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Abstract: The surface tension (ST) of metallic alloys is a key property in many processing 6 

techniques. Notably, the ST value of liquid metals is crucial in additive manufacturing processes 7 

as it has a direct effect on the stability of the melt pool. Although several theoretical models have 8 

been proposed to describe the ST, mainly in binary systems, both experimental studies and existing 9 

theoretical models focus on simple systems. This study presents a machine learning model based 10 

on Gaussian process regression to predict the surface tension of multi-component metallic systems. 11 

The model is built and tested on available experimental data from literature. It is shown that the 12 

model accurately predicts the ST value of binaries and ternaries with high precision, and that 13 

identifying certain trends in the ST values as a function of alloy composition is possible. The ability 14 

of the model to extrapolate to higher-order systems, especially novel concentrated alloys (high 15 

entropy alloys, HEA), is discussed. 16 
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1. Introduction 1 

In recent years, the development of innovatory processes like Additive Manufacturing (AM) has 2 

open new possibilities in modern metallurgy. However, the available set of conventional alloys 3 

currently known to be reliably processable by AM remains quite limited, and there exist very few 4 

materials that are optimized for these processes [1]. Designing new, “AM-dedicated alloys” is 5 

challenging [2]–[6]: in such materials, minimization of the defects in final products (like hot 6 

cracking, porosity, surface roughness, balling, residual stresses and distortions) is expected. AM 7 

processes involve liquid metal, so different properties of materials in this state are of practical 8 

importance and need to be studied. Among them, the surface tension (ST) is crucial, as two 9 

different effects involving this characteristics may be feared: (i) the ST value influences the 10 

conditions of wetting of the previously deposited solid phase by the liquid one; (ii) the absolute 11 

ST value and its variation with temperature contributes to the control of the melt pool stability and 12 

shape [7].  13 

It is currently admitted that the ST value depends on the temperature of the liquid, pressure and 14 

chemical composition of the alloy [8], [9]. Generally, for a wide range of materials, the ST 15 

decreases with temperature [10]–[13]. There is no general rule about alloying effects on ST in 16 

comparison to pure elements. Typical values in metals and alloys range from  0.4 N.m-1  (e.g. Li 17 

at 453 K)   to  2.5 N.m-1  (e.g. W at 3650 K) [9].   18 

Experimental measurement of surface tension in metallic alloys faces many challenges and is 19 

subjected to numerous sources of error. The difficulties come from several features. First, the 20 

measurements need to be performed in the liquid state, at high temperatures, facing an obvious 21 

and difficult to avoid risk of contamination (oxidation). Moreover, real alloys currently contain 22 

impurities; some of them (S, O) have a significant effect on ST, decreasing its value even for very 23 
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low content in the alloy [14]–[18]. Several methods of experimental assessment of surface tension 1 

exist; their details have been reviewed [19]. The Sessile Drop Method (SD), and the pendant drop 2 

method (PD) similarly present the advantage of providing values of ST over wide ranges of 3 

temperatures [20]; however, the use of reference surfaces and/or capillary tubes respectively is a  4 

source of significant error [19]. Surface contamination effects are much less pronounced in the 5 

Maximum Bubble Pressure Method (MBPM) in which consecutive measurements are done on a 6 

freshly formed surface [21], [22]. Finally, the Electromagnetic Levitation (EL) method provides 7 

an enhanced accuracy as it eliminates persistent sources of contamination as mentioned above 8 

[19].  9 

Theoretical description of surface tension, based on alloys thermodynamics, started at the 10 

beginning of 20th century, with the first approaches proposed by Gibbs [23] and improved by 11 

Guggenheim [24], [25]. Finally, the Butler model proposed in 1932 [26]  became the most known 12 

and used model to estimate the ST values from the chemical composition of the alloy.Although it 13 

provides a fair estimation, the Butler model remains inaccurate in many cases, probably due to 14 

neglecting the atomic structure of liquid alloy surfaces [19]. Recently, Vermot des Roches et al. 15 

[27] have compared the results of ST calculations by Butler model to available experimental data 16 

on binary alloys : it was shown that the Butler model fails to accurately predict almost 40% of 17 

them.  18 

In an attempt to alleviate some of the limitations of the Butler model, Wynblatt et al. [28] presented 19 

an approach that is built on the same assumption of the equality of chemical potentials between 20 

surface and bulk but instead of a monolayer, the surface was considered to be made of multilayers. 21 

Although more general, this model could not really improve the prediction of certain systems such 22 

as the Al-Ni system. Egry et al. [29], [30] proposed an analytical model extended from the ideal 23 
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solution approach.  It was able to significantly enhance the predictions of several systems, for 1 

example the Al-Ni and Fe-Ni systems. Yet, a general model that would be able to describe all the 2 

existing alloys is still missing.  3 

Some authors proposed models relating the ST value in a given metallic matrix to the presence of 4 

different surface-active elements. An interesting approach was presented by Ghebiri et al. who 5 

proposed a semi-empirical model describing the oxygen content effect in different metallic liquids 6 

[31].  7 

Although several theoretical models have been proposed to describe the ST, mainly in binary 8 

systems [24], [26], [28], [32], [33], and some authors have used them to estimate the ST values 9 

and evolution for ternaries and multi-element alloys [34]–[36], both experimental studies and 10 

existing theoretical models focus on simple systems. Rare are the results coming from alloys 11 

containing three or more elements, except experimental measurements in several grades of 12 

industrial alloys like austenitic stainless steels [37]–[39] and Ni-based superalloys [40], [41]. 13 

Besides, the lack of models for multicomponent systems is due to the difficulty in physical 14 

modeling the complicated behavior of ST, when several elements are included and the large 15 

number of parameters is required to assess.  16 

In this work, a general machine learning-based (ML) model is proposed to predict the surface 17 

tension of metallic alloys. The model is based on a Bayesian algorithm, specifically Gaussian 18 

