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A model problem for the evolution of strain structure at the crossing of a flame front
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The local thermal effect of a flame front is simulated by a model for a mass density front by specifying a likely expansion rate. This model problem includes two independent parameters, namely the heat release parameter and a parameter akin to a Karlovitz number. The analysis is focused on the influence of the Karlovitz number on the evolution of strain properties at the crossing of the front. The latter are derived from an equation system for the velocity gradient tensor and the pressure Hessian tensor undergoing the forcing of the expansion rate. Strain eigenvalues, orientation of strain principal axes, and stretching in the direction of forcing are especially scrutinized. Furthermore, the model shows that, when approaching a flame front, the special alignments of strain are mostly caused by anisotropy of pressure Hessian resulting from forcing by expansion.

Introduction

Micromixing is the mere expression of the small-scale action of flow on scalar fields, more precisely, the outcome of the mechanical action exerted by the velocity gradient on the gradients of scalars. The straining part of the velocity gradient, at least in incompressible flows, tends to enhance scalar gradients through compression, thereby hastening local diffusive fluxes. Thus the level of micromixing tightly depends on strain main properties, namely intensity, direction, and lifetime.

Mixing in non-solenoidal flows is a special case, for mass density variations may deeply affect the velocity gradient. Alteration of the intensity and/or orientation of strain, then, may influence the micromixing process. This is especially relevant in compressible flows [START_REF] Danish | Influence of flow topology and dilatation on scalar mixing in compressible turbulence[END_REF][START_REF] Boukharfane | Evolution of scalar and velocity dynamics in planar shock-turbulence interaction[END_REF] and in reacting flows with heat release such as flames [START_REF] Boratav | On the alignment of strain, vorticity and scalar gradient in turbulent, buoyant, nonpremixed flames[END_REF][START_REF] Swaminathan | Interaction of turbulence and scalar fields in premixed flames[END_REF][START_REF] Chakraborthy | The scalar gradient alignment statistics of flame kernels and its modelling implications for turbulent premixed combustion[END_REF][START_REF] Hamlington | Interactions between turbulence and flames in premixed reacting flows[END_REF][START_REF] Dopazo | The physics of scalar gradients in turbulent premixed combustion and its relevance to modeling[END_REF][START_REF] Zhao | Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames[END_REF][START_REF] Zhao | Turbulence topology evolution in weakly turbulent premixed flames[END_REF]. More specifically, scalar dissipation -the key mechanism driving micromixing -may be altered through the mechanism of stretching [START_REF] Swaminathan | Interaction of turbulence and scalar fields in premixed flames[END_REF][START_REF] Chakraborthy | Influence of the Damköhler number on turbulencescalar interaction in premixed flames[END_REF][START_REF] Mura | Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data[END_REF]. Understanding those phenomena therefore definitely needs addressing the influence of local mass density variations on strain structure. In particular, the evolution of strain undergoing local heat release was addressed in premixed flames, which showed that principal strain levels as well as strain axes orientation were affected [START_REF] Zhao | Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames[END_REF][START_REF] Dopazo | Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame[END_REF][START_REF] Steinberg | Influence of combustion on principal strain-rate transport in turbulent premixed flames[END_REF][START_REF] Kasten | Principal strain rate evolution within turbulent premixed flames for different combustion regimes[END_REF].

The latter works considered the full, intricate interaction between the velocity gradient and reacting scalar gradients. The present study, by contrast, refers to a step-by-step approach in which the basic underlying mechanisms are analyzed separately. In this regard, a model problem was already proposed and was shown to reliably simulate strain features observed in premixed flame fronts through the heat release parameter [START_REF] Gonzalez | Analyzing the effect of dilatation on the velocity gradient tensor using a model problem[END_REF]. The model is now supplemented with an additional parameter akin to a Karlovitz number, and the analysis addresses the changes of strain structure when this Karlovitz number is varied. A major aspect of this work is to focus analysis on the role of pressure Hessian in the behavior of strain at the crossing of the front. Mechanisms involving the pressure Hessian were already suggested by previous works [START_REF] Gonzalez | Effect of variable mass density on the kinematics of the scalar gradient[END_REF][START_REF] Gonzalez | Effect of density step on stirring properties of a strain flow[END_REF] and recently addressed in model and numerical simulation [START_REF] Zhao | Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames[END_REF][START_REF] Gonzalez | Analyzing the effect of dilatation on the velocity gradient tensor using a model problem[END_REF].

