kinetic energy
(Pmax and Pmin). In practice, the extremal state x3C is associated with
an isotropic turbulence componentiality. Therefore, P3C is invariant to the
orientation eigenvector basis, thus reducing the number of possible extremal
states to five. Hereinafter, we will adopt the following labels Pmax1C (PA),
Pmax2C (PB), 3C (PC), Pmin1C (PD), Pmin2C (PE), and (BS) to indicate the base-
line model. To estimate the turbulence closure uncertainty, the five EPM
cases need to be simulated using a modified CFD model. The turbulent un-
certainty estimates of a selected performance p are obtained by considering
the max/min values resulting from the five EPM solutions. Therefore, the
indicator

∆p(x) = max(pPA, pPB, pPC, pPD, pPE)−min(pPA, pPB, pPC, pPD, pPE), (6)
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Figure 1: NACA0012 baseline geometry. (a) Profile sketch. (b) Enlargement of the
numerical grid in the close proximity of the airfoil.

represents the difference among the upper and lower turbulence uncertainty
estimates and provides an estimation of the RANS model trustworthiness.

3.2. Application to the simulation of a NACA0012 airfoil

We describe the reference test case namely, the baseline geometry and
the boundary conditions, specifying the set up of numerical CFD simula-
tions. The very same numerical setting will be later used for solving the
optimization problems. The EPM analysis of the reference test case is also
reported, to highlight the uncertainty estimates related to the credibility of
RANS predictions.

The NASA TMR (Turbulence Modeling Resource) [19, 20] provides val-
idation test cases for turbulence models, including a database gathering ex-
perimental data from different sources and a large sequence of numerical
grids. The test case investigated here is referred to as the 2DN00 in the
NASA TMR database. Summarizing, the geometry consists in the classical
NACA 0012 airfoil with a chord of 1 m, see Fig. 1(a). The airfoil is plunged
into a subsonic free flow at Mach 0.15, with a static temperature of 300 K
degrees. The Reynolds number (Re), computed considering the unit profile
chord reference length and assuming air viscosity to correspond to that at
300 K, is equal to 6 · 106. In our computations, viscosity is computed locally
according to the Sutherland law. Moreover, the thermal conductivity is also
evaluated locally, ensuring a constant Prandlt number. At the far-field inlet,
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a turbulent to laminar viscosity ratio of 10.0 and a 5% intensity of turbu-
lent fluctuation are applied. Over the airfoil, an adiabatic no-slip boundary
condition is imposed. The turbulence baseline closure (BS) is the Menter’s
Shear Stress Transport (SST) closure [21].

CFD simulations are carried out using the open-source SU2 suite, see
[22, 23]. SU2 was recently equipped with EPM capabilities [5] making SU2,
at the time of the writing, the only viable CFD solver option for achieving
the purposes pursued in this work. The targeted QoI namely, the airfoil lift
coefficient (cl), the drag coefficient (cd), the efficiency (EF = cl/cd) and the
pitching coefficient (cm) are directly returned by the solver. Field solutions
are obtained using a standard implicit time-marching approach taking ad-
vantage of a generalized Approximate Riemann solver of Roe type with a
Monotone Upstream-centered Scheme for Conservation Laws (MUSCL) [24].
The Venkatakrishnan flux limiter is employed to modulate the second-order
spatial accuracy. A two-level multi-grid approach is adopted to possibly has-
ten the convergence of the numerical solution.

According the coding reported by [19, 20], we selected the 449x129 (257
points on the airfoil surface) grid from the FAMILY I. A mesh sensitivity
analysis concerning the very same test case is reported in [25], showing that
the selected mesh spacing is a reasonable trade-off for ensuring the capturing
of the baseline flow gradients within the wall boundary layer, yet maintain-
ing an affordable computational burden. Rigorously, mesh sensitivity studies
should be carried out independently for the five EPM perturbations, to en-
sure that the resolution is adequate to accurately capture the turbulence
uncertainty estimates. Nevertheless, since we are aiming at controlling a dis-
persion ∆p rather than maximizing/minimizing the lower/upper bound, we
accept a small accuracy loss in favor of a significant reduction of the compu-
tational burden. Anyways, enforcing a credibility constraint also promotes a
similar sensitivity of the 5 EPM and the BS models to the grid resolution.

Figure 1(b) reports an enlargement of the numerical grid around the
airfoil. The convergence of each simulation is monitored by computing inte-
grated quantities namely, the cd coefficient, ensuring that its value remains
within a 10−4 tolerance range for a significant number (100) of consecutive
iterations. If convergence could not be achieved within the 8000 iterations,
possibly because mean-flow instabilities are likely to be developed within the
domain, simulations are stopped. In such cases, the amount of lift generated
by the airfoil drops significantly, making the corresponding design a poor
candidate for the optimizer. Moreover, the RANS model is known to be in-
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accurate in predicting separated flows, therefore the five simulations from the
EPM are expected to return significantly different predictions. Constraining
the optimization procedure to a limited difference among EPM predictions
helps ensuring that the not converged solution is discarded. Naturally, more
refined criteria may be adopted to improve the optimization process.

Having clear the numerical setting, we present the EPM analysis of the
reference test case. Figure 2(a) and Fig. 2(b) report, respectively, the lift
and drag polar for the NACA0012 profile. The black continuous curves are
obtained using the baseline closure [21] whereas the dashed curves correspond
to the five EPM predictions. The gray shaded area indicates the max-min
envelope returned by the EPM i.e., what we consider to be the turbulence
uncertainty estimate of the aerodynamic performance.
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Figure 2: baseline (BS) and EPM (PA-PE) polar curves. The gray envelope indicates the
performance credibility ∆p(x). (a) Lift coefficient cl. (b) Drag Coefficient CD.

