
HAL Id: hal-03754091
https://hal.science/hal-03754091v1

Submitted on 13 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-preserving multi-user encrypted access control
scheme for cloud-assisted IOT applications

Maryline Laurent, Nesrine Kaaniche

To cite this version:
Maryline Laurent, Nesrine Kaaniche. Privacy-preserving multi-user encrypted access control scheme
for cloud-assisted IOT applications. 2018 CLOUD 11th International Conference on Cloud Computing,
Jul 2018, San Francisco, France. pp.590-597, �10.1109/CLOUD.2018.00082�. �hal-03754091�

https://hal.science/hal-03754091v1
https://hal.archives-ouvertes.fr

Privacy-preserving Multi-user Encrypted Access
Control Scheme for Cloud-assisted IoT applications

Nesrine Kaaniche
SAMOVAR, Telecom SudParis,
University Paris-Saclay, France

Maryline Laurent
SAMOVAR, Telecom SudParis,
University Paris-Saclay, France

Abstract—In this paper, we present a privacy preserving
encrypted access control scheme to aggregate data for Cloud
assisted IoT applications. Our scheme is based on attribute based
encryption mechanisms and consists in enciphering a set of data
contents, with respect to sub-sets of a general access policy. As
such, the gateway is able to decrypt the resulting aggregated
data only if it holds the matching certified attributes and it
has received a sufficient number of partial ciphertexts. Our
construction has several advantages. First, it provides a fine-
grained access to aggregated data contents that are enciphered
by different multiple encrypting entities. Second, it provides
a privacy preserving encryption process, such that a curious
gateway can neither identify the enciphering IoT device nor
decipher single data chunks. Third, our concrete construction
provides low computation and communication costs, adapted to
resource-constrained devices, compared to most closely related
schemes.

Keywords-Cloud-assisted IoT, Attribute based Encryption, ac-
cess control, aggregation, privacy.

I. INTRODUCTION

During the last decade, Internet of Things (IoT) approached
our lives in many ways, thanks to the availability of several
communication systems that have been increasingly deployed,
mainly for smart monitoring and control applications. Accord-
ing to the U.S. International Data Corporation (IDC) [16],
IoT is experiencing a fast expansion with an estimated 16.7%
growth year over year in 2017 to reach nearly $1.4 trillion by
2021. Typically, IoT deployments permit a collection of smart
objects, generally considered as resource-constrained devices,
to communicate among themselves and also to an external
gateway or a base-station, for further processing. Thus, cloud
computing-enhanced IoT has recently received considerable
attention, as the gateways deployed at the network edge can
not only provide low latency, location awareness but also
improve real-time and quality of services in IoT application
scenarios, while protecting the secrecy of transmitted sensed
data and preserving the privacy of devices.

Privacy-preserving data aggregation is one of the typical
cloud assisted IoT applications, and many privacy-preserving
data aggregation schemes have been proposed in the past
years for ensure reliable processing of data collected from
different IoT devices. Indeed, in IoT applications, data
are always transmitted, stored and dynamically shared
through heterogeneous and distributed networks [10], [7].
Consequently, encryption and access control mechanisms

are important in order to prevent unauthorized entities from
accessing data [13], [5], [2].

Contributions — In this paper, we introduce a new privacy
preserving multi-user encrypted access control scheme to
aggregated data, based on the use of Ciphertext-Policy
Attribute based Encryption (CP-ABE) mechanisms [3], that
ensures privacy-preserving processing for IoT applications.
CP-ABE is a powerful primitive that provides an encrypted
access control mechanism, based on fine-grained access
structures. However, this encryption technique suffers from
heavy computation overhead which is burdensome for
resource-constrained devices. As such, our construction
consists in performing in a secure collaborative manner the
encryption of a set of data chunks. The main idea behind our
encrypted access control scheme relies on the distribution
of the enciphering operation among different devices, with
respect to sub-sets of a general access structure. That is, each
device encrypts its input data and sends the partial enciphered
information to an untrusted gateway. Thus, if this latter holds
the matching certified attributes and receives a sufficient
number of partial ciphertexts then it will be able to aggregate
and then decrypt the computation result.

Paper organization — Section II introduces a motivating
use-case and highlights the design goals. Section III presents
Attribute based Encryption mechanisms and reviews related
work. Section IV details the network and security models.
Section V provides useful theorems and presents our concrete
construction. Section VI gives a security analysis and section
VII discusses the performances of the proposed scheme.
SectionVIII gives possible improvements before concluding
in section IX.

II. PROBLEM STATEMENT

In this section, we first give a motivating scenario (cf.
section II-A). Then, we highlight the security and functional
design goals (cf. section II-B).

A. Motivating Scenario

The use of IoT devices is gaining an expanding interest
mainly for remote health monitoring which is widely applied
by several health organizations to provide better personalized
services. Indeed, Wireless Body Area Networks (WBANs)

Remote Cloud Server

End Users

Fog Middleware

Cloud
Fog

Fig. 1. WBAN Fog based Architecture

consist of intelligent and resource-constrained devices that can
be placed on the patient body to monitor his health status.
WBANs devices monitor various parameters such as blood
gas, blood pressure, pulse rate, temperature, electrocardiogram
(ECG), and electroencephalogram (EEG) (cf. Figure 1).