The model problem described in Section 2 is based on two main principles. First, the expansion rate is specified in function of a progress variable to mimic mass density variation at the crossing of a flame front. And second, the dynamic field, defined by the velocity gradient tensor and the pressure Hessian tensor, is forced by the expansion rate through one diagonal component of the pressure Hessian. The resulting forcing direction may refer to the normal to a flame front. The equation system for the velocity gradient tensor is closed with the enhanced homogenized Euler equation (EHEE) model of Suman and Girimaji [START_REF] Suman | Dynamical model for velocity-gradient evolution in compressible turbulence[END_REF] and is solved in a two-dimensional Euler flow.

In Section 3, the structure of strain undergoing the effect of expansion rate is scrutinized through the evolution of strain eigenvalues and strain axes orientation. The role of pressure Hessian in the rotation of strain principal axes is especially emphasized. In addition, the influence of Karlovitz number on stretching parallel to the direction of forcing -an issue specifically relevant to flame problems -is discussed. Finally, the influence of initial conditions is checked.

Model problem

In an Euler flow, the evolution of the velocity gradient tensor, A = ∇u, is described by the following equation:

DA ij Dt = -A iα A αj -Π ij , (1) 
where the Π ij 's are the components of the pressure Hessian tensor, Π = ∇[(∇p)/ρ], with p and ρ being respectively the pressure and the mass density.

In the two-dimensional case, Eq. ( 1) can be expressed by a four-equation system:

Dσ n Dt = -δσ n + Π 22 -Π 11 , (2) 
Dσ s Dt = -δσ s -Π 12 -Π 21 , (3) 
Dω Dt = -δω + Π 12 -Π 21 , (4) 
DP Dt = - 1 2 (σ 2 -ω 2 + P 2 ) -Π 11 -Π 22 , (5) 
where δ(t) is the expansion -or dilatation -rate, δ(t) = -1/ρ Dρ/Dt, σ n = A 11 -A 22 and σ s = A 12 + A 21 are, respectively, the normal and shear components of strain, σ = (σ 2 n +σ 2 s ) 1/2 is the strain intensity, ω = A 21 -A 12 is the vorticity, and P = A 11 + A 22 is the velocity divergence, ∇ u. As a result of mass conservation, P coincides with the expansion rate: P ≡ δ; in the following, notation P is dropped.

Consistently with the progress variable used in premixed flame problems, a nondimensional variable, c(t), is defined as c(t) = (ρ o /ρ(t) -1)/(ρ o /ρ ∞ -1) where ρ o ≡ ρ(0), and ρ ∞ ≡ lim t→∞ ρ(t); the density ratio is defined by ρ o /ρ ∞ . From the definitions of c(t) and δ(t):

Dc Dt = c + 1 q δ, (6) 
with q = ρ o /ρ ∞ -1. In this study, ρ ∞ < ρ o , which means q > 0, and δ > 0 as a result of heat release. As a first feature, the model problem mimics the expansion rate at the crossing of a flame front by assuming δ as:

δ(c) = 4δ m c(1 -c), (7) 
where δ m is the maximum value of δ(c). The parabolic function modelling δ(c) is inspired from numerical simulation data for the velocity divergence across a flame front [START_REF] Dopazo | Strain rates normal to approaching iso-scalar surfaces in a turbulent premixed flame[END_REF]. Note that from the approach of Tien and Matalon [START_REF] Tien | On the burning velocity of stretched flames[END_REF] δ ≃ q/τ f in the reaction zone of a premixed flame, where τ f is the flame timescale. Consequently, δ m is taken as: δ m ≃ q/τ f . The problem is made nondimensional by using some reference strain intensity, σ 0 , which does not change the form of the above equations. And the nondimensional δ m is q/Ka 0 , where Ka 0 = τ f σ 0 can be seen as a Karlovitz number. Throughout the manuscript, the initial notation is kept for variables made nondimensional with σ 0 . Equation (6) can then be written as:

Dc Dt = 4 q Ka 0 c + 1 q c(1 -c). (8) 
This model problem thus includes two independent parameters, namely the heat release parameter, q, and the ratio of expansion timescale to strain timescale, Ka 0 . Figure 1 shows δ(t) for q = 5 and Ka 0 = 0.5, 1., 2., and 4. In an Eulerian view, the Lagrangian evolution of the expansion rate displayed in Fig. 1 comes to the crossing of a restricted spatial region in which the expansion rate is prescribed to mimic a flame front. Now, as the velocity divergence is prescribed through the expansion rate, δ, Eq. ( 5) is not needed to determine the velocity tensor. The second feature of the model, then, consists in using Eq. ( 5) to compute one diagonal component of the pressure Hessian, say, Π 11 , as: This comes to define a special direction -x 1 , in the present case -along which the forcing resulting from the expansion rate takes place.

Π 11 = -Π 22 - 1 2 (σ 2 -ω 2 ) - 1 2 δ 2 + 2 Dδ Dt . (9) 
The other components of the pressure Hessian, namely Π 12 , Π 21 , and Π 22 , are computed using the EHEE modelled equation [START_REF] Suman | Dynamical model for velocity-gradient evolution in compressible turbulence[END_REF]:

DΠ ij Dt = -A αj Π iα -A αi Π αj -(n -1)A αα Π ij , (10) 
in which n is the ratio of specific heats. In a sense, the present approach models the pressure Hessian with a 'forced EHEE model'. With the above specific, twodimensional notation, Eq. ( 10) leads to:

DΠ 12 Dt = -nδΠ 12 - 1 2 (σ s -ω)Π 11 - 1 2 (σ s + ω)Π 22 , (11) 
DΠ 21 Dt = -nδΠ 21 - 1 2 (σ s -ω)Π 11 - 1 2 (σ s + ω)Π 22 , (12) 
DΠ 22 Dt = (-nδ + σ n )Π 22 - 1 2 (σ s -ω)(Π 12 + Π 21 ). (13) 
Finally, running the model needs solving Eqs. ( 2) -( 4), Eq. ( 8), and Eqs. ( 11) -( 13), together with Eq. ( 7) for δ, and Eq. ( 9) for Π 11 , with relevant initial conditions. The solution method uses an explicit-in-time numerical scheme. In the present work, only initial conditions for normal strain and vorticity, namely σ n (0) and ω(0), are varied (Section 3); the other initial conditions are: c(0) = 10 -4 , σ s (0) = 0, and initial isotropy of pressure Hessian, namely Π 12 (0) = Π 21 (0) = 0, and Π 11 (0) and Π 22 (0) derived from Eq. ( 5) at t = 0, with Π 11 (0) = Π 22 (0), i.e.:

Π 11 (0) = Π 22 (0) = - 1 4 σ(0) 2 -ω(0) 2 - 1 4 δ(0) 2 + 2 Dδ Dt t=0 . ( 14 
)
Note that production of Π 12 and Π 21 is triggered by the interaction between ω and the diagonal components of pressure Hessian, Π 11 and Π 22 -Eqs. ( 11) and ( 12) -, and that σ s is in turn produced by Π 12 and Π 21 -Eq. ( 3).

3 Effect of Karlovitz number on strain structure

Reference test case

An earlier study addressed the effect of heat release for Ka 0 = 1 [START_REF] Gonzalez | Analyzing the effect of dilatation on the velocity gradient tensor using a model problem[END_REF]. The results reported in this section were derived for q = 5 and Ka 0 = 0.5, 1., 2., and 4. In addition, σ n (0) = -Ka 0 δ m -which ensures that σ n (0) does not change with Ka 0 -, and ω(0) = σ(0); the influence of those initial conditions is discussed in next section.