Clearly, both Fig. 2(a) and Fig. 2(b) show that the turbulence closure un-
certainty has negligible relevance for small-to-medium Angle of Attack (AoA,
α), below approximately 12 degrees. This is coherent with the physics of a
high Reynolds flow around a slender body, which typically presents a weak
adverse pressure gradient and a limited streamlines’ curvature. For large
AoAs, the above conditions are no longer met and the RANS model loses
credibility. This fact is highlighted by a rapid enlargement of the turbu-
lence uncertainty estimates. In particular, the stall angle prediction varies
significantly depending on the injected perturbation. The PC and PD model
predict stall at around 14 degrees, whereas a significantly larger values re-
sults from PA and PB. Namely, the PA/PB perturbations are associated to a
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Figure 3: baseline (BS) and EPM (PA-PE) polar curves. The gray envelope indicates the
performance credibility ∆p(x). (a) Efficiency cl/CD. (b) Pitching Coefficient CM .

maximization of the turbulent kinetic energy production within the bound-
ary layer. Coherently with experience, a highly energized boundary layer
helps delaying stall. On the other hand, perturbations that suppress kinetic
energy production (PC/PD) and the one that spreads k isotropically (PC)
predict an earlier flow separation. Note that experimental data reveal that
the NACA0012 undergoes stall at around 18 [deg], see Ref. [26]. Figure 3(a)
and (b) report the efficiency and the pitching moment envelopes w.r.t. the
AoA, as computed by SU2. In particular, it is interesting to point out that
the baseline pitching moment polar, Fig. 3(b), exceeds the turbulence bound
estimates at an AoA of about 16 [deg], thus confirming that the EPM does
not return rigorous and provable bounds.

4. Optimization method

We take advantage of the Efficient Global Optimization (EGO) technique
from the class of Bayesian methods, see [27]. Our implementation closely fol-
lows the algorithm described in [27], therefore in the following we just recall
the fundamental aspects only. In Bayesian optimization, the design space
is efficiently searched by taking advantage of the so-called acquisition func-
tion, an auxiliary mathematical object that aims at exploiting prior belief
and available data. Different acquisition functions may be exploited, sin-
gularly or combined, to further improve the efficiency of the optimization,
see [28]. In view of investigating possible solutions to the issue of integrating
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the measure of turbulence model-form uncertainty into traditional design
optimization frameworks, we explored several strategies for accounting for
the credibility constraint when acquiring a new design point. Here, we rely
on three alternatives namely, the Expected Improvement (EI) [27], the Ex-
pected Constrained Improvement (EIC) [29, 30] and the Augmented Expected
Improvement (AEI) [31]. In all cases, the acquisition function is combined
with surrogate modeling techniques i.e, a Gaussian Processes (GP), for the
learning of the objective function.

4.1. Acquisition Functions

We detail here the three Acquisition Functions (AF) exploited in our
optimization process. The Expected Improvement (EI) infill criteria aims
at minimizing the expected deviation from the true maximum when acquir-
ing a new design point. The Improvement estimator is defined as I(x) =
max(0, fmax − f(x)), being fmax the maximum value of the cost function as
observed up to the current step. Note that, in the computation of the Im-
provement, the full computational model f(x) is substituted by a gaussian
predictor f̂(x). Hence, I(x) is a positive random scalar value which is larger
than zero if, and only if, the prediction of f̂ at a selected design point is
better than the best recorded value. According to the EI acquisition criteria,
the new design point xn is found by solving the following constrained max-
imization problem xn = arg maxx∈Ω EI(x), subject to hj(xn) ≤ h̃j, being
EI(x) = IEf̂(x)[I(x)] the so-called Expected Improvement and IEf̂(x) the ex-

pectation operator related to the randomness of the gaussian predictor f̂(x).
The hj(x) are the M inequality constraints to which the design process may
be subject to. Note that in our problem we consider a single inequality
constraint corresponding to ∆p(x) ≤ ∆̃p, but multiple constraints may be
enforced at once. Similarly to the target function, the M constraints are
modeled using M independent gaussian predictors ĥj(x).

An analytic expression of the expected improvement is available, see [32,
33], reading

EI(x) =

{
(µf̂ (x)− fmax − ε)Φ(Z) + σf̂ (x)φ(Z), if σf̂ (x) > 0,

0, if σf̂ (x) = 0,
(7)

with Z = (µf̂ (x) − fmax − ε)/σf̂ (x). The terms Φ and φ are, respectively,
the cumulative and probability density functions of the standard normal
distribution. The quantity σf̂ (x) is the standard deviation associated to the
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gaussian posterior prediction of the target function at x. The ε parameter
enables the control on the trade-off between exploration and exploration.
Following [34], ε is set to the value 0.01 scaled by the variance of the gaussian
signal.

The second acquisition function we consider is the so-called Expected
Constrained Improvement (hereinafter referred to as EIC), see [29] and [30].
Inequality constraints are no longer accounted in the EI maximization pro-
cess, but they are directly included in a modified formulation of the im-
provement indicator reading IC(x) = Q(x) max(0, fmax− f(x)) = Q(x)I(x),
which is known as the constrained improvement. The term Q(x) is a feasibil-
ity indicator function, reading 1 if the constraint is satisfied, 0 if not. Each
constraint hj(x) is again modeled using secondary conditionally independent

gaussian predictor ĥj(x). Due to the randomness of the gaussian predic-
tors, Q(x) becomes a Bernoulli random variable and the probability that M
inequality constraints are satisfied can possibly be expressed according to

PC(x) =
M∏
j=1

Pj(hj(x) ≤ h̃j), (8)

with

Pj(hj(x) ≤ h̃j) =
1

2

[
1 + erf

(
h̃j − ĥj(x)

σ̂hj
√

2

)]
, (9)

being σ̂hj the standard deviation associated to the gaussian posterior predic-
tion of the constraint value at x. Hence, the expected constrained improve-
ment can be expressed as EIC(x) = IEf̂(x)[IC(x)] = PC(x)EI(x), being the

new promising design point xn the argument maximizing EIC(x). The EIC
acquisition function has the advantage of being auto-adaptive since the vari-
ability of the surrogates modeling constraints impacts directly on the choice
of xn.

The third acquisition function considered in this work is the so-called
Augmented Expected Improvement (AEI)[31]. It consists in a modification
of the classical EI in-fill criteria by means of a scaling factor B(x):

AEI(x) = B(x)EI(x) =

(
1− σε√

σ2(x) + σ2
ε

)
EI(x). (10)

where σ2
ε is the variance of the random noise added to the gaussian predictor.

