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Abstract. Dynamic environments can be modeled as a series of events
and facts that interact with each other, these interactions being charac-
terised by different relations including temporal and causal ones. These
have largely been studied in knowledge management, information re-
trieval or natural language processing, leading to several strategies aim-
ing at extracting these relationships in textual documents. However,
more relation types exist between events, which are insufficiently cov-
ered by existing data models and datasets if one needs to train a model
to recognise them. In this paper, we use semantic web technologies to de-
sign FARO, an ontology for representing event and fact relations. FARO
allows representing up to 25 distinct relationships (including logical con-
straints), making it a possible bridge between (otherwise incompatible)
datasets. We describe the modeling decision of this ontology resource. In
addition, we have re-annotated two already existing datasets with some
of the FARO properties.

Keywords: Semantic Web · Ontology · Event Relations

1 Introduction

In our experience of the world, we observe continuous occurrences of events. We
may connect new events to one or more previous ones, giving birth to relation-
ships of several types, such as cause-effect, relatedness, co-occurrence in time or
space, etc. Even restricting our research to causality, we need to take into account
several scenarios like preemption (causing an event which was going anyway to
happen) and disconnection (making an event happening by removing the cause
of not-happening) [23]. Events can influence each other (reciprocally or not),
even without being recognised as cause-consequences. An event can be made
of sub-events, each of them potentially relating to others. Being able to repre-
sent and exploit those relationships can be beneficial for different applications,
involving the general public and domain experts.

The semantic web provides methods and tools to represent facts in Knowl-
edge Graphs (KG) generally expressed in RDF. Some KGs are even specialised
for representing event-centric information [7]. In Temporal Knowledge Graphs
(TKG), each edge of the graph includes time information for identifying the
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temporal validity of a triple [20, 6]. It is possible to use the event and time
information for inferring edges [27, 10]. However, while TKGs are capable to
represent an event occurrence, there are not suitable to represent inter-events
relationships, making it hard to retrieve flow of events.

In this paper, we introduce the Facts and Events Relationship Ontology
(FARO), a data model for representing events relationships in Knowledge Graphs.
In particular, we aim to design a structure which make possible to navigate
through semantic links between events, exploring the flow of events backwards
(searching for the causes or conditions of an event), forward (looking at conse-
quences) or passing through other kind of connections. In other words, we want
to make possible the creation of interconnected timelines of events, in which the
connections between two consecutive points have explicit semantics. A such cre-
ated graph would serve to improve the performance of downstream task (namely
link prediction) and the explainability in decision making systems. We present
several contribution:

– We compare a multitude of partially overlapping models, in order to under-
stand which relationships should be represented because of interest of the
community – Section 2;

– As an outcome of the literature review, we introduce the FARO model –
Section 3;

– In other to foster future research, we realise a first Event Relation dataset
that includes numerous event relations. This dataset has been obtained by re-
annotating two existing datasets and by extending the TimeML format [22]
with a new RLINK tag – Section 4.

We conclude in Section 5, summarising the contribution and the resources.

2 Related Work

In the literature, several works have studied event relationships, the most com-
mon type of relationships being temporality. Fan et al. [4] identified 13 tempo-
ral relations – to be used in the context of 3D simulation –, including simultane-
ity (equal) and 6 other asymmetric (directed) properties, with their respective
inverse – e.g. before / after. Equivalent relations are included in [9], with the
addition of Vagueness. Mereology in the context of events – i.e. the interaction
between sub-events and super-events – is also often represented [6, 9, 13, 24, 29].
Finally, the literature mentions more kinds of relation that we can group un-
der the name of contingency. Wolf distinguishes the causality relations in four
different concepts [31]:

– CAUSE: event A that leads to an event B;

– ENABLE: condition C to make an event B possible;

– PREVENT: event A that avoids an event B;

– DESPITE: event A did not succeed in avoiding an event B.
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Hong et al. [9] designed one of the most complete event-event relationship
classification, including 5 types (Inheritance, Expansion, Contingency, Compar-
ison, Temporality) and 21 sub-types, with possible overlaps between classes. To
the best of our knowledge, this is the only work including comparative rela-
tions which cover three kinds of relation types, such as Opposition, when two
events are improbable to be both true (parole → sentenced), Negation, when
two events can be both true in different time slots, but not simultaneously (A is
behind bars →A left). However, several relations between events are not accom-
panied by proper definitions, while still some relation types are missing.