Process Regression (GPR). The ambition of the ML-GPR model is to enlarge its application field 19 

to multicomponent alloys. Thus, after its training and validation on existing experimental data, the 20 

ability of the model to predict surface tension in more complex compositions (like classical 21 

stainless steels) and some innovatory concentrated alloys (austenitic single phase HEA alloys from 22 

the CoCrFeMnNi family) will be tested. 23 
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2. Methods  1 

2.1 Data Processing 2 

The data used to build, train and develop the model come from existing bibliography. Its 3 

exhaustive list is referenced and the list of exploited systems is given in Table 4. A large panel of 4 

metallic systems (pure metals, binaries, ternaries as well as some multicomponent systems like 5 

industrial alloy grades) have been taken into account, in the limits of our best knowledge. All 6 

measurement techniques were considered. However, ST data for alloys containing elements such 7 

as Na, K, Rb, Cs, Bi and Pb were not considered. In most of the cases, these elements were studied 8 

as additives [42] and their low content does not permit a comprehensive extrapolation. 9 

In total, around 2200 data points were collected from approximately 70 scientific articles. The data 10 

considered consists of purely experimental data. The elements considered are: Ag, Al, Au, C, Co, 11 

Cr, Cu, Fe, Ge, Li, Mg, Mn, Mo, Nb, Ni, Si, Sn, Ta, Ti, W, Zn, and Zr. The data points are 12 

measurements recorded at different temperatures, for which around 520 points are for pure 13 

elements, 1257 for binary systems, 350 for ternary systems, and less than 140 points for quaternary 14 

and higher order systems. Impurities such as oxygen, sulfur and phosphorus, as mentioned in 15 

section 1, behave differently and require a different approach. Moreover, in most cases the content 16 

of these elements is not specified but rather approximated. Hence, they were not included in the 17 

composition vector.   18 

Within the considered alloys and alloying elements, the construction of the database highly 19 

depended on the availability of measurements in literature, so that not all elements or materials are 20 

represented evenly. This will be discussed later. In addition to the amount of data, another issue 21 

lies in the measured values themselves. Each measurement is subjected to an error, whether 22 
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experimental or due to the purity of the material studied, both which could vary between different 1 

sources. Therefore, a discrepancy in the values is inevitable. For example, Fig. 1 a) shows different 2 

values of ST for pure zirconium as reported by different authors and compared by Paradis et al. 3 

[43]. The discrepancy in the measurements reaches up to around 0.15 N.m-1 at the melting 4 

temperature. The authors also showed similar comparisons for pure niobium and pure titanium. 5 

Similarly, measurements of ST for pure Fe could vary significantly between different sources. 6 

Monma et al. [44] reported a value of around 1.65 N.m-1 for pure Fe at 1823 K, while a value of 7 

around 1.9 N.m-1 was reported by Brillo et al. [45]. Likewise, two sets of values for the Fe-Ti 8 

system are shown in Fig. 1b, which will be discussed later. Such scatter in data may largely 9 

originate in differences between the various measurement methods mentioned in the introduction. 10 

However, in our study all the sets of different values were used, assuming that the statistical nature 11 

of the used ML tool (GPR) will allow to smooth out the scatter and extract correct trends. Such an 12 

ability was for instance illustrated by the learning of phase formation in multicomponent alloys, 13 

from highly scattered data, with large differences coming from a wide diversity of experimental 14 

conditions and methods  [46]. The resulting model was then trusted, and successfully used for 15 

alloy design [47], demonstrating its ability to learn relevant trends from highly noisy data. It was 16 

thus chosen here to use all available data (i.e. both old and recent, coming from different 17 

measurement techniques). Indeed, on one hand there would not have been a systematic and rational 18 

way of deciding what data are good or wrong or better than others, and on the other hand removing 19 

all the data appearing scattered would have led to an extremely limited applicability of the model 20 

(number of elements, concentration spans). 21 
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 1 

 2 

2.2 Machine Learning Model 3 

Machine Learning (ML) algorithms currently serve as an excellent exploitation tool for available 4 

experimental data in the field of materials science [47]–[53]. Although the earliest use of 5 

informatics in materials science goes back to the integration of  thermodynamic databases into 6 

thermochemical computations to map phase stability in binary and ternary alloys [48], with the 7 

advancement of the computing power and the different ML algorithms, the use of ML in materials 8 

science became more present. 9 

In this study, the proposed model is based on Gaussian Processes Regression (GPR), a Bayesian 10 

algorithm that has been successfully used to solve nonlinear prediction problems. Bailer-Jones et 11 

al. [54] were among the first to utilize this method in the domain of metallurgy, where they 12 

presented a Gaussian Process model for the empirical modelling of austenite formation during the 13 

Figure 1 Examples of surface tension data discrepancy for a) pure Zirconium at different temperatures [43],b) Fe-Ti at 

1823 K [73] (As cited by [27]), [74] ) 
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continuous heating of steels. More recently, this method has been used by several authors to predict 1 

material properties [46], [55], [56].  2 

GPR mainly defines a distribution over functions such that for every two or more points chosen, 3 

the output of these points follows a joint multivariate Gaussian distribution [57]. A more detailed 4 

explanation of the model can be found in Appendix 2. One of the main advantages of using the 5 

ML-GPR method is that in addition to predicting a mean value, it also provides a variance for the 6 

predicted distribution. In this study, GPR available in the open-source Python package Scikit-learn 7 

was used [58].  8 

What is referred to as Gaussian process training is usually the selection of a covariance function 9 

(kernel) and its parameters. For this model, the RBF (Radial Basis Function, also known as 10 

squared-exponential) kernel was chosen and the lengthscale values were optimized through fitting. 11 