While dealing with medical data, security and privacy are
among the most challenging issues. For instance, the EGC
can reflect users some specific behaviors, such as sleeping,
having meals and so on. In the sequel, the reveal of such health
data might violate users privacy. Therefore, how to efficiently
aggregate different types of data and preserve users privacy
is still challenging in cloud assisted WBANs. Hence, the data
transmitted in health-care applications should be authenticated
and secured against malicious access. In addition, developing
security techniques to secure patients’ data should fulfill low
communication and computation cost requirements. Thus, the
resource consumption in a WBAN is tied up to the amount of
data being processed, stored, and transmitted. Hence, aggrega-
tion has been often presented as a solution to take advantage
of the aggregating node computing capabilities in order to pro-
cess sensed data. In the architecture depicted in Figure 1, the
WBAN gateways are responsible for performing aggregation
of the data received from the smart things deployed on the
body of the patient, then to transmit deciphered data to the
cloud. This latter receives all IoT devices’ aggregated data via
the fog device, and makes some data analytics according to
some application requirements. Thus, aggregated data should
be accessed by a set of authorized gateways, thus ensuring a
flexible access control mechanism.

B. Design Goals

The design of our encrypted access control scheme is
motivated by providing the support of both robustness and
efficiency while fulfilling the following properties:
• multi-user fine grained access control – our proposal

should ensure flexible access policies among different
groups of users. In addition, the aggregated accessed data
may be enciphered with different IoT devices.

• data confidentiality – the proposed scheme has to protect
the secrecy of encrypted data contents against malicious
entities, even in case of collusions.

• privacy – preserving users’ privacy is multifold. First, it is
useful in a context where anonymity should be enforced
to forbid any user’s identification or personal information

leakages (e.g. sex, age, address). Second, unauthorized
users should not be able to obtain any information about
honest users’ inputs, or to link the obfuscated content to
a specific entity. Third, access to obfuscated data should
not reveal identifying information of the requesting entity.

• low processing and communication costs – the designed
algorithm should have low computational complexity and
reduced communication overhead, to efficiently adapt to
IoT applications.

III. ATTRIBUTE BASED ENCRYPTION

In 2005, Sahai and Waters introduced the concept of At-
tribute Based Encryption [14], as a generalization of Identity
based Encryption (IBE), introduced by Shamir [15], in 1984,
with the original idea to provide public and private key pairs
based on user’s unique identity. ABE appears as a promising
technique, designed for ensuring encrypted fine grained access
control, for many users based on general access policies. In
ABE, both users’ private keys and ciphertexts are associated
with a set of attributes or a structure over attributes and
the user is able to decrypt a ciphertext if there is a match
between his private key and the ciphertext [3]. For instance,
Goyal et al. [6] distinguish two ABE categories, namely: Key-
Policy ABE (KP-ABE) and Ciphertext-Policy ABE (CP-ABE).
There exist some differences between KP-ABE and CP-ABE
mechanisms. In fact, for KP-ABE schemes, the secret key of
user U is derived with respect to an access structure Γu, and
the ciphertext is generated according to a set of attributes SCT .
As such, the user U can decrypt the ciphertext CT if the set of
attributes SCT satisfy the access tree associated with the user’
secret keys. On the contrary, for CP-ABE schemes, the secret
key of user U is associated with a set of attributes Su, and
the ciphertext is created with respect to an access tree Γ. As
such, U can decrypt the ciphertext CT if the set of attributes
Su associated to his secret key satisfy the access tree.

CP-ABE is a very interesting primitive, that permits to
ensure fine-grained access control, by directly embedding the
access policy on the ciphertext. However, its processing and
communication overheads are still highly resource-consuming,
mainly for IoT devices [9]. In [18], Touati et al. proposed a
cooperative CP-ABE scheme, such that resource-constrained
devices can delegate the most consuming operations to un-
constrained nodes. However, their scheme does still require a
central trusted party that has to derive the secret enciphering
key. As such, [18] cannot be adapted for fully distributed
environments. Afterwards, the authors presented a collabo-
rative KP-ABE scheme for Cloud assisted IoT applications
[17]. Their construction is based on the use of computing
and storage capacities of cloud servers and assistant nodes
to perform heavy operations and save resources of tiny smart
objects.
In the same vein, Oualha and Nguyen extended the CP-ABE
construction proposed by Bethencourt et al. in [3], to apply
the scheme in the context of resource-constrained IoT devices
[12]. The authors proposed a hybrid approach alternating pre-
computations and on-demand computations can be devised

to overcome the issue of limited storage and processing
capacities’ of IoT. Recently, in 2017, Odelu et al. presented
a new RSA-based CP-ABE scheme with constant size cipher-
texts (CSKC) and low complexity for both decryption and
encryption processes [11]. However, these proposed schemes
do not consider enciphering a set of different data chunks,
hence providing a multi-encryptor setting and enabling the
deciphering entity to only decrypt the aggregated data content.

IV. DESIGN MODELS

In this section, we formalize our system (cf. section IV-A)
and security (cf. section IV-B) models.

A. System Model

For our system model, five entities are identified: an
attribute authority (AA), a manager (GM), a set of IoT
devices {Ui}{i=1,··· ,n}, a set of sink aggregating entities
{Sj}{j=1,··· ,m} and a selected IoT trusted node defined such
as:
• attribute authority AA – is responsible for bootstrap-

ping the whole system in the initialization phase. We
assume that AA is a trusted entity. It also issues certified
attributes and related secret keys for the aggregating
entities and IoT devices.

• manager GM – is in charge of generating the general
access predicate used to encrypt data contents as well
as the aggregating function for each specific cloud-IoT
application.

• aggregating entity (Sj) – is considered as a local
network gateway. It is responsible for collecting and
deciphering aggregated data contents.

• IoT device (Ui) – collects and encrypts sensed data
before forwarding them to the aggregating entity.