Note that, in the AEI in-fill criteria, the improvement I is computed w.r.t.
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the effective best solution f ? = f(x?) (not to be confused with the current
best one fmax) which is determined by means of an utility function u(x), by
solving the following maximization problem

x? = arg max
x∈Ω

u(x). (11)

In this work, u(x) = −µf̂ (x)− σf̂ (x)
The scaling term B in Eq. 10 is designed to account the diminishing re-

turn of additional replicates as predictions become more accurate. In other
words, it introduces a measure of the usefulness of an additional sample at a
particular location, improving the balance between exploration and exploita-
tion in the presence of a noisy response surface.

4.2. Surrogate Models

We rely on Gaussian Processes (GP) to mimic the behavior of the ob-
jective and the constraint functions w.r.t. the design parameters. GPs allow
to retrieve the analytic expression of the EI and the EIC, significantly sim-
plifying the implementation [35, 33]. We underline that the selection of a
specific GP kernel (k (x,x′)) is a very delicate task. Selecting a particular
family of covariance functions introduces some strong assumptions inherent
the form of the response surface e.g., smoothness properties. Naturally, these
choices reflect on the acquisition function and impact the convergence of the
optimizer. In this work, all the GP surrogates rely on a Stationary Squared
Exponential Covariance kernel with the addition of a White Gaussian Noise
term of uniform amplitude k (x,x′) = σ2

n exp
(
|x− x′|2 /2l2

)
+ σ2

ε δ (x− x′).
In the kernel expression, σ2

n ∈ [0.3, 10] (signal variance), l ∈ [0.01, 10]
(correlation length) and σε ∈ [10−6, 1] (gaussian noise level) are the hyper-
parameters. These are fit to the available data at each iteration of the opti-
mization process using routines from the Scikit-learn Python library [36].

4.3. The optimization algorithm

The work flow of the automated optimization framework here presented
is summarized by Algo. 1. Namely, the optimizer is initialized by sampling
the x0 point at random. The BS CFD model and the five EPM simulations
are carried out at x = x0, to evaluate the objective function cl and the
model trustworthiness indicator ∆p. Note that these data, associated to a
single point, are employed to initialize the GPcl and GP∆p surrogates. Start-
ing from this initialization, the real optimization process is unrolled. The
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selected acquisition function (the EI is considered in Algo. 1) is maximized
to select the most promising design point xn under the constraint of that
GP∆p(xn) ≤ ∆̃p. In this work, we rely on the Sequential Least SQuares Pro-
gramming (SLSQP) method implemented in the Python SciPy library [37],
for solving the constrained maximization problem, or on the Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) method [37], for the un-
constrained one. Once a new promising design point is identified, the full
CFD baseline model simulation and the five EPM simulations are automati-
cally performed. The produced data are then used to update the surrogates
of the objective and the constrain surfaces. The optimizer is left searching
the design space until the maximum budget of CFD simulations (100) is
exhausted.

Algorithm 1: Pseudo-code describing the confidence-based
Bayesian Optimization framework using the EI criteria.

Input: Random x0

1 Evaluate cl(x0) using the baseline CFD model;
2 Evaluate ∆p(x0) using the EPM;
3 Build the surrogate models GPcl and GP∆p ;
4 do

5 Find xn = argmaxxEI
GPcl (x) s.t. GP∆p(x) ≤ ∆̃p;

6 Evaluate cl(xn) using the baseline CFD model;
7 Evaluate ∆p(xn) using the EPM;
8 Update the surrogate models GPcl and GP∆p ;
9 if cl(xn) > cBEST

l then
10 cBEST

l = cl(xn);

11 it++ ;

12 while it < NMAX
it ;

13 return Best design x ;

4.4. Design Parametrization

We rely on the classical NACA 4 digit series codification to parametrize
the shape of the airfoil. Though we acknowledge the existence of more flex-
ible parametrization strategies, such as Class Shape Transformation [38] or
B-splines curves/surfaces [39, 40], we here deem the NACA 4 digit series
codification to be flexible enough to illustrate the relevant aspects of the
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proposed optimization strategy. Besides, we also consider the AoA, defined
as the angle between the airfoil chord and the direction of the freestream
flow, to be a design parameter. Namely, a total of four design parameters,
x ∈ Ω ⊂ R4, is considered: the AoA and the three entries defining the NACA
x-x-xx profile, where each ”x” represents one of the four digits. In this work,
we refer to the first digit as n1, to the second as n2 and to the third and
fourth digits (considered as a single parameter) as n3. In the NACA codi-
fication, the first digit n1 indicates the maximum camber as percentage of
the chord. The second entry n2 represents the distance, expressed as tenths
of the chord, of the maximum camber from the leading edge. Eventually, n3

expresses the maximum airfoil thickness as percent of the chord. Note that
we will consider each digit as a floating point number, and not as an inte-
ger, thus extending the range of possible profiles which is possible to attain.
Moreover, the four design parameters are bounded in order to avoid the se-
lection of degenerate profiles or not admissible configurations n1 ∈ [0.0, 8.0],
n2 ∈ [4.5, 8.0], n3 ∈ [1.0, 2.5] and α ∈ [0.0◦, 30.0◦]. These bounds are selected
through a dedicated heuristic a priori analysis not reported here for brevity
reasons. Note that, in the actual optimization process, all the parameters
are min-max normalized, so that x ∈ [0, 1]4. For each design, a deformation
algorithm based on Radial Basis Functions (RBF) is used to adapt the base-
line mesh to the different geometries. This procedure helps conserving a nice
grid quality level while sparing the re-computing of the mesh.