The final lengthscales could be insightful as they can provide information on the influence of the 12 

input parameters. Usually, the lower the value of the lengthscale, the higher can be the influence 13 

of the respective feature, whereas large lengthscales would prohibit steep variations. Lengthscales 14 

are optimized such that the model remains smooth and any over-complexity is avoided. This is 15 

ensured by the addition of a hyper-parameter indicating the noise level. To ensure that the selection 16 

is optimal, a GridSearch technique was applied and repeated for different parameter intervals.  17 

The predictability and the ability of generalization of the ML-GPR algorithm is evaluated by cross-18 

validation to avoid overfitting. The evaluation metrics considered are the most commonly used 19 

values for regression and numerical problems, i.e: the Mean Squared Error and Root Mean Squared 20 

Error (MSE and RMSE, respectively), Mean Absolute Error (MAE) and R-squared (R2).  21 
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The model hyper-parameters are adjusted to obtain a large R2, a small MSE and a small RMSE. 1 

The variation of these metrics for the different cross-validation folds is discussed hereafter.   2 

3. Results and discussion 3 

3.1. Building the model 4 

The model was first trained and fit on all collected experimental data. The average values of the 5 

evaluation metrics for both the training and the testing sets computed with the 10-fold cross-6 

validation method are shown in Table 1. It can be seen that the overall performance of the model 7 

is very good with an MSE average of around 0.02 and an R2 value of 0.97. Fig. 2 shows the cross-8 

validation prediction results as well as the final prediction results of the model after training as a 9 

function of the real measurements. The majority of the points lie on the line with slope 1 indicating 10 

a generally high prediction accuracy. Nevertheless, there remains a few data points at which the 11 

model shows a relatively high error in prediction, especially in the cross-validation test results. 12 

Several of these points can be explained by the insufficiency of data to well describe a particular 13 

material. For example, Mg and W-based alloys are only described with 14 data points each. Hence, 14 

it is unavoidable that the model fails to correctly predict these points when they lie within the 15 

testing set. The same could be said about Li and Zn, which are represented with 10 and 24 points 16 

respectively, especially that these points are located on the extremes of the database. Li and Mg 17 

have some of the lowest ST values of 0.39 and 0.55 N.m-1 respectively at their melting 18 

temperatures, compared to 3 N.m-1 for W. It is also normal to observe that the predicted value for 19 

the mentioned points is correct when the model is trained on the whole dataset, as shown in Fig. 2 20 

b. Of course, due to data discrepancy discussed in section 3, there remain a few points that still 21 

show a higher error even after training.  22 
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Table 1 Average and standard deviation values for different evaluation metrics using the 10-fold cross validation 1 

method 2 

 3 

 4 

 5 

Figure 2 Predicted surface tension values in [N.m-1] as function of the experimental values from literature for  6 

a) 10-fold cross validation b) the final trained model on the whole dataset 7 

 8 

3.2 Model validation: surface tension in binary systems; comparison between 9 

experimental values and ML-GPR model prediction 10 

 11 

 

test R2 train R2 test MSE train MSE test MAE train MAE 

Average 0.9783 0.9950 0.0237 0.0050 0.0581 0.0419 

Standard 

deviation 
0.0294 0.0003 0.0369 0.0003 0.0091 0.0008 
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Based on the so built and trained model, the evaluation of surface tension in selected binary 1 

systems has been performed. The obtained results have been systematically compared with 2 

existing data. Only a few examples of studied systems will be presented and commented on in this 3 

paragraph. A complete set of data, for about 20 different binaries, mainly Fe-, Al- and Ni-based, 4 

is presented in Appendix 1.  5 

For well-documented binary alloys, the ML-GPR model of surface tension shows its ability to 6 

correctly reproduce the trends in ST in binary alloys, as a function of the content of elements. This 7 

is the case of Fe-based alloys in which the ST is quite independent of alloying element content 8 

(ex: Fe-Cr at 2073 K, Fe-Ni at 1773 K, Fe-Co at 1823 K), as shown in Fig. 3, but also in the case 9 

where the addition of an alloying element changes the ST value, as seen in the Fe-Al system at 10 

1233 K  (Fig. 3 d).  11 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 

Also, Al-based alloys are generally well described, as shown in examples in Fig. 4. Let us note 1 

that in these materials, any alloying increases the ST value, as the surface tension for pure 2 

aluminum is low, of about 0.9 N.m-1, and slightly decreasing with temperature. In all these systems, 3 

the accuracy of prediction is quite satisfactory, with the 95% confidence interval currently below 4 

0.2 N.m-1.  5 

Figure 3 Surface tension prediction for a) Fe-Cr at 2023 K, b) Fe-Ni at 1873 K c) Fe-Co at 1823 K and d) Fe-Al at 6 
1233 K 7 
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 1 

Several singular points need to be stressed on. Fig. 3 b and Fig. 4 a (Fe-Ni, Al-Cu, respectively) 2 

show the cases of well-documented alloys, with a wide experimental data set, coming from several 3 

research groups and sometimes, obtained by different experimental methods, and leading naturally 4 

to some differences in measured values. Obviously, the model prediction in such a situation should 5 

choose an “average” value, best optimized in the sense of existing trend, as observed in the figures. 6 

Another case is shown in Fig. 3 c (Fe-Co):  for the studied temperature (1823 K), different ST 7 

values for pure Fe have been measured, with differences as large as 0.35 N.m-1. It is reassuring to 8 

note that the model prediction of ST follows the data coming from the same bibliographic reference 9 

as the major part of data describing the whole Fe-Co binary system. Finally, the “bad” prediction 10 

of ST in Al-Ni system (Fig. 4 b) for almost equimolar alloys may be surprising. In fact, an almost 11 

constant ST value was measured for alloys containing between 45 and 75 at. % Ni [59] while the 12 

model indicates a continuous increase of ST with increasing Ni content. It may be hypothesized 13 

that the congruent solidification of NiAl B2-ordered phase and the associated liquid demixing in 14 

the vicinity of the equimolar composition [60] can change the liquid behavior; a phenomenon that 15 

would be at the origin of modified ST behavior, but not detected by the model, trained on 16 

homogeneous liquid behavior. Finally, we can see that the ST trends are successfully represented 17 

in the cases of Al-Cr at 2073 K and Al-Co at 1873 K (Fig. 4 c and d).  18 
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 1 