• trusted IoT node (Us) – is a trusted selected IoT device
and it periodically assigns to each involved IoT device
Ui a sub-access predicate to be used for encrypting data.

Our scheme is composed of six randomized algorithms
based on three phases, namely SYSINIT, CO-ENCRYPT and
AGGREGATION. During the SYSINIT phase, the central at-
tribute authority generates public system parameters and de-
rives secret keys of aggregating entities, based on the setup

and keygen algorithms, respectively. This phase is executed
once for the system initialization.
The CO-ENCRYPT phase starts when the encryption of data
chunks are requested. The second phase relies on two different
algorithms, namely accshare, executed by the trusted IoT
node and encpart, performed by each participating entity.
The AGGREGATION phase permits an aggregating authorized
entity to build the resulting ciphertext and to decrypt it with
respect to its associated attributes. This phase is based on
two different algorithms, i.e; aggregate and decrypt. The
different algorithms are detailed in Section V.

B. Security Model

For designing a secure and privacy preserving encrypted
access control scheme, we consider two main adversaries.

We first point out the case of semi-honest gateway. That is,
a semi-honest adversary provides proper inputs or outputs, at
each step of the protocol, and properly performs any expected
calculations, but it may attempt to gain extra information from
the protocol. As such, we consider the semi-honest threat
model against the privacy requirement with respect to the
anonymity and unlinkability properties.
Second, we consider the case of malicious adversaries, trying
to override their rights. That is, malicious users may attempt
to deviate from the protocol or to provide invalid inputs. For
instance, a malicious party can also influence other parties to
deviate from the protocol by substituting their local inputs in
order to get information about honest parties’ inputs. Likewise,
the malicious party may refuse to participate or leave the
protocol before the end. As such, we consider the malicious
user security model mainly against the confidentiality property.

V. CONCRETE CONSTRUCTION OF OUR PRIVACY
PRESERVING ACCESS CONTROL SCHEME TO AGGREGATED

ENCRYPTED DATA

Our privacy-preserving access control scheme is relying on
ABE in the sense that clients’ keys and decryption capabilities
are related to the attributes they possess. In our proposal,
the ciphertext is generated with respect to a set of messages
and the aggregating gateway’s credentials (certified attributes)
determine his capability to decrypt the result of a computed
function f over the enciphered set of messages. That is, the
manager GM defines the aggregating function f and the
general access policy, w.r.t. each application requirements.
Our scheme consists in performing the encryption of a set
of different data chunks collected by a set of IoT devices. It
relies on the distribution of the enciphering operation among
different devices, with respect to sub-sets of a general access
structure Γ, such that Γ = ∪i∈[1,n]γi. More precisely, each
device Ui encrypts its sensed data message mi relying on
a sub access structure γi and sends the partial enciphered
information to an untrusted aggregating gateway Sj .

In the following, we introduce preliminaries before detailing
our concrete construction.

A. Mathematical Background

In this section, we provide some prerequisites, namely
access structures and bilinear maps.

Definition 5.1: (Access Structure [1]) Let
P = {P1, P2, · · · , Pn} be a set of parties, and a
collection A ⊆ 2{P1,P2,··· ,Pn} is called monotone if
∀B,C ⊆ 2{P1,P2,··· ,Pn} : if B ∈ A and B ⊆ C then C ∈ A.
An access structure is a collection A of non-empty subsets of
{P1, P2, · · · , Pn} ; i.e. A ⊆ 2{P1,P2,··· ,Pn} \ {∅}. The sets in
A are called authorized sets, and the sets not in A are called
unauthorized sets. Note that in several ABE schemes, these
parties are considered as the attributes.

Definition 5.2: (Bilinear Maps) Let G1, G2, and GT be
three cyclic groups of prime order p. Let g1, g2 be generators

of G1 and G2 respectively . A map ê : G1×G2 → GT is said to
be bilinear if it satisfies the following properties: (i) bilinearity:
for all g1 ∈ G1, g2 ∈ G2, (ii) non-degeneracy: ê(g1, g2) 6= 1
and (iii) there is an efficient algorithm to compute ê(g1, g2)
for any g1 ∈ G1 and g2 ∈ G1.

B. Access Tree Model

Let Γ be a tree representing the access structure, following
the definition given in [3]. Indeed, each non-leaf node of Γ is
described by the number of its children numx and a threshold
value tx, where 1 ≤ tx ≤ numx. If the threshold value tx =
numx, then it is an “AND ”gate, otherwise it is an “OR ”gate.

As introduced in [3], three additional functions are defined
namely parent(x), att(x) and index(x). The parent(x)
function denotes the parent of the node x, the att(x) denotes
the attributes associated with the leaf node x and the index(x)
denotes a number associated with the node.
Satisfying an access tree – Let Γ be an access tree rooted
at the node r. We denote by Γx the subtree of Γ rooted at
the node x, such that Γr = Γ. As such, Γx(S) = 1 if a set
of attributes denoted S satisfies the access tree Γx. If x is a
non-leaf node, Γx(S) is computed by recursively evaluating
the subtrees Γx′(S) for all its x′ children. Γx(S) returns 1 if at
least tx children returns 1. If x is a leaf node, then Γx(S) = 1
if att(x) ∈ S.

C. Concrete Construction

Our construction is an access control scheme for multi-user
encryption settings, based on the ciphertext policy attribute
based encryption algorithm introduced in [3]. To support the
multi-user encryption feature, the proposed scheme considers
that the encryption process is performed by each participating
device Ui relying on a secret si with respect to a dedicated
access subtree γi, while the decryption process should be
performed with respect to a general access structure Γ =
∪i∈[1,n]γi, where n is the number of sub-trees.