The nondimensional ratio of expansion rate to local strain intensity, δ/σ, is a critical parameter of the problem. Values of δ/σ exceeding unity indicate that heat release prevails over flow strain, and imply that the lowest strain eigenvalue is positive, in other words, that both directions of strain are extensional [START_REF] Gonzalez | Effect of variable mass density on the kinematics of the scalar gradient[END_REF]; strain has one compressional direction if δ/σ < 1. Note that this ratio can be considered as the reciprocal local Karlovitz number, Ka. The influence of Ka 0 upon δ/σ is shown in Fig. 2. Ratio δ/σ is greater than one over a significant range of c values, meaning fully extensional strain thereover, except for the greatest value of Ka 0 . This special feature certainly stems from the two-dimensional nature of the problem. Fully extensional strain seems to be less likely in three-dimensional flames even if positive values of lowest strain has been observed in some studies [START_REF] Swaminathan | Interaction of turbulence and scalar fields in premixed flames[END_REF][START_REF] Nomura | The structure of inhomogeneous turbulence in variable density nonpremixed flames[END_REF]. As Ka 0 is decreased, the c-range affected by prevailing expansion widens; the peaks showing highest dominance of expansion over strain are pushed towards the lower and upper ends where variation of δ/σ also gets stiffer.

Figure 3 shows the strain eigenvalues made nondimensional using the flame timescale, τ f , that is, λ ⋆ i = Ka 0 λ i , with λ 1 = (-σ + δ)/2 and λ 2 = (σ + δ)/2 being respectively the lowest and highest eigenvalues; δ ⋆ = λ ⋆ 1 + λ ⋆ 2 = Ka 0 δ does not depend on the Karlovitz number. As expected, λ ⋆ 1 is hardly positive for Ka 0 = 4, and gets positive over a wider c-range as Ka 0 is decreased. For Ka 0 = 0.5, the model approaches the special case of the free plane premixed flame for which -as it is easy to show -λ 1 vanishes and strain is merely extensional. Although their work is on turbulent three-dimensional flames, Kasten et al. [START_REF] Kasten | Principal strain rate evolution within turbulent premixed flames for different combustion regimes[END_REF] recently observed a similar behavior of the mean strain eigenvalues when varying the Karlovitz number (Fig. 4).

The other essential strain feature is the orientation of principal axes. Angle Φ = arctan(σ n /σ s )/2 -π/4 indicates orientation of highest strain direction, e 2 , with respect to forcing direction, x 1 . It is plotted in Fig. 5 for Ka 0 = 0.5, 1, 2, and 4. For Ka 0 = 2, and 4, Φ < -π/4 -which means that direction x 1 feels the action of lowest strain -throughout c-range. For Ka 0 = 0.5, and 1, by contrast, Φ > -π/4 -which means direction x 1 undergoing highest strain -over a significant range. The latter clearly widens, and alignment of highest strain with x 1 gets better, with decreasing Karlovitz number. In addition, alignment of lowest strain with x 1 at the lower and upper ends of c-range, and of highest strain with x 1 within the intermediate range is reminiscent of switching alignment of strain axes with the normal to a flame front as reported in previous studies [START_REF] Zhao | Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames[END_REF][START_REF] Kasten | Principal strain rate evolution within turbulent premixed flames for different combustion regimes[END_REF][START_REF] Steinberg | Statistics and dynamics of turbulenceflame alignment in premixed combustion[END_REF]. Figure 6 orientation of srain rate principal axes with respect to the normal to the flame front computed by Kasten et al. [START_REF] Kasten | Principal strain rate evolution within turbulent premixed flames for different combustion regimes[END_REF]; as for strain eigenvalues (Figs. 3 and4), although a point-by-point comparison would be unrelevant -the model is Lagrangian, twodimensional, inviscid, and assumes a one-way coupling between heat release and Fig. 4 Strain eigenvalues, sα, s β , and sγ (with sα > s β > sγ ), and dilatation rate, sα+s β +sγ , normalized by flame timescale, conditioned upon c for heat release parameter 4.5 and Karlovitz number 0.58 (a), 3 (b), 6.5 (c), and 11.9 (d) [START_REF] Kasten | Principal strain rate evolution within turbulent premixed flames for different combustion regimes[END_REF]. The evolution of eigenvalues λ ⋆ 1 and λ ⋆ 2 (Fig. 3) is to be compared with the evolution of above sγ (blue line) and sα (green line), respectively. Reproduced from "Principal strain rate evolution within turbulent premixed flames for different combustion regimes" by Kasten, C., Ahmed, U., Klein, M., Chakraborty, N., Physics of Fluids 33, 015111 (2021) with permission of AIP Publishing the velocity gradient -, evolution with Karlovitz number of the orientation of highest strain predicted by the model is clearly akin to their numerical data. As already shown, this special behavior of strain most likely results from anisotropy of the pressure Hessian promoting rotation of principal axes [START_REF] Gonzalez | Analyzing the effect of dilatation on the velocity gradient tensor using a model problem[END_REF], which is analyzed further below.