Figure 4 Surface tension prediction for a) Al-Cu at 1375 K  b) Al-Ni at 1913 K c) Al-Cr at 2073 K and d) Al-Co at 2 
1873 K 3 

 4 

It is not surprising to find that the quality of predictions (measured by the standard deviation of 5 

predicted ST value) decreases in binary alloys if – for a large range of chemical compositions – 6 

experimental data is missing. Several cases are observed. In the Fe-Al binary system (Fig. 3d), 7 

experimental data are missing for alloys containing more than 40 at. % of Fe. The model 8 
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satisfactorily describes the Al-rich alloys; for the alloys containing more iron, the prediction 1 

follows an almost linear increase of ST, with an increase of standard deviation when compositions 2 

far from known experimental points are of concern. Yet, in all cases, the standard deviation is 3 

below 0.25 N.m-1 and so, remains satisfactory. The same rule of increase of standard deviation far 4 

from experimental points may be clearly observed in the Fe-Mo system, Fig. 5a, with similar 5 

values of maximal standard deviation and so, a prediction that remains sufficient for applicative 6 

purposes. However, a more complicated situation has to be described in the Fe-Ti system (Fig. 7 

5b). Only scarce experimental data, limited to Ti content as low as 3 at. %, (already discussed in 8 

§3.1), are available. Lack of reference points leads to a peculiar behavior of the ML-GPR model: 9 

a deep minimum of ST for about 20 % of Ti and standard deviations higher than 0.5 N.m-1.  10 

This is one of the rare cases in which the proposed model seems to extrapolate with a very low 11 

level of confidence, towards areas not sufficiently covered by the database, although the 12 

description of actual data appears correct in the corresponding range. Somewhat similar although 13 

less dramatic situations have been also seen in Fe-Mo. In doubt of the validity of the model in the 14 

Fe-Ti system beyond ~3% Ti, it would be preferable not to use the model in Fe-based alloys 15 

containing more than a few percent titanium. Fortunately, very high concentrations of such 16 

elements are almost never used for alloys of this class of engineering materials. 17 
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 1 

Figure 5 Surface tension prediction for a) Fe-Mo at 1873K and b) Fe-Ti at 1823K 2 

 3 

3.3 Model evaluation: surface tension in ternary systems; comparison between 4 

experimental values and ML-GPR model prediction. 5 

The ML-GPR model allows to evaluate the ST value for complete ternary maps in isothermal 6 

conditions. This permits a clear visualization of trends and the effect of different elements on ST 7 

values. In Fig. 6 ternary maps to describe the ST in several ternary systems are shown. The color 8 

code is used to identify the contours of ST value (N.m-1). Unfortunately, the limited availability of 9 

data for ternary systems makes it difficult to evaluate the performance of the ML-GPR model 10 

globally. Although this is the case with binary systems as well, the evaluation of ternaries remains 11 

harder simply due to the fact that a higher number of points is needed to describe the space. 12 

Nevertheless, there has been some proposed thermodynamical models in the literature which 13 

predicted the ST for certain ternary systems. For example, Costa et al. [61] analyzed the energies 14 

of mixing in liquid Co–Cr, Cr–Ni and Co–Ni systems and extended the results to predict the 15 
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surface tension properties of the Co-Cr-Ni system. Compared to experimental data found in 1 

literature for the systems Cr-Ni and Co-Ni, their model predicts overestimated values of surface 2 

tension. Usually, this is explained by the high reactivity of alloy components and adsorption of 3 

oxygen on the liquid surface, which leads to a decrease in the surface tension and therefore a lower 4 

measured value compared to the theoretical prediction. Fig. 6 a. shows the surface tension 5 

prediction of the ML-GPR model for the Co-Cr-Ni system at 1873 K. Compared to the 6 

abovementioned thermodynamic model, the prediction of the ML-GPR model shows a slightly 7 

larger range of variation but similar trends. The difference in the exact values is explained by the 8 

fact that the model is trained on a set of experimental data; data that already include a certain range 9 

of error coming from material contamination, or experimental setup, etc. Similarly, Mehta et al. 10 

[62] studied the surface properties of the Fe-Cu-Si ternary system. They compared the results of 11 

four different models: Chou et al [63], Toop [64], Kohler [65] and Butler [33], which seem to be 12 

in agreement. Among the three components, pure silicon has the lowest surface tension value, and 13 

iron the highest. The surface tension of the ternary alloy changes non-linearly when viewed from 14 

the corners. The ML-GPR model’s prediction for the Fe-Cu-Si system at 1773 K is shown in Fig. 15 

6 b. The predictions are in excellent agreement with the results of [62], starting with a value around 16 

1.7 N.m-1 for the composition of Si5Cu5Fe90, and decreasing as the content of Si and Cu increases, 17 

to reach a value around 0.9 N.m-1 for the composition of Si45Cu45Fe10,  indicating the ability of the 18 

GPR model to interpolate/extrapolate surface tension values for ternary systems.  19 

The main advantage of the machine learning model lies in its ability to generalize, without the 20 

need to study the exact systems involved and analyze the components that might be formed by the 21 

involved elements. 22 
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 1 

Figure 6 ML-GPR Prediction of Surface Tension [N.m-1] for a) Cr-Co-Ni at 1873K and b) Cu-Si-Fe at 1773K 2 