Let U = {U1, · · · , Un} be a set of IoT devices such that
|U| = n. Each participant Ui has to encrypt a message mi (i.e;
i ∈ [1, n]), w.r.t. an access subtree γi and publish the partial
ciphertext CTi to the aggregating entity Sj . The encryption
of each message mi by Ui relies on a different secret share
si. The decryption of the resulting message M , defined as
M = f({mi}{i∈[1,n]}) may be executed by any Sj 1.

In the following, we detail the different algorithms of our
construction, thus we suppose that GM has already set up the
general access tree Γ and the aggregating function f . That is,
during the SYSINIT phase, AA executes setup and keygen

defined as follows:
• setup – this algorithm is executed by the attribute author-

ity. It takes as input the security parameter κ and outputs
the global public parameters pp and the master secret key
msk. the setup algorithm first defines a bilinear setting
(ê,G1,G2, p, g), such as ê : G1 × G1 ← G2 and g of

1For ease of presentation, f refers to the multiplication function. Yet, in
general use cases, f may be any bijective and homomorphic function.

a generator of G1. Then, it selects at random an integer
α ∈ Z. Let h := gβ ∈ G1 and H be a cryptographic hash
function, such that H : S → G1. The global parameters
of our system are as follows:

pp = {G1,G2, ê, p, g, h, ê(g, g)α,H}

We note that the master secret key of the attribute
authority is the couple msk = {β, gα}.

• keygen – this algorithm is performed by the attribute
authority, as detailed in [3], in order to derive private keys
associated with a set of attributes S = {aj}{j∈[1,|S|]} of
a requesting entity. That is, AA selects a set of random
values {r, {rj}{j∈[1,|S|]}}, related to the requesting entity
and to its associated attributes S = {aj}{j∈[1,|S|]}. The
private key sk is defined as follows:

sk = {D = g(α+r)/β ,

∀aj ∈ S, Dj = gr · H(aj)
rj , D′j = grj}

During the CO-ENCRYPT phase, two algorithms accshare
and encpart are performed by the trusted device Us and each
participating entity Ui respectively:
• accshare – this algorithm is performed by Us, in order

to set up required enciphering elements for the n partic-
ipating users {Ui}i∈[1,n]. Note that this algorithm is per-
formed periodically, for saving the energy consumption of
involved IoT devices. That is, Us defines the access sub-
tree γi associated with each user Ui, such that {(Ui, γi)},
where i ∈ [1, n] and Γ = ∪i∈[1,n]γi. Then, it chooses a
secret deciphering key s such as s =

∑n
i=1 si and si is

the secret share associated with each device Ui. Finally,
Us sets C = hs and outputs :

{{(γi, si)}i∈[1,n], C}

Recall that each (γi, si) is privately shared with the corre-
sponding Ui, while C is published for further processing
by the aggregating entities.

• encpart – this algorithm is run by each participating IoT
device Ui, in order to derive a partial ciphertext CTi for a
message mi, with respect to an access sub-tree γi, a secret
share si and the aggregating function f . Ui proceeds
similarly as explained in [3]. That is, for each node x
of its associated sub-tree γi, Ui defines a polynomial qx
of degree dx = kx − 1 where kx is the threshold value
of the node x and qx(0) = qparent(x)(index(x)).
Let L = {Y1, Y2, · · · , Yn} be the set of leaf nodes of the
global access tree Γ, where each subset Yi (i.e; i ∈ [1, n])
is assigned to a user Ui, with respect to its associated
subtree γi. Let qyj be the polynomial assigned to each
leaf node yj ∈ Yi (i.e; j ∈ [1, |Yi|]), associated to the IoT
device Ui. For each leaf node yj ∈ Yi (i.e; j ∈ [1, |Yi|]),
the IoT Ui computes two group elements Ci,j and C ′i,j ,
such that Ci,j = gqyj (0) and C ′i,j = H(att(y))qyj (0).
Afterwards, Ui encrypts the message mi with respect to
γi and outputs the partial ciphertext CTi such that:

CTi = {C̃i,∀yj ∈ Yi, j ∈ [1, |Yi|] : Ci,j , C
′
i,j}

where, C̃i depends on the aggregating function f pointed
out by the manager. In the sequel, the encrypted message
CTi is defined as follows:

C̃i = mi · ê(g, g)αsi

Ci,j = gqyj (0)

C ′i,j = H(att(y))qyj (0)

Recall that the partial ciphertext CTi associated to each
IoT device Ui does not include γi.

Remark 5.3: Processing cost efficiency for IoT devices —
Considering resource constraints of IoT devices, in terms
of storage and processing, our scheme assumes that several
elementary functions may be used for several encryption
sessions (i.e., computation of polynomials and encryption of
leaves’ nodes). As such, only a few number of exponentiations
and multiplication is required by each single IoT device.
In addition, for devices with a very limited lifetime and
low storage and computation capacities, it is assumed that
these objects are pre-configured by the manufacturer with a
secret si. As such, once installed in the system, this secret
is shared with the IoT trusted node. As a consequence,
the IoT trusted device computes the ciphertext element C
with respect to the secrets of involved IoT devices, while
selecting different combinations of devices for each session.
And, the communication overheads are highly reduced
during the whole lifetime of resource-constained IoT devices,
while avoiding exchanging secrets and re-computing some
ciphertexts’ elements periodically .