Several ontologies have been published using semantic web technologies.
While some of them do not include relations between events (e.g. LODE [25]),
most of them include at least the concept of sub-events, such as in the Event
Pattern [13], the Event Ontology1, and the Simple Event Model (SEM) [29].

Event Model F is an ontology created to support the response in emergency
events [24]. It includes three kind of event relationships: mereological, causal
and correlation. Its Justification class enables to support the relationship with
provenance – e.g. opinion, scientific law, etc. However, this is modeled by includ-
ing classes – e.g. EventCompositionSituation and EventCompositionDescrip-
tion – with the only purposes of connecting events and defining their roles.
As a consequence, there are no direct links between the composite super-event
and its components sub-events (same for cause-effect). Furthermore, only 1-1
relations are foreseen, so additional instances must be created for aggregating
causes/effects. All this led to a complex model, hard to understand and to adopt.

One of the most popular models among libraries and cultural institutions
is CIDOC CRM [3]. It is an event-centric model, in which everything is rep-
resented though the interlinking of events of creation, production, movement,
destruction, etc. Among its properties, there are some which intend or allow to
interlink events, instantiating temporal relations (e.g. P176 starts before the

start of), mereological relations (P9 consists of), causal relations (P17 was

motivated by), and even include intentionality (P20 had specific purpose).

It is evident from the literature the necessity to represent, next to proper
events, also some state or condition, lasting in time. This concept has been
modeled as a sub-class of event [11] or as a completely separate class [5].

Several datasets for the detection of events and event relations are available,
focusing mostly on temporal relations or on pure causality. Temporal relations
have been largely investigated since 2009 in the TempEval shared task [28], which
used the standard TimeML format and the TimeBank corpus [22]. The latter
has been extended in CausalTimeBank [18] that follows the {CAUSE, ENABLE,
PREVENT} model. In addition, events are marked as factual (happened), coun-
terfactual (not happened) or non-factual (possibilities), while their relation can
be certain or uncertain. On top of TimeML, the EventStoryLine dataset is pro-
posed in [1], and includes the representation of causes and consequences in the
context of PLOT LINKs, for tagging events that are relevant in a plot.

1 http://motools.sourceforge.net/event
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EventKG [6] is a knowledge graph of harmonised and interlinked events ex-
tracted from several resources, such as Wikidata and YAGO [8]. It includes over
1,3 million events, linked to their spatial and temporal coordinates. Only the
connection between sub-events and super-events is represented in this dataset.
For instance, it includes events such as “Covid-19 lockdowns” and “Covid-19
pandemic in UK”, with no direct relation between2. In the medical field, the
datasets CSci [32] and EurekAlert [33] have been annotated according to four
levels of causal relation: no relationship (c0), causal (c1), conditional causal (c2),
and correlational (c3).

Table 1 summarises these models and datasets, showing which kind of rela-
tions are included in each of them. In addition to those, it is important to men-
tion CausalNet, a common sense graph of actions, with weights between them
indicating the likelihood that they are in a cause-effect relation [17]. Finally, it
is worth to cite CausalBank – including 314 million sentence-level cause-effect
pairs – from which it has been generated the Cause Effect Graph, in which links
between events are weighted based on their co-occurrence in the text [15].

The table shows clearly that none of the existing resources is able to represent
the entirety of the possible relations, calling for a more complete data model.