3.4. Efficiency of the ML-GPR model to describe multicomponent systems: 3 

comparison with existing data. 4 

 5 

The next part of the work consisted in testing the ML-GPR model’s ability to extrapolate towards 6 

multi-component (containing at least three elements) systems behavior, on the basis of data coming 7 

from simpler ones, since it has been built mainly from pure elements or binary systems, and to a 8 

minor extent from higher-order systems. To this purpose, training the ML-GPR model again on 9 

solely pure materials and binary alloys was done (~1770 data points). Then, the available 10 

experimental ST values of several ternaries and higher-order systems were used as test points. The 11 

results of model prediction in comparison with the experimental data from literature are shown in 12 

Fig. 7. To simplify, alloys from the same family; e.g., Al-Cu-Ag alloys, or Sn-Cu-Ag materials, 13 

were grouped by the same color. Due to the importance of stainless steels, and the existence of 14 

data for different grades of this class of materials, associated data take a significant place among 15 
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available studies, and they are divided into several classes for a better graphical representation in 1 

Fig. 7b. The exact chemical compositions of several grades of stainless steels [37] are summarized 2 

in Table 2 and used to build the graph in Fig. 7b.  3 

 

(a) 

 

(b) 

 Figure 7 ML-GPR model prediction vs experimental values of ST [N.m-1] for several higher order system including 4 

several stainless steels grades (stainless steels A to I [40], AISI 304 [37]), when the model is learnt solely from pure 5 

metals and binary alloys 6 

In general, it can be seen that the accuracy of prediction of ST by the ML-GPR model is 7 

satisfactory. For the ternary systems, like Al-Cu-Ag and Sn-Cu-Ag systems, the prediction 8 

accuracy is quite high. It is worth noting that the binaries of these systems are well represented in 9 

the database, compared to the other cases. Several datasets from literature describe both the effect 10 

of chemical composition and temperature for the Ag-Cu, Sn-Cu and Ag-Sn systems. As for the 11 

prediction of the quaternary CuFeNi85Sn (purple) and quinary CuFeGeNi80Sn (red), although the 12 

ML-GPR model correctly predicts the ST value, the predicted variation of temperature effects on 13 

ST seems unsatisfactory. By looking at the ST values of different binary systems containing 14 
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germanium, one can see that this element usually strongly decreases the ST value as it has low ST 1 

value itself, around  0.6 N.m-1 at melting temperature. For example, a Ni-Ge alloy with 5% of Ge 2 

at 1873 K has an ST of 1.6 N.m-1, compared to 1.75 N.m-1 for pure Ni. Similarly, for Fe-Ge at 3 

1823 K, an addition of 20% of Ge can decrease the ST value to 1.3 N.m-1 compared to an average 4 

value of 1.8 N.m-1 for pure Fe. This data allows the model to give a proper estimation of the ST 5 

but is not enough for a satisfactory estimation of the temperature effect. As for the Ni-Co-Cu 6 

system, an opposite behavior is observed. The predicted values slightly overestimate the measured 7 

ST value. In fact, for the Ni-Co binary system we saw that there is little to no effect of composition 8 

on ST. In the case of Ni-Cu and Co-Cu, the addition of Cu decreases the ST. The results are 9 

therefore somewhat surprising, as the model does not succeed to predict the effect of Cu, especially 10 

when it is present in low contents.  11 

For different stainless steel compositions studied by Li et al. [37], Table 2, and the Fe-Cu-Mo 12 

system studied in [66], the ML-GPR model slightly underestimates the ST value. The opposite is 13 

seen for some data concerning an AISI 304 steel measured by the maximum bubble method. Let 14 

us note that for the same alloy measured with sessile drop method, we do not observe a high error 15 

for the model predictions. This part of the study intended to assess whether a model built only 16 

from low order systems (unaries and binaries) would be able to give fair values and/or trends for 17 

higher order systems, i.e. ternaries or even more complex alloys. Let us stress on the fact that, even 18 

if  the trends are slightly degraded for commercial alloys (eg.: stainless steels), good value ranges 19 

are obtained for all alloys.   20 

Steel C Si Mn Al Cr Ti 

A 0.0435 0.287 0.189 0.1288 16.198 0.0044 

B 0.0847 0.298 0.596 0.089 15.995 0.0056 

C 0.0689 0.316 0.572 0.0042 16.232 0.0028 

D 0.0084 0.464 0.35 0.0562 10.858 0.2211 
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E 0.0056 0.126 0.141 0.0504 16.199 0.293 

F 0.0053 0.092 0.112 0.0806 17.346 0.2741 

G 0.0059 0.145 0.131 0.052 18.67 0.1541 

H 0.0153 0.555 0.149 0.0216 19.105 0.0082 

I 0.0076 0.467 0.124 0.0293 21.511 0.0042 

 1 

Therefore, it may be reasonably expected that no further significant degradation of prediction 2 

would come for the complete model and it seems possible to extend the model to higher-order 3 

systems, as long as the compositional space of the lower order systems involved is sufficiently 4 

well described. The range to which it can be extrapolated could be individually discussed based 5 

on the statistical representation of the system on topic, but also with the help of the error bars 6 

provided by the algorithm. Consequently, the model learnt using all available data should be able 7 

to provide fair predictions of the ST in the case of multicomponent alloys, which is attempted in 8 

the next section. 9 

3.5 Use of the ML-GPR model to predict ST in complex alloys: application to 10 

austenitic HEA alloys 11 

 12 

Alloy 

 

Tliquidus in K 

Surface Tension 

[N.m-1] 

CuCrFeMoNi  1816 1.39 

Al0.5CrCuFeNi2  1561 1.47 

Al0.5CrCuFeNi  1657 1.34 

CoCrFeMnNi  1596 1.2 

CoCrFeNi  1713 1.4 

CrFeMnNi  1574 1.0 

CoCuFeMnNi  1555 1.12 

CoCrCuFeNi  1648 1.23 

CrCuFeMoNi  1817 1.39 

Table 2 Composition of different grades of stainless steel in weight % [37] 
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Al0.5CoCrCu0.5FeNi  1607 1.3 