During the AGGREGATE phase, two algorithms aggregate
and decrypt are performed by the aggregating node Sj :
• aggregate – this algorithm is executed by the aggregat-

ing entity Sj , upon receiving the n ciphertexts from the
participating entities {Ui}, where i ∈ [1, n]. It permits
to build a global ciphertext, with respect to the global
public access tree Γ and the aggregating function f .
The aggregate algorithm outputs an aggregated global
ciphertext CT , defined as:

CT = {C̃, C, ∀Yi ∈ L,∀yj ∈ Yi : Ci,j , C
′
i,j}

where C is received from the trusted IoT node and C̃ is
computed as follows:∏

i∈[1,n]

C̃i =

n∏
i=1

mi · ê(g, g)α
∑n
i=1 si = M.ê(g, g)αs

In the following, we denote by Cy and C ′y each element
Ci,j and C ′i,j , respectively.

• decrypt – this algorithm, executed by the aggregating
entity Sj , permits to decrypt the aggregated ciphertext
CT , including the global access structure Γ and the
private key sk associated with S. The decrypt algorithm
is mainly based on the Bethencourt et al. construction [3].
To do so, for decrypting the aggregated ciphertext with
respect to the function f , the aggregating entity uses a

recursive algorithm DecryptNode(CT, sk, x), as defined
in [3] which takes as input the global ciphertext CT , the
private key sk, associated with a set of attributes S, and
a node x from the global access tree Γ.
If x is a leaf node, then we denote by ai = att(x).
If the attribute ai ∈ S, then

DecryptNode(CT, sk, x) =
ê(Di, Cx)

ê(D′i, C
′
x)

= ê(g, g)rqx(0)

else, DecryptNode(CT, sk, x) =⊥. If x is a non-leaf
node, then DecryptNode(CT, sk, x) processes as fol-
lows, except for the root node and its direct children:
For all the children nodes z of x, the algorithm computes
Fz = DecryptNode(CT, sk, z). Let Sx be an arbitrary
kx-sized set of child nodes z where Fz 6=⊥. Recall that if
there are no such existing set then the node is not satisfied
and the algorithm returns ⊥. In addition, we denote by
i = index(z) and S′x = {index(z), z ∈ Sx}. In the
sequel, the aggregator computes Fx, defined as:

Fx =
∏
z∈Sx

F
δi,S′x

(0)
x = ê(g, g)rqx(0)

Finally, Sj derives A = ê(g, g)rs, associated with the
root node and decrypts M such that: C̃

ê(C,D)
A

= M

VI. SECURITY DISCUSSION

To prove the efficiency and the security of our scheme, a
security analysis is presented in this section.

A. Correctness

The correctness of the proposed scheme relies on Theorem
6.1, based on the correctness of aggregate and decrypt

algorithms which are defined w.r.t. the multiplication function.
Theorem 6.1: Correctness – The proposed scheme is cor-

rect if for all security parameter κ, all universe descriptions
S, all (pp,msk) ∈ setup(κ), all S ⊆ S, all (m,M) ∈ M
(i.e; M is the message space), all (γ,Γ) ∈ G (i.e; G is
the access structure space), all sk ∈ keygen(pp,msk,S),
all (C, (si, γi)) ∈ accshare(pp) and all CTi ∈
encpart(γi, si,mi), then aggregate(pp, f, {CTi}i∈[1,n]) =
CT , where n is the number of received ciphertexts, if S
satisfies Γ, such that Γ(S) = 1, then the decryption algorithm
decrypt(pp, CT, sk) outputs M .

Proof: Upon receiving n different encrypted data chunks
for the participating devices {CTi}i∈[1,n] = {C̃i,∀yj ∈
Yi, j ∈ [1, |Yi|] : Ci,j , Ci,j}i∈[1,n], the aggregating entity
Sj executes the aggregate algorithm, with respect to f ,
defined by GM . The aggregation process mainly relies on
the computation of C̃, based on the received {C̃i}i∈[1,n]. That
is, the computation of C̃ is performed as follows:

C̃ =
∏

i∈[1,n]

C̃i =

n∏
i=1

mi · ê(g, g)α
∑n
i=1 si = M.ê(g, g)αs

In the sequel, the global ciphertext CT is defined as follows:

CT = {C̃, C, ∀y : Cy, C
′
y}

where y is a leaf node of the global access structure Γ.
Upon building the global ciphertext and receiving the secret

keys associated to S (i.e; S is the set of attributes of the aggre-
gating entity) from AA, the aggregating entity can decrypt CT ,
if his credentials satisfy the access structure (i.e; Γ(S) = 1).
Our decryption algorithm mainly relies on the Bethencourt et
al. construction [3], w.r.t. the DecryptNode function, executed
for each access-tree node. As such, the decrypt algorithm
outputs the resulting message M , as follows:

C̃
ê(C,D)
A

=
M · ê(g, g)αs

ê(hs,g(α+r)/β)
ê(g,g)rs

=
M · ê(g, g)αs

ê(g,g)αsê(g,g)rs

ê(g,g)rs

= M

As such, we prove the correctness of our proposed construc-
tion, with respect to Theorem 6.1.

B. Confidentiality

To ensure efficient multi-user encryption scheme while
enhancing fine-grained access control, our construction mainly
relies on the CP-ABE scheme proposed by Bethencourt et al.
[3]. As such, the data confidentiality preservation is tightly
related to the security of this used encryption algorithm.

Theorem 6.2: The proposed multi-user encryption scheme
ensures the secrecy of both encrypted data chunks and aggre-
gated data contents.