5. Results

We consider three different optimization problems (A, B, C) targeting the
maximization of the baseline lift coefficient cBSl . In test case A (Section 5.1),
no shape deformation is considered and the AoA serves as the only design
parameter. The optimum is searched both without and with enforcing the
constraint ∆cl ≤ ∆̃cl limiting the optimizer to Confidence-Based (CB) pre-
dictions only. Section 5.2 extends the NACA airfoil optimization including
the shape parametrization described in Sec. 4.4. The lift coefficient cl is first
targeted by an unconstrained optimization setting. Secondly, the credibility
constraint ∆̃cl is restored. Eventually, Sec. 5.3 concerns the optimization of
the airfoil geometry in order to achieve a prescribed value of the lift coeffi-
cient cl with minimum drag, subject to a credibility constraint ∆̃cd acting on
the drag prediction. For all tests, the set up of numerical simulation matches
the one described in Sec. 3.2.

17



Case CB AF n1 n2 n3 AoA cBS
l cBS

d cBS
l /cBS

d cBS
m

A

N EI - - - 16.119 1.514 0.038 39.64 -0.0170
A EI - - - 13.496 1.418 0.023 62.42 -0.0087
A EIC - - - 14.286 1.465 0.026 57.19 -0.0121
A AEI - - - 13.522 1.420 0.023 62.20 -0.0088

B

N EI 8.00 8.00 1.66 18.014 2.341 0.074 31.73 0.2155
A EI 8.00 8.00 1.15 14.419 2.213 0.053 41.66 0.2463
A EIC 8.00 8.00 1.36 13.798 2.199 0.050 43.87 0.2519
A AEI 8.00 8.00 1.23 14.362 2.215 0.053 41.86 0.2476

C A EIC 5.01 4.92 1.33 3.13 0.994 0.009 107.20 0.148

Table 1: assessment of design performances. The CB column indicate the credibility con-
straint state (N, not active and A, Active) whereas AF the acquisition function employed.

Case CB ∆cl ∆cd ∆cl/cd ∆cm ∆cl % ∆cd % ∆cl/cd % ∆cm %

A
N 0.990 0.150 43.20 0.070 158 % 425 % 1236 % -481 %
A 0.199 0.007 19.38 0.014 16.2 % 33.0 % 46.1 % -76.3 %

B
N 0.520 0.006 19.60 0.040 27.3 % 79.7 % 128.3 % 23.4 %
A 0.196 0.005 6.57 0.032 9.2 % 9.5 % 17.9 % 13.9 %

C A 0.008 0.003 24.58 0.002 0.9 % 33.9 % 32.8 % 1.5 %

Table 2: EPM assessment of design performances. The CB column indicate the credibility
constraint state (N, not active and A, Active).

Table 1 summarizes the BS performance delivered by the optimal designs,
as resulting from the different optimization strategies. CB indicate the (Ac-
tive or Not active) state of the credibility constrain, whereas column AF
states the acquisition function employed. Table 2 reports instead the EPM
analysis of the most representative optimal design as found considering the
active/non active constraint and the different AF , for the three test cases.
The table reports the uncertainty turbulence estimates both in magnitude
and in percentage, w.r.t. the EPM lowest prediction.

5.1. Test Case A

This test case aims at maximizing the lift generated by the NACA 0012
airfoil based on the sole variation of the AoA. Since stall results in an abrupt
degradation of the targeted performance, the problem is formally equivalent
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to maximizing the cl w.r.t. α and subject to stall avoidance. Namely,

arg max
α

cl(α), s.t. ∆cl(α) ≤ ∆̃cl = 0.2. (12)

where ∆̃cl = 0.2 is the threshold selected for optimization problems enforcing
a prediction credibility constraint.

5.1.1. Unconstrained Optimization

Figure 4(a) and (b) report, respectively, the surrogate model of the ob-
jective function cl (black continuous curve) as learned from the evaluation
of the first two design points, and as learned after the maximum compu-
tational budget is exhausted. The objective function is complemented by
the one-standard deviation interval (σ, gray shaded area). The blue con-
tinuous curve represents the EI acquisition function evaluated on the whole
parameter space. The next proposed design point is marked with a triangle
and it corresponds the maximum of the EI function. At the beginning of
the optimization process, the gaussian approximation of the cl polar curve
is poor, see Fig. 4(a). As the design space is explored/exploited, during the
optimum search, the amount of data increases so to reasonably approximate
the objective function. Indeed, the cl polar in Fig. 4(b) closely resembles the
baseline one reported in Fig. 2(a).
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Figure 4: test case A, unconstrained optimization. Learning curve for the target function
cl, black line, and expected improvement function, blue line. Black points indicate sampled
designs whereas the black triangle marks the proposed design. Shaded areas indicate the
one standard deviation interval of gaussian predictors. (a) Initial steps. (b) final step.
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Figure 5(a) reports the history of the targeted performance, predicted
using the BS model, recorded as the optimizer explores the design space.
The algorithm quickly converges to the optimum, located at AoA ≈ 16.12
degrees, with an estimated cBSl of 1.51 [-], cBSd ≈ 0.038, cBSl /cBSd ≈ 40 and
pitching moment cBSm coefficient of about -0.017, see Tab. 1.
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Figure 5: test case A, unconstrained optimization. (a) Optimization history. (b) EPM
analysis of the optimal configuration.

To provide an insight of the performance variability w.r.t. turbulence clo-
sure uncertainty, we plot a polar graph comparing the airfoil aerodynamic
coefficients (cl, cd, cm and efficiency EF ) from the EPM analysis of the opti-
mal design, see Fig. 5(b). Note that the values reported on the polar graph
are normalized w.r.t. the EPM estimate of highest magnitude. Clearly, the
EPM simulations return significantly different performances. Quantitatively,
the EPM returns a ∆cl ≈ 0.99, ∆cd ≈ 0.15, ∆cl/cd ≈ 43.2 and ∆cm ≈ 0.07. In
percentage w.r.t. EPM minimum value, that makes a difference of, respec-
tively, 158%, 425%, 1236% and -481%. Therefore, the EPM analysis reveals
that RANS predictions of the NACA0012 airfoil at the optimum AoA of
16.12 degrees are not credible.