Al0.3CoCrCuFeNi  1620 1.28 

Al0.5CoCrCuFeNi  1599 1.27 

Al0.5CoCrCu0.5Fe2Ni  1644 1.22 

Al0.5CoCrCu0.5Fe3Ni  1670 1.21 

Al0.5CoCrCu0.5Fe3.5Ni  1680 1.22 

CoCrFeMo0.3Ni  1674 1.4 

Al0.3CoCrFeMo0.1Ni  1654 1.37 

Al0.2CrCuFeNi2  1589 1.48 

Al0.6CrCuFeNi2  1552 1.46 

Al0.25CoCrFeNi  1674 1.37 

Al0.3CoCrFeNi  1666 1.36 

Al0.375CoCrFeNi  1652 1.35 
Table 3 Predicted surface tension values for some HEA alloys at their melting point 1 

 2 

In the next part of the study, the ML-GPR model, learnt from all available data (retrained on the 3 

whole database), was used to predict the surface tension of several alloys for which experimental 4 

data are still missing. Such an approach, even if it would come along with a high level of 5 

uncertainty on the predicted values, is valuable in the framework of alloy design. Indeed, 6 

decreasing the ST value may be of interest in some specific processes such as welding or additive 7 

manufacturing, to help the stabilization of the meltpool. However little knowledge of the trend of 8 

ST variations with composition is known in the case of highly alloyed systems. This section 9 

provides a quick glance of possible variations to foresee some possible research directions where 10 

ST at the liquidus could be possibly minimized. This investigation will give further insight into 11 

the effect of several elements on the value of the ST, as well as the behavior of the material at 12 

different temperatures. In Table 3 the surface tension for several face-centered cubic (FCC) high 13 

entropy alloys (HEA) [67] is given at their liquidus temperatures estimated using ThermoCalc 14 

software (TCHEA4 database). It is clear that the range of variation seems to be limited. It has been 15 

mentioned that certain elements can have a similar effect on the trend of the ST value in a specific 16 
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system, such as the behavior of transition metal elements in a binary system with iron [27]. 1 

Nevertheless, the results show that by varying the content of one element or the other, it is possible 2 

to optimize the value of ST depending on the desired outcome. For example, changing the 3 

composition of the CoCuFeNi equimolar alloy by decreasing the amount of either nickel or cobalt, 4 

could help achieve a minimum in the ST value. Similarly, for the CoCrFeNi equimolar alloy, 5 

introducing a small amount of aluminum could also decrease slightly the value of ST.  6 

An example of ML-GPR model predictions is given in Fig. 8 for the CoCrFeMnNi equimolar alloy 7 

(also known as Cantor alloy). The effect of the different elements on the ST value of the alloy is 8 

presented by considering that the element is added to an equimolar quaternary alloy. The square 9 

points represent the surface tension values for the quaternary alloys CoCrFeNi (in red), CrFeMnNi 10 

(in blue), CoFeMnNi (in green), CoCrFeMn (in pink) and CoCrMnNi (in orange). The predicted 11 

ST value for the Cantor alloy is in fact surprisingly low, not far from the minimum value obtained 12 

for a major part of studied compositions.  One explanation could be come from a high amount of 13 

manganese in Cantor alloy: as presented in Fig. 8, this element has a strong effect on ST values in 14 

the studied system. More generally, Mn is the first predominant factor driving the global ST 15 

variations. When Mn content increases, the ST value decreases progressively. For the other 16 

elements, the trend is opposed, because it results in a lower Mn fraction. However, a second 17 

predominant factor is the liquidus temperature, which is also affected by composition. For 18 

instance, the addition of Fe results in an increase of liquidus temperature from 1277°C for 19 

CoCrMnNi to 1538°C for pure Fe. For these elements, the temperature results in a decrease of ST 20 

value according to the ST database. Therefore, the variation from Cantor to a pure element should 21 

result in a higher liquidus temperature, and a lower ST. The competition between these two 22 

opposite effects may eventually result in a sag point, as it is the case for Fe curve. On the other 23 
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hand, in the case of Ni content (denominated “x” in the following), the CoCrFeMn alloy has a 1 

liquidus at 1373°C, and the variation of liquidus is only of 82°C when x changes from 0 to 100. 2 

Therefore, liquidus has a limited impact on ST in this case, and ST is mostly driven by Mn content, 3 

with a continuous decrease when x tends toward 0. This explains the peculiar behavior of Ni curve 4 

at low x values. 5 

These preliminary results are based on the information acquired from the existing database. The 6 

extrapolation of the model to multicomponent alloys induces a relatively large variance interval of 7 

more than 0.3 N.m-1, as the predicted systems are farther from trained input samples in the 8 

composition space. Of course, the more data is added to the training database, the better the model 9 

performs on the different aspects discussed. Nevertheless, this model represents a simple method 10 

to estimate a range for the ST value and trend without the complication of manually calculating 11 

physical parameters for the elements and their interactions. This is especially useful in cases where 12 

the aim is to optimize the property rather than achieve a specific value. 13 
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  1 

Figure 8 ML-GPR model prediction of surface tension values, showing the independent effects of elements on the 2 

equimolar alloy CoCrFeMnNi (Cantor alloy) behavior. Calculations performed at melting temperature of each alloy, 3 

estimated from ThermoCalc data.  4 

4. Conclusion 5 

1. With a long-term purpose of improvement of criteria of alloy design for innovating processes 6 

like additive manufacturing, a Machine-Learning model based on Gaussian Process Regression 7 