Sketch of Proof — the proof of Theorem 6.2 is twofold. First,
the secrecy of encrypted data contents depends on the security
of the attribute based encryption algorithm used to encipher
data chunks provided by IoT devices. Thus, our proposed
scheme inherits the indistinguishability property from [3], such
that if a malicious adversary has some information about the
plaintext, it should not learn about the ciphertext. This security
notion requires the computational impossibility to distinguish
between two messages chosen by the adversary. Note that
in ABE schemes, the adversary may lead an attack against
the indistinguishability property either on his own or through
a collusion attack. Indeed, similar to [3], each private key
element contains a random value r related to each participating
entity, which prevents colluding users to override their rights
and successfully perform a collusion attack. In addition, sub-
access encrypting predicates used to encrypt data chunks
are not communicated to the aggregating gateway Sj . As a
consequence, this latter cannot deduce data chunk content,
even by conducting a brute force attack, because of the use
of C = hs = h

∑n
i=1 si . In fact, this value is published by

the IoT trusted device, where a malicious aggregator needs to
have each single Ci = hsi and the corresponding sub-access
tree γi to be able to conduct such attack.
Second, the secrecy of resulting aggregated contents depends
on the consistency of the aggregating algorithm agg, such that
aggregated data contents are only accessed by the authorized
aggregator. Indeed, the general enciphering access predicate
is published by the system administrator to the involved
aggregating entities. As such, thanks to the use of attribute
based encryption, data are only accessed by entities whose
attributes satisfy the access policy.

C. Privacy

Theorem 6.3: The proposed scheme is private against both
malicious and honest but curious adversaries.

Sketch of Proof — The proof of Theorem 6.3 is twofold. First,
it considers the case of malicious users against the privacy of
contents. That is, a malicious adversary tries to get access to a
single encrypted data chunk. Obviously, this sub-case is related
to the confidentiality requirement (cf. Theorem 6.2). Recall
that a malicious aggregator cannot deduce data chunks even by
conducting a brute force attack, because of the use of a general
access tree Γ and a single ciphertext element C. Second, it
considers the case of honest but curious adversaries against
the privacy of devices. That is, a curious aggregating gateway
attempts to distinguish between two legitimate enciphering
devices U1 and U2, trying to link the encrypted data related
to each device. Mainly, our scheme inherits this privacy-
preserving property from the used attribute-based encryption
mechanism [3]. That is, the encryption of a message relies
on a random secret s =

∑n
i=1 si, thus a non-identifying en-

ciphering secret, contrary to traditional public key encryption
mechanisms. In our proposed multi-user encryption scheme,
each device uses a different random si to encrypt the sensed
message mi. Thus, our multi-user encrypted access scheme
ensures the privacy of users, against honest but curious adver-
saries.

VII. PERFORMANCES ANALYSIS

Table I presents a comparison between our proposal and
most closely related schemes, w.r.t. functional requirements.

It is worth noticing from Table I that compared to the
different presented constructions [14], [3], [18], [17], [11],
our proposed scheme provides the multi-user ciphertext-policy
encryption feature, relying on general access structures. That
is, as stated in section III, although the KP-ABE scheme
offers fine-grained access control feature, it has one main
disadvantage. Indeed, data owners cannot decide on who has
access to their encrypted data, except by their choice of
descriptive attributes for the data, since the access policy
is embedded in the user private keys. As a result, the data
owners have to trust the key issuer. Ciphertext-policy ABE
schemes remove such inconvenience by directly embedding
the access policy on the ciphertext. The data owners can now
authorize who can have access on their encrypted data. While
constructions proposed in [14], [3] and [11] do not support
the aggregation feature, schemes presented in [18] and [17]
permit an assistant trusted node to distribute the encryption
process among a set of devices, thus allowing it to generate the
resulting ciphertext. As such, the aggregating node is mainly
the aggregating node, as aggregation cannot be performed by
any external entity, unlike our proposed scheme.

The processing and communication costs introduced by
the proposed approach are considerably optimized, where the
number of polynomials, that have to be assigned to each gate
of an access tree, thanks to the use of sub-access trees associ-
ated to each participating device, similarly as presented in [18].

TABLE I
COMPARISON BETWEEN OUR SCHEME AND MOST CLOSELY RELATED SCHEMES

scheme type access policy support of multiple encryptors ciphertext-size computation cost at the user side computation cost at the aggregator side
[14] KP-ABE threshold × t|G|+ |GT | γM + (1 + YΓ)γE ×
[3] CP-ABE general tree × (2YΓ + 1)|G|+ |GT | γM + 2(2 + YΓ)γE ×

[18] CP-ABE general tree × (2YΓ + 1)|G|+ |GT | γM + 2(2 + Yγi)γE (2YΓ + n)γM
[17] KP-ABE threshold × t(|G|+ |GT |) 2YγiγE (1 + n)γM
[11] CP-ABE AND-gates × 3|G|+ L YΓγE + 3(γE + γM) ×
ours CP-ABE general tree X (2Yγi + 1)|G|+ |GT | γM + 2YγiγE nγM

Note: X and × indicate that the requirement is achieved or not, respectively; YΓ is the number of attributes in the access policy Γ and Yγi is the number of
attributes in the access policy γi where di=[1,n]γi = Γ ;|G| and |GT | are the size of an element of G and GT , respectively; L is the length of the message
and t is the threshold value; γE and γM represent the computation cost exponentiation and multiplication computation costs respectively.