A more detailed analysis of flow predictions from the five EPM simu-
lations helps providing some deeper physical insights. In the following, we
show the turbulent kinetic energy (TKE) field as predicted by the PA, PC
and PE EPM models, normalized w.r.t. the largest local value among the
three solutions. Note that perturbations PA and PB give birth to very sim-
ilar flows, as well as PC and PD. Figure 6(a), reporting the TKE field for
PA, reveals an attached flow. In particular, the TKE field is homogeneous
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and most of the energy remains confined within the wake and the boundary
layer. Simulations PC and PD also predict similar performances, and the
resulting TKE field for PC reveals a fully separated flow, see Fig. 6(b), with
a recirculation bubble developing on the whole airfoil suction side. Even-
tually, Fig. 6(c) presents the PE flowfield, characterized by a semi-stalled
condition. The TKE field shows that the boundary layer remains attached
in the forward portion of the airfoil, while separation is triggered in the aft
part of the profile. Naturally, these very diverse behaviors described by the
five EPM simulations lead to an increase of the ∆p indicators.

(a) (b) (c)

Figure 6: test case A, unconstrained optimization. EPM predictions of the TKE field
developing around the airfoil in the optimal configuration. (a) PA. (b) PC. (c) PE.

5.1.2. Confidence-based optimization

The optimization is now constrained to credible CFD predictions only by
requiring ∆cl < ∆̃cl = 0.2. Figure 7 reports, for the initial (left column) and
for the final (right column) optimization steps, the surrogates of the objec-
tive function cl (black curve), the acquisition function evaluated on the whole
design space (blue curve) and the surrogate of the trustworthiness indicator
∆cl (red curve). Figures on different rows correspond to different AF , re-
spectively, the EI, the EIC and the AEI. Surrogates are complemented by a
shaded area indicating the one-standard deviation interval. The horizontal
red-shaded straight line indicates the ∆̃cl = 0.2 threshold, whereas a vertical
red-shaded line intersects the proposed design point. Note that, for the EIC,
we also report the contributions of different factors composing the acquisi-
tion function (namely, the EI and the probability of respecting the credibility
constraint PC , see Sec. 4.1).

During the optimization process, the algorithm explores designs, some-
times rejecting high performance solutions which are associated to not credi-
ble predictions. Depending on theAF , a different balance among exploration
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Figure 7: test case A, confidence-based optimization. Rows correspond to different ac-
quisition functions, respectively EI, EIC and AEI. Black and red points indicate sampled
designs whereas the black triangle marks the proposed design. Shaded areas indicate the
one standard deviation interval of gaussian predictors. Left column: initial step. Right
column: final step.

and exploitation is promoted, leading to a different path for reaching the opti-
mum. Notably, the EIC allows for a more thorough exploration of the region
of the design space associated with a large ∆cl . This is due to the fact that
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the constraint is accounted in a probabilistic setting. That is, the algorithm
is still allowed to explore regions of the domain likely subject to unreliable
RANS predictions, if the credibility indicator function in such region is still
not properly learned. The large amount of data available for the stalled
region causes the gaussian approximator to exhibit an oscillatory behavior.
As expected for low angles of attack, the EPM predicts a very limited ∆cl .
Indeed, red dots are close to the zero line axis for an AoA smaller than about
12 degrees. While approaching the stall angle, the ∆cl indicator undergoes a
quite rapid increase, with a significant steep gradient, almost a step, at about
15 degrees. Because of this rapid variation, which is not captured in the EI
and the AEI settings, the resulting gaussian approximator must be endowed
with a very small correlation length. Since the surrogate is built with respect
to a variation about the mean of the available data, predictions tends to the
mean as the distance of the query point from the available data is larger
than the correlation length, giving birth to an oscillatory behavior and to a
large prediction uncertainty. For the EI and AEI strategies, the high AoA
region is poorly explored, the available data being concentrated within the
pre-stall region where the target function has a smooth behavior. Therefore,
surrogates are characterized by a larger correlation length. In particular,
the same tendency to the mean is observed for AEI but, in this latter case,
the larger correlation length limits makes it less noticeable. If the optimizer
were to explore regions of large ∆cl prediction uncertainty, a new data point
would inform the gaussian approximator, thus updating the belief (according
to the Bayesian interpretation) about the unknown functional dependency
of ∆cl w.r.t. the design parameter. Nevertheless, in all cases most points
are found on the left hand side of the graph, indicating that eventually the
applied constraint is actively forcing the optimizer to remain in the region
of the design space where RANS predictions are credible i.e., low-to-medium
AoA ahead of stall.

The role of the constraint is more evident by observing the optimizer tar-
get track records, for the three AF , reported in the left column of Figure 8.
The designs indicated by red crosses are rejected because the credibility con-
straint is violated. The rejection rates are 11/100 for the EI, 50/100 for EIC
and 81/100 for AEI. The AEI has the highest rejection rate due to the fact
that the optimizer straddles the maximum credibility limit while exploiting
the region of AoA ≈ 13.5 degrees. In particular, the algorithm tends to
evaluate designs which are slightly above the threshold. Similarly, the EI
also promote exploitation over exploration, but with the largest number of
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Figure 8: test case A, confidence-based optimization. Figure rows correspond to different
acquisition functions, respectively EI, EIC and AEI. Left column: optimization history
(red crosses are rejected because the credibility constraint is not fulfilled). Right column:
EPM analysis of the optimal configuration.

sampling points located within the region of feasible designs. On the con-
trary, the EIC evaluates designs associated to a more variable performance,
indicating a more exploratory behavior. Not surprisingly, the performance
delivered by the constrained optimum design is lower than what achieved