Stretching along direction x 1 refers to straining normal to a flame front. The latter is a key issue in flame problems [START_REF] Swaminathan | Interaction of turbulence and scalar fields in premixed flames[END_REF][START_REF] Mura | Modelling of the correlation between velocity and reactive scalar gradients in turbulent premixed flames based on DNS data[END_REF], for it results in the interaction of gradients of scalars -such as the progress variable, concentrations, or temperature -with velocity gradients, thereby determining the production of scalar dissipation and thus the process of small-scale mixing. Stretching parallel to x 1 depends both on strain eigenvalues and orientation of principal axes with respect to x 1 , θ 1 = π/2 -Φ -for lowest strain -, and θ 2 = Φ -for highest strain. Figure 7 shows those latter contributions,

s ⋆ 1 = -λ ⋆ 1 cos 2 θ 1 , s ⋆ 2 = -λ ⋆ 2 cos 2 θ 2 as well as the rate of total stretching, s ⋆ = s ⋆ 1 + s ⋆ 2 .
For Ka 0 = 4, direction x 1 merely undergoes the action of lowest strain (Fig. 5), and the latter is mostly negative (Fig. 3), which leads to positive stretching throughout the c-range except in the center region where it shows a slightly negative minimum. Conversely, for the lowest Karlovitz Fig. 5 Angle between direction of highest strain and direction of forcing vs. progress variable, c, for Karlovitz number Ka 0 = 0.5, 1, 2, and 4. The lower the Karlovitz number, the better the alignment of highest strain with the direction of forcing number, Ka 0 = 0.5, alignment is with the highest, positive strain (Fig. 5) and total stretching is essentially negative. Plots for Ka 0 = 4 and Ka 0 = 2 show intermediate states which are clearly explained by the evolution of strain axes orientation and sign of lowest strain. Again, those findings are akin to recent DNS flame data [START_REF] Kasten | Principal strain rate evolution within turbulent premixed flames for different combustion regimes[END_REF].

The evolution of strain orientation at the crossing of the expansion zone is explained by rotation of strain axes. In this two-dimensional Euler flow, the latter is merely promoted by anisotropy of the pressure Hessian tensor [START_REF] Lapeyre | Does the tracer gradient align with strain eigenvectors in 2D turbulence?[END_REF]. The rotation rate of strain eigenvectors is expressed by Ω = 2DΦ/Dt = σ -2 (σ s Dσ n /Dtσ n Dσ s /Dt), and thus, from Eqs. ( 2) and ( 3):