(ML-GPR) was developed for predicting the surface tension values in metallic alloys. The model 8 

is built on the basis of the data coming from experimental measurements found. Analysis of more 9 

than 70 papers and textbooks allowed the creation of a database containing more than 2200 10 
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experimental points. An interesting perspective would be to incorporate data obtained by atomistic 1 

simulation.  2 

2. The model’s database comes mainly from pure elements and simple alloys, mostly binary and, 3 

less commonly, containing three or more chemical elements. A good agreement between 4 

prediction and experiments was generally observed in binary and ternary alloys when enough 5 

experimental data exist. The confidence range of prediction is generally lower than 0.2 N.m-1. 6 

There are rare cases in which the model seems to extrapolate with a very low level of confidence, 7 

towards areas not sufficiently covered by the database, such as in Fe-Ti or Fe-Mo systems. 8 

3. On the basis of results for simple alloys, the possibilities of extension of predictions by ML-9 

GPR model to multi-element alloys have been assessed. 10 

4. The tentative of using the ML-GPR model to predict the surface tension in novel concentrated 11 

alloys, namely austenitic HEAs from the CoCrFeMnNi family, remains a challenging task. Yet, 12 

significant variations in ST could be identified when changing the contents in certain elements. 13 

Especially, a strong effect of Mn, decreasing the ST values, was shown. 14 
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Appendix 1: References of surface tension values  1 

 

Alloy Ref Method  Alloy Ref Method  Alloy Ref Method 

Fe-Cr [68], [69] 

 

LD,SD 

 

 Ni-Al [70], [71], 

[72] 

EL,OD  Al-Li [42] MGBP 

Fe-Cu [70], [68] EL, SD  Ni-Cr [69], [73] SD, SD*  Al-Ti [74] EL 

Fe-Sn [68] LD  Ni-Sn [68] LD  Al-Cu [75], [76] --, SD 

Fe-Al [72] EL, OD  Ni-Co [73] SD*  Al-Si [77],[78]  EL, OD, SD 

Fe-Co [44] SD  Ni-W [73] SD*  Al-Zn [79], [80] by [27] -- 

Fe-Mo [44],[27] SD  Ni-Cu [68] LD, SD  Au-Si [81] Large drop 

Fe-W [44] SD  Ni-Mo [44] SD  Al-Au [82] EL 

Fe-Si [83] SD, PD  Ni-Ge [84] --  Al-Mg [85], [80] by [27] MGBP,SD 

Fe-Ge Zamarev et al 

1976 by [27] 

--  Ni-Si [86] by [27] --  Mn-Sn [87] SD 

Fe-Ti [88], [89] by 

[27] 

--  Zn-Li [42] MGBP  Sn-Cu [90] CD 

Fe-Ni [91], [69] , 

[92], [45], 

[44] 

--,SD, 

SD, EL, 

SD 

 Cu-Co [93] EL  Sn-Ag [94], [90] SD, CD 

 

Zr 

[43], [101], 

[104]–[107] 

--  Cu-Ge [84] --  Au-Ge [81] Large drop 

Nb [43], [101], 

[102] 

--  Cu-Ti [95], [96] SD, EL  Au-Sn [97] SD 

Co [98] OD+EL  Cu-Zr [99] Large 

drop 

 Si-Ge [100] PD 

Ni [98] OD+EL  Ta [59], [101] PD  Sn-Ge [84] -- 

Ti [43], [102]–

[104] 

--      Mn-Ge [84] -- 

(a) 
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Alloy Ref Method  Alloy Ref Method 

Fe-Cr-Mn-Ni [105] MGBP, SD  Ni-Cu-Fe-Sn-Ge [34] EL 

AISI 304 steel [105] MGBP, SD, 

EL 

 Fe-Cu-Mo [66] EL 

Ni-Cu-Fe-Sn [34] EL  Fe-Ni-Cr [69] SD 

Al-Cu-Ag [106] EL  Fe-Cr-S [107] SD 

Ti-Al-Nb [108] EL  Fe-Cr-Mo [105] MGBP, SD 

Ti-Al-Ta [108] PD, SD  Fe-C-Si  [83] SD 

Ag-Au-Cu [109] SD  Ni-Cu-Fe [34] EL 

Ti-Al-V [110] PF  Fe-Cr-Ni-S [107] SD 

(b) 

 

Alloy Ref Method  Alloy Ref Method  Alloy Ref Method 

Bi-Sn [79] SD  Se-Na [42] MGBP  In-Na [42] MGBP 

Bi-Pb [79] SD  Bi-Na [42] MGBP  Cs-Sb [79] SD 

In-K [42] MGBP  Bi-K [42] MGBP  Pb-Sn [79] SD 

Cs-Na [42] MGBP  Pb-Li [42] MGBP  In-Li [42] MGBP 

Co-O [111] --  Fe-O [111] --  Ni superalloy CMSX-4 [40], [112] SD, SD+ 

Cu-O [111] --  Ni-O [111] --  Ni superalloy CMSX-10 [112] SD+ 

Fe-O-N [18] SD  Cu-Bi [113] --  Ni-alloy MM247LC [110] PF 

(c) 

Table A1 Complete database for development of the ML-GPR model. Systems and bibliographic references. (c) includes systems 1 

that were not taken into consideration. The abbreviations describe the experimental method used by the authors: SD= Sessile 2 

Drop, SD*= improved SD, SD+= modified SD, CSD=Constrained SD, PF=Parabolic Flight, PD= Pendant Drop, 3 

MGBP=Maximum Gas Bubble Pressure, EL= Electromagnetic Levitation, OD= Oscillating Drop technique 4 
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Appendix 2: Machine learning model and evaluation tools  1 

Gaussian Process Regression [46], [57] (GPR, also known as Kriging, Gaussian spatial modeling, 2 

Gaussian stochastic process) is a method that can be used to model a complex relationship between 3 

an output and several inputs that cannot reasonably be approached by a simple linear model. GPR 4 

works by defining a distribution over functions and inference takes place directly in the space of 5 

functions. This gives an advantage over other non-statistical machine learning methods in that, in 6 

addition to predicting a mean value, it also provides a variance, or an error range, for the prediction 7 

distribution.  8 

To explain the main mathematical principles behind Gaussian processes, let us consider a database 9 