24



in the unconstrained setting, see Tab. 1. Notably, the EIC AF leads to a
slightly different design (AoA is about 0.7 degrees larger than what obtained
with the EI/AEI). This is related to the probabilistic approach employed in
handling the constraint, which allows for a more thorough exploration of the
design space. Figure 9 reports an enlargement of the ∆cl surrogate centered
on the region in the close proximity of the optimum. Notably, the EI and
the AEI functions (first and third rows) present a large number of sampling
points accumulated at the intersection of the red shaded orthogonal lines indi-
cating optimal angle and of the constraint threshold. The plot in the middle
row (EIC) presents instead a more spread data set: the sampling spans a
wider area and, because of this, a particular, non-monotone, trend of the ∆cl

curve is consistently predicted in between 13.9 and 14.2 degrees. The reason
why the curve is characterized by this non-monotone region is unclear. Pos-
sibly, the non-monotone behavior finds its roots in numerical aspect related
to the indulgent convergence criteria employed for CFD simulations, but a
thorough investigation is left for future works. However, all the considered
simulations rely on the very same numerical configuration and grid, being the
AoA the only free parameter. In the EI and in the AEI, the rigid enforce-
ment of the credibility constraint quickly limits the optimum search to the
portion of the design space located on the left hand side of the 13.53 degree
threshold, preventing the learning of the ∆cl in the non-monotone region.
In the EIC setting, the probabilistic treatment of the credibility constraint
allows for a more thorough exploration of the design space, thus leading to
the discovery of an optimal credible design characterized by slightly better
performance. The capturing of the abrupt variation in the ∆cl curve, past
14 degrees, also explains why the surrogate is characterized by a correlation
length much shorter than the EI and the AEI counterparts.

The EPM analysis of the similar optimum designs resulting from the three
AF is reported on the right column of Fig. 8. In all cases, the five EPM simu-
lations return similar polar graph (we recall the values reported on the polar
graph are normalized w.r.t. the EPM upper estimate) confirming a quite high
confidence in RANS predictions. Quantitatively, a significantly reduced per-
formance variability is found namely, ∆cl is approximately 0.1996. The other
performance trustworthiness estimators read ∆cd ≈ 0.007, ∆cl/cd ≈ 19.38
and ∆cm ≈ 0.014. In percentage, the variability of the four performances
is 16.2%, 33.0%, 46.12% and -76.33%, thus significantly reduced w.r.t. the
unconstrained optimal solution.

Eventually, Fig. 10 reports the PA, PC and PE flowfields associated to
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Figure 9: test case A, confidence-based optimization. Figure rows correspond to different
acquisition functions, respectively EI, EIC and AEI. Plots reports an enlargement of the
∆cl surrogate centered on the region in the close proximity of the optimum (red vertical
line) and of the credibility constraint threshold (red horizontal line).

the optimal configuration. Compared to results presented in Fig. 6, it is clear
how the constraint drives the optimizer towards a credible solution. Indeed,
all the five EPM simulations now predict an attached flow, thus excluding
configurations characterized by separation or recirculation bubbles, for which
we know the RANS model to be unreliable.
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(a) (b) (c)

Figure 10: test case A, confidence-based optimization. EPM predictions of the TKE field
developing around the airfoil in the optimal configuration. (a) PA. (b) PC. (c) PE.

5.2. Test Case B

This test case is concerned with maximizing the airfoil lift by varying its
shape, according to the geometry parametrization presented in Sec. 4.4, and
the AoA. Therefore, assuming x = (n1, n2, n3, α) ∈ Ω ⊂ R4, we seek

arg max
x

cl(x), s.t. ∆cl(x) ≤ ∆̃cl = 0.2. (13)

5.2.1. Unconstrained Optimization

The optimum design parameters and performances are reported in Tab. 1.
Figure 11(a) reports the record track of the four design parameters (min-max
normalized). The red line indicates the parameters values of the optimal
configuration. The picture shows that, after an initial exploration phase, the
algorithm eventually sets to exploiting the optimum close proximity for n1,
n2 and α. On the contrary, the history associated to the n3 parameter shows
a more exploratory behavior.

Figure 11(b) shows the cBSl as resulting at each design point evaluated
by the optimizer, revealing that the algorithm quickly finds high lift designs.
The optimum is achieved applying the maximum camber at the most rear-
ward point, see Fig. 12(a). That is, high-lift is achieved by applying a large
deformation in the aft-part of the airfoil, resembling a plain flap device.

An a posteriori CFD assessment predicts cBSl ≈ 2.34, cBSd ≈ 0.074,
cBSl /cBSd ≈ 31.7 and cBSm ≈ 0.22 for the optimal airfoil configuration, see
Tab. 1. Figure 12(b) reports the polar graph comparing the performances
predicted by the five EPM simulations. Not surprisingly, polar plots reveal
a high prediction variability due to the turbulence closure uncertainty. In
particular, the analysis returns a ∆cl ≈ 0.52, ∆cd ≈ 0.006, ∆cl/cd ≈ 19.6 and
∆cm ≈ 0.04 , with a relative variability, w.r.t. the lowest predicted value,
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Figure 11: test case B, unconstrained optimization history. (a) Record track of the four
design parameters (min-max normalized). (b) Record track of the targeted performance
as predicted by the baseline computational model.
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Figure 12: test case B, unconstrained optimization. (a) Comparison of the optimal (red)
and the baseline (black) airfoil shape. (b) Comparison of the aerodynamic performances
resulting from the EPM analysis of the optimal airfoil configuration.

of respectively 27.3%, 79.7%, 128.32% and 23.4%. Therefore, the optimal
solution is associated to not credible RANS predictions.

Figure 13(a-c) shows, respectively the PA, PC and PE turbulent kinetic
energy fields in the portion of the domain surrounding the airfoil. Clearly,
all EPM simulations predict a highly turbulent separated flow in the close
proximity trailing edge.
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Figure 13: test case B, unconstrained optimization. EPM predictions of the TKE field
developing around the airfoil in the optimal configuration. (a) PA. (b) PC. (c) PE.

5.2.2. Confidence-based Optimization

The cl is now maximized under the constraint of that ∆cl < ∆̃cl = 0.2.
The optimization history is reported Fig. 14, each row is associated to a
different AF , respectively EI, EIC and AEI. Similar optimal performances
are achieved using the diverse learning functions, see Tab. 1. Despite the very
similar performance delivered (within the 1% deviation), the EIC optimal
designs slightly differs in n3 and AoA. Possibly, these differences are related
to the probabilistic treatment of the credibility constraint which leads, again,
to a more exploratory behavior. Increasing the computational budget could
lead to improving the EIC convergence to the optimum.