For the aggregate algorithm, our construction presents an
interesting computation cost nγM , compared to most closely
related schemes, namely [18], [17]. For more realistic perfor-
mance results of our scheme, we conducted some experiments,
for several exponentiation and multiplication operations on
an Intel E5-1650-v3 6 cores. Our measurements show that
exponentiations and multiplications take about 1.2 ms and 0.5
ms, respectively.
In addition, referring to the cpabe toolkit2 [3], the computation
costs of the key generation and encryption algorithms are
mainly depending on the number of involved attributes. The
cpabe toolkit provides a set of programs implementing CP-
ABE schemes, using the PBC library3. The code is split
into two packages, libbswabe (i.e; a library implementing the
core cryptographic operations) and cpabe (i.e; higher level
functions and user interface). For instance, the encryption
algorithm takes about 1.5 second relying on an access tree
containing around 60 attributes [3].

VIII. POSSIBLE IMPROVEMENTS

The proposed mechanism permits a set of collaborating
resource-constrained devices, with the assisting trusted IoT
node, to encrypt different sensed data chunks, thus enabling an
external gateway to decrypt the set of aggregated data, w.r.t.
a general access tree. The assistant node is set up to support
IoT devices. However, our multi-user encryption scheme may
be deployed for several different settings, namely for multi-
fog cooperative applications, where each fog network holds
a different data chunk and has to cooperate with other fogs’
nodes to encrypt their related data. As such, if a cloud gateway
satisfies the general access structure, it can only decipher the
aggregated data content.

For this purpose, we extend our proposed scheme, to ensure
a collaborative multi-user encryption, that is the set of involved
fogs’ nodes need to cooperate for deriving the enciphering
secret s, based on the key distribution algorithm, introduced
in [4]. The different algorithms are defined as follows:
• setup – the setup algorithm first selects leveled 4-

linear maps [8]. In fact, it defines two symmetric pairing
functions ê1 and ê2, such that ê1 : G1 × G1 → G2

and ê2 : G2 × G2 → G3, where G1, G2 and G3

are three multiplicative groups of prime order p. It also

2http://acsc.cs.utexas.edu/cpabe/index.html
3https://crypto.stanford.edu/pbc/

selects three random generators g1 and g2 of G1 and
G2, respectively. Then, it selects at random two integers
α, β ∈ Z. Let h := g1

β ∈ G1 and H be a cryptographic
hash function, such that H : S → G1. The global
parameters pp are defined as follows:

pp = {G1,G2,G3, ê1, ê2, p, g1, g2, h, ê1(g1, g1)α,H}

The master secret key of AA is msk = {β, g1α}.
• keygen – the private key sk contains a new key element,

referred to as D̃, and is defined as follows:

sk = {D̃ = g1
α(1+r)/β ,

∀aj ∈ S, Dj = g1
r · H(aj)

rj , D′j = g1
rj}

• accshare – this algorithm is performed by GM . It
defines the global access structure Γ, the aggregating
function f and the access sub-tree γi associated with each
participating fog node Ui, such that {(Ui, γi)}, where
i ∈ [1, n] and Γ = ∪i∈[1,n]γi.

• secgenpart – this algorithm is mainly based on [4]
construction. It is executed by each participating fog node
Ui, in order to derive an element Ei of his partial secret
si, needed to compute the global shared enciphering
secret s. For this purpose, each participant Ui derives
a secret si, computes and shares two public elements
zi and µi defined as zi = hsi and µi = ê1(g1, g1)αsi ,
respectively. Afterwards, based on the published elements
of the remaining participants, each user Ui calculates and
publishes his partial enciphering element Ei defined as the
couple Ei = (Xi,Yi) = ([zi+1

zi−1
]si , [µi+1

µi−1
]si), required to

derive the global secret element s.
• encpart – this algorithm is run by each Ui, in order to

derive a partial ciphertext CTi for a message mi, w.r.t.
γi and the aggregating function f . To do so, each Ui
first computes two elements (C,K) associated to the
global enciphering secret s, based on the set of shares
{Ej}, where j ∈ [1, n], j 6= i. That is, each participant
calculates C relying on the set of shares {Xj}j∈[1,n],j 6=i,
such that C = hs = hs1s2+s2s3+···+sns1 . Similarly, Ui
computes K relying on the set of shares {Yj}j∈[1,n],j 6=i,
such that K = ê2(g2, g2)

αs is derived as follows:

ê2(g2, ê1(g1, g1)αs) = ê2(g2, ê1(g1, g1)α(s1s2+···+sns1))

Then, Ui proceeds similarly as explained in section V.
That is, Ui encrypts the message mi with respect to γi

and outputs the partial ciphertext CTi such that:

CTi = {C̃i, C,∀yj ∈ Yi, j ∈ [1, |Yi|] : Ci,j , C
′
i,j}

where C value is similarly computed and sent by all
participants. As this ciphertext’s element depends on the
enciphering secret s, it permits to detect whether there
is an inconsistency among the different received values,
before proceeding to the aggregation and decryption
processes. C̃i depends on f pointed out by GM and it is
defined as C̃i = [mi]

n ·K.
Recall that the partial ciphertext CTi associated to the
fog node Ui does not include γi.