Ω = σ -2 [σ s (Π 22 -Π 11 ) + σ n (Π 12 + Π 21 )] . ( 15 
)
It was checked that varying the Karlovitz number does not significantly change the intrinsic anisotropy of pressure Hessian -as measured, for instance, by the anisotropy tensor. Anisotropy measured against strain intensity, by contrast, is highly sensitive to Karlovitz number, as shown in Fig. 8. The latter shows components a 22 and a 12 of tensor a, defined as: 9)]. Above all, they definitely show the sharp rise of anisotropy as the Karlovitz number is decreased from Ka 0 = 4 to Ka 0 = 0.5; a 22 peaks at levels a hundred times higher in the latter case. As a result, decreasing the Karlovitz number promotes rotation of strain axes. This is clear in Fig. 9 showing the rotation rate, Ω ⋆ = Ka 0 Ω, as well as contributions of anisotropic terms to rotation namely, a 22 σ ⋆ s , and a 12 σ ⋆ n [Eq. ( 15)], where σ ⋆ s = Ka 0 σ s , and σ ⋆ n = Ka 0 σ n . The other feature is the major contribution of .5 (c), and 11.9 (d) [START_REF] Kasten | Principal strain rate evolution within turbulent premixed flames for different combustion regimes[END_REF]. The evolution of angle between highest strain and direction of forcing predicted by the model (Fig. 5) is to be compared with the evolution of | cos(θα)| (green line). Reproduced from "Principal strain rate evolution within turbulent premixed flames for different combustion regimes" by Kasten, C., Ahmed, U., Klein, M., Chakraborty, N., Physics of Fluids 33, 015111 (2021) with permission of AIP Publishing diagonal anisotropy to strain axes rotation through a 22 σ ⋆ s , at least from low to moderate Karlovitz number. For Ka 0 = 4, contribution from a 12 σ ⋆ n matters. Finally, the forcing term δ ⋆2 /2 + Dδ ⋆ /Dt = Ka 2 0 (δ 2 /2 + Dδ/Dt) -which does not depend on Ka 0 -as well as the pressure Hessian diagonal anisotropic term,

a ij = (2Π ij -Π αα δ ij )/σ 2 ,
Π ⋆ 22 -Π ⋆ 11 = Ka 2 0 (Π 22 -Π 11
), are plotted in Fig. 10 for Ka 0 = 0.5, 1, 2, and 4. At low Karlovitz number, anisotropy of pressure Hessian mostly results from forcing and thus Π 22 -Π 11 ≃ δ 2 /2 + Dδ/Dt, which -since, as was checked, |Π 11 | ≫ |Π 22 | no matter the Karlovitz number -further gives:

Π 11 ≃ -δ 2 /2 -Dδ/Dt, (16) 
showing that Π 11 , then, scales as Ka -2 0 . And the approximate rotation rate of strain principal axes at low Karlovitz number is:

Ω ≃ σ s (δ 2 /2 + Dδ/Dt)/σ 2 , (17) 
which suggests that the shear component of strain is needed in addition to forcing by expansion to trigger strain axes rotation. As mentioned above (Section 2), the shear component itself results from interaction of vorticity with the diagonal 

(3) Ka 0 = 2 Fig. 7 Rates of stretching parallel to x 1 , s ⋆ i , and s ⋆ = s ⋆ 1 + s ⋆ 2 , vs. progress variable, c, for Karlovitz number Ka 0 = 0.5, 1, 2, and 4. For large Karlovitz number, total stretching along the direction of forcing is mostly positive, while it is mostly negative for low Karlovitz number Fig. 9 Rotation rate of strain principal axes, Ω ⋆ , and contributions to rotation, a 22 σ ⋆ s and a 12 σ ⋆ n , vs. progress variable, c, for Karlovitz number Ka 0 = 0.5, 1, 2, and 4. Decreasing the Karlovitz number promotes rotation of strain principal axes pressure Hessian tensor in premixed flames that was surmised from earlier studies [START_REF] Gonzalez | Effect of variable mass density on the kinematics of the scalar gradient[END_REF][START_REF] Gonzalez | Effect of density step on stirring properties of a strain flow[END_REF], and recently especially scrutinized [START_REF] Zhao | Dynamics and kinematics of the reactive scalar gradient in weakly turbulent premixed flames[END_REF][START_REF] Gonzalez | Analyzing the effect of dilatation on the velocity gradient tensor using a model problem[END_REF]. 