3 FARO: an Event Relation Ontology

Not all event relationships involve just events. For instance, one may want to
describe that being tall is helping a player to score in a basketball game. The
player’s height is of course not an event, but rather a condition which supported
the happening of an event. For this reason, FARO includes two different classes,
Condition – transcendent, possibly can result in a RDF statement – and Event
– immanent, following the categorisation in [23] – that are direct children of the
more general class Relata, as in Figure 1. The latter is not intended to be directly

2 We can logically imagine here that the spread the pandemic caused the lockdown,
which is in its turn a measure for preventing the worsening of pandemic.

Relata

Condition Event

Status

happened
not happened
planned
potential

is related to

status

rdf:Statement
results in

Fig. 1. Core elements of the FARO ontology
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Temporal relations

Before (after) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Immediately Before

(Immediately After)
✔ ✔ ✔ ✔

Equal / Simultaneous ✔ ✔ ✔ ✔ ✔ ✔ ✔

Meets (is met by) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Overlaps (is overl. by)

/ During
✔ ✔ ✔ ✔ ✔ ✔ ✔

Contains (is cont. by) ✔ ✔ ✔ ✔ ✔ ✔ ✔

Starts (is started by)

/ Begins
✔ ✔ ✔ ✔ ✔ ✔ ✔

Finishes (is finished by)

/ Ends
✔ ✔ ✔ ✔ ✔ ✔ ✔

Vague ✔

Mereological relations

Sub-event (super-Event) ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Re-emergence ✔ ✔

Coreference ✔ ✔

Variation ✔ ✔

Confirmation / Ev. type ✔ ✔

Contingent relations

Cause ✔ ✔ ✔ ✔ ✔ ✔∗ ✔+ ✔

Enable / Condition ✔ ✔ ✔- ✔

Prevent ✔ ✔- ✔

Despite / Concession ✔ ✔ ✔

Correlation ✔ ✔ ✔ ✔

Intention / Purpose ✔ ✔

Not cause ✔ ✔

Comparative relations

Comparison ✔ ✔

Conjunction / Similarity ✔ ✔

Disjunction / Dissimilarity ✔ ✔

Opposite ✔ ✔

Negation / Alternative ✔ ✔

Competition / Contrasting ✔ ✔

Table 1. Type of event relations which is possible to instantiate using certain
schemas/ontologies or to find in certain datasets. In EventStoryLines (✔∗), it is possi-
ble to find plot actions which may be interpreted as cause of other events. In CSci and
EurekAlert (✔+), it is also possible to express the conditional causation. In Causal
TimeBank (✔-), both Enable and Prevent relations are separately considered in the
process, but they are not distinguished in the dataset.
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use for instantiate entities, but is rather an abstraction layer for the other two
main classes, allowing to define relations which connects indiscriminately any
combination of them.

We found interesting to allow to define the Status of a Relata entity, to be
chosen between four different options:
1. happened for sure at some moment in the past;
2. not happened for sure, we can exclude any happening of it in the future;
3. potential, meaning it is still uncertain if it will happen or not;
4. planned, sort of stronger potentiality, due to a will to this to happen.

This Status is intended to see an evolution in time, until it reaches either the
happened or not happened status. We decided to leave possible to even define
unforeseen statuses, apart to the four ones defined by the ontology.

Two Relata instances can be connected with a is related to property, which
suggests general relatedness without further specification. The is related to prop-
erty is further extended by 25 more specific properties, organised around four
direct sub-classes of is related to, namely:

– comparatively related to
• alternative to
• compared to

∗ dissimilar to
· opposite to

∗ similar to
• contrasting version of

– contingently related to
• causes
• correlates with
• does not cause

∗ prevents
• does not prevent (despite)
• enables
• intends to cause

– mereologically related to
• coreference of
• part of
• re-emerges in
• variation of

– temporally related to
• before

∗ immediately before
· meets

• contains
∗ ends
∗ starts

• overlaps
• simultaneous to

Differently from other works, we decided to structure these properties hierar-
chically, in order to enable reasoning. This hierarchy has been realised following
the definition of the individual relations. For the same purpose, we included
logic constraints – such as owl:cardinality and owl:propertyDisjointWith

– and further define property characteristics – using owl:SymmetricProperty

and owl:Transitive Property. Please note that FARO is only intended to be
used for representing the relationships between events, leaving the event descrip-
tion to be represented using other vocabularies or ontologies.