D made of N measurements of a property (output) y, as a function of L variables (inputs), xm as m 10 

varies from 1 to L. The input data [XN] can then be defined as an N L-dimensional input line 11 

vectors with: [XN]= { 𝑥⃗1 , 𝑥⃗2, … , 𝑥⃗𝑁 }. The output column vector is 𝑦⃗𝑀={ y1 , y2, … , yN}.  12 

Now, to predict an output yN+1 for a new input vector 𝑥⃗𝑁+1, the Gaussian process (GP) assumes 13 

that the joint probability distribution of the new point and the N points in the database D, P( yN+1 | 14 

𝑥⃗𝑁+1 , D) is a multivariate Gaussian: 15 

P( yN+1 | 𝑥⃗𝑁+1 , D) =  
1

√2𝜋𝜎𝑦̂

exp [−
(𝑦𝑁+1 −  𝑦̂)2

2𝜎𝑦̂
2 ] 16 

where 𝑦̂ and 𝜎𝑦̂
2 are its corresponding mean and standard deviation respectively. Statistically, the 17 

mean gives the most probable value of the output, predicted for the new set of inputs, and starting 18 

from known information contained in the database. With this being said, 𝑦̂ is therefore the value 19 

we want to predict and 𝜎𝑦̂  provides an estimate of a predictive error. 𝑦̂ is defined as: 20 

𝑦̂ =   𝑘⃗⃗𝑇[𝐶𝑁]−1𝑦⃗𝑁 21 
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where 𝑘⃗⃗ is a column vector defined as: 1 

𝑘⃗⃗ = [ 𝐶(𝑥⃗1, 𝑥⃗𝑁+1), 𝐶(𝑥⃗2, 𝑥⃗𝑁+1), … , 𝐶(𝑥⃗𝑁 , 𝑥⃗𝑁+1)] 2 

 where [𝐶𝑁] is the covariance matrix which is a function of [XN]. The elements of the covariance 3 

matrix, C(𝑥⃗𝑖 , 𝑥⃗𝑗), are defined by the covariance function. This function defines how strongly any 4 

input can impact the value of the output. There exist several forms for this function. In the present 5 

case, the radial-basis function (RBF), also known as squared-exponential, is used and can be 6 

defined as follows: 7 

 𝐶(𝑥⃗𝑖 , 𝑥⃗𝑗) = 𝜃. 𝑒𝑥 𝑝 [−
1

2
∑

(𝑥𝑖
𝑙 − 𝑥𝑗

𝑙)
2

𝑟𝑙
2

𝐿

𝑙=1

] +  𝜔  8 

Where θ , ω (not detailed here) and rl are a set of parameters referred to as hyper-parameters, and 9 

are usually unknown and need to be inferred and optimized from the data during the learning 10 

process. Note that the covariance function gives the covariance between two outputs yi and yj and 11 

is written as a function of their corresponding inputs 𝑥⃗𝑖  and 𝑥⃗𝑗  (xi
l and xj

l being the corresponding 12 

coordinates in the lth dimension). rl is the lengthscale which specifies the width of the kernel in the 13 

lth dimension and therefore the smoothness of its corresponding functions [114].  14 

In fact, to get the best performance out of any selected machine learning model, tuning of the 15 

hyper-parameters (searching the hyper-parameter space for the best cross-validation results for the 16 

model) is needed. The most common method to achieve this is by applying a Gridsearch: 17 

constructing a grid containing the parameters one wishes to optimize. Usually, any parameter used 18 

to construct an estimator can be optimized in this manner. This works by defining a dictionary, a 19 

list of the parameters as well as a range for search. Each time, the model will be trained on a 20 

combination of these parameters and the results are finally compared to choose the best model, i.e. 21 
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the one with the highest prediction accuracy. Of course, this method is not optimal as the obtained 1 

optimal combination of parameters still depend on the manually set ranges of search. The effect of 2 

this issue can be lessened by simply increasing the number of values to be evaluated. Bearing in 3 

mind that this will significantly increase the computational time, a compromise must be made. 4 

Finally, the parameters are adjusted as to obtain the best possible description of data.  5 

Additionally, even if the Bayesian nature of GPs normally automatically avoids overfitting, it is 6 

nevertheless preferable to check the predictive capacity of the model using cross-validation. One 7 

way to do this is using the K-fold cross validation method, described later on. 8 

 9 

K-fold Cross Validation   10 

One of the standard and commonly used methods for estimating the performance of a machine 11 

learning model is the K-fold cross validation. The dataset is divided into K folds, and a procedure 12 

is repeated K times, with the model being trained on K-1 folds and tested on the remaining fold. 13 

Calculating the accuracy of prediction in each procedure gives and evaluation of the predictability 14 

of the model and identification of its weak points. This method allows to evaluate different models 15 

and to compare  them. During the K repeated trainings, the values of errors and evaluation metrics 16 

such as the Mean Squared Error (MSE), Mean Absolute Error (MAE) and R-Squared (R2) 17 

(equations are defined below) recorded and finally averaged for a global view. The predicted 18 

values are also recorded for a better visualization of the prediction compared to the real values.  19 

Evaluation metrics 20 

- Mean Squared Error (MSE):   21 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦 − 𝑦̂)2

𝑖

 22 
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- Root Mean Squared Error (RMSE): which is the square root of the MSE 1 

- Mean Absolute Error:   2 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦 − 𝑦̂|

𝑖

 3 

- R-squared (R2):  4 

𝑅2 = 1 −
∑ (𝑦 − 𝑦̅)2

𝑖 

∑ (𝑦 − 𝑦̂)2
𝑖

 5 

where y is the actual experimental value, 𝑦̅ is the corresponding mean value and 𝑦̂ is the predicted 6 

one, while i denotes the i-th data point among n.  7 
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