Zero initial vorticity

The case of zero initial vorticity is a special one. Keeping the other initial conditions of the above reference test case, ω(0) = 0 indeed leads to ω(t) = 0, σ s (t) = 0, and σ(t) = |σ n (t)|, and to a weak influence of the Karlovitz number, at least within the present range of values.

No matter the value of Ka 0 , the reciprocal local Karlovitz number, δ/σ, is mostly greater than one, and is singular where σ = 0 as σ n changes sign. Swapping in σ n sign also makes the angle between highest strain and direction of forcing, x 1 , switch from -π/2 to 0, and conversely. Highest strain mostly acts along the direction of forcing -and stretching parallel to x 1 is essentially negative -, except at the ends of c-range.

Low initial vorticity

The latter limit behavior is reflected by the results for low initial vorticity namely, ω(0) = 0.05σ(0). The reciprocal local Karlovitz number and the angle between highest strain and direction x 1 are plotted in Fig. 11. The latter is to be compared to Figs. 2 and5. Plots in Fig. 11 shows that δ/σ > 1 right from the lowest c values up to the higher end of c-range, which implies expansion prevailing over flow strain and positive lowest strain, λ 1 , there. Direction of highest strain is mostly parallel to x 1 . And the weak dependence on the Karlovitz number is striking. 

(3) (4) Fig. 11 (a) Reciprocal of local Karlovitz number, and (b) angle between direction of highest strain and direction of forcing, vs. progress variable, c, for ω(0) = 0.05σ(0) and Karlovitz number Ka 0 = 0.5, 1, 2, and 4; peaks of δ/σ around c ≃ 0.95 are clipped at δ/σ = 20. For low initial vorticity, expansion merely prevails over flow strain, and direction of highest strain is mostly parallel to the direction of forcing

Influence of initial strain

The effect of initial strain was checked for σ n (0) = -0.5Ka 0 δ m , and σ n (0) = -2Ka 0 δ m while keeping the conditions of the reference test case for other variables, namely c(0) = 10 -4 , σ s (0) = 0, ω(0) = σ(0), and isotropy of pressure Hessian.

Plainly, increasing the initial strain -i.e. strain of incident flow, if any analogy with a flame problem is made -lessens expansion effects. Figure 12 -as well as comparison with Fig. 2 for σ n (0) = -Ka 0 δ m -shows that the lower σ n (0), the wider the c-range over which δ/σ exceeds unity. For σ n (0) = -2Ka 0 δ m , mitigation of expansion effect is enough to keep δ/σ below one for Ka 0 = 4, which implies one compressional and one extensional strain direction throughout the c-range.

Plots for Φ show similar trends (Fig. 13). The lower the initial strain, the better the alignment of the highest strain with x 1 . But increasing σ n (0) prevents this alignment; it is the lowest strain that aligns with x 1 for Ka 0 = 1, 2, and 4, if σ n (0) = -2Ka 0 δ m . 

Conclusion

The principle of the model problem developed in this study is twofold. First, the expansion rate at the crossing of a premixed flame front is mimicked by specifying a likely evolution in function of a progress variable. And second, the forcing resulting from expansion is explicitly included in the computation of one diagonal component of the pressure Hessian. This defines a special direction -referred to as the direction of forcing -that can stand for the normal to a flame front, and along which anisotropy of the pressure Hessian is triggered by expansion. Running the model consists in solving the evolution equations for the progress variable, the normal and shear components of strain, vorticity, and three components of the pressure Hessian. The model includes two independent parameters, namely the
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 1 Fig.1Evolution of expansion rate, δ(t), for heat release parameter q = 5 and Karlovitz number Ka 0 = 0.5, 1, 2, and 4. The peak in the expansion rate increases as the Karlovitz number decreases

Fig. 2 Fig. 3

 23 Fig.2Expansion rate-to-strain rate ratio, δ/σ, vs. progress variable, c, for Karlovitz number Ka 0 = 0.5, 1, 2, and 4. The c-range where expansion prevails over strain widens with decreasing Karlovitz number