Figure 2 shows two contingent relations, which represent using the FARO on-
tology the following text snippet: “A tight monetary program caused a temporary

downturn but prevented a monetary meltdown”3.

3 The text sample has been taken from https://economynext.com/sri-lanka-will-
repay-bonds-holders-should-appreciate-efforts-made-cabraal-83785/. Last visited:
10/06/2022
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causes

prevents

Monetary 
program

Temporary 
downturn

Monetary 
meltdown

status
Happened

status Not 
happened

alternative 
to

Fig. 2. A relata causing an event and preventing another one, represented using FARO.

Looking a second time at Table 1, it is possible to appreciate that FARO
is covering most of the listed relations, proposing itself as central ontology for
the harmonisation of different data models. We decided to not include in our
ontology the Vague temporal relation: even if valuable from the point of view
of information extraction, these kind of properties are not common in semantic
web environments, where a more generic super-property can be used – in this
case, temporally related to. Similarly, FARO is not including any Confirmation
/ Event Type property, because it can be expressed directly with an rdf:type

statement. Alternatively, it is possible to use FARO in combination with other
data models for event description – such as SEM [29], which allows typing events.

4 An Event Relation Dataset

In this section, we describe a dataset that includes some of the relations described
in FARO, focusing on the contingent relations and in particular Cause, Intend,
Prevent, Enable, Not Cause. The choice of targeting only a subset of the relations
is due to time and resource constraints. However, we believe that a first version
of a multi-relation event dataset is crucial to start designing new automatic
methods for extracting them. Note that this is the first dataset incorporating
Intend, and differentiating between Cause, Prevent, and Enable.

We developed this dataset by extending and re-annotating two existing datasets
with new event relations types, namely intention, enabling, prevention, and ex-
plicit negation of causality. The choice of the datasets were based on their format
(TimeML), which was convenient for extending it with other relation link.

– TimeBank [30], published by Brandeis University, providing 183 English
news articles with over 27,000 event and temporal annotations about events,
times and temporal links between events and times. The annotation respects
the TimeML 1.2.1 specification.

– EventCausality [21], the dataset comes with causal and temporal annotations
on 25 news articles collected from CNN7, giving at the end 1.3k events, 3.4k
temporal links and 172 causal relations between events.
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Both selected datasets are represented using the TimeML format [22], which we
kept it as a base. This format enables to annotate events in the text and to
declare possible connections between them using one among:

– TLINK, a temporal relation between events (or between an event and a time
expression). Ex: “John left (ei1) 2 days before (s1) the attack (ei2)” −→

<TLINK eventInstanceID="ei1" signalID="s1"

relatedToEvent="ei2" relType="BEFORE" magnitude="t1" />

– ALINK, a relationship between an “aspectual” event (events that add a notion
about an action whether it begins, finishes, continues, etc.) – normally rep-
resented by phrasal verbs, e.g. start to– and its argument event: initiation,
continuation, etc. Ex: John started (ei5) to read (ei6) −→

<ALINK eventInstanceID="ei5"

relatedToEventInstance="ei6" relType="INITIATES" />

– SLINK, refers as a Subordination Link, which is used for contexts introducing
relations between two events, or an event and a signal. Ex. “John said (ei2)
that he taught (ei3) on Monday.” −→

<SLINK eventInstanceID="ei2"

subordinatedEventInstance="ei3" relType="EVIDENTIAL" />

While TimeBank uses all 3 types of links, EventCausality instantiates explicit
TLINK relation tags, with causal links are represented separately in another file
– not following TimeML, so hard to re-use in other dataset. We kept the temporal
links and we enriched it by new event relation tags.