The record track of the four design parameters, reported on the left-
hand column of Fig. 14, shows the different exploration/exploitation trade-off
offered by the different AF . Clearly, the AEI is endowed with an high initial
exploratory behavior while favoring exploitation at later stages. The EI and
the EIC reveal instead an alternating mixing of exploration/exploitation.
On the right column of Fig. 14, the optimizer history reports red crosses
to indicate designs that are rejected because the RANS model is deemed
not reliable. Again, the design rejection rate strongly depends on the AF
employed (37/100 for EI, 75/100 for EIC, and 21/100 for AEI).

The a posteriori analysis of the EI optimum design predicts cBSl ≈ 2.21,
cBSd ≈ 0.053, cBSl /cBSd ≈ 41.7 and cBSm ≈ 0.246. The EPM analysis predicts
∆cl ≈ 0.196 (0.1986), ∆cd ≈ 0.005, ∆cl/cd ≈ 6.57 and ∆cm ≈ 0.032, with a
relative variability, w.r.t. the lowest predicted value, of respectively 9.22%,
9.53%, 17.91% and 13.87%. Thanks to the credibility constraint, the variabil-
ity of all the performances is now significantly reduced, in particular for the
cd and cl/cd coefficients. The polar graphs comparing the aerodynamic coef-
ficients cl, cd, cm and cl/cd from the EPM analysis of the optimal designs are
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Figure 14: test case B, confidence-based optimization. Figures rows correspond to, respec-
tively, the EI, EIC and AEI functions. Left column: record track of the design parameters.
Right column: record track of the cBS

l (red crosses indicate rejected designs).

reported in Fig. 15. With respect to the unconstrained optimization setting,
the algorithm is trading a certain amount of performance for more reliable
RANS predictions. Interestingly, the comparison against the unconstrained
optimal design reveals a slightly thinner airfoil and a much lower AoA. Nev-
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ertheless, the optimum airfoil shape still consists in a highly cambered profile
resembling an airfoil with a plain flap device, see Fig 15.

0.4 0.2 0.0 0.2 0.4

0.2

0.0

0.2

0.4 cd

cl

cl/cd

cm -1.0

-0.5

0.0

0.5

1.0

PA
PB
PC
PD
PE

0.4 0.2 0.0 0.2 0.4

0.2

0.0

0.2

0.4 cd

cl

cl/cd

cm -1.0

-0.5

0.0

0.5

1.0

PA
PB
PC
PD
PE

0.4 0.2 0.0 0.2 0.4

0.2

0.0

0.2

0.4 cd

cl

cl/cd

cm -1.0

-0.5

0.0

0.5

1.0

PA
PB
PC
PD
PE

Figure 15: test case B, confidence-based optimization. Figure rows correspond to, respec-
tively, the EI, EIC and AEI functions. Left column: optimal design (red) superimposed
to the baseline one (black). Right column: EPM analysis of the optimal design.

Eventually, in Fig. 16 we report the PA, PC and PE flowfields. Not sur-
prisingly, the flow now remains attached to the airfoil suction side for almost
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the entire chord length and only a small region is separated. The effect
of constraining the optimization to the RANS credibility constraint is par-
ticularly evident comparing Fig. 16 against its (unconstrained) counterpart
Fig. 13.

(a) (b) (c)

Figure 16: test case B, confidence-based optimization (EI). EPM predictions of the TKE
field developing around the airfoil in the optimal configuration. (a) PA. (b) PC. (c) PE.

5.3. Test Case C

In Sec. 5.2 we managed to achieve a design of maximum lift under a
credibility constraint acting on cl. We now slightly change the approach to-
wards a more common engineering practice. Namely, we prescribe a target
value ctarget

l = 1.0 and we seek for a design capable of delivering the desired
performance while also aiming at minimizing the drag. The credibility con-
straint is now applied to the drag coefficient, in order to select configurations
for which the resistance force can be confidently predicted. Assuming again
x = (n1, n2, n3, α) ∈ Ω ⊂ R4, we seek

maxx∈[0,1]d −
(
cBSl (x)− ctarget

l

)2 − βcBSd (x),

subject to ∆cd(x) ≤ ∆̃cd = 0.005.
(14)

The 0.005 threshold was selected according to the value that the ∆cd(x)
indicator assumes for the baseline profile in the linear region of the polar,
reported in Fig. 2(b), for an angle of attack lower than 14 degrees. The coeffi-
cient β = 2 weights the relevance of the drag performance contribution to the
cost function, practically implementing a so-called scalarized multi-objective
approach. Since we are practically solving a bi-objective scalarized opti-
mization problem, the relevance of the relative weighting among the terms
included in the objective function has to be stressed. Varying the relative
weighting basically varies the trade-off among achieving the desired perfor-
mance or obtaining a design of minimum drag, the choice of which is left to
the experienced designer, based on the specific application.
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In solving the optimization problem, we rely on the EIC acquisition func-
tion only. The goal is to achieve an airfoil shape of prescribed performance
and minimum drag while relying on a credible prediction of cd. In particular,
the credibility of the drag force prediction should be comparable to the one
associated to the baseline geometry operating in the linear part of the polar.
In a broader context, one could consider the overall aircraft performances
i.e., target not just the airfoil but the whole wing, fuselage, tail and so on.
In this perspective, multiple credibility constraints may be applied simulta-
neously w.r.t. the diverse aerodynamic qualities of interest for the designer,
so to allow for a reliable assessment of the aircraft qualities in a determined
flight condition.

The ∆cd(x) is quite sensitive to variation of the design parameters, this
aspect being particularly important for highly cambered profiles at a high
angle of attack. Indeed, the strong curvature at the trailing edge makes
the flow prone to a localized separation, which of course results into large
uncertainty associated to the predicted cd. For this test case only, we reduced
the range of the AoA to 0-15 degrees, so to directly exclude a large portion
of the design space associated to solutions which surely do not fulfill the
credibility constraint. Note that we are considering the deformation of the
airfoil and that the bounds of the parameters controlling the deformation of
the airfoil are instead maintained as reported in Sec. 4.4.