Fig. 6

 6 Fig. 6 Mean values of the magnitudes of cosines between strain principal axes and direction normal to the flame, | cos(θα)|, | cos(θ β )|, and | cos(θγ )|, conditioned upon c for heat release parameter 4.5 and Karlovitz number 0.58 (a), 3 (b), 6.5 (c), and 11.9 (d)[START_REF] Kasten | Principal strain rate evolution within turbulent premixed flames for different combustion regimes[END_REF]. The evolution of angle between highest strain and direction of forcing predicted by the model (Fig.5) is to be compared with the evolution of | cos(θα)| (green line). Reproduced from "Principal strain rate evolution within turbulent premixed flames for different combustion regimes" by Kasten, C., Ahmed, U., Klein, M., Chakraborty, N., Physics of Fluids 33, 015111 (2021) with permission of AIP Publishing
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 8 Fig.8Components a 22 and a 12 of anisotropy tensor of pressure Hessian vs. progress variable, c, for Karlovitz number Ka 0 = 0.5, 1, 2, and 4. The anisotropy of pressure Hessian tensor measured against strain intensity strongly increases with decreasing Karlovitz number
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 410 Fig. 10 Forcing term, δ ⋆2 /2 + Dδ ⋆ /Dt, and pressure Hessian anisotropic term Π ⋆ 22 -Π ⋆ 11 , vs. progress variable, c, for Karlovitz number Ka 0 = 0.5, 1, 2, and 4. Anisotropy of pressure Hessian tensor essentially results from forcing

Fig. 12

 12 Fig. 12 Reciprocal of local Karlovitz number vs. progress variable, c, for (a) σn(0) = -0.5Ka 0 δm, and (b) σn(0) = -2Ka 0 δm; Karlovitz number Ka 0 = 0.5, 1, 2, and 4. Increasing initial strain lessens expansion effects

  

  that is, a 22 = (Π 22 -Π 11 )/σ 2 , and a 12 = 2Π 12 /σ 2 -in this problem, Π 12 = Π 21 . They indicate greater anisotropy of diagonal than non-diagonal components, which is explained by forcing of Π 11 [Eq. (
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Fig. 13 Angle between direction of highest strain and direction of forcing, vs. progress variable, c, for (a) σn(0) = -0.5Ka 0 δm, and (b) σn(0) = -2Ka 0 δm; Karlovitz number Ka 0 = 0.5, 1, 2, and 4. The lower the initial strain, the better the alignment of highest strain with the direction of forcing heat release parameter and a Karlovitz number defined as the ratio of strain rate to expansion rate. The analysis addressed the influence of the Karlovitz number on strain evolution. Apart from features specific to the two-dimensional case -such as more likely positive lowest strain -, the model results are akin to the evolution of strain approaching a flame front as reported in recent studies. This is true, in particular, for strain eigenvalues, rate of stretching in the direction of forcing, and orientation of strain principal axes, when varying the Karlovitz number. Low Karlovitz number indeed promotes alignment of highest strain with the direction of forcingand negative stretching in this direction -, while increasing the Karlovitz number leads to alignment of lowest strain with direction of forcing, and positive stretching. Those findings thus suggest that the model includes basic mechanisms of the physics of the velocity gradient in flame fronts, and moreover, that mass density changes due to heat release may indeed be enough to explain the overall behavior of strain at the crossing of a flame front.

In this regard, the model shows that the special evolution of strain axes rotation which, at low Karlovitz number, at first brings the direction of highest strain close to the direction of forcing and then reverses, leading to alignment of lowest strain with forcing, is reminiscent of recent simulation data on alignment of strain with the normal to a flame front. Furthermore, it suggests that this behavior is mainly caused by anisotropy of pressure Hessian resulting from forcing by expansion. The model thereby confirms the essential role of pressure Hessian in strain physics in flames that had been pointed out in earlier works, and recently ascertained by numerical simulations. Addressing the three-dimensional problem would give further insight into this physics.

Data Availability Statement -The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.