4.1 A generic relation link: RLINK

Following the experience described in [18] with the addition of the causal link
CLINK, we extended TimeML with a new relation type RLINK, which we designed
as a generalisation of the existing ones (TLINK, ALINK, CLINK), and enriched
the previously described datasets accordingly. RLINK – or relation link – is a
description of a generic relationship between two events, that can be further
specified. A RLINK instance has 4 attributes as following:

– Link Identifier (lid) represents an ID for the relation, unique at the docu-
ment level;

– Relation type (relType) refers as the type of relation between two events or
the predicate of the triple, which can be one of the property of FARO, e.g.
Cause, Prevent, etc.;

– Event instance Identifier (eventInstanceID) is the relata with the role of
subject of the triple;

– Related event instance Identifier (relatedEventInstance) is the relata with
the role of object of the triple.
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Example. “Subcontractors will be offered a settlement (ei264) and a swift
transition (ei265) to new management is expected to avert an exodus(ei268)
of skilled workers from Waertsilae Marine’s two big shipyards.”

<RLINK eventInstanceID="ei264"

lid="l42" relType="prevention" relatedEventInstance="ei268" />

<RLINK eventInstanceID="ei265"

lid="l43" relType="prevention" relatedEventInstance="ei268" />

4.2 Candidate generation

We re-annotated each of the mentioned datasets applying a semi-automatic pro-
cedure, based on expression matching as first step, followed by a manual check
to validate the extracted annotations.

First, we collected a set of potential signal words for each of the 5 studied
relations. We searched in the text these signals and extracted the sentences con-
taining them, which we consider potential candidates. Each candidate sentence
is dispatched according to the number of possible event pair combinations of
relata that can construct the relation, among all the already annotated events
for that specific sentence in the original datasets. In other words, we created a
table in which each line contains a unique combination of two events, the signal
word, the document id and the full sentence, as in Table 2.

Event1 eid1 Event2 eid2 signal Annotation DocumentID Sentence

settlement e44 expected e14 avert 0 wsj0187.tml Subcontractors will ...

... ... ... ... ... 0 wsj0187.tml Subcontractors will ...

settlement e44 exodus e46 avert 1 wsj0187.tml Subcontractors will ...

... ... ... ... ... 0 wsj0187.tml Subcontractors will ...

transition e45 exodus e46 avert 1 wsj0187.tml Subcontractors will ...

Table 2. Table of the candidate pairs for a specific relation type (prevention), with
manual annotation (1 = correct, 0 = wrong).

In the following, we detail the strategy applied for the signal collection and
the extraction for each relation type, together with some examples.

Causality. We adopted the manually defined causal signals and causal verbs
in [19], in which causal signals are nominal phrases that express causality (e.g:
because of, in order to, as a result of). However, causal verbs are a set of verbs
representing the act of causing, such as: cause, bribe, push, etc. The first auto-
matic selection results in 1790 candidate causal relation for TimeBank dataset,
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and 697 for EventCausality dataset. After dispatching, we ended up with 9658
and 1205 possible event pair causal relation for TimeBank and EventCausality
datasets respectively.

Example. “Ocean Drilling amp Exploration Co. will sell its contract-drilling
business, and took a $50.9 million loss from discontinued operations in the third
quarter because of the planned sale.”

planned
causes−−−−−→ sell , planned

causes−−−−−→ took , planned
causes−−−−−→ loss

Intention. To capture intention, we manually created a list of possible intention
signals (e.g: want, plan, aim). Additionally, we adopted another set of events as
signals taken from the TimeBank dataset belonging to the class I-action. I-action
(Intentional action), is an argument for those events that express an action of
intention to do something.

Example. “Companies such as Microsoft or a combined worldcom MCI are try-
ing to monopolize Internet access.”

The I-action is in bold face and, and the related event is underlined. The
selection was manually performed after observing that some of these I-actions
can alert the existence of this type of relation in a sentence.

Example. “Courtaulds PLC announced plans to spin off its textiles operations
to existing shareholders in a restructuring to boost shareholder value.”

spin
Intends to−−−−−−−→ boost

As a result of automatic intention signals matching, we got 412 candidate ex-
pression for holding intention for TimeBank and 154 for EventCausality dataset.
However, after extracting all possible event pair combinations, we ended up with
4028 and 230 intention candidate expression for TimeBank and EventCausality
datasets respectively.