Figure 17(a) reports the optimization history of the four design parame-
ters, revealing a highly explorative behavior from the optimizer. Figure 17(b)
reports instead the record track of the optimum of the cost function as spec-
ified in Eq. (14), which we generically indicate as J . As the exploration
proceeds, configurations are deemed adequate or rejected due to failing in
fulfilling the credibility constraint, with an overall rejection rate of about
51 %. The parameters of the constrained optimal design are n1 = 5.01,
n2 = 4.92, n3 ≈ 1.33 and AoA ≈ 3.13. The a posteriori analysis predicts
cBSl ≈ 0.994, cBSd ≈ 0.009, cBSl /cBSd ≈ 107.20 and cBSm ≈ 0.148, see Tab. 1.
The optimal airfoil shape is quite different from what achieved with the
other otimization settings. Indeed, it is a thicker and much less cambered,
see Tab. 1 and Fig. 18(a).

The EPM analysis, Fig. 18(b), predicts ∆cl ≈ 0.008, ∆cd ≈ 0.003,
∆cl/cd ≈ 24.58 and ∆cm ≈ 0.002 , with a relative variability, w.r.t. the
baseline value, of respectively 0.9%, 33.9%, 32.8% and 1.5%. In percent-
age, the uncertainty estimates of cd, and therefore the efficiency ∆cl/cd still
suffers from a large variability which is a consequence of the very low baseline
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Figure 17: test case C, confidence-based optimization (EIC) optimization history. (a)
Record track of the four design parameters (min-max normalized). (b) Record track of
the optimum of the cost function (J) as specified in Eq. (14).
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Figure 18: test case C, confidence-based optimization (EIC). (a) Comparison of the op-
timal (red) and the baseline (black) airfoil shape. (b) Comparison of the aerodynamic
performances resulting from the EPM analysis of the optimal airfoil configuration.

drag coefficient value employed to compute the percentages. Nonetheless, the
credibility constraint is fulfilled and confidence in RANS predictions can be
assumed up to the imposed threshold. In other words, the optimization is
feasible for ∆cd(x) < 0.005, which corresponds to requiring the credibility
of predictions to be comparable to that relative to simulations concerning a
symmetric airfoil at a low (even null) angle of attack.

34



As mentioned, in the setting we employ we seek for designs capable of
delivering a prescribed lift by minimizing the distance of the predicted per-
formance from the desired one, while aiming also at minimizing the drag in a
scalarized multi-objective approach. Figure 19(a) and (b) report the record
track of the aerodynamic performances, respectively the lift and the drag,
associated to the optimal design, as predicted by the baseline computational
model. Clearly, the optimizer quickly achieves designs capable of deliver-
ing a cl in the proximity of the prescribed value, indicated as a blue line in
Fig. 19(a), while cd initially increases. As the optimizer explores/exploits
the design space, new designs with cl ≈ 1.0 and a better value of the drag
coefficient are found.
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Figure 19: test case C, confidence-based optimization (EIC). Record track of the aerody-
namic performances associated to the optimal design, as predicted by the baseline com-
putational model. (a) Lift coefficient. (b) Drag coefficient.

Eventually, in Fig. 20(a-c) we report the PA, PC and PE flowfields as
resulting from this constrained optimization exercise. In all cases, the flow
remains attached to the surface and, because of the strict credibility con-
straint enforced, no relevant sign of separation can be found.

6. Conclusions

In this work, we propose a confidence-based optimization approach ro-
bust to the epistemic uncertainty affecting the mathematical structure of
turbulence closures typically required to model the Reynolds Stress Tensor
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(a) (b) (c)

Figure 20: test case C, test case C, confidence-based optimization (EIC). EPM predictions
of the TKE field developing around the airfoil in the optimal configuration. (a) PA. (b)
PC. (c) PE.

appearing in the Reynolds-Averaged Navier-Stokes equations. Given that
turbulence closures are formally equivalent to the models required to re-
cover the contribution of the subfilter stresses in Large Eddy Simulations,
the boundaries of application for the proposed approach could be straight-
forwardly extended. The optimization strategy attempts to maximize (or
minimize) a targeted Quantity of Interest subject to the constraint of that
the prediction credibility, due to turbulence closure uncertainty, satisfies a
given threshold. That should not be intended as an approach to obtain
aerodynamic shapes robust to turbulence uncertainty, but rather as a robust
procedure that constrains the search for the optimum to the portion of the
design space where the RANS model is expected to be credible. Since de-
signs associated with unreliable predictions are avoided, the efficiency of the
optimization process is improved.

We have shown the potential of the proposed approach for a set of test
cases of interest for aerospace applications namely, a single element airfoil
resembling a morphing wing section in a high-lift configuration. Nonetheless,
the potential of the proposed methodology should be envisioned beyond the
test cases included here e.g., one may aim at optimizing air-intakes, engine
cowls, propellers or the aerodynamic of a car. In general, the confidence-
based approach leads to designs capable of delivering a performance lower
than what achieved in the unconstrained setting. Nevertheless, the optimal
designs are bounded to credible computational predictions.

The evaluation of turbulence uncertainty estimates, obtained by means
of the Eigenspace Perturbation Method, comes at an significantly increased
computational cost. At each iteration of the optimization process, six inde-
pendent evaluation of the full computational model are required. Namely,
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the baseline and the five EPM computations. The procedure also presents
additional difficulties because each EPM simulation behaves differently, pre-
senting faster/slower convergence rates or suffering from different numerical
instabilities, thus requiring a careful fine tuning of the CFD solver configura-
tion. Nevertheless, the proposed approach has a high potential that justifies
the increased complexity, especially when the interest is pledged to the op-
timization of three-dimensional geometries where turbulence effects play an
even more relevant role. Constraining the optimization to the domain of
credibility of RANS (or LES) predictions avoids achieving (and building) ge-
ometries that will not perform as expected in reality. This could translates
into a reduction of wind tunnel testing time, into significant cost savings,
and into a shortened project lead time. Future work should be devoted to
integrating the confidence-based approach with uncertainty quantification
techniques capable of accounting for aleatory uncertainties such as, for in-
stance, unknown boundary conditions or fluid properties. The potential of
the proposed approach is foresee to be even higher for unsteady problems
i.e., helicopter rotor blade optimization, although the definition of a suitable
unsteady credibility constraint must still be achieved.
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