• aggregate – it outputs a global CT defined as:

CT = {C̃, C, ∀Yi ∈ L,∀yj ∈ Yi : Ci,j , C
′
i,j}

where C̃ is defined as follows:

C̃ =

n∏
i=1

[C̃i]
n−1

=

n∏
i=1

[(mi)
n]n
−1

n∏
i=1

Kn−1

= M ·K

• decrypt – this algorithm, executed by the aggregating
entity Sj , permits to decrypt the aggregated ciphertext
CT , including the global access structure Γ and the
private key sk associated with S. It is mainly similar to
the proposed construction, detailed in section V. Thus, for
leaves and intermediate nodes, the aggregator computes
Fx, defined as: Fx = ê1(g1, g1)rqx(0).
For the direct children of the root node, this
extended construction introduces a new algorithm
referred to as DecRootChild. Indeed, it relies on
the execution of the DecryptNode function and is
defined such that DecRootChild(CT, sk, x, µi−1) =
ê2(µi−1, DecryptNode(CT, sk, x)).
If the aggregating entity satisfies a child-
root node x, such that index(x) = i, then
DecRootChild(CT, sk, x, µi−1) = ê2(g2, g2)αrsisi−1 .
If the set of attributes S satisfies the global access struc-
ture Γ, then the aggregating entity computes a quantity
A, as follows:

A =
∏

i∈[1,n],x∈Sr

DecRootChild(CT, sk, x, µi−1)

=
∏

i∈[1,n],x∈Sr

ê2(g2, g2)αrsisi−1

= ê2(g2, g2)αr
∑
i∈[1,n] sisi−1

= ê2(g2, g2)αrs

Finally, the aggregating entity Sj decrypts M as follows:

C̃
ê2(g2,ê1(C,D̃))

A

=
M ·K

ê2(g2,ê1(hs,g1α(1+r)/β))
ê2(g2,g2)αrs

=
M · ê2(g2, g2)αs

ê2(g2,ê1(g1βs,g1α(1+r)/β))
ê2(g2,g2)αrs

=
M · ê2(g2, g2)αs

ê2(g2,ê1(g1,g1)sα(1+r))
ê2(g2,g2)αrs

= M

IX. CONCLUSION

The fast growing and the ubiquity level inflation of Internet
of Things leads us to propose a secure and privacy preserving
multi-user encryption scheme for fine-grained access control
adapted for Cloud-assisted IoT applications.
Our construction takes advantage of the CP-ABE scheme to
obtain a flexible and fine grained access control scheme. It
enables an aggregating entity to collect sensory data from dif-
ferent devices and decrypt them if it satisfies a general access
structure. The proposed cooperative scheme does not reveal
any information about the enciphered single data chunks, thus
ensuring the privacy of involved entities. Furthermore, it is
proved to be suitable for resource-constrained devices based
on a theoretical performance analysis.

REFERENCES

[1] A. Beimel. Secret-sharing schemes: A survey. IWCC’11, 2011.
[2] S. Belguith, N. Kaaniche, M. Laurent, A. Jemai, and R. Attia. Phoabe:

Securely outsourcing multi-authority attribute based encryption with
policy hidden for cloud assisted iot. Computer Networks, 133, 2018.

[3] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-policy attribute-
based encryption. In Proceedings of the 2007 IEEE Symposium on
Security and Privacy, pages 321–334, Washington, DC, USA, 2007.

[4] M. Burmester and Y. Desmedt. A secure and scalable group key
exchange system. Inf. Process. Lett., 94(3), May 2005.

[5] A. Carlin, M. Hammoudeh, and O. Aldabbas. Defence for distributed
denial of service attacks in cloud computing. Procedia Computer
Science, 73:490–497, 2015.

[6] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryp-
tion for fine-grained access control of encrypted data. In Proceedings of
the 13th ACM Conference on Computer and Communications Security,
CCS ’06, 2006.

[7] M. Hammoudeh, F. Al-Fayez, H. Lloyd, R. Newman, B. Adebisi,
A. Bounceur, and A. Abuarqoub. A wireless sensor network border
monitoring system: Deployment issues and routing protocols. IEEE
Sensors Journal, 2017.

[8] S. Hohenberger, A. Sahai, and B. Waters. Full domain hash from
(leveled) multilinear maps and identity-based aggregate signatures. In
Advances in Cryptology–CRYPTO 2013, pages 494–512. Springer, 2013.

[9] N. Kaaniche and M. Laurent. Data security and privacy preservation
in cloud storage environments based on cryptographic mechanisms.
Computer Communications, 111:120–141, 2017.

[10] K. T. Nguyen, M. Laurent, and N. Oualha. Survey on secure communi-
cation protocols for the internet of things. Ad Hoc Netw., pages 17–31,
Sept. 2015.

[11] V. Odelu, A. K. Das, M. K. Khan, K.-K. R. Choo, and M. Jo. Expressive
cp-abe scheme for mobile devices in iot satisfying constant-size keys and
ciphertexts. IEEE Access, 5:3273–3283, 2017.

[12] N. Oualha and K. T. Nguyen. Lightweight attribute-based encryption
for the internet of things. In Computer Communication and Networks
(ICCCN), 2016 25th International Conference on. IEEE, 2016.

[13] R. Roman, P. Najera, and J. Lopez. Securing the internet of things.
Computer, 44(9):51–58, 2011.

[14] A. Sahai and B. Waters. Fuzzy identity-based encryption. In Proceedings
of the 24th Annual International Conference on Theory and Applications
of Cryptographic Techniques, EUROCRYPT’05, pages 457–473, 2005.

[15] A. Shamir. Identity-based cryptosystems and signature schemes. In
Proceedings of CRYPTO 84 on Advances in Cryptology, pages 47–53,
1985.

[16] M. Torchia, M. Kumar, and V. Turner. Worldwide semiannual internet
of things spending guide. IDC (International Data Corporation) June,
2017.

[17] L. Touati and Y. Challal. Collaborative kp-abe for cloud-based internet of
things applications. In Communications (ICC), 2016 IEEE International
Conference on, pages 1–7. IEEE, 2016.

[18] L. Touati, Y. Challal, and A. Bouabdallah. C-cp-abe: Cooperative
ciphertext policy attribute-based encryption for the internet of things.
In Advanced Networking Distributed Systems and Applications (INDS),
2014 International Conference on, pages 64–69. IEEE, 2014.