Prevention. We integrate prevention signals as defined in [19], in which are
initially included into the causal verbs list and claimed to express prevention,
e.g: block, bar, deter, etc. After the exploitation of these signals, we could extract
120 and 25 candidate expression, which lead to 988 and 53 event pair combination
from TimeBank and EventCausality respectively.

Example. “In addition to the estimated 45,000 Marines to ultimately be part
of Operation Desert Shield, Stealth fighter planes and the aircraft carrier John F.
Kennedy are also headed to Saudi Arabia to protect it from Iraqi expansionism.”

headed
Prevents−−−−−−→ expansionism
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Enabling. For this event relation, we defined a list of verbs that alert the ex-
istence of enabling, such as authorize, warrant, entitle, etc.. We extended this
list with enable signals as defined in [19], e.g: help, permit, empower, etc. to
guarantee a high coverage. As a result, we obtained 41 and 17 candidate ex-
pression and 328 and 16 candidate event pairs combination for TimeBank and
EventCausality datasets respectively.

Example. “In addition, Courtaulds said the moves are logical because they will
allow the textile businesses to focus more closely on core activities.”

moves
Enables−−−−−−→ focus

Not Causality. To extract the explicit not cause relation, we rely on the previ-
ously extracted causal relations, in which, we first naively pick those expression
having both negation and causality at the same time, than manually validate
the right ones. Consequently, we obtained 230 and 124 candidate expression and
1640 and 255 candidate event pairs from TimeBank and EventCausality datasets
respectively.

Example. “He also rejected reports that his departure stemmed from disappoint-
ment the general manager’s post had not also led to a board directorship at the
London-based news organization.”

disappointment
NOT cause−−−−−−−−→ departure, post

NOT cause−−−−−−−−→ directorship

4.3 Manual annotation

The described process extracted a long list of candidate relations, most of them
being incorrect and to be filtered out. The structure in Table 2 has been then
used by two fluent English speakers annotators, which manually checked the
candidate sentences. The process is summarised in the following steps:

1. Each annotator reads and annotates 300 lines for each type of relation.
2. On this preliminary annotation, we compute Cohen’s kappa inter annotator

agreement (IAA) [12] between the two annotations.
– If the IIA does not show a substantial agreement (> 0.6), the annotators

meet, check the contrasting annotations and agree on a strategy. Then,
300 different lines are chosen and the process goes back to point 1.

– Otherwise, we progress to next point.
3. The annotation is completed for the rest of the datasets, each annotator

taking a unique portion.

During annotation, only relations with precised relata have been considered
as correct, while others have been marked as not correct. The annotation process
relied on an IAA = 0.7112, which is considered a substantial agreement.

In the following example, the signal word is marked in bold, events have
been marked using italic, but only the underlined ones have been considered
part of relationships of type Prevent by the annotators in Table 2.
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Example. “Subcontractors will be offered a settlement and a swift transition
to new management is expected to avert an exodus of skilled workers from
Waertsilae Marine’s two big shipyards, government officials said.”

4.4 Results and discussion

Table 3 reports the number of candidate sentences, event pairs and final correct
relations for each dataset and relation type, while in Table 4 we show the number
of occurrences for each relation to have an insight about the balance of the final
dataset, which can be useful in multi label classification tasks.

Extraction Annotation

Dataset Relation types
n. of candidate

sentences
n. of candidate

event pairs
n. of correct

relations

TimeBank

Cause 1790 9658 217
Intend 412 4028 42
Enable 41 328 11
Prevent 120 988 17
Not Cause 230 1640 3

EventCausality

Cause 697 1205 66
Intend 154 230 2
Enable 17 16 2
Prevent 25 53 1
Not Cause 124 255 0

Table 3. Number of candidate sentences, event pairs and final correct relations for
each dataset and relation type.

Relation type Cause Intend Prevent Enable Not-Cause

Number of relations 283 44 13 18 3

Table 4. Total number of relations validated by annotators for each relation type.
These relations are present in the released Event Relation dataset.

Due to the applied strategy, we were able to only extract relations between
events which have been explicitly tagged in the original datasets. This conse-
quently affected the number of extracted links within each relation type, which
is particularly low for Not Cause, Prevent and Enable – the subject of the lat-
ter not always being an event. The explicit negation of causality is not very
expressed in the datasets that we covered, besides the native way of extracting
them was not very efficient: indeed, collecting all sentences with causal signal
and a negation has lead of lots of (false) candidate sentences.
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5 Conclusion and Future Work

In this paper, we introduced FARO, an ontology for representing event relations.
FARO includes a structured set of properties, which cover most of the relation
types which can be found in the literature. In addition, we re-annotated two
existing datasets in order to include some of the relation defined in FARO, re-
leasing a new Event Relation dataset which can be used as ground truth for new
multi-event extraction systems. FARO has been implemented in OWL and pub-
licly documented4. The Event Relation dataset5 is released in TimeML format.
Both resources are published under an open source license.

We believe that empowering Knowledge Graphs with event relationship in-
formation will improve knowledge discovery and link prediction. At the same
time, this kind of semantic representation can sensibly improve the explainabil-
ity in decision making systems and the quality of text generation from graphs
[26]. For this reason, we aim to realise a KG of events interconnected using se-
mantically precise relations according to the FARO ontology, in which would be
possible to follow relation chains and compute new ones. This KG should be
populated by both extracting information from text and by interlinking with
existing event-based KGs, such as EventKG [6] and YAGO [8].

In order to do it, an improved version of the Event Relation dataset should be
realised. A first enhancement would come by offering a better coverage of differ-
ent relation types. The used annotation methods can be improved, for example
applying event detection techniques such as [2] in the candidate generation. We
aim to use the annotated dataset within multi classification supervised tasks for
event relation detection, in which we are considering the exploit and the adap-
tion of previously implemented binary event relation extraction approaches – e.g.
[16, 14] – also enriching event representation with the involvement of common
sense knowledge.
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In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) The Semantic Web. pp. 153–167.
Springer, Berlin, Heidelberg (2009)

26. Suchanek, F.: The Need to Move beyond Triples. In: Text2Story — Third Work-
shop on Narrative Extraction From Texts (ECIR) (2020)

27. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-Evolve: Deep Temporal Reasoning
for Dynamic Knowledge Graphs. In: 34th International Conference on Machine
Learning (ICML). vol. 70, p. 3462–3471. JMLR.org (2017)

28. UzZaman, N., Llorens, H., Derczynski, L., Allen, J., Verhagen, M., Pustejovsky,
J.: SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and
Temporal Relations. In: 7th International Workshop on Semantic Evaluation (Se-
mEval). pp. 1–9. Association for Computational Linguistics, Atlanta, USA (2013)

29. van Hage, W., Ceolin, D.: The Simple Event Model, pp. 149–169. Springer, New
York, USA (2013). https://doi.org/10.1007/978-1-4614-6230-9 10

30. Verhagen, M., Mani, I., Sauri, R., Littman, J., Knippen, R., Jang, S.B., Rumshisky,
A., Phillips, J., Pustejovsky, J.: Automating temporal annotation with TARSQI.
In: ACL interactive poster and demonstration sessions. pp. 81–84 (2005)

31. Wolff, P.: Representing Causation. Journal of experimental psychology. General
136, 82–111 (03 2007). https://doi.org/10.1037/0096-3445.136.1.82

32. Yu, B., Li, Y., Wang, J.: Detecting Causal Language Use in Science Findings. In:
2019 Conference on Empirical Methods in Natural Language Processing and 9th In-
ternational Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
pp. 4656–4666 (2019), https://www.aclweb.org/anthology/D19-1473.pdf

33. Yu, B., Wang, J., Guo, L., Li, Y.: Measuring Correlation-to-Causation Exaggera-
tion in Press Releases. In: 28th International Conference on Computational Lin-
guistics (COLING). pp. 4860–4872 (2